
MAX

Reference Manual

2

Copyright and Trademark Notices

This manual is copyright © 2000-2005 Cycling ’74.

Max is copyright © 1990-2005 Cycling ’74/IRCAM, l’Institut de Recherche et Coördination
Acoustique/Musique.

Credits

Original Max Documentation: Chris Dobrian and David Zicarelli

Max 4.3 Reference Manual: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno,
Richard Dudas

Max 4.3 Tutorials and Topics Manual: David Zicarelli, Gregory Taylor, Jeremy Bernstein,
Adam Schabtach, Richard Dudas, R. Luke DuBois

Max 4.3 Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua
Kit Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Introduction

3

This reference manual contains information about each individual Max object. It includes:

Max Objects

Contains precise technical information on the workings of each of the built-in and external
objects supplied with Max, organized in alphabetical order.

Max Object Thesaurus

Consists of a reverse index of Max objects, alphabetized by keyword rather than by object
name. Use this Thesaurus when you want to know what object(s) are appropriate for the task
you are trying to accomplish, then look up those objects by name in the Objects section.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in bold
type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type, like
this.

In the “See Also” sections, anything in regular type is a reference to a section of the Max
Tutorials and Topics manual.

Reading the manual online

The table of contents of the Max Reference Manual is bookmarked, so you can view the
bookmarks and jump to any topic listed by clicking on its names. To view the bookmarks,
choose Bookmarks from the Windows menu. Click on the triangle next to each section to
expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s
Find command. Choose Find from the Tools menu, then type in a word you’re looking for.
Find will highlight the first instance of the word, and Find Again takes you to subsequent
instances. We’d like to take this opportunity to discourage you from printing out the manual
unless you find it absolutely necessary.

Subtraction object
(inlets reversed) !-

4

The !- object functions just like the - object, but the inlets’ functions are reversed.

Input

int In left inlet: The number is stored, and will be subtracted from a number
received in the right inlet.

In right inlet: The number in the left inlet is subtracted from the number,
and the result is sent out the outlet.

float Converted to int, unless !- has a float argument.

bang In left inlet: Performs the subtraction with the numbers currently stored. If
there is no argument, !- initially holds 0.

Arguments

int or float Optional. Sets the initial value, to be subtracted from a number received in
the left inlet. A float argument causes the numbers to be subtracted as
floats.

Output

int The difference between the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples

- with the inputs swapped

Subtraction object
(inlets reversed) !-

5

See Also

- Subtract two numbers, output the result
expr Evaluate a mathematical expression
Tutorial 8 Doing math in Max

Division object
(inlets reversed) !/

6

The !/ object functions just like the / object, but the inlets’ functions are reversed.

Input

int In left inlet: The number is stored as the divisor (the number to be divided
into the number in the right inlet).

In right inlet: The number is divided by the number in the right inlet, and
the result is sent out the outlet.

float Converted to int, unless !/ has a float argument.

bang In left inlet: Performs the division with the numbers currently stored.

Arguments

int or float Optional. Sets an initial value for the divisor. If there is no argument, the
divisor is set to 1 initially. A float argument causes the numbers to be
divided as floats. (Division by 0 is not allowed. Int division by 0 will have
the same result as dividing by 1. Float division by 0 will always cause an
output of -231.)

Output

int The two numbers in the inlets are divided, and the result is sent out the
outlet.

float Only if there is an argument with a decimal point.

Division object
(inlets reversed) !/

7

Examples

/ with the inputs swapped

See Also

/ Divide two numbers, output the result
expr Evaluate a mathematical expression
Tutorial 8 Doing math in Max

Compare two numbers,
output 1 if they are not equal !=

8

Input

int In left inlet: The number is compared with the number in the right inlet. If
the two numbers are not equal, != outputs 1. If they are equal != outputs 0.

In right inlet: The number is stored, to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless != has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, != initially holds 0 for comparison.

list In left inlet: Compares first and second number, outputs 1 if they are not
equal, 0 if they are equal.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the numbers in the inlets are not equal, 0 if they are equal.

Examples

Test if two numbers are not equal

See Also

select Select certain inputs, pass the rest on
split Look for a range of numbers
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers

Compare two numbers,
output 1 if they are not equal !=

9

== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Add two numbers,
output the result +

10

Input

int In left inlet: The number is added to the number in the right inlet, and the
result is sent out the outlet.

In right inlet: The number is stored for addition to a number received in
the left inlet.

float Converted to int, unless + has a float argument.

bang In left inlet: Performs the addition with the numbers currently stored. If
there is no argument, + initially holds 0.

list In left inlet: The first number is added to the second number, and the
result is sent out the outlet.

set In left inlet: The word set, followed by a number, adds that number to the
number in the right inlet but nothing is sent out. A subsequent bang sends
out the result.

The set message functions similarly for all the arithmetic operators, logical operators, and
bitwise operators: +, -, *, /, %, <, <=, ==, !-, !/, !=, >=, >, &&, ||, &, |, <<, and >>. The number
is used as the left operand, and the expression is evaluated, but the result is not sent out.

Arguments

int or float Optional. Sets the initial value, to be added to a number received in the left
inlet. A float argument causes the numbers to be added as floats.

Output

int The sum of the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Add two numbers,
output the result +

11

Examples

Normally adds ints Floats are truncated before addition... unless there is a float argument

See Also

expr Evaluate a mathematical expression
Tutorial 8 Doing math in Max

Subtract two numbers,
output the result -

12

Input

int In left inlet: The number in the right inlet is subtracted from the number,
and the result is sent out the outlet.

In right inlet: The number is stored, to be subtracted from a number
received in the left inlet.

float Converted to int, unless - has a float argument.

bang In left inlet: Performs the subtraction with the numbers currently stored. If
there is no argument, - initially holds 0.

list In left inlet: The second number is subtracted from the first number, and
the result is sent out the outlet.

Arguments

int or float Optional. Sets the initial value, to be subtracted from a number received in
the left inlet. A float argument causes the numbers to be subtracted as
floats.

Output

int The difference between the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples

Subtracted as ints Floats are truncated before
subtraction…

…unless there is a float
argument

See Also

expr Evaluate a mathematical expression

Multiply two numbers,
output the result *

13

Input

int In left inlet: The number is multiplied by the number in the right inlet,
and the result is sent out the outlet.

In right inlet: The number is stored for multiplication with a number
received in the left inlet.

float Converted to int before multiplication, unless * has a float argument.

bang In left inlet: Performs the multiplication with the numbers currently
stored. If there is no argument, * initially holds 0 as a multiplier.

list In left inlet: The first number is multiplied by the second number, and the
result is sent out the outlet.

Arguments

int or float Optional. Sets the initial value, to be multiplied by a number received in
the left inlet. A float argument causes the numbers to be multiplied as
floats.

Output

int The product of the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples

Multiplied as ints Floats are truncated before
multiplication…

…unless there is a float
argument

Multiply two numbers,
output the result *

14

See Also

Tutorial 8 Doing math in Max

Divide two numbers,
output the result /

15

Input

int In left inlet: The number is divided by the number in the right inlet, and
the result is sent out the outlet.

In right inlet: The number is stored as the divisor (the number to be
divided into the number in the left inlet).

float Converted to int, unless / has a float argument.

bang In left inlet: Performs the division with the numbers currently stored.

list In left inlet: The first number is divided by the second number, and the
result is sent out the outlet.

Arguments

int or float Optional. Sets an initial value for the divisor. If there is no argument, the
divisor is set to 1 initially. A float argument causes the numbers to be
divided as floats. (Division by 0 is not allowed. Int division by 0 will have
the same result as dividing by 1. Float division by 0 will always cause an
output of -231.)

Output

int The two numbers in the inlets are divided, and the result is sent out the
outlet.

float Only if there is an argument with a decimal point.

Examples

Remainder is discarded Floats are truncated before
division…

…unless there is a float argument

Divide two numbers,
output the result /

16

See Also

expr Evaluate a mathematical expression
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max

Divide two numbers,
output the remainder %

17

Input

int In left inlet: The number is divided by the number in the right inlet, and
the remainder is sent out the outlet.

In right inlet: The number is stored as the divisor (the number to be
divided into the number in the left inlet) for calculating the remainder.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored.

list In left inlet: The first number is divided by the second number, and the
remainder is sent out the outlet.

Arguments

int Optional. Sets an initial value for the divisor. If there is no argument, the
divisor is set to 1 initially.

Output

int When the two numbers in the inlets are divided, the remainder is sent out
the outlet. % is called the modulo operator.

Examples

Find the remainder of a division

See Also

expr Evaluate a mathematical expression
!/ Division object (inlets reversed)
/ Divide two numbers, output the result
Tutorial 8 Doing math in Max

Is less than,
comparison of two numbers <

18

Input

int In left inlet: If the number is less than the number in the right inlet, <
outputs 1. Otherwise, < outputs 0.

In right inlet: The number is stored to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless < has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, < initially holds 0 for comparison.

list In left inlet: If the first number is less than the second number, < outputs
1. Otherwise, < outputs 0.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the number in the left inlet is less than the number in the right inlet. 0
if the number in the left inlet is greater than or equal to the number in the
right inlet.

Examples

Number on left is less than number on right Number on left is not less than number on right

See Also

!= Compare two numbers, output 1 if they are not equal

Is less than,
comparison of two numbers <

19

<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Is less than or equal to,
comparison of two numbers <=

20

Input

int In left inlet: If the number is less than or equal to the number in the right
inlet, <= outputs 1. Otherwise, <= outputs 0.

In right inlet: The number is stored to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless <= has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, <= initially holds 0 for comparison.

list In left inlet: If the first number is less than or equal to the second number,
<= outputs 1. Otherwise, <= outputs 0.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the number in the left inlet is less than or equal to the number in the
right inlet. 0 if the number in the left inlet is greater than the number in
the right inlet.

Examples

Is less than... or equal to Is not less than or equal to

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers

Is less than or equal to,
comparison of two numbers <=

21

== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Compare two numbers,
output 1 if they are equal ==

22

Input

int In left inlet: The number is compared with the number in the right inlet. If
the two numbers are equal, == outputs 1. If they are not equal == outputs
0.

In right inlet: The number is stored to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless == has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, == initially holds 0 for comparison.

list In left inlet: Compares first and second number, outputs 1 if they are equal,
0 if they are not equal.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the numbers in the inlets are equal, 0 if they are not equal.

Examples

The numbers are equal The numbers are not equal Using == 0 as a logical “not”

See Also

select Select certain inputs, pass the rest on
split Look for a range of numbers
!= Compare two numbers, output 1 if they are not equal

Compare two numbers,
output 1 if they are equal ==

23

< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Is greater than,
comparison of two numbers >

24

Input

int In left inlet: If the number is greater than the number in the right inlet, >
outputs 1. Otherwise, > outputs 0.

In right inlet: The number is stored to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless > has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, > initially holds 0 for comparison.

list In left inlet: If the first number is greater than the second number, >
outputs 1. Otherwise, > outputs 0.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the number in the left inlet is greater than the number in the right
inlet. 0 if the number in the left inlet is less than or equal to the number in
the right inlet.

Examples

The number on the left is greater The number on the left is not greater

See Also

!= Compare two numbers, output 1 if they are not equal

Is greater than,
comparison of two numbers >

25

< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Is greater than or equal to,
comparison of two numbers >=

26

Input

int In left inlet: If the number is greater than or equal to the number in the
right inlet, >= outputs 1. Otherwise, >= outputs 0.

In right inlet: The number is stored to be compared with a number
received in the left inlet.

float Converted to int before comparison, unless >= has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, >= initially holds 0 for comparison.

list In left inlet: If the first number is greater than or equal to the second
number, >= outputs 1. Otherwise, >= outputs 0.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in
the left inlet. A float argument forces a float comparison.

Output

int 1 if the number in the left inlet is greater than or equal to the number in
the right inlet. 0 if the number in the left inlet is less than the number in
the right inlet.

Examples

Is greater than... or equal to Is not greater than or equal to

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers

Is greater than or equal to,
comparison of two numbers >=

27

<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Bitwise intersection
of two numbers &

28

Input

int In left inlet: The number is compared, in binary form, with the number in
the right inlet. The output is a number composed of those bits which are 1
in both numbers.

In right inlet: The number is stored for comparison with a number received
in the left inlet.

float Converted to int.

bang In left inlet: Performs the comparison with the numbers currently stored.
If there is no argument, & initially holds 0 for comparison.

list In left inlet: Compares the first and second numbers bit-by-bit, and
outputs a number composed of those bits which are 1 in both numbers.

Arguments

int Optional. Sets an initial value to be compared with a number received in
the left inlet.

Output

int The two numbers received in the inlets are compared, one bit at a time. If a
bit is 1 in both numbers, it will be 1 in the output number, otherwise it will
be 0 in the output number.

Examples

Nonzero bits shared by both numbers Can be used as an odd/even detector

Bitwise intersection
of two numbers &

29

See Also

&& If both numbers are non-zero, output 1
| Bitwise union of two numbers
|| If either of two numbers is non-zero, output 1

If both numbers are non-zero,
output a 1 &&

30

Input

int If the number in both inlets is not 0, then the output is 1. If the number in
one or both of the inlets is 0, then the output is 0. A number in the left
inlet triggers the output.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored. If
there is no argument, && initially holds 0.

list In left inlet: If both the first and second numbers are not 0, then the
output is 1. Otherwise, the output is 0.

Arguments

int Optional. Sets an initial value to be stored by &&. A number in the right
inlet changes the value set by the argument.

Output

int If the number in the left inlet and the number in the right inlet (or
specified by the argument) are both not 0, then the output is 1. Otherwise,
the output is 0.

