
 1

Documentation Addendum for Max/MSP 4.3.1

Revised 9 January 2004

This document summarizes the changes made between versions 4.2 and 4.3.1 of
Max/MSP. This document provides information and corrections that are not yet in the
other Max/MSP Documentation. Most of the changes are relatively minor but they
may affect you. In general, the changes were made to support Max/MSP as a cross-
platform environment that, as much as possible, works identically on Mac OS X and
Windows XP.

MaxMSP 4.3.1 for Windows XP now supports building standalone applications. In
addition, building standalone applications with MaxMSP 4.3.1 for OS X has been
updated for improved OS X support and cross platform consistency with Windows
XP. More details on these changes are provided below.

Cross-Platform Collective Format

We’ve implemented a new collective format that adds some much-requested features,
and can be read by both Mac and Windows. The previous collective format is still
supported on Macintosh OS X (and is still used for making plug-ins), but should be
considered obsolete and support for it will be dropped in the next major Max/MSP
release. The new format is extensible and will allow us to add more features into the
future, such as encryption and data compression.

The Collective Editor, activated via the “File | Build Collective / Application …”
menu item, is now a patcher instead of a dialog box. This can make it more
convenient to develop a collective script while examining your patchers.

Select the collective file format you want to build using the “Save As” dialog which
is shown after clicking the Build button in the Collective Editor. On Macintosh OS X
use the pop-up menu labeled Format. On Windows XP use the drop down box
labeled “Save as type”. Note that on Windows XP the option labeled “mx@c Files
(*.mxf)” is for the Cross-Platform Collective Format and the option labeled “APPL
Files (*.exe)” is for building an Application.

The old collective format was based on Mac OS resources, which means the resulting
files had “resource forks” that are not readable on Windows XP. Even Mac OS X has
trouble with them. The new format uses only the “data” part of a file. The way Max
works with the new format is pretty slick: objects that want to read “files” out of a
collective have no idea these files are not in a separate file. This allows audio files to
be read directly from a collective by the MSP buffer~ object, and even spooled from a
collective by the sfplay~ object. If you are a developer of Max/MSP external objects
and are interested in updating your external object to work with these files, please
consult the sysfile API in the forthcoming external SDK.

Quicktime movies cannot be read directly out of a collective. MP3 files can be
included, but they are copied to a temporary file before imported into buffer~.
Similarly, some graphics files imported by Quicktime can be included in the

 2

collective, but require copying to a temporary file before they can be handled. This
was also true of the previous collective file format, by the way.

Another advantage of the new collective file format is that external objects for both
platforms can be included and objects for the wrong platform will be ignored.
However, the procedure for doing this now is somewhat awkward. You’ll have to
create a collective on one platform with the needed external objects in it, copy it to
the platform, and include the collective in another collective built on the second
platform. Note that if the collective contains only Mac externals and is read on
Windows, the Windows version will act as if it contains no externals at all. And vice
versa, of course. This means that if you are only using standard external objects, a
standard runtime Max/MSP installation will work to open the files on a platform
other than the one on which they were created.

If you are going be giving Mac-created collectives to Windows XP users, you are
strongly encouraged to use the .mxf file extension. Otherwise, it won’t be possible for
Windows XP users to open the files.

Standalone Applications

You can use Max/MSP to build a standalone application. This is now supported on
Windows XP as well as Macintosh OS X. The application building process is very
similar on both platforms, and is very similar to building a collective but instead of
choosing a collective file format in the Collective Editor’s Save As dialog an
application format is chosen.

On both Macintosh OS X and Windows XP a standalone application consists of a
folder containing a modified version of the Max Runtime and a collection of
supporting files. This folder is a bundle on Macintosh OS X and therefore appears as
a single file to the user. On Windows XP this folder is a normal folder. The details
for each platform are discussed below.

Macintosh OS X Standalone Applications

To create a standalone application choose Application from the pop-up menu in the
save file dialog instead of Max Collective or Max Old Format Collective. The new
scheme for standalones incorporates the Mac OS X Bundle feature. In this scheme, a
folder that ends in “.app” is treated as a bundle, hiding its interior contents. Double-
clicking on the folder’s icon (which is actually, by default, a generic application icon)
launches an application file contained within.