Examples

Both numbers are not 0 Used to combine comparisons

See Also

& Bitwise intersection of two numbers

If both numbers are non-zero,
output a 1 &&

31

| Bitwise union of two numbers
|| If either of two numbers is non-zero, output 1
Tutorial 15 Making decisions with comparisons

Bitwise union
of two numbers |

32

Input

int In left inlet: Outputs a number composed of all those bits which are 1 in
either of the two numbers.

In right inlet: The number is stored for combination with a number
received in the left inlet.

float Converted to int.

bang In left inlet: Performs the calculation with the numbers currently stored. If
there is no argument, | initially holds 0.

list In left inlet: Combines the first and second numbers bit-by-bit, and
outputs a number composed of all those bits which are 1 in either of the
two numbers.

Arguments

int Optional. Sets an initial value to be or-ed with a number received in the
left inlet.

Output

int All the nonzero bits of the two numbers received in the inlets are
combined. If a bit is 1 in either one of the numbers, it will be 1 in the
output number, otherwise it will be 0 in the output number.

Examples

All non-zero bits are combined Can be used to pack two numbers into one int

Bitwise union
of two numbers |

33

See Also

& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1
|| If either of two numbers is non-zero, output 1

If either of two numbers
is non-zero, output a 1 ||

34

Input

int If the number in either inlet is not 0, then the output is 1. If the number in
both of the inlets is 0, then the output is 0. A number in the left inlet
triggers the output.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored. If
there is no argument, || initially holds 0.

list In left inlet: If either the first or second number is not 0, then the output is
1. Otherwise, the output is 0.

Arguments

int Optional. Sets an initial value to be stored by ||. A number in the right inlet
changes the value set by the argument.

Output

int If either the number in the left inlet or the number in the right inlet (or
specified by the argument) is not 0, then the output is 1. Otherwise, the
output is 0.

Examples

One of the numbers is not 0 Used to combine comparisons

See Also

& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1

If either of two numbers
is non-zero, output a 1 ||

35

| Bitwise union of two numbers
Tutorial 15 Making decisions with comparisons

Shift all bits
to the left <<

36

Input

int In left inlet: All bits of the number, in binary form, are shifted to the left
by a certain number of bits. The resulting number is sent out the outlet.

In right inlet: The number is stored as the number of bits to left-shift the
number in the left inlet.

float Converted to int.

bang In left inlet: Performs the bit-shift with the numbers currently stored. If
there is no argument, << initially holds 0 as the number of bits by which to
shift.

list In left inlet: The first number is bit-shifted to the left by the number of
bits specified by the second number.

Arguments

int Optional. Sets an initial value for the number of bits by which to shift
leftward.

Output

int The number in the left inlet is bit-shifted to the left by a certain number of
bits. The number of bits by which to shift is specified by the number in the
right inlet. The output is the resulting bit-shifted number.

Examples

Same effect as multiplying by a power of 2

Shift all bits
to the left <<

37

See Also

* Multiply two numbers, output the result
>> Shift all bits to the right

Shift all bits
to the right >>

38

Input

int In left inlet: All bits of the number, in binary form, are shifted to the right
by a certain number of bits. The resulting number is sent out the outlet.

In right inlet: The number is stored as the number of bits to right-shift the
number in the left inlet.

float Converted to int.

bang In left inlet: Performs the bit-shift with the numbers currently stored. If
there is no argument, >> initially holds 0 as the number of bits by which to
shift.

list In left inlet: The first number is bit-shifted to the right by the number of
bits specified by the second number.

Arguments

int Optional. Sets an initial value for the number of bits by which to shift
rightward.

Output

int The number in the left inlet is bit-shifted to the right by a certain number
of bits. The number of bits by which to shift is specified by the number in
the right inlet. The output is the resulting bit-shifted number.

Examples

Same effect as dividing by a power of 2

Shift all bits
to the right >>

39

See Also

!/ Division object (inlets reversed)
<< Shift all bits to the left

Output the absolute
value of the input abs

40

Input

int The absolute (non-negative) value of the input is sent out the output.

float Converted to int, unless abs has a float argument.

int or float Optional. Float argument forces a float output.

Arguments

int or float Optional. Float argument forces a float output.

Output

int The absolute value of the input.

float Only if there is an argument with a decimal point.

Examples

Output is nonnegative Used here to invert input

See Also

expr Evaluate a mathematical expression
Tutorial 14 Sliders and dials

Convert a file name
to an absolute path absolutepath

41

Input

any symbol A file name or path as a symbol. Input pathnames can contain slashes,
colons, or backslashes as separators. The absolutepath object converts a file
name or path to an absolute path, resolving any aliases in doing so.

Arguments

None.

Output

any symbol If the incoming file name or path is found, the output is an absolute path.
The output pathnames contain slash separators.

Absolute pathnames look like this:

“C:/Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

If the file is not found, absolutepath outputs the symbol notfound.

Examples

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving
strippath Get a filename from a full pathname
File Preferences

Store, add to,
and multiply a number accum

42

Input

int In left inlet: Replaces the value stored in accum, and sends the new value out
the outlet.

In middle inlet: The number is added to the stored value, without
triggering output.

In right inlet: The stored value is multiplied by the input, without
triggering output.

float In left and middle inlet: Converted to int, unless accum has a float
argument.

In right inlet: Multiplication is done with floats, even if the value is stored
as an int.

bang In left inlet: Outputs the value currently stored in accum.

set In left inlet: The word set, followed by a number, sets the stored value to
that number, without triggering output.

Arguments

int or float Optional. Sets the initial value stored in accum. An argument with a decimal
point causes the value to be stored as a float.

Output

int The value currently held by accum.

float Only if there is an argument with a decimal point.

Store, add to,
and multiply a number accum

43

Examples

Add to and/or multiply a stored value Used here to increment by different
amounts

See Also

counter Count the bang messages received, output the count
float Store a decimal number
int Store an integer value
Tutorial 21 Storing numbers

Arc-cosine function acos

44

Input

float or int Input to a arc-cosine function.

bang In left inlet: Calculates the arc-cosine of the number currently stored. If
there is no argument, acos initially holds 0.

Arguments

float or int Optional. Sets the initial value for the arc-cosine function.

Output

float or int The arc-cosine of the input.

Examples

See Also

acosh Hyperbolic arc-cosine function
cos Cosine function
cosh Hyperbolic cosine function

Hyperbolic arc-cosine
 function acosh

45

Input

float or int Input to a hyperbolic arc-cosine function.

bang In left inlet: Calculates a hyperbolic arc-cosine of the number currently
stored. If there is no argument, acosh initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic arc-cosine function.

Output

float or int The hyperbolic arc-cosine of the input.

Examples

See Also

acos Arc-cosine function
cos Cosine function
cosh Hyperbolic cosine function

Send 1 when patcher window is
active, 0 when inactive active

46

Input

There are no inlets. Output is triggered automatically when the patcher
window is activated or deactivated.

Arguments

None.

Output

int When the patcher window that contains active is activated, active sends out 1.
When the window is made inactive, active sends out 0.

Examples

Turn on a process or open a gate when the window is made active

See Also

closebang Send a bang when patcher window is closed
loadbang Send a bang automatically when patch is loaded
loadmess Send a message automatically when patch is loaded
Tutorial 40 Automatic actions

Make a histogram of
number pairs received anal

47

Input

int Reports how many times this number and the previously received number
have occurred in immediate succession. (The first time a number is
received, there has been no previous number, so nothing happens.)

reset Erases the most recently received number from the memory of the anal
object. The next number to be received gets stored in its place, to serve as
the next “previous” value (but nothing else happens).

clear Erases the memory of the anal object entirely, but retains the most recently
received number to use as the next “previous” value.

Arguments

int Optional. Sets a maximum limit for how many different number pairs can
be kept track of by anal. The maximum number of different pairs is 1024. If
no argument is present, anal can store up to 128 different pairs.

Output

list The first two numbers in the list are the two most recently received
numbers, and the third number shows how many times that particular
succession of two numbers has been received. This list of three numbers is
designed to be used as input to the prob object, to create a probability
matrix of transitions from one number to another (known as a first-order
Markov chain).

Examples

Keep track of number pairs and their relative frequency of occurrence;
pass the information to prob to generate similar transitions

Make a histogram of
number pairs received anal

48

See Also

histo Make a histogram of the numbers received
prob Make weighted random series of numbers

Append arguments
at the end of a message append

49

Input

set The word set, followed by any message, will replace the message stored in
append, without triggering output.

anything else The message stored in append is appended, preceded by a space, to the end
of any message that is received in the inlet, and the combined message is
sent out the outlet.

Arguments

anything Optional. Sets the message that will be appended to the end of incoming
messages.

Output

anything The message received in the inlet is combined with the message stored in
append, and then sent out the outlet.

Examples

Symbols can be combined into meaningful messages with append

See Also

prepend Put one message at the beginning of another
Tutorial 25 Managing messages

Arc-sine function asin

50

Input

float or int Input to a arc-sine function.

bang In left inlet: Calculates the arc-sine of the number currently stored. If there
is no argument, asin initially holds 0.

Arguments

float or int Optional. Sets the initial value for the arc-sine function.

Output

float or int The arc-sine of the input.

Examples

See Also

asinh Hyperbolic Arc-sine function
sin Sine function
sinh Hyperbolic sine function

Hyperbolic arc-sine
function asinh

51

Input

float or int Input to a hyperbolic arc-sine function.

bang In left inlet: Calculates the hyperbolic arc-sine of the number currently stored.
If there is no argument, asin initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic arc-sine function.

Output

float or int The hyperbolic arc-sine of the input.

Examples

See Also

asin Arc-sine function
sin Sine function
sinh Hyperbolic sine function

Arc-tangent function atan

52

Input

float or int Input to a arc-tangent function.

bang In left inlet: Calculates the arc-tangent of the number currently stored. If
there is no argument, atan initially holds 0.

Arguments

float or int Optional. Sets the initial value for the arc-tangent function.

Output

float or int The arc-tangent of the input.

Examples

See Also

atan2 Arc-tangent function (two variables)
atanh Hyperbolic arc-tangent function
tan Tangent function
tanh Hyperbolic tangent function

Arc-tangent function
(two variables) atan2

53

Input

float or int In left input: y value input to an arc-tangent function.

In right input: x value input to an arc-tangent function.

bang In left inlet: Calculates the arc-tangent of the numbers currently stored. If
there are no arguments, atan2 initially holds 0 for both input values.

Arguments

float or int Optional. Two ints may be used to set the initial value for the arc-tangent
function.

Output

float or int The arc-tangent of the input values (i.e. Arc-tangent(y/x)).

Examples

See Also

atan Arc-tangent function
atanh Hyperbolic arc-tangent function
tan Tangent function

Hyperbolic
 arc-tangent function atanh

54

Input

float or int Input to a hyperbolic arc-tangent function.

bang In left inlet: Calculates the hyperbolic arc-tangent of the number currently
stored. If there is no argument, atanh initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic arc-tangent function.

Output

float or int The hyperbolic arc-tangent of the input.

Examples

See Also

atan Arc-tangent function
atan2 Arc-tangent function (two variables)
tan Tangent function
tanh Hyperbolic tangent function

Convert linear amplitude
to a deciBel value atodb

55

Input

float or int A linear amplitude value. The corresponding gain/attenuation in deciBels is
sent out the outlet.

Arguments

None.

Output

int or float The gain or attenuation from unity gain, expressed in deciBels.

Examples

Does just what its name implies. No special tricks.

See Also

expr Evaluate a mathematical expression
atodb~ Convert linear amplitude to a deciBel value at signal rate
dbtoa Convert a deciBel value to linear amplitude
dbtoa~ Convert a deciBel value to linear amplitude at signal rate

Convert ASCII characters
to integers atoi

56

Input

any symbol In left inlet: The ASCII value of each letter, digit, or other character in the
symbol is stored internally and sent out the outlet as a list.

In middle inlet: The ASCII value of each letter, digit, or other character in the
symbol is appended to the currently stored list. No output is triggered.

In right inlet: The ASCII value of each letter, digit, or other character in the
symbol is stored internally, replacing the previously stored list, but not output.

bang In left inlet: a bang message can be used to trigger the output of the currently
stored numerical list. A bang in the right two inlets is treated as a symbol.

clear In left inlet: The clear message is used to clear the contents of the internally-
stored numerical list. The word clear in the right two inlets is treated as a
symbol.

int or float In left inlet: The ASCII value of each of the digits of the number is stored
internally and sent out the outlet as a list.

In middle inlet: The ASCII value of each of the digits is appended to the
currently stored list. No output is triggered.

In right inlet: The ASCII value of each of the digits is stored internally,
replacing the previously stored list, but not output.

list Each int in the list is converted to ASCII as described above, and a space
character (ASCII value 32) is inserted between items in the list. The middle
inlet is used to append to the currently stored list, and the right inlet will set
the contents of the internally stored list, without causing output.

any message If the message begins with a symbol, all numerical and symbol items in the
message are converted to ASCII one character at a time, and a space character
(32) is placed between them. The middle inlet is used to append to the
currently stored list, and the right inlet will set the contents of the internally
stored list, without causing output.

Arguments

None.

Convert ASCII characters
to integers atoi

57

Output

list The ASCII representation of the input is sent out as a list of integers.

Examples

I’m sure there must be something more clever you can do with this object.

See Also

itoa Convert integers to ASCII characters
key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
message Send any message
spell Convert input to ASCII codes
sprintf Format a message of words and numbers

Expose multiple objects in a
patcher to the pattr system autopattr

58

Input

int An int is passed through the autopattr object and output from its center right
outlet.

float A float is passed through the autopattr object and output from its center right
outlet.

list A list is passed through the autopattr object and output from its center right
outlet.

bang A bang is passed through the autopattr object and output from its center right
outlet.

anything Any message is analyzed. If the first element of the message matches the name of
an object maintained by the autopattr, the subsequent arguments in the message
set that object’s value. If the first element of the message matches get(name),
where (name) matches the name of an object maintained by the autopattr, the
value of that object is sent from the autopattr object’s right outlet, prepended by
the object’s name. Otherwise, the message is passed through the autopattr object
and output from its center right outlet.

getattributes Causes a list of all objects names maintained by the autopattr object to be output
from the right outlet, prepended by the symbol attributes.

getstate Causes a series of lists to be output from the autopattr object’s right outlet, one
for every object maintained by the autopattr. Each list begins with the name of
the object, and is followed by the object’s current value.

Attributes

The autopattr object uses attributes—another way to specify the behavior of Max objects found
and used widely in Jitter. As with arguments, you can type in attributes (by using the @
symbol followed immediately—i.e., there is no space after the @—by the name of the typed-
in attribute you want to set), or you can use any attribute name as you would any Max
message. For more information on attributes, see the Overview chapter of the Max Getting
Started manual.

autoname The word autoname, followed by a 1 or 0, enables or disables the autopattr object’s
autoname state. The default is 0 (off). When enabled, the autopattr object will
automatically name any unnamed objects in the patcher supported by the pattr

Expose multiple objects in a
patcher to the pattr system autopattr

59

system and bind to them, if possible. Naming only occurs when the patcher
loads, when the autopattr object is reinstantiated, or when the autopattr object
receives the message autoname 1. New objects placed in a patcher after the
autopattr has been instantiated will not be autonamed until one of these
conditions is met.

autorestore The word autorestore, followed by a 1 or 0, enables or disables the autopattr
object’s autorestore state. The default is 1 (on). When enabled, the autopattr
object will automatically output its last-saved values when the patcher is
loaded, and distribute them to bound objects. Values are saved whenever the
patcher is saved.

dirty The word dirty, followed by a 1 or 0, enables or disables the patcher-dirty flag.
The default is 0 (disabled). When enabled, the autopattr object will dirty the
patch whenever its state changes.

greedy The word greedy, followed by a 1 or 0, enables or disables the attribute-
gathering feature of the autopattr object. The default is 0 (disabled). When
enabled, any internal attributes of objects attached to the left outlet of the
autopattr object will be exposed to the pattr system (as well as the normal value, if
present).

name The word name, followed by a symbol, sets the autopattr object’s patcher name.

Arguments

Optional. A symbol argument can be used to set the autopattr object’s name. In
the absence of an argument, the autopattr object is given an arbitrary, semi-
random name, such as u197000004.

Output

anything Out center-right outlet: Any message not matching a get or set request to an
object maintained by the autopattr is passed, unchanged, through the center
right outlet.

Out right outlet: get queries to an object maintained by the autopattr are output
from the right outlet, also known as the dumpout outlet.

(internal) Out left outlet: Any user interface object (or other object that responds to the
internal messaging system utilized by autopattr) connected to the left outlet of

Expose multiple objects in a
patcher to the pattr system autopattr

60

the autopattr object will be automatically named (if necessary) and bound to. If
the autopattr object's greedy attribute has been enabled, any attributes associated
with the bound object will also be exposed to the pattr system. The name is
automatically generated from the object’s class name (e.g. a connected number
box might be named number[1].) At the time of this writing, the following
Max user interface objects can be bound in this fashion: dial, function, gain~,
ggate, gswitch, hslider, js, jsui (see the JavaScript in Max manual for more
information on using the pattr system with JavaScript), led, matrixctrl, multislider,
number box (int and float), pictctrl, pictslider, radiogroup, rslider, slider, table, textedit,
toggle, ubumenu, umenu, and uslider.

Out center-left outlet: Any user interface object (or other object that responds
to the internal messaging system utilized by autopattr) connected to the center
left outlet of the autopattr object will be automatically named (if necessary) and
excluded from the autopattr object’s bound-object list.

Examples

See Also

pattr Patcher-specific, named data wrapper
pattrhub Access all of the pattr objects in a patcher
pattrstorage Preset storage and general management for pattr objects
Tutorial 52 Patcher Storage
Tutorial 53 More Patcher Storage

Store a collection
of numbers bag

61

Input

int In left inlet: The number is either added to or deleted from the collection
of numbers stored in the bag object, depending on the number in the right
inlet.

In right inlet: The number is stored as an indicator of whether to include or
delete the next number received in the left inlet. If non-zero, the number
received in the left inlet is added to the bag. If 0, the number is deleted
from the bag.

No output is triggered by a number received in either inlet.

float Converted to int.

bang In left inlet: Causes bag to send all its numbers out the outlet.

clear In left inlet: Deletes the entire contents of the bag.

list In left inlet: If the second number is not 0, the first number is included in
the bag. If the second number is 0, the first number is deleted from the
bag.

send In left inlet: The word send, followed by the name of a receive object, sends
the result of a bang message to all receive objects with that name, instead of
out the bag object’s outlet.

length In left inlet: Reports how many numbers are currently stored in the bag.

cut In left inlet: Sends out the oldest (earliest received) number stored in the
bag object, and deletes it from the bag.

Arguments

any symbol Optional. Causes bag to store duplicate numbers. If there is no argument,
bag will store only one of each number at a time. The argument must not
be a number.

Store a collection
of numbers bag

62

Output

int When bang is received in the left inlet, all the numbers stored in bag are
sent out one at a time, in reverse order from that in which they were
stored.

When cut is received in the left inlet, the oldest stored number is sent out.

When length is received in the left inlet, the number of items in the bag
object is sent out.

Examples

Store a collection of numbers Used here to detect held notes

See Also

coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers
offer Store x,y pairs of numbers temporarily
Data Structures Ways of storing data in Max

Send a bang to
many places, in order bangbang / b

63

Input

anything Causes a bang to be sent out all outlets, in right-to-left order.

Arguments

int Optional. Sets the number of outlets. The number of outlets can be any
number between 1 and 40.

float Converted to int.

Output

bang When a message is received in the inlet, a bang is sent out each outlet, in
order from right to left.

Examples

Order is normally right-to-left Order is specified by bangbang

See Also

button Flash on any message, send a bang
jstrigger Evaluate Javascript expressions sequentially
trigger Send input to many places, in order
Tutorial 7 Right-to-left order

Output received
MIDI pitch bend values bendin

64

Input

(MIDI) bendin receives its input from a MIDI pitch bend message received from a
MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of an MIDI port or
device, sets the port from which the object receives incoming pitch bend
messages. The word port is optional and may be omitted.

(mouse) Double-clicking on a bendin object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming pitch bend
messages. If there is no argument, bendin receives from all channels on all
ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to receive pitch bend messages.
Channel numbers greater than 16 will be wrapped around to stay within
the 1-16 range.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output

int If a specific channel number is included in the argument, there is only one
outlet. The output is the incoming pitch bend value from 0-127 (the most
significant byte of the MIDI pitch bend message) on the specified channel
and port.

Output received
MIDI pitch bend values bendin

65

If there is no channel number specified by the argument, bendin will have a
second outlet, on the right, which will output the channel number of the
incoming pitch bend message.

Examples

Pitch bend messages can be received from everywhere,
a specific port, or a specific port and channel

See Also

bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiin Output received raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Transmit MIDI
pitch bend messages bendout

66

Input

int In left inlet: The number is transmitted as a MIDI pitch bend value on the
specified channel and port. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to
transmit the pitch bend messages.

float Converted to int.

list In left inlet: The first number is the pitch bend value, and the second
number is the channel, of a MIDI pitch bend message, transmitted on the
specified channel and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or the name of a MIDI
output port or device, specifies the port used to transmit MIDI messages.
The word port is optional and may be omitted.

(mouse) Double-clicking on a bendout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI pitch bend messages.
Channel numbers greater than 16 received in the right inlet will be
wrapped around to stay within the 1-16 range. If there is no argument,
bendout initially transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to transmit pitch bend messages.
Channel numbers greater than 16 will be wrapped around to stay within
the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

Transmit MIDI
pitch bend messages bendout

67

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI pitch bend message transmitted
directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one
port

Otherwise, number specifies both port and
channel

See Also

bendin Output received MIDI pitch bend messages
midiout Transmit raw MIDI data
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Set background color bgcolor

68

Input

list A list of three numbers in the range 0-255 sets the background color of the
patcher in RGB format. The bgcolor object’s functionality is equivalent to
the brgb message of the thispatcher object, and is a convenient way to set the
background color using a single object rather than a the combination of
loadbang, message, and thispatcher objects.

Arguments

list Optional. A list of three numbers in the range 0-255 sets the background
color of the patcher in RGB format.

Output

None.

Examples

See Also

thispatcher Send messages to a patcher

Event-driven
multi-segment line object bline

69

The bline object is an event-driven version of the Max line object. It takes a list of
breakpoint segment pairs (see below) and 'tweens' appropriately to generate a smooth
function. The major difference is that the bline object is driven by bang messages sent to its
left inlet instead of being driven by the Max scheduler. This gives the object a flexible
timebase, which is useful when working with events that have a variable processing time
(such as rendering matrices in Jitter). As with the line object, the bline object sends a bang
out the object's right outlet when the current ramp is finished. It works with integer and
floating point numbers, can be stopped (with the stop message), and can use multi-
segment lists (similar to the MSP line~ object).

Input

bang Sends a new step in the breakpoint list out the left outlet. If the current list
of ramp segments is finished, a bang message will be sent out the right
outlet

list The bline object sets breakpoint segment values using lists of data composed
of pairs of numbers. The first number in each pair can be either an int or a
float specifying a target value, followed by an integer that specifies the
number of bang messages that will have to be received before reaching the
target value—note that this differs from other Max/MSP breakpoint
objects like line, which specify a time-to-target value in milliseconds.

int Sets the bline object to the specified integer value. Any and all pending
breakpoint segments are forgotten (i.e. the time is considered 0 and bline
immediately outputs the target value).

float Sets the bline object to the specified float value. Any and all pending
breakpoint segments are forgotten (i.e. the time is considered 0 and bline
immediately outputs the target value).

stop In left inlet: Stops bline from sending out numbers, until a new list of ramp
segments is received.

Arguments

int or float Optional. An argument may be used to set the initial value to be stored
and the output type for the object—if the first argument is an int, the bline
object outputs integer values, and a float will set the bline object to output
floating point values. If there is no argument, the initial value is 0 and the
output type is int.

Event-driven
multi-segment line object bline

70

Output

int Out left outlet: Numbers are sent out in response to received bang
messages, describing a straight line toward a target value. If a list of
breakpoint segments is specified before the line is completed, the new line
starts from the most recent output value in order to avoid discontinuities.

If a value is received in the left inlet without an accompanying time value,
it is sent out immediately.

bang Out right outlet: When bline has arrived at its target value, bang is sent out.

Examples

See Also

envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
line Output numbers in a ramp from one value to another
uzi Send a specific number of bang messages
Tutorial 31 Using timers

Synchronize a
group of messages bondo

71

Input

any message In any inlet: The input is stored in the location corresponding to that inlet,
and causes anything previously stored to be sent out its corresponding
outlet. If no message has yet been received in a particular inlet, 0 is sent
out of the corresponding outlet.

bang In any inlet: Sends out all stored messages immediately.

set In any inlet: The word set, followed by any message, stores the input in the
location corresponding to that inlet without triggering any output.

Arguments

int Optional. The first argument specifies the number of inlets and outlets.
The default number of inlets and outlets is 2. The second argument
specifies a number of milliseconds to delay when a message is received
before sending messages out the outlets.

Output

any message Anything stored in an inlet is sent out the corresponding outlet numbers.
Output is immediate if triggered by a bang. If output is triggered by a
message, and a second argument has been typed in, output will be delayed
by the number of milliseconds specified in the second argument.

Examples

bondo can synchronize messages arriving from different sources

Synchronize a
group of messages bondo

72

See Also

buddy Synchronize arriving data, output them together
onebang Traffic control for bang messages
pack Combine numbers and symbols into a list
thresh Combine numbers into a list, when received close together

Report current information
about note-ons and note-offs borax

73

Input

int In left inlet: The number is the pitch value of a MIDI note-on message or
note-off message (note-on with a velocity of 0). The pitch is paired with
the velocity in the middle inlet. borax ignores note-on messages for pitches
it is already holding, and ignores note-off messages for pitches that have
already been turned off. If the note is not a duplicate, borax sends out the
pitch and velocity values, as well as other information.

In middle inlet: The number is stored as the velocity, to be paired with
pitch numbers received in the left inlet.

float In middle inlet: Converted to int.

list In left inlet: The second number is stored as the velocity, and the first
number is used as the pitch, of a pitch-velocity pair. If the note is not a
duplicate, borax sends out the pitch and velocity values, as well as other
information.

delta In left inlet: Causes the delta time (the time elapsed since the last note-on)
and the delta count (the number of delta times that have been reported) to
be sent out.

bang In right inlet: Resets borax by sending note-offs for all notes currently
being held, erasing the borax object’s memory of all notes received, and
setting its counters and its clock to 0.

Arguments

None.

Output

int Out left outlet: Each note-on received by borax is assigned a unique
number, equal to the total count of note-ons received (since the last reset).
That number is sent out when the note-on is received, and the same
number is sent out when the note is turned off.

Out 2nd outlet: Each note is also assigned a unique voice number, equal to
the lowest available number. (A voice becomes available when the note

Report current information
about note-ons and note-offs borax

74

assigned to it is turned off.) That number is sent out when the note-on is
received, and the same number is sent out when the note is turned off.