The application builder in Max/MSP creates an arrangement of files and folders for
your standalone shown in the following listing (the name YourApplication is given
when you save the file):

YourApplication.app [note: the .app is not shown in the Finder]
 Contents [folder]
 Info.plist
 MacOS

 3

 YourApplication [actually Max/MSP Runtime]
 YourApplication.mxf

 [the new format collective containing your patches]
 support
 [audio and MIDI support files]
 Resources
 [custom icon file goes here]

Important Note: You can look at the contents of your bundle by holding down the
control key while clicking on the bundle’s icon in the Finder and choosing Show
Package Contents from the pop-up menu.

Windows XP Standalone Applications

To create a standalone application choose “APPL Files (*.exe)” from the drop down
list in the Save As dialog instead of “mx@c Files (*.mxf). A standalone application
on Windows XP consists of a folder containing all supporting files. The application
builder in Max/MSP creates an arrangement of files and folders for your standalone
shown in the following listing (the name YourApplication is given when you save the
file):
YourApplication [folder]

YourApplication.exe [modified MaxRT.exe – launch this to launch your app]
YourApplication.mxf [new format collective containing your patches]
msvcr70.dll

[Microsoft C Runtime Library used by MaxRT.exe and externals]
support [folder]

ad [folder containing MSP audio driver objects]
mididrivers [folder containing Max midi driver object]
MaxAPI.dll [Max API for external objects]
MaxAudio.dll [MSP library]
MaxQuicktime.dll [Max QT interface]
YourApplication.rsr [Mac style Resources for your application]
asintppc.dll [Support DLL needed for Max]
asiport.rsr [Support resources needed for Max]
asifont.map [Support file needed for Max]

The standalone Object

In order to set options for standalone applications, you place a standalone object in
your top-level patcher, and then bring up its inspector by selecting the object in an
unlocked patcher and choosing Get Info from the Object menu. Two options at the
bottom of the standalone inspector window are new: Audio Support and MIDI
Support. When checked, these copy all the necessary files to handle audio and MIDI
in your application to the support folder in your standalone application, as shown in
the above listings for Macintosh OS X and Windows XP respectively.

 4

Custom Icons and the Property List for Macintosh OS X

In order to use a custom icon for your standalone application, follow these steps:

1. Create a property list file for your application. This is a text file containing an
XML specification of information related to your application, such as its icons
and version number. You can use the Property List compiler in Code Warrior
(or some other tool, such as Apple’s Property List editor) to create the file
(you need to create Info.plist, not a resource). For an example, open an
application package in the Applications folder, for example, Safari, by
control-clicking on Safari’s icon and choosing Show Package Contents from
the pop-up menu. Open the Contents folder and you will see the Info.plist file.

2. Change the icons referenced in the file to the name of an icon file you will

create. Specifically, for the application icon, you need to change this line:

 key "CFBundleIconFile" value string "" (property list compiler source)

 or

 <key>CFBundleTypeIconFile</key> <string>file.icns</string> (XML)

 The text should read:

key "CFBundleIconFile" value string "YourApplication.icns" (where
YourApplication.icns is the name of the icon file you will add to the bundle)

or

 <key>CFBundleTypeIconFile</key> <string>YourApplication.icns</string>

3. You may want to change other information in this file, such as the name of
your application and its version number:

 key "CFBundleName" value string "Your Application"

 or

 <key> CFBundleName </key> <string>Your Application </string>

4. To make an icon file, you can use Apple’s IconComposer (included in the

Developer applications folder when you install the developer tools), or a third-
party icon development tool such as the IconBuilder plug-in for Adobe
Photoshop from Icon Factory.

5. To include your property list and icon files in the standalone, you’ll add them

to the collective script, but the technique for adding each file is slightly
different. For the property list file, first ensure that the filename ends in .plist,

 5

then click the Include File button and choose the .plist file. For the icon file,
click the Include File button and choose the file, then replace the word include
with appicon. Here is an example:

include Disk:/MyAppFiles/Info.plist
appicon Disk:/MyAppFiles/Icon/MyApplication.icns

6. When building your application, the application builder will copy the
Info.plist file to the correct location in your package (the Contents folder),
then it will copy an icon file specified with the appicon keyword to the
Resources folder.