Out 3rd outlet: The number of notes being held by borax is sent out each
time a note-on or a note-off is received.

Out 4th outlet: The pitch of the note-on or note-off is sent out.

Out 5th outlet: The velocity of the note-on or note-off is sent out.

Out 6th outlet: When a note-off is received, the total count of all
completed notes (since the last reset) is sent out.

Out 7th outlet: When a note-off is received, the duration of that note, in
milliseconds, is sent out.

Out 8th outlet: Each time a delta time is reported, the total count of delta
times is sent out.

Out right outlet: When a note-on is received, the delta time is sent out (the
time elapsed since the previous note-on, in milliseconds). A delta message
in the left inlet causes the same output.

A bang received in the right inlet causes borax to provide note-offs for any
notes it currently holds. These note-offs trigger the same outputs as if they
had actually been received.

Examples

borax provides extensive information about the notes passing through

Report current information
about note-ons and note-offs borax

75

See Also

midiparse Interpret raw MIDI data
poly Allocate notes to different voices

Embed a visible
subpatch inside a box bpatcher

76

Input

anything The number of inlets in a bpatcher object is determined by the number of
inlet objects contained in its subpatch window. If the patch being used in a
bpatcher contains inlet objects, they will appear in left-to-right
correspondence as inlets in the bpatcher object’s box.

offset If the subpatch being used in the bpatcher contains a thispatcher object
connected to one of its inlet objects, the view of the subpatch can be
changed by an offset message received in the corresponding inlet of bpatcher.
The word offset must be followed by two ints, specifying the number of
pixels by which the upper left corner of the subpatch is to be offset
horizontally and vertically within the bpatcher. In this way, a single bpatcher
can be used to give different views of the subpatch. User interface objects
in the subpatch that are partially outside the bpatcher object’s box will redraw
completely (even outside the bounds of the bpatcher) in response to
messages received in their inlet. It is therefore advised that user interface
objects in the subpatch be either completely inside or completely outside
the bpatcher object’s box.

border If the subpatch being used in the bpatcher contains a thispatcher object
connected to one of its inlet objects, the word border with any non-zero
number in that inlet causes a black border to be drawn around the bpatcher.
The message border 0 erases the border of the bpatcher (the default
appearance).

(mouse) When the window containing the bpatcher is locked (or the Command key
on Macintosh or Control key on Windows is held down) and the mouse is
clicked inside the bpatcher object’s box, the gesture is handled by the patch
inside the box.

If the Shift and Command keys on Macintosh or Shift and Control keys
on Windows are held down while clicking on a bpatcher, dragging the
mouse moves the upper-left corner of the visible part of the patch inside
the box. The Assistance area of the patcher window shows the pixel values
of the offset. If Enable Drag-Scrolling is unchecked in the bpatcher
Inspector window, this feature is disabled.

If the Command and Option keys on Macintosh or Control and Alt keys
on Windows are held down while clicking in a bpatcher, a pop-up menu
allows you to open the original file of the patch contained inside the box in

Embed a visible
subpatch inside a box bpatcher

77

its own window, or change the patch currently contained inside the box in
its own window.

Inspector

The behavior of a bpatcher object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any bpatcher object
displays the bpatcher Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The bpatcher Inspector lets you set the following attributes:

Offset specifies the number of pixels by which the left upper corner of the
picture is to be offset horizontally and vertically from the left upper corner
of the fpic box. By default the left upper corner of the picture is located at
the left upper corner of fpic (that is, with an offset of 0,0). This offset can
be changed by entering new pixel values into the number boxes. The
default is no offset (i.e. 0 horizontal, 0 vertical).

Use the Offset number boxes to specify the number of pixels by which the
upper left corner of the subpatch is to be offset horizontally and vertically
within the bpatcher object’s display area. The default values are 0 for both
horizontal and vertical offsets.

Checking the Border checkbox causes a black border to be drawn around
the bpatcher. The default appearance is unchecked (no border).

The Embed Patcher in Parent checkbox allows you to embed the subpatch
and save it as part of the main patch (just as with a patcher object) instead
of the subpatch being saved in a separate file. The default is unchecked (the
subpatch is saved as a separate file).

Checking the Enable Drag-Scrolling checkbox allows you move the upper-
left corner of the visible part of the patch inside the box by holding down
the Shift and Command keys on Macintosh or Shift and Control keys on
Windows while clicking on a bpatcher, and dragging the mouse. The default
value is unchecked (drag-scrolling is disabled).

The Patcher File option lets you choose a patcher file for the bpatcher to use
by clicking on the Open button. The current file’s name appears in the

Embed a visible
subpatch inside a box bpatcher

78

text box to the left of the button. You can also choose a file by typing its
name in this box, or by dragging a file icon from the Finder into this box.

The Arguments to Patcher lets you input arguments to your patcher which
will be saved along with the main patch.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

If the patcher being used in a bpatcher contains outlet objects, they will
appear in corresponding left-to-right order as outlets in the bpatcher object’s
box.

Examples

View the contents of a
subpatcher

The contents of this patch can be
windowed...

...using offset messages to a small
bpatcher containing it

Embed a visible
subpatch inside a box bpatcher

79

See Also

patcher Create a subpatch within a patch
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 27 Your object
Tutorial 28 Your argument
Encapsulation How much should a patch do?

Pass a number from outlet to
outlet, out each one in turn bucket

80

Input

int or float The numbers currently stored in bucket are sent out, then each number is
moved one outlet to the right and the new number is stored to be sent out
the left outlet the next time a number is received.

list Only the first number in the list is used.

bang All stored values are sent out, but their position is not shifted.

freeze Suspends the bucket output, but new incoming numbers continue to shift
the stored values internally.

thaw Resumes bucket output.

roll The word roll, followed by any number, causes bucket to use the value stored
in its rightmost outlet as input; thus, it sends its output, shifts all stored
values to the right, then stores the value which had been in the rightmost
outlet in the leftmost outlet (as if it had been received in the inlet).

l2r Sets bucket to shift its stored values from left to right (the default) whenever
it receives a number in its inlet.

r2l Sets bucket to shift its stored values from right to left whenever it receives a
number in its inlet, placing the incoming number in the rightmost outlet.

set The word set, followed by a number, sends that number out each outlet,
and stores the number as the next value to be sent out each of its outlets.

Arguments

int Optional. Sets the number of outlets. If there is no argument, there will be
one outlet.

int Optional. A second non-zero argument sets the bucket object to “echo to
output” mode, whereby the number received in the inlet is stored and sent
out the left outlet when it is received. This makes it somewhat easier to
visualize the data coming from the outlets.

Pass a number from outlet to
outlet, out each one in turn bucket

81

Output

int or float When a number is received, it is not sent out immediately, but the
numbers stored in bucket are sent out. The numbers are all moved one
outlet to the right, and the newly received number is stored in the left
position. When using the “echo to output” mode (set with a non-zero
second argument to the object) the number received is sent out
immediately, instead of the previous input value.

Examples

Numbers are passed from one outlet to another

See Also

cycle Send a stream of data to individual outlets
decode Send 1 or 0 out a specific outlet
gate Pass the input out a specific outlet
spray Distribute a value to a numbered outlet

Synchronize arriving data,
output them together buddy

82

Input

any message In any inlet: When data has been received in all its inlets, buddy sends the
received messages out their corresponding outlets, then waits until data has
arrived again in all inlets.

clear In left inlet: Deletes all values stored in the inlets.

bang In any inlet: Same as the number 0.

Arguments

int Optional. Sets the number of inlets (and outlets). If there is no argument,
there are two inlets and two outlets.

Output

any message When a data has arrived in each inlet, it is sent out the outlets, in order from
right to left.

Examples

Output is synchronous, even if input is not synchronous

See Also

bondo Synchronize a group of messages
onebang Traffic control for bang messages
pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages

Flash on any message,
send a bang button

83

Input

color The word color, followed by a number from 0 to 15, sets the color of the center
circle of the button to one of the object colors which are also available via the
Color command in the Object menu. When button sends a bang, it always
flashes with the color yellow.

any message When any message is received in the inlet, button flashes briefly and bang is
sent out the outlet. A mouse click on the button has the same effect.

Arguments

None.

Output

bang A mouse click or any message in the inlet causes button to flash and send out
bang.

Examples

Triggers other messages and processes Converts other messages to bang

See Also

bangbang Send a bang to many places, in order
loadmess Send a message automatically when patch is loaded
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
trigger Send input to many places, in order
ubutton Transparent button, sends a bang
Tutorial 2 bang means “Do it!”

Store numbers
to view or edit capture

84

Input

int, float, symbol Numbers or symbols are stored in the order in which they are received.

list All numbers and/or symbols in the list are stored in order from first to last.

clear Erases the contents of a capture object.

count Sends the number of items collected since the last count message out the
right outlet of the capture object.

dump Outputs the contents of the capture object, one item at a time, out the left
outlet.

open Causes the window associated with the capture object to become visible. The
window is also brought to the front. Double-clicking on the capture object in
a locked patcher has the same effect.

wclose Closes the window associated with the capture object.

write The word write, followed by a symbol, saves the contents of the capture object
into a text file, using the symbol as the filename. The file will be saved in the
same folder as the Max application, unless the symbol is a pathname
specifying some other folder (such as write “MyDisk:/Documents/Captured
Data/outputfile”). The word write by itself causes a standard Save As dialog box
to be opened, allowing you to name the file and save it in the desired folder.

Arguments

int Optional. The first argument sets a maximum number of items to store. If
there is no argument, capture will store up to 512 items. Once the
maximum has been exceeded, the earliest stored item is dropped as each
new item is received.

a, x or m Optional. If the second argument is a, all items will be displayed in ASCII
form in the editing window. If the second argument is x, all numbers will
be displayed in hexadecimal form in the editing window. If the second
argument is m, numbers less than 128 are displayed in decimal, and
numbers greater than 128 are in hexadecimal. If there is no argument, all
items are displayed in decimal.

Store numbers
to view or edit capture

85

Output

int, float, symbol Out left outlet: The captured contents are sent out the left outlet, one at a
time, in response to the dump message.

Double-clicking on capture (when the patcher window is locked) opens an
editing window in which the stored numbers can be viewed and edited.
Editing the window does not actually alter the contents of capture, but is
useful for cutting and pasting values into a table or a separate file.
(Although capture can continue to store items while the editing window is
open, the editing window is not updated. It must be closed and reopened
to view the newly stored items.)

int Out right outlet: The number of items received since last count message was
received is sent out the right outlet in response to a count message.

Examples

Collect numbers to paste into a table… …or just to see what’s been going on

See Also

text Format numbers as a text file
Debugging Techniques for debugging patches
Tutorial 34 Managing raw MIDI data

Cartesian to Polar
coordinate conversion cartopol

86

Input

float In left inlet: The x coordinate of a Cartesian pair to be converted into a
polar coordinate pair consisting of distance and angle values. When used
in an audio context, the value represents the real part of a frequency
domain value to be converted into a polar coordinate pair consisting of
amplitude and phase values.

In right inlet: The y coordinate of a Cartesian pair to be converted into a
polar coordinate pair consisting of distance and angle values. When used
in an audio context, the value represents the imaginary part of a frequency
domain value to be converted into a polar coordinate pair consisting of
amplitude and phase values.

int Converted to float.

Arguments

None.

Output

float Out left outlet: The distance portion of the polar coordinate pair. When
used in an audio context, the value represents the magnitude (amplitude)
of the frequency represented by the currently input.

Out right outlet: The angle portion of the polar coordinate pair. When
used in an audio context, the value represents the phase, expressed in
radians, of the frequency represented by the current input. If only the left
outlet is connected, the phase computation is not performed.

Examples

Convert Polar to Cartesian coordinates

Cartesian to Polar
coordinate conversion cartopol

87

See Also

atan2 Arc-tangent function (two variables)
lcd Draw graphics in a patcher window
poltocar Polar to Cartesian coordinate conversion
pow Compute x to the power of y

Filter out repetitions
of a number change

88

Input

int or float The number is sent out the outlet only if it is different from the currently
stored value. Replaces the stored value.

set The word set, followed by a number, replaces the stored value without
triggering output.

mode The word mode, followed by a +, causes change to send a 1 out its left outlet if
the received number is greater than the previously received number. In this
mode, change does nothing with any other input. The word mode, followed by
a -, causes change to send out a -1 if the received number is less than the
previously received number. In this mode, change does nothing with any other
input. The word mode by itself returns change to its default mode of sending
out received values that differ from the previously received input.

Arguments

int or float Optional. Initial value for comparison to incoming numbers. If there is no
argument, the initial value is 0.

symbol Optional. A second argument may be + or -, causing change to behave as if
it had received a mode + or mode - message. Subsequent mode messages can
change this behavior.

Output

int Out left outlet: The number received in the inlet is sent out only if it is
different from the stored value.

Out middle outlet: If the stored value is 0 and the input is not 0, 1 is sent
out; otherwise nothing is sent out.

Out right outlet: If the stored value is not 0 and the input is 0, 1 is sent out;
otherwise nothing is sent out.

Filter out repetitions
of a number change

89

Examples

Filter out undesirable repetitions

See Also

peak If a number is greater than previous numbers, output it
togedge Report a change in zero/non-zero values
trough If a number is less than previous numbers, output it
!= Compare two numbers, output 1 if they are not equal
Tutorial 15 Making decisions with comparisons

Limit numbers
within a certain range clip

90

Input

int or float In left inlet: The number is sent out the outlet, constrained within the
minimum and maximum limits specified by the arguments, inlets, or by a
set message. If the number received is a float, it will be sent out as a float.

In middle inlet: Minimum limit for the range of the output.

In right inlet: Maximum limit for the range of the output.

list Each number in the list is constrained within the minimum and maximum
limits, and the constrained numbers are sent out as a list.

set The word set, followed by two numbers, resets the minimum and
maximum limits within which all numbers will be constrained before being
sent out the outlet.

Arguments

int or float Optional: The first number specifies a minimum limit and the second
number specifies a maximum limit, within which all numbers will be
constrained before being sent out the outlet. If only one argument is
present, it is used as both the minimum and maximum limit. If no
argument is present, the minimum and maximum limit is 0.

Output

int When an int is received in the inlet, it is constrained within the specified
minimum and maximum limits, then sent out the outlet. If the received
number is less than the minimum limit, the minimum value is sent out; if
the received number is greater than the maximum limit, the maximum
value is sent out.

float If the received number is a float, it is constrained within the specified
minimum and maximum limits, then sent out the outlet as a float.

list When a list is received in the inlet, each number is constrained within the
specified minimum and maximum limits, and the numbers are sent out as
a list.

Limit numbers
within a certain range clip

91

Examples

Numbers are always kept within the specified range

See Also

maximum Output the greatest in a list of numbers
minimum Output the smallest in a list of numbers
split Look for a range of numbers
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers

Report elapsed time,
at regular intervals clocker

92

Input

int or float In left inlet: Any non-zero number starts clocker. The time elapsed since
clocker was started is sent out the outlet at regular intervals. 0 stops clocker. If
clocker is already running when it receives a non-zero number, it
continues reporting the elapsed time at regular intervals from that new
point, but without resetting the clock time to 0. The clocker object’s
minimum interval time is 0.02 second.

In right inlet: The number is the time interval, in milliseconds, at which
clocker will report the elapsed time. A new number in the right inlet does
not take effect until the next time output is sent.

bang In left inlet: Starts clocker. If the clocker object is not running, a bang message
will start the count. If the clocker object is running, a bang message will reset
the count.

stop In left inlet: Stops clocker.

clock The word clock, followed by the name of an existing setclock object, sets the
clocker to be controlled by that setclock rather than by Max’s internal
millisecond clock. The word clock by itself sets clocker back to using Max’s
regular millisecond clock.

reset In left inlet: Resets the elapsed time to 0 without stopping or restarting the
clock; clocker continues to report the new elapsed time at the same regular
interval. This message is meaningless when the clocker is not running, since
it always resets to 0 anyway when stopped.

Arguments

int Optional. The first argument sets an initial value for the time interval at
which clocker sends out its output. If there is no argument, the initial time
interval is set to 5 milliseconds.

Output

int The time elapsed, in milliseconds, since clocker was started. The first output
is always 0, sent immediately each time clocker is started.

Report elapsed time,
at regular intervals clocker

93

Examples

Get the elapsed time Generate numbers as a function of time

See Also

metro Output a bang message at regular intervals
setclock Control the clock speed of timing objects remotely
tempo Output numbers at a metronomic tempo
timer Report elapsed time between two events
Tutorial 31 Using timers

Send a bang when patcher
window is closed closebang

94

Input

There are no inlets. Output occurs when the patcher window is closed.

Arguments

None.

Output

bang Sent automatically when the patcher window is closed.

Examples

Stop a process when window is about to be
closed

…or turn off held notes
and sustain pedal

See Also

active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
loadbang Send a bang automatically when patch is loaded
loadmess Send a message automatically when patch is loaded
Tutorial 40 Automatic actions

Store and edit a collection
of different messages coll

95

Input

list The first number is used as the address (the storage location within coll) at
which to store the remaining items in the list (coll can store a list of up to
254 items). The address will always be stored as an int.

int or float The number refers to the address of a message stored in coll. If a message is
stored at that address, the stored message is sent out the 1st outlet.

bang Same effect as the next message.

assoc The word assoc, followed by a symbol and a number, associates the symbol
with the address specified by the number, provided that the number address
already exists. From then on, any reference to that symbol will be
interpreted by coll as a reference to the number address. Each number
address can have only one symbol associated with it, except 0, which
cannot have an associated symbol. (Note: If the symbol was already being
used as an address, or was already associated with a number address, the
message that was stored at that address is removed.)

clear Erases everything from the collection.

deassoc The word deassoc, followed by a symbol and a number, removes the
association between the symbol and the number address. The symbol no
longer has any meaning to coll.

delete Functions similarly to the word remove, except that if the specified address is
a number, all addresses of a greater number are decremented by 1.

dump Sends all of the stored addresses out the 2nd outlet and all of the stored
messages out the 1st outlet, in the order in which they are stored. A bang is
sent out the 4th outlet when the dump is completed.

end Sets the pointer (used by the goto, next, and prev messages) to the last address
in the coll.

filetype The word filetype, followed by a symbol, sets the file types which can be read
and written into the coll object. File types are specified using the standard
four-letter type code combination (e.g. filetype ffoo). The message filetype with
no arguments restores the default file behavior—either Max binary or text
file formats. File types are mapped to filename extensions on Windows (or
mac when no type is specified by OS) based on the messages to max

Store and edit a collection
of different messages coll

96

contained in the file max-fileformats.txt in the init folder, which is loaded
on startup. If you are defining your own filetype, you may want to include
your own text file in the init folder in order to specify a mapping between
an extension and your four-letter type code.

flags Normally, the contents of coll are not saved as part of the patch when the
patcher window is closed. The message flags 1 0 sets the coll object to save its
contents as part of the patcher that contains it. The message flags 0 0 causes
the contents of the coll not to be saved with the patcher that contains it.

goto The word goto, followed by a number or a symbol, sets a pointer at the
address specified by the number or symbol. If no such address exists, the
pointer is set at the beginning of the collection. The pointer is set at the
beginning of the collection initially, by default.

insert The word insert, followed by a number and a message, inserts the message at
the address specified by the number, incrementing all equal or greater
addresses by 1 if necessary.

length Counts the number of messages contained in coll and sends the number
out the 1st outlet. This message works well in conjunction with the grab
object.

max Determines the maximum single numerical value (i.e. not a list or symbol)
stored in the coll and sends the number out the 1st outlet. This message
works well in conjunction with the grab object.

merge The word merge, followed by an address and a message, appends its message
at the end of the message already stored at that address. If the address does
not yet exist, it is created.

min Determines the minimum single numerical value (i.e. not a list or symbol)
stored in the coll and sends the number out the 1st outlet. This works well
in conjunction with the grab object.

next Sends the address pointed to by the pointer out the 3rd outlet, and sends
the message stored at that address out the 1st outlet, then sets the pointer
to the next address. If the address is a symbol rather than a number, 0 is
sent out the second outlet. If the pointer is currently at the last address in
the collection, it wraps around to the first address. (Note: Number
addresses are stored in ascending order. Symbol addresses are stored in the
order in which they were added to the collection, after all of the number
addresses.) If the message received immediately prior to next was prev, next

Store and edit a collection
of different messages coll

97

sends out the value stored at the address one greater than the one that was
just sent out.

nstore The word nstore, followed by a number and a symbol (or a symbol and a
number), followed by any other message, stores the message at the
specified number address in the coll, with the specified symbol associated.
(This has the same effect as storing the message at an int address, then
using the assoc message to associate a symbol with that number.)

nsub The word nsub, followed by an address, an item number, and another
number or symbol, replaces one item stored at the address. (Example: nsub
pgms 4 7 puts the number 7 in place of the 4th item of the message stored at
the address pgms.) Number values and symbols can both be substituted in
this manner.

nth The word nth, followed by an address and a number, gets the nth item
(specified by the number) from the message at that address, and sends it
out the 1st outlet. (Example: nth pgms 4 outputs the 4th item in the message
stored at the address named pgms.)

open Causes a text edit window associated with the coll object to become visible.
The window is also brought to the front.

prev Causes the same output as the word next, but the pointer is then
decremented rather than incremented. If the pointer is currently at the
first address in the collection, it wraps around to the last address. If the
message received immediately prior to prev was next, prev sends out the value
stored at the address one less than the one that was just sent out.

read The word read with no arguments puts up a standard Open Document
dialog box for choosing a file to load into coll. If read is followed by a
symbol filename argument, the named file is located and loaded into coll.

readagain Loads in the contents of the most recently read file. If no prior read or
readagain message has been received by the coll, readagain is treated as a read
message, and an Open Document dialog box is displayed.

refer The word refer, followed by the name of another coll object, changes the coll
receiving the message to refer to the data in the named coll object.

In addition to reading messages in from another file and storing messages
via the inlet, one can also enter messages in coll by typing. Double-clicking

Store and edit a collection
of different messages coll

98

with the mouse on the coll object displays the contents as text in an editing
window which the user can modify.

In order to edit a collection by hand or read in from another file, it is
essential to know the correct text format for the contents of a coll object.
Each message is stored in the coll object on a separate line. The format of
each line is as follows: the address (an int or a symbol), any symbols
associated with that address (if the address is an int), a comma (to separate
the address from the data it contains), the data (anything), and a
semicolon to indicate the end of each line. In a line such as

3 reset, set 4.7;

3 is the number of the address, reset is a symbol associated with that address,
and the message it contains is set 4.7.

Here is how we would store the numbers 100, 200, 300, and 400 with the
addresses 1, 2, 3, and 4.

1, 100;
2, 200;
3, 300;
4, 400;

remove The word remove, followed by a number or a symbol, removes that address
and its contents from the collection.

renumber Makes the numbers associated with the data in the coll object consecutive
and increasing. The argument to the renumber message specifies the
starting number address for the data. Here’s a before and after example for
coll sent the message renumber 1.

Before After
4, apple; 1, apple;
6, banana; 2, banana;
3, cherry; 3, cherry;
9, durian; 4, durian;

sort The sort message takes two arguments. If the first argument is -1, the items
in the coll are sorted in ascending order. If the first argument is 1, the items
in the coll are sorted in descending order.

Store and edit a collection
of different messages coll

99

The second argument specifies what is used to sort the contents of the coll.
If the second argument is -1, the index (or symbol) associated with the data
is used. If the second argument is not present or 0, the first item in the data
is used. If the second argument is 1 or greater, the second (or greater) item
in the data is used.

store The word store, followed by some symbol (usually a word), followed by a
message, stores the message at an address named by the symbol. (Example:
store triad 0 4 7 will store the list 0 4 7 at an address named triad.)

sub Same as nsub, except that the message stored at the specified address is sent
out after the item has been substituted.

swap The swap message takes two symbols or two numbers as addresses, and
exchanges the data associated with each address. For example, if the coll
contains

1, 400;
2, 700;

swap 1 2 would change the coll to

1, 700;
2, 400;

subsym Changes the symbol associated with data. The first argument to subsym is the
new symbol to use, and the second argument is the symbol associator to
replace. For instance, if the coll contains

jill, 40 50 60;

subsym jack jill will change the coll to

jack, 40 50 60;

symbol The symbol refers to the address of a message stored in coll. If a message is
stored at the address named by the symbol, the message is sent out the 1st
outlet. The symbol may, but need not necessarily, be preceded by the word
symbol.

wclose Closes the window associated with the coll object.

write Calls up the standard Save As dialog box, enabling the user to save the
contents of coll as a separate file. If the word write is followed by a symbol,

Store and edit a collection
of different messages coll

100

the contents of the coll are saved immediately in a file, using the symbol as
the filename.

writeagain Saves the contents of the coll into the most recently written file. If no prior
write or writeagain message has been received by the coll, writeagain is treated as
a write message, and a Save As dialog box is opened.

Inspector

The behavior of a coll object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any coll object
displays the coll Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

Checking Save coll with patcher sets the coll object to save its contents as
part of the patch that contains it.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

any symbol Optional. Name of a file to be read into coll automatically when the patch is
loaded. The information in the file must be in the correct format in order
to be read in by coll. All coll objects which share the same name always share
the same contents. You can use the file name as an identifier for the
purpose of sharing data between multiple coll objects, without there
needing to be an actual file with the specified name.

An optional second argument will cause the coll object not to search for a
file with the named symbol.

Output

anything Messages stored in coll are sent out the 1st outlet. If the message consists of
only a single symbol, it will be preceded by the word symbol when it is sent
out.

Store and edit a collection
of different messages coll

101

int Out 1st outlet: The number of messages contained in coll is sent out in
response to the length message.

int or symbol Out 2nd outlet: The address is sent out whenever a message out the 1st
outlet is triggered by bang, dump, next, prev, or sub.

bang Out 3rd outlet: Sent out when coll has finished loading in or writing a file
of data.

Out 4th outlet: Sent out when coll has finished sending all of the stored
addresses and messages in order out the 1st and 2nd outlets in response to
a dump message.

Examples

Complex messages can be recalled with a single number or word

Results for successive next and prev messages

Store and edit a collection
of different messages coll

102

See Also

bag Store a collection of numbers
jit.cellblock Two-dimensional storage and viewing
table Store and graphically edit an array of numbers
funbuff Store x,y pairs of numbers together
Tutorial 37 Data structures
Data Structures Ways of storing data in Max

Select a color
using a modal dialog colorpicker

103

The colorpicker object uses an Operating System color picker dialog that lets you choose a
color to be output as a Max RGB color. On the Mac OS, the Color Picker dialog that lets
you choose colors in several different color spaces—red-green-blue (RGB), hue-saturation-
value (HSV), web-safe colors, and the nostalgia-inducing crayon mode. On Windows,
you are presented with a standard color picker dialog, including a selection of basic colors,
custom colors, a color swatch and numerical input for red-green-blue (RGB), hue-
saturation-luminance (HSL)

Input

(mouse) Double-clicking the object opens the Color Picker dialog box. If the
patcher is unlocked, hold down the Command key on Macintosh or the
Control key on Windows while double-clicking to open the dialog.

bang Same as double-clicking the object.

list A list of three numbers between 0 and 255 specifies the RGB color
components of the default color which initially appears in the Color Picker
dialog box when it is opened.

setprompt The word setprompt, followed by a text string, sets the Color Picker dialog
box text label. This change will take effect the next time the dialog box is
opened.