7. You will likely need to restart your computer before the standalone’s icon will

show up.

Custom Icons and Splash Screens for Windows XP

In order to create a custom icon for your standalone application, follow these steps:

1. Create your ICON using the Windows “.ico” format.
2. Using the Collective Editor add a line to your Collective Script with the

following syntax: appicon filename
Hint: you can use the “Include File” button to choose the .ICO file and then
change the “include” command to “appicon”.

In order to create a custom splash screen for your standalone application, follow these
steps:

1. Create your splash screen using the Windows “.bmp” format.
2. Using the Collective Editor add a line to your Collective Script with the

following syntax: appsplash filename
Hint: you can use the “Include File” button to choose the .ICO file and then
change the “include” command to “appsplash”.

The Search Path in Standalone Applications

It may be important for developers of standalones to know the order in which Max
searches for files; it is slightly different than the normal search order. In addition, the
meaning of the two searching options in the standalone inspector has changed slightly
with the introduction of the new standalone format. This information is relatively
advanced and will probably not be of much interest to users who are not developing
standalone applications.

On Macintosh OS X the Utilize Search Path option, when checked, does the
following for the search path of a standalone:

1. Adds all of the folders inside of the folder containing the standalone
application (i.e., the Contents folder and all of its subfolders). The folder
containing the application’s package is not included. In other words, if you
put your application in the Mac OS X Applications folder, the Applications
folder is not included in the search path.

 6

2. Adds the Cycling ’74 folder (/Library/Application Support/Cycling ’74) if it
exists.

On Windows XP the Utilize Search Path option, when checked, does the following
for the search path of a standalone:

1. Adds all of the folders inside of the application folder (i.e. the folder
containing YourApplication.exe).

2. Adds the Cycling '74 folder (c:\Program Files\Common Files\Cycling '74\) if
it exists.

When Utilize Search Path is not checked, the only folder(s) added to the search path
are the support folder inside the standalone application’s folder, and any of its
subfolders.

The order in which folders will be searched is as follows:

1. The collective file (and any other open collective files)
2. The support folder
3. The folder containing the application and its subfolders (optional, if Utilize

Search Path is checked)
4. The Cycling ’74 folder (optional, if Utilize Search Path is checked)

The Search for Missing Files option is slightly different from the Utilize Search Path
option. It prevents Max from looking for any files that are not in open collectives,
including the support folder, which means that you cannot uncheck Search for
Missing Files and have either audio or MIDI support. This means that Search for
Missing Files is now of limited usefulness.

The former role of Search for Missing Files was for testing the collective to make
sure you were including all of the files you need. With the advent of the support
folder and its ability to contain audio and MIDI files, this testing role now falls
mainly to the Utilize Search Path option. Utilize Search Path specifically allows you
to check whether any files in the Cycling ’74 folder are needed by your standalone
application: if, after turning off Utilize Search Path, you see errors indicating “no
such object” or “can’t find files” in the Max window, you know you aren’t properly
including all of the supporting files you need.

A tip that may help sort out path problems: Put ; max paths in a message box in your
patch so you can click on it when the standalone is running. The paths message prints
out the file paths currently in use.

File Sniffing and Type Information

What happens if you send a Max patcher called “foo” with no extension to a
Windows user? On Windows, a file extension tells the system what kind of file
format you have. But on Macintosh, the extension has always been optional, and “file
type metadata” codes have been used to identify the file’s format.

 7

Max now investigates the contents of files when they have neither extensions nor file
type information. And in some cases, an extension isn’t enough: traditionally, Max
users have used the .pat extension for both text and binary files. We’ve now changed
the definition of .pat from Max binary only to either Max binary or text. Since .pat is
ambiguous, Max looks at the contents of the file to determine what format it’s in.

By default, Max still writes files with Mac OS type information in them. But you can
now turn off the writing of the type code with a message to the max object.