Arguments

None.

Output

list After you open the Color Picker dialog box and make a selection, clicking
on the OK button will send a list of the RGB equivalents of the color you
selected out the outlet. If you click the Cancel button, no messages are
sent.

Select a color
using a modal dialog colorpicker

104

Examples

Display a color, or retrieve selected RGB color values

See Also

panel Colored background area
swatch Color swatch for RGB color selection and display

Explanatory note
or label comment

105

Input

anything The comment object has no inlets and receives no input. Text is typed
directly into the comment box when the patcher window is in Edit mode.
When the patcher window is locked, the outline of the comment box
disappears, and only the text is shown. The appearance of a comment can be
modified by changing the font and by resizing its box. Note: If you want
to include carriage returns in your text, use the Inspector to set two-byte
compatibility mode.

The font and size of a comment can be changed with the Font menu.

Inspector

The appearance of a comment object can be edited using its Inspector. If you
have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any comment object displays the comment
Inspector in the floating window. Selecting an object and choosing Get
Info… from the Object menu also displays the Inspector.

The comment Inspector lets you set the following attributes:

You can set a comment to display text in languages such as Japanese or
Chinese that use a two-byte character representation system by checking
the Two-byte Compatible option (the default is unchecked). Checking the
two-byte compatibility option will also allow you to include carriage
returns in comment boxes.

The Color option lets you use a swatch color picker or RGB values used to
display the comment text. The default text color is black (0 0 0).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Explanatory note
or label comment

106

Output

A comment has no outlets, sends no output, and does not affect the
functioning of the patch.

Examples

Elucidate Label Make functional (covered with a ubutton)

See Also

ubutton Transparent button, sends a bang
Tutorial 5 toggle and comment

Convert paths of one pathtype
and/or pathstyle to another conformpath

107

Input

any symbol A file name or path as a symbol. The conformpath object converts paths of
one pathstyle (i.e., file paths that use colons or slashes as separators) and/or
pathtype (paths that are absolute, relative, boot volume-relative, or Cycling
74 folder-relative) to another. It provides a superset of the functionality of
the absolutepath and relativepath objects.

pathstyle The word pathstyle, followed by a word that specifies a pathstyle, will
conform the output pathname to the chosen styles. The possible styles are:

colon The colon style will use colons as separators when passing
paths between objects. This style was used in Max versions
4.2 and earlier on Macintoshes

Note: Since the native Macintosh pathstyle is the same as
the colon path style, there is no native_mac pathstyle.

max (default) The max style will use whatever style the currently
running version of Max uses to pass paths between objects.

native The native style will use whatever format is used by the
currently running operating system to specify paths.

Note: When working with native paths, only absolute paths
will be valid for the operating system.

native_win The native_win style will use native Windows OS format
(i.e., backslashes as separators) to specify paths.

Note: The use of the native_win style paths is not advised
except for display purposes—In MaxMSP, the backslash
character is used as an escape character and could lead to
problems if used in conjunction with message boxes, sprintf,
coll, and other objects which parse text into atoms.

slash The slash style will use slashes as separators when passing
paths between objects.

Convert paths of one pathtype
and/or pathstyle to another conformpath

108

pathtype The word pathtype, followed by a word that specifies a pathtype, will
conform the output pathname to the chosen type. The possible types are:

absolute The absolute type will output the absolute pathname of the
file or folder as a symbol.

boot The boot type will output the pathname of the file or folder
relative to the boot volume as a symbol. If the file is not
relative to the boot file, the conformpath object will send a
zero out the right outlet and send the output path out the
left outlet unchanged.

C74 The C74 type will output the pathname of the file or folder
relative to the Cycling 74 folder as a symbol. If the file is
not relative to the Cycling 74 folder, the conformpath object
will send a zero out the right outlet and send the output
path out the left outlet unchanged.

ignore (default) The ignore type will perform no path type
conversion.

relative The relative type will output the pathname of the file or
folder relative to the Max application folder as a symbol. If
the file is not relative to the Max application folder, the
conformpath object will send a zero out the right outlet and
send the output path out the left outlet unchanged.

Arguments

symbol Optional. An optional symbol argument specifies the pathtype to be used
as output. The possible pathtype arguments are:

absolute Specifies the output of the absolute pathname of the file or
folder as a symbol.

boot Specifies the output of the pathname of the file or folder
relative to the boot volume as a symbol.

C74 Specifies the output of the pathname of the file or folder
relative to the Cycling 74 folder as a symbol.

ignore Specifies that no pathtype conversion is performed.

Convert paths of one pathtype
and/or pathstyle to another conformpath

109

relative Specifies the output of the pathname of the file or folder
relative to the Max application folder as a symbol.

symbol Optional. An optional symbol argument specifies the pathstyle to be used as
output. The possible pathstyle arguments are:

colon Specifies that the colon pathstyle is used for output (See
description in Input section for more details).

max Specifies that the max pathstyle is used for output (See
description in Input section for more details).

native Specifies that the native pathstyle is used for output (See
description in Input section for more details).

native_win Specifies that the native_win pathstyle is used for output
(See description in Input section for more details).

Note: The use of the native_win style paths is not advised
except for display purposes.

slash Specifies that the slash pathstyle is used for output (See
description in Input section for more details).

Output

symbol The pathname of the folder or file conformed to the specified pathstyle
and/or pathtype.

int Out right outlet: If the input file or folder is conformed to specified pathtype
and/ or pathtype, the output is 1. if the filepath cannot be conformed (e.g., if
the file is not relative to a requested path type), the output is 0.

Convert paths of one pathtype
and/or pathstyle to another conformpath

110

Examples

Use the getsystem message to Max to automatically conform file pathnames across
platforms

See Also

absolutepath Convert a file name to an absolute path
opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving
strippath Get a filename from a full pathname

Cosine function cos

111

Input

float Input to a cosine function.

bang In left inlet: Calculates the hyperbolic cosine of the number currently stored.
If there is no argument, cos initially holds 0.

Arguments

float or int Optional. Sets the initial value for the cosine function.

Output

float The cosine of the input.

Examples

See Also

acos Arc-cosine function
acosh Hyperbolic arc-cosine function
cosh Hyperbolic cosine function

Hyperbolic cosine function cosh

112

Input

float or int Input to a hyperbolic cosine function.

bang In left inlet: Calculates the hyperbolic cosine of the number currently
stored. If there is no argument, cosh initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic cosine function.

Output

float or int The hyperbolic cosine of the input.

Examples

See Also

acos Arc-cosine function
acosh Hyperbolic arc-cosine function
cos Cosine function

Count the bang messages
received, output the count counter

113

Input

bang In left inlet: Sends out the current count of the bang messages received in
the left inlet.

In left-middle inlet: Changes the direction of the count.

In middle inlet: Resets the count to its specified minimum value, which
will be sent out the next time a bang is received in the left inlet.

In right-middle inlet: Resets the count to its specified minimum value, and
sends out that value immediately.

In right inlet: Resets the count to its specified maximum value, which is
sent out immediately.

int In left inlet: Same effect as bang.

In left-middle inlet: Sets the direction of the count. 0 causes counter to
count up, 1 causes it to count down, and 2 causes it to count up and down.

In middle inlet: The number sets the counter to a new value, to be sent out
the next time a bang is received in the left inlet. If the number is less than
the current minimum value, the minimum will be reset to that number. If
the number is greater than the current maximum value, the counter will be
set to that number, but the maximum value actually remains the same and
the minimum is set equal to the maximum.

In middle-right inlet: The number sets the counter to a new value and
sends it out immediately. If the number is less than the current minimum
value, the minimum will be reset to that number. If the number is greater
than the current maximum value, the number is sent out, but the
maximum value actually remains the same and the minimum is set equal
to the maximum.

In right inlet: Resets the maximum value sent out by counter. If the number
is less than the current minimum, the maximum is equal to the minimum.
If the minimum is subsequently changed to a value below the maximum
value you input, the counter objects retains the correct maximum value it
received through this inlet. Unlike a bang message, an int in this inlet does
not cause the counter object to output anything.

Count the bang messages
received, output the count counter

114

float In left inlet: Same effect as bang.

float In all other inlets: Converted to int.

carrybang In left inlet: Causes counter to send a bang out the right-middle outlet when
the count is going upward and reaches its maximum limit, and causes
counter to send a bang out the left-middle outlet when the count is going
downward and reaches its minimum limit. (By default, counter sends out
the number 1 in those situations, instead of bang.) The state of the carrybang
message is saved along with the patcher it is used in, and this behavior can
also be set using the Inspector.

carryint In left inlet: Undoes the effect of a previously received carrybang message.
Resets the counter to send the numbers 1 and 0 out the left-middle and
right-middle outlets (instead of bang) to signal when the counter reaches
and leaves its minimum and maximum values. The state of the carryint
message is saved along with the patcher it is used in, and this behavior can
also be set using the Inspector.

dec In left inlet: Decrements the counter (downward) and sends out the new
value, regardless of the direction in which the object has been set to count
ordinarily.

down In left inlet: Sets the counter to count in a downward direction.

goto In left inlet: Same effect as set.

inc In left inlet: Increments the counter (upward) and sends out the new
value, regardless of the direction in which the object has been set to count
ordinarily.

jam In left inlet: The word jam, followed by a number, sets the counter to that
number and sends the number out immediately. If the number is outside
the minimum and maximum count range, this message is ignored.

min In left inlet: The word min followed by a number, resets the minimum
value of counter to that number, and causes the counter object to set itself to
that number and output immediately. If the number is greater than the
current maximum value, the minimum is set equal to the maximum.

max In left inlet: The word max followed by a number, resets the maximum
value of counter to that number. If the number is less than the current
minimum value, the maximum is considered to be equal to the minimum,

Count the bang messages
received, output the count counter

115

although the actual maximum value you set is stored inside the counter
object.

next In left inlet: Same as bang.

set In left inlet: The word set, followed by a number, sets the counter to that
number, which will be sent out the next time a bang is received in the left
inlet.

setmin In left inlet: The word setmin, followed by a number, sets the counter object’s
minimum count without affecting its current count value or causing any
output.

up In left inlet: Sets the counter to count in an upward direction.

updown In left inlet: Sets the counter object’s direction so that it counts upward until
it reaches the specified maximum, then counts down until it reaches the
specified minimum, then up, then down, and so on.

Inspector

The behavior of an counter object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any counter object
displays the counter Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The Underflow/Carry Mode attribute provides two options correspond to
the carrybang and carryint messages described above. Sending 1 or 0 out
outlets 2 and 3 is the default mode.

The Reset Minimum Mode attribute lets you choose between temporarily
overriding the min count (the default behavior). Sending an int to the third
and fourth inlets of the counter object will cause it to perform in the
manner described in the Input section above. The Change the Min count
permanently option provides back-compatibility with the counter object
distributed with Max 3.x and earlier. In this mode, sending an int to inlets
3 and 4 will change the min count instead of just resetting it temporarily
(which causes the fourth inlet to behave exactly as thought the min message
were sent to the counter object).

Count the bang messages
received, output the count counter

116

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

int Optional. If there is only one argument, it sets an initial maximum count
value for counter. If there are two arguments, the first number sets an initial
minimum value, and the second number sets an initial maximum value. If
there are three arguments, the first number specifies the direction of the
count, the second number is the minimum, and the third number is the
maximum. If there are no arguments, the direction is up, the minimum is
0, and the maximum is 2,147,483,647 (the largest possible 32-bit signed
integer).

Output

int Out left outlet: When bang, next, inc, dec, or a number is received in the left
inlet, the current count is sent out, within the minimum and maximum
limits specified. If the direction of the count is both up and down, the
count is folded back in the other direction when it reaches the specified
limits. If the count is in only one direction, up or down, the count is
wrapped around to the opposite extreme when it reaches its limit.

When the direction is up, or up and down, counter, begins counting from
the specified minimum value. When the direction is down, counter begins
from the maximum value.

Out left-middle outlet: When the count is moving downward and reaches
the minimum limit, the number 1 is sent out. When the count leaves the
minimum limit, 0 is sent out.

Out right-middle outlet: When the count is moving upward and reaches
the maximum limit, the number 1 is sent out. When the count leaves the
maximum limit, 0 is sent out.

Out right outlet: An additional count is kept of the number of times counter
reaches its maximum limit. Each time the maximum is reached, that count
is sent out.

Count the bang messages
received, output the count counter

117

bang Out left-middle outlet: If a carrybang message has been received in the left
inlet, then when the count is moving downward and reaches the minimum
limit, a bang is sent out (instead of the number 1 which is sent out by
default). When the count leaves the minimum limit, nothing is sent out.

Out right-middle outlet: If a carrybang message has been received in the left
inlet, then when the count is moving upward and reaches the maximum
limit, a bang is sent out (instead of the number 1 which is sent out by
default). When the count leaves the maximum limit, nothing is sent out.

Examples

Keep track of how many events have occurred, or create a continuous loop

See Also

tempo Output numbers at a metronomic tempo
Tutorial 31 Using timers
Loops Using loops to perform repeated operations

Precise “real-world” time
measurements cpuclock

118

Input

bang A bang causes the current time to be output. The time value is calculated
from when Max is launched (starting from 0.0). While most Max/MSP
timing references “logical” time derived from Max’s millisecond
scheduler, time values produced by the cpuclock object are referenced from
the CPU clock and can be used to time real world events with microsecond
precision.

Arguments

None.

Output

float The current time, in milliseconds.

Examples

Output received
MIDI control values ctlin

119

Input

(MIDI) ctlin receives its input from a MIDI control change message received from a
MIDI input device.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming control
messages. The word port is optional and may be omitted.

set The word set, followed by a number from 0 to 127, specifies a single
controller number to be paid attention to by ctlin. This message is appropriate
only if a specific controller number was originally typed in as an argument;
it is ignored by ctlin if no controller number argument was originally typed
in.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

(mouse) Double-clicking on a ctlin object shows a pop-up menu for choosing a MIDI
port or device.

Arguments

a-z Optional. Specifies a single port from which to receive incoming control
messages. If there is no letter present as an argument, ctlin can receive from
all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

int Following the (optional) port argument, the next argument is a single
controller number to be recognized by ctlin. If there is no controller
number, or if the argument is a negative number, ctlin recognizes all
controller numbers. If a single controller number is specified in the
argument, the outlet which normally sends the controller number is
unnecessary, and is not created.

Following the controller number argument is a single channel number on
which to receive control messages. If the channel argument is not present,
ctlin receives control messages on all channels. In order for this argument to

Output received
MIDI control values ctlin

120

be used, a controller number argument must precede it. To specify a
channel number without specifying a controller number, use -1 for the
controller number.

If a single channel number is specified as an argument, the outlet which
normally sends the channel number is unnecessary, and is not created. If a
port has been specified with a letter argument, channel numbers greater
than 16 will be wrapped around to stay within the 1-16 range. If no port
argument is present, a channel number can be used in place of a letter and
number combination. The exact meaning of the channel number
argument depends on the channel offset specified for each port in the
MIDI Setup dialog.

Output

int Out left outlet: The number is the control value of an incoming MIDI
control change message.

If a specific controller number is not specified as an argument, the
controller number is sent out the 2nd outlet.

If a specific channel number is not included in the argument, the channel
number is sent out an additional, right, outlet.

Examples

Control messages can be filtered in a variety of ways

See Also

bendin Output received MIDI pitch bend values
ctlout Transmit MIDI control messages
midiin Output received raw MIDI data

Output received
MIDI control values ctlin

121

notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendin Interpret extra precision MIDI pitch bend messages
MIDI MIDI software protocol
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Transmit MIDI
control messages ctlout

122

Input

int In left inlet: The number is used as the control value, and ctlout transmits a
MIDI control change message. Numbers are limited between 0 and 127.

In middle inlet: The number is stored as the controller number of the
control change messages transmitted by ctlout. Numbers are limited
between 0 and 127.

In right inlet: The number is stored as the channel number on which to
transmit the control messages.

float Converted to int.

list In left inlet: The first number is the control value, the second the
controller number, and the third the channel number. ctlout transmits a
MIDI control change message using these values.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or the name of a MIDI
output port or device, specifies the port used to transmit MIDI control
messages. The word port is optional and can be omitted.

(mouse) Double-clicking on a ctlout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI control messages. If
there is no argument, ctlout initially transmits out port a, on channel 1.
When a port is specified by a letter argument, channel numbers greater
than 16 received in the right inlet will be wrapped around to stay within
the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

Transmit MIDI
control messages ctlout

123

int Following the (optional) port argument, the next argument is an initial
value for the controller number to be used in control messages transmitted
by ctlout. Controller numbers are automatically limited between 0 and 127.
If there is no controller number specified, the initial controller number is
1.

Following the controller number argument is an initial value for the
channel number on which to transmit control messages. If the channel
argument is not present, ctlout initially transmits control messages on
channel 1. In order for this argument to be used, a controller number
argument must precede it.

If a port has been specified with a letter argument, channel numbers
greater than 16 will be wrapped around to stay within the 1-16 range. If no
port argument is present, the channel number specifies both the port and
the channel. The exact meaning of the channel number argument depends
on the channel offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI control message transmitted
directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one port Otherwise, number specifies both port
and channel

See Also

bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages

Transmit MIDI
control messages ctlout

124

xbendout Format extra precision MIDI pitch bend messages
MIDI MIDI overview and specification
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Send a stream of data
to individual outlets cycle

125

Input

anything The stream of ints, floats, or symbols to be directed to successive outlets.

set The word set, followed by a number, specifies an outlet to which the next
input should be directed, if in cycle mode. Outlets are numbered beginning
with 0; if an outlet number is specified that does not actually exist, the
message is ignored. (This message has no effect when cycle is in event-
sensitive mode, in which case each message is always sent out beginning at
the leftmost outlet.)

thresh The word thresh, followed by a number, sets the output mode, in the same
way as the second typed-in argument. If the number is non-zero, cycle will
detect separate “events” and restart at the leftmost outlet whenever a new
event occurs. If the number is 0, each number received will be directed to the
next outlet in the cycle.

Arguments

int Optional. The first argument determines the number of outlets. If there is
no argument, there will be one outlet. The second argument sets the
output mode. If it is non-zero, cycle detects separate “events” and restarts at
the leftmost outlet when a new event occurs. Examples of separate events
include messages with delays between them, and messages triggered by
successive mouse clicks or MIDI events. A stream of items separated by
commas in a message box is considered a single event. If this argument is
not present or is 0, the values cycle through all the outlets, regardless of
whether they are attached to separate events or not.

Output

anything Out any outlet: In cycle mode, each successive int, float, or symbol
received, either separately or as part of a list, is directed to an outlet to the
right of the previous number. When the cycle reaches the rightmost outlet,
the next number is sent out the left outlet.

In event-sensitive mode, any int, float, or symbol which is a new event
restarts the output at the left outlet.

Send a stream of data
to individual outlets cycle

126

Examples

Using cycle to get ASCII relief

See Also

bucket Pass a number from outlet to outlet, out each one in turn
counter Count the bang messages received, output the count
spell Convert input to ASCII codes
spray Distribute a value to a numbered outlet

Report current
date and time date

127

Input

date Outputs the current date as a list (month/day/year) out the left outlet.

ticks Outputs the current value of Ticks (the number of 1/60ths of a second
since system startup) out the right outlet.

time Outputs the current time as a list (military hours/minutes/seconds) out the
middle outlet.

Arguments

None.

Output

list Out left outlet: When the date message is received, date sends the current
date as a list.

list Out middle outlet: When the time message is received, date sends the current
time as a list.

int Out right outlet: When the ticks message is received, date sends the current
value of Ticks.

Examples

For pieces which change slowly, date can be used as a clock to trigger events

See Also

clocker Report elapsed time, at regular intervals
timer Report elapsed time between two events

Convert a deciBel value to
linear amplitude dbtoa

128

Input

float or int A gain/attenuation in deciBels. The corresponding linear amplitude value
is sent out the outlet.

Arguments

None.

Output

float A linear amplitude value.

Examples

Does just what its name implies. No special tricks.

See Also

expr Evaluate a mathematical expression
atodb Convert linear amplitude to a deciBel value
atodb~ Convert linear amplitude to a deciBel value at signal rate
dbtoa~ Convert a deciBel value to linear amplitude at signal rate

Choose randomly between
on and off (1 and 0) decide

129

Input

bang In left inlet: Causes a randomly chosen output of 1 or 0.

int In left inlet: Same as bang.

In right inlet: A given “seed” number causes a specific (reproducible)
sequence of pseudo-random 0 and 1 outputs to occur. The number 0 uses
the time elapsed since system startup (an unpredictable value) as the seed,
ensuring an unpredictable sequence of 0 and 1 outputs.

Arguments

int Optional. Sets a “seed” value to cause a specific (reproducible) sequence of
pseudo-random 0 and 1 outputs to occur. If there is no argument, the time
elapsed since system startup (an unpredictable value) is used as the seed,
ensuring an unpredictable sequence of 0 and 1 outputs.

Output

int A 1 or a 0, chosen at random. With certain seed values, the output may
seem at first to follow a “non-random” pattern, but over the course of
many iterations the sequence becomes unpredictable and the balance
between 1 and 0 becomes even.

Examples

Simulate a coin toss; switch randomly between on and off

Choose randomly between
on and off (1 and 0) decide

130

See Also

drunk Output random numbers in a moving range
random Generate a random number
toggle Switch between on and off (1 and 0)
urn Generate random numbers without duplicates

Send 1 or 0 out
a specific outlet decode

131

decode acts as a hierarchical switchboard. The right inlet is the master switch, which can
turn off (send 0 out) all outlets. The middle inlet is a submaster switch, which can turn on
(send 1 out) all outlets, provided they have not all been turned off by the master switch.
The left inlet can turn on one of the outlets exclusively, provided neither the submaster
switch nor the master switch is active.

Input

int In left inlet: The number specifies an outlet out to turn on, turning off all
other outlets. (Whenever an outlet is turned on that was previously turned
off, a 1 is sent out. Conversely, whenever an enabled outlet is disabled, a 0
is sent out.) The outlets are referred to by number, beginning with 0 on
the left, and numbers received in the left inlet are automatically limited
between 0 and the number of outlets minus 1.

In middle inlet: Any number other than 0 enables all disabled outlets
(sends a 1 out them), unless all outlets are disabled. When 0 is received,
decode turns off all outlets except the one that had previously been on.

In right inlet: Any number other than 0 disables all enabled outlets (sends
a 0 out them). Once all outlets have been disabled in this manner, no outlet
can be enabled until a 0 is received in the right inlet. When a 0 is received,
decode re-enables all outlets that it had just disabled.

float Converted to int.

Arguments

int Optional. Sets the number of outlets. The default is one outlet.

float Converted to int.

Output

int When an outlet is enabled that was previously disabled, a 1 is sent out that
outlet. When an outlet is disabled that was previously enabled, a 0 is sent
out that outlet. The left outlet is initially enabled.

Send 1 or 0 out
a specific outlet decode

132

Examples

decode is a hierarchical on/off switch

See Also

bucket Pass a number from outlet to outlet, out each one in turn
gate Pass the input out a specific outlet
toggle Switch between on and off (1 and 0)

De-prioritize
a message defer

133

Input

anything If the message received in the inlet was triggered by a MIDI object (such as
notein) or a timing object (such as metro or seq), and the Overdrive option is
on, Max normally gives the message priority over activities that are not so
critical in their timing (such as printing in the Max window). The defer
object removes that special priority from a message, allowing it to be
superseded by messages for which precise timing is more critical. This is
useful for de-prioritizing time-consuming messages which may interfere
with musical rhythm, or for messages to objects that may not function well
with Overdrive on.

Arguments

None.

Output

anything Same as the input.

Examples

Overdrive’s priority given to MIDI or timing messages can be overridden with defer

See Also

deferlow Defer the execution of a message (always)
uzi Send a specific number of bang messages

Defer the execution
of a message (always) deferlow

134

The deferlow object places all incoming messages at the tail of the low priority queue. This is
unlike the defer object, however, which places high priority messages at the front of the
low priority queue, and passes low priority messages immediately. The deferlow object is
useful to preserve message sequencing that might otherwise be reversed with the defer
object and/or guarantee that an incoming message will be deferred to a future servicing of
the low priority queue even if that message is low priority itself.

Examples of high priority messages are those generated by a MIDI object (such as notein)
or a timing object (such as metro or seq), and examples of low priority message are those
generated in response to user events (such as clicking a button).

Input

anything The deferlow object places the received message at the tail of the
low priority queue for deferred execution.

Arguments

None.

Output

anything Same as the input.

Defer the execution
of a message (always) deferlow

135

Examples

Prevent a stack overflow in a feedback loop with deferlow

See Also

defer De-prioritze a message
delay Delay a bang before passing it on
uzi Send a specific number of bang messages

Delay a bang
before passing it on delay / del

136

Input

bang In left inlet: A bang is delayed a certain number of milliseconds before
being sent out the outlet.

stop In left inlet: Stops delay from outputting the bang it is currently delaying.

int or float In left inlet: Sets the number of milliseconds to delay a bang, then triggers the
bang to be delayed.

int or float In right inlet: The number is stored as the number of milliseconds to delay a
bang received in the left inlet. A number received in the right inlet changes the
delay time of the next bang received—it does not modify the time of a bang
currently being delayed.

Arguments

int or float Sets an initial value for the number of milliseconds to delay a bang received
in the left inlet. If there is no argument, the initial value is 0.

Output

bang A bang received in the left inlet is delayed by the number of milliseconds
specified by the right inlet, then is sent out the outlet. Only one bang at a
time can be delayed by delay. If a bang is already in delay when a new bang is
received in the left inlet, the first bang is forgotten.

Examples

Bang is delayed for a certain time Can be used to send triggers at specific times

See Also

deferlow Defer the execution of a message (always)

Delay a bang
before passing it on delay / del

137

pipe Delay numbers or lists
Tutorial 22 Delay lines

Graphic score of
note events detonate

138

Input

int After a record message has been received, all numbers received are treated as
parameters of a note event.

In left inlet: The delta time (delay), in milliseconds, since the previous
recorded event. This denotes the “inter-onset interval —the time between
the beginnings of notes—which effectively determines the rhythm in
which the events are recorded. This need not necessarily be the true time in
which they occur; detonate believes any (non-negative) delta time it
receives.

In 2nd inlet: The number is treated as the key number (pitch) of the note.
If no key number has ever been received, 60 is used by default.

In 3rd inlet: The velocity of the note. If the velocity is 0—indicating a
note-off— the event will be treated as the end of an earlier note-on the
same key, and will determine the duration of that earlier note. If no
velocity number has ever been received, it is 64 by default.