The message notypeinfo 1 to the max object (e.g., triggering ; max notypeinfo 1 in a
message box) causes Max not to add Mac OS filetype information to files it writes
out. The notypeinfo 0 message restrores the default behavior.

Text-Based Preferences

Your Max preferences (such as your default font used in the patcher window and the
settings in the File Preferences window) and MSP preferences (such as the current
audio device being used) are now stored as fairly readable text files in a special
folder, instead of in an undocumented and unreadable format.

In addition to the advantage that they are harder to corrupt, the text-based preferences
files can be edited by hand if you need to change your preferences without using
Max/MSP to do it. The preferences files consist of messages to the max object (and
the dsp object for MSP). Many of these messages can also be used while working in
the program.

On OS X, you’ll find the preferences files in the Max 4 Preferences folder inside the
Preferences folder inside the Library folder of your home directory.

On Windows XP you’ll find the preferences files in the folder:
C:\Documents and Settings\Username\Application Data\Cycling '74\Max 4
Preferences Files\
Note one: the above Username will be your username, such as “rob”.
Note two: the above folder is hidden by default. To see it you will need to turn on
viewing of hidden folders in the Windows XP file explorer.

Inside the Max 4 Preferences folder you’ll find a Recent Items folder, which contains
aliases to all of the files you’ve opened with Max recently. You can double-click on
them to open these files, if you want.

Font Mapping

Files saved by version 4.3 contain font names as well as Mac-specific font numbers.
The Windows version can still read older files with numbered fonts, but since these
numbers are both platform- and computer-specific, the font names are used to
enhance portability.

 8

The inclusion of font names in patcher files has been done in a way that will be
ignored when older versions of the software load the patcher.

In the init folder, there is a file containing font mappings as messages to the max
object. We map, for example, the Mac OS Geneva font to the generic “Sans Serif”
font when saving a patcher. And we map the Sans Serif font back to Geneva when
reading a patcher. This allows you to pick the “best” sans serif on a computer that
may not have the fonts that were present on the machine that originally created the
file.

File Path Syntax

Max has always allowed you to specify full or partial file path specifications as
arguments to messages to objects that read files. In version 4.3, we’ve moved away
from the Mac-centric colon as a file path separator. Paths with colons still work, but
we now encourage you to use a cross-platform slash notation that should be familiar
from URLs. Objects such as filepath and absolutepath output this new path style so
you’ll notice the slashes have replaced colons in the File Preferences window.

A full path looks like this:

Volume:/Directory/File

A path relative to the Max application folder looks like this:

./Directory/File

A new feature is a path relative to the Macintosh OS X folder /Library/Application
Support/Cycling ’74 or Window XP folder c:\Program Files\Common Files\Cycling
'74\:

C74:/Directory/File

For more information see the Files topic of the Max documentation.

MIDI Setup Changes

The MIDI Setup window now contains checkboxes for enabling and disabling MIDI
output devices as well as input devices. This feature was added primarily for
Windows XP users, but may be of some use to Mac users. You could use it to shut off
output to a particular MIDI device quickly. If you have many MIDI objects outputting
to the device turning off the device’s checkbox is akin to yanking the MIDI cable.
Much easier than hunting down each MIDI output object.

On Windows XP this is useful to prevent opening the midi output for the Microsoft
GS Wavetable Software Synthesizer. Opening this midi synth will result in the
Microsoft synth opening the default audio device. If this is an ASIO device that does
not support multiple clients it can prevent MSP from being able to open the audio
device.

 9

Trace

We’ve tried to make the Trace feature more robust. One difference you will notice is
that whenever a patcher is destroyed, Trace is immediately aborted, whether or not
the destroyed patcher was involved in the trace. Choose Enable from the Trace menu
to keep tracing.

New Object List

The Max Object List file that was used to set the contents of the New Object List
window has been replaced by two files: max-objectlist.txt and audio-objectlist.txt in
the init folder. These files contain a series of oblist messages to the max object. You
can add your own text files in the init folder with custom additions to the object list,
just use the oblist message, i.e.:

max oblist Category1 Objectname1;
max oblist Category2 Objectname2;

The text files can be named anything you want. Max tries to evaluate any files it finds
in the init folder.