In 4th inlet: In lieu of a note-off message, a note duration can be supplied
as part of the note-on event. If no duration value has ever been received,
and no note-off event is received to end the note, a duration of 10
milliseconds is used by default.

In 5th inlet: The MIDI channel of the note. If no channel has ever been
specified, notes are recorded on channel 1.

In 6th inlet: The number of a track on which to record the note event.
Overdub recording is not possible with detonate, but each recorded note can
be tagged with a track number for storing separate tracks of notes
internally. If no track number has ever been received, notes are recorded
on track 1.

In 7th inlet: An “extra” number, which can be used for any purpose,
attached to the note event. This number can be used to provide an
additional event parameter, or to serve as a control value in sync with the
note. If no number has ever been received in this inlet, it is recorded as 0
by default.

In right inlet: A second “extra” number.

Graphic score of
note events detonate

139

When detonate receives a number in the left inlet while recording, it treats
the number as the inter-onset interval (the time elapsed since the previous
event), combines it with the numbers most recently received in the other
inlets, and records them together as a note event. As with most Max
objects, the numbers received in the other inlets are stored for use in
subsequent note events triggered by the receipt of a number in the
leftmost inlet.

When detonate has received a follow message (see below), a subsequent
number in the 2nd inlet is treated as the key number (pitch) of a note. If
the number is the same as the pitch of the current note in the score (or a
nearby note), the information recorded for that note—except for the delta
time—is sent out.

When detonate is neither recording nor following, a number in the left inlet
has the same effect as the nth message (see below).

float Converted to int.

list The first number in the list is used as the delta time, and the other numbers
are treated as if they had been received in the other inlets, respectively
from left to right.

start Begins playing back the score, by simply sending out the first delta time.
Once playback of the score has been started, next messages can be used to
send out the next event information.

next Once playback of the score has been started with a start message, next sends
out the event information (except the delta time) for the current note in the
score, then sends out the delta time for the next note. That delta time can in
turn be used as a delay time before sending another next message to detonate.
When next is received on the last note of the score, there is no note following
that one, so a unique value of -1 is sent out the left outlet to signal the end of
the score. If a next message is received while the score is not being played
back, detonate simply prints the message not playing in the Max window.

nth The word nth, followed by a number, sends out the note information of the
event in the score indicated by the number. (Events are numbered
beginning with 0.) In place of the delta time for the event, the
(cumulative) starting time of the event is sent out the left outlet.

clear Erases the contents of detonate.

Graphic score of
note events detonate

140

follow Causes detonate to behave like a score reader, comparing incoming pitch
information to the events stored in its score. When a key number is received
in the 2nd (pitch) inlet, and it is the same as the pitch of the current note in
the score, detonate sends out the information recorded for that
event—except for the delta time—and then moves ahead to the next note
event.

followat The word followat, followed by a pitch, a velocity, and a MIDI channel
number, causes detonate to look for a note event with those attributes in its
stored score. If such a note is found, detonate commences score-following
from the next event onward. If not, it simply prints detonate: note not found in
the Max window.

record In left inlet: Begins recording numbers coming in the inlets, treating them as
parameters of note events to be recorded in a graphic score. The onset of
an event is recorded each time a number is received in the left inlet.

startat The word startat, followed by a pitch, a velocity, and a MIDI channel number,
causes detonate to look for a note event with those attributes in its stored
score. If such a note is found, detonate sends out the delta time of the next
event, and a subsequent next message will refer to that next event. If no such
note is found, detonate simply prints detonate: note not found in the Max
window.

stop Stops detonate from recording, playing, or following. It is not necessary to
stop detonate before switching directly between record, start, and follow.

mute Permits the selective muting of note events that meet specific criteria. The
word mute must be followed by an event parameter number, a parameter
value, and a value of 1 or 0 signifying “mute” or “unmute”. Event
parameters are numbered beginning at 0 for delta time, 1 for pitch, etc. For
example, the message mute 4 10 1 mutes notes on MIDI channel 10 (channel
is parameter 4), preventing their note information from being sent out; those
notes can later be unmuted by the message mute 4 10 0.

unmute The word unmute, followed by an event parameter number and a parameter
value, undoes an earlier mute of the same criterion. For example, unmute 4 10
has the same meaning as mute 4 10 0.

unmuteall Undoes the effects of all previous mute messages.

params The word params, followed by three numbers, modifies the score-following
behavior of detonate for cases when the received pitch does not match the
pitch of the current note in the score. The first number tells detonate how

Graphic score of
note events detonate

141

many errors to tolerate before moving ahead in the score. The second
number tells how many milliseconds to move ahead in the score when too
many errors have occurred. The third number, if non-zero, tells detonate to
treat a received pitch that is an octave too high or too low as if it were a
match. For example, the message params 3 1000 1 means to allow three
successive errors (with octave displacements considered to be a match)
before moving ahead one second in the score and resuming. By default,
detonate allows 2 errors before moving ahead 200 milliseconds, and does not
consider octave pitch displacements to be a match for the stored note.

write Opens a dialog for saving the contents of detonate as a standard MIDI file.
The word write may optionally be followed by up to two numbers. If the first
number is non-zero, the file will be saved with time represented in
milliseconds rather than as bars, beats, and ticks in a certain tempo. If the
number is 0 or not present, the file is saved as beats. The second number
indicates the MIDI file format: 0 (all notes on a single track) o multi-track
format, using the track parameter to separate the notes). The contents of
detonate are also saved as part of the patch, when the patch is saved.

read The word read by itself opens a dialog for loading in a standard MIDI file as
contents of the detonate score. If read is followed by the name of a MIDI file
in Max’s search path, that file is read in directly without opening a dialog
box. The read message can also be followed by a number which—if non-
zero—causes the time values in the file to be interpreted as milliseconds
rather than as bars, beats and ticks at a certain tempo. If the number is 0 or
not present, the times are read as bars and beats.

export Same as write.

import Same as read.

(mouse) Double-clicking on detonate in a locked patcher opens an editor window to
display a graphic representation of the note events. The editor window can
show the event information in various ways, and contains a small palette of
tools for editing the notes or entering new notes.

You can draw new notes with the pencil tool. The starting time of note
events is always represented on the x axis of the graph. The default
parameters of the drawn notes are shown in (and can be changed by
dragging upon) the number boxes at the top of the editor window. You
can change the meaning ascribed to the y axis, and to the length of the
drawn note, by clicking on the icons to the left of the parameter names.

Graphic score of
note events detonate

142

By default the y axis is pitch and the horizontal length of the note shows its
duration.

You can select existing notes with the selection tool, and drag them either
vertically (by clicking in the middle of a note) or horizontally (by clicking
on the left side of note). Dragging on the right side of a note enables you
to lengthen or shorten it. The parameters of selected notes can also be
changed with the number boxes at the top of the editor window.

The tweak tool works the same as the selection tool, but allows for finer
resolution dragging adjustments. Clicking on the graph with the zoom tool
enlarges that area of the graph for more precise editing. Option-clicking on
Macintosh or Alt-clicking on Windows on the graph with the zoom tool
zooms back out.

Arguments

symbol Supplies a name to be shown in the title bar of detonate’s graphic editor
window. Any detonate objects with the same name argument will share the
same event data. They will also share event data with any edetonate timeline
editor that has the same name.

Output

When detonate receives a start message or a startat message in the left inlet, it
sends out the delta time of its starting note event (or of the note after the
found note, in the case of startat). After that, each time detonate receives a
next message, it sends out all the other note data for that event, and the
delta time of the next event, progressing through the score. Thus, the
numbers coming out the left outlet can be used to control the playback
rhythm, by delaying for the specified time and then triggering the next
next message.

When detonate receives an nth message (or receives a number, while stopped)
in the left inlet, it uses that information as an index number (starting at
index number 0 for the first note event) and sends out all note data for the
indexed event. Instead of sending the note’s delta time out the left outlet,
however, it sends the start time of the note—the total time since the
beginning of the score.

After detonate has received a follow or followat message in the left inlet, if a
number is received in the 2nd inlet that matches the pitch of the current

Graphic score of
note events detonate

143

note in the score (or one of the two notes immediately after it), all the data
for the matched note is sent out, except for the delta time.

int Out left outlet: When a start, startat, or subsequent next message is received in
the left inlet, the delta time of the next note event is sent out. When the last
event in the score is played by a next message, there is no note following that
one, so a unique delta time of -1 is sent out to signal that the last note has
been played.

When an nth message is received in the left inlet (or an int if detonate is
stopped), the starting time of the specified note is sent out.

Out 2nd outlet: In response to an nth message, or an int while detonate is
stopped, or a next message while playing back, or a matched pitch while
following, the pitch of the note is sent out.

Out 3rd outlet: The velocity of the note.

Out 4th outlet: The duration of the note.

Out 5th outlet: The MIDI channel of the note.

Out 6th outlet: The track number of the note.

Out 7th outlet: An extra value associated with the note.

Out right outlet: A second extra value associated with the note.

Inspector

You can change the depiction of the detonate object’s parameters
(corresponding to the object’s inlets) by reassigning the way each
parameter is shown. The menu at the top of the inspector lets you select
which of the eight parameters (numbered 0 through 7) will be displayed in
the Display.

You can change the name of the parameter using the Parameter Name
field. The default names are Time, Pitch, Vel, Dur, Chan, X1 and X2. The
Display Mode menu lets you set how the parameter is displayed in the
detonate graphic editor. Parameters can be displayed along the X-axis, Y-
axis, Length (along the x-axis) or as a Number. Setting the menu to No
Display, naturally causes the parameter not to be displayed.

Graphic score of
note events detonate

144

Each parameter’s Minimum Value and Maximum Value can be set using
the fields with those names. The Default Value sets the value which will be
used for that parameter in notes where it is left unspecified.

 Graph Interval affects the view only if the parameter is displayed on the y
axis; it controls how often numbers will be shown along the y axis (every
12 semitones in the above example). Default Scaling is a factor that
determines the default zoom of the axis on which the parameter is being
displayed. 1 is maximum zoom, and larger numbers are successively smaller
scales. The start time (the leftmost parameter) is an exceptional case
because it can only be displayed on the x axis; so, for that parameter Graph
Interval and Default Scaling refer only to the x axis.The Display MIDI
Note Numbers checkbox can be used to display values on the y axis as
MIDI notes instead of decimal numbers only for parameter 1 (pitch); this
option is disabled for all other parameters.

Examples

Note events are recorded with a delta time, which can be used to play notes back in
rhythm

See Also

follow Compare a live performance to a recorded performance
seq Sequencer for recording and playing MIDI
timeline Time-based score of Max messages
Detonate Graphic editing of a MIDI sequence
Sequencing Recording and playing back MIDI performances

Output numbers by
moving a dial onscreen dial

145

Input

int The number received in the inlet is displayed graphically by dial, and is
passed out its outlet. Optionally, dial can multiply the number by some
amount and add an offset to it before sending it out the outlet.

The dial will also send out numbers in response to clicking or dragging on it
directly with the mouse.

float Converted to int.

bang Sends out the number currently stored in dial.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
background color of the dial in RGB format. The default is gray (221 221
221).

color The word color, followed by a number from 0 to 15, sets the color of the
center circle of the dial to one of the object colors which are also available via
the Color command in the Object menu.

frgb The word brgb, followed by three numbers between 0 and 255, sets the
color of the center dial in RGB format. The default is light gray (170 170
170).

min The word min, followed by a number, sets value that will be added to the dial
object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The dial
object’s value will be multiplied by this number before it is sent out the
outlet. The multiplication happens before the addition of the Offset value.
The default value is 1.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the
center dial (Foreground) of the dial in RGB format. The default is dark
grey (120 120 120).

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the
highlighted border around the center dial in RGB format. The default is
off-white (225 225 225).

Output numbers by
moving a dial onscreen dial

146

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the
color of the dial indicator (needle) in RGB format. The default is black (0 0
0).

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the
color of the frame/border of the dial in RGB format. The default is black (0
0 0).

set The word set, followed by a number, changes the displayed value of the dial,
without triggering output.

size The word size, followed by a number, sets the range of the dial object. The
default value is 128. Setting the size to 1 disables the dial visually (since it
can only display one value). Any specified size less than 1 will be set to 2.

Inspector

The behavior of a dial object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any dial object
displays the dial Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The dial Inspector lets you enter a Dial Range value. Numbers received in the
inlet are automatically limited between 0 and the number 1 less than the
specified range value. The default range value is 128. You can specify an
Offset value which will be added to the number, after multiplication. The
default offset value is 0. The dial Inspector also lets you specify a Multiplier.
The dial object’s value will be multiplied by this number before it is sent out
the outlet. The multiplication happens before the addition of the Offset
value. The default multiplier value is 1.

The Colors options let you use a swatch color picker or RGB values to
specify the colors used for the dial object’s display. Foreground sets the color
for the face of the dial (default 170 170 170), and Background sets the
color for the square area in which the dial appears (default 221 221 221).
The Frame attribute sets color for the border around the dial object’s square
frame (default 0 0 0). The “lit” and “shaded” edges of the dial are set by the
Highlight (default 255 255 255) and Shadow (default 120 120 120)
attributes. The Needle attribute sets the color of the position indicator for
the dial (default 0 0 0).

Output numbers by
moving a dial onscreen dial

147

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Output

int Numbers received in the inlet, or produced by clicking or dragging on dial
with the mouse, are first multiplied by the multiplier, then have the offset
added to them, then are sent out the outlet.

Examples

Produce output by dragging onscreen... or use to display numbers passing through

See Also

hslider Output numbers by moving a slider onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Open a dialog box
for text entry dialog

148

Input

symbol In left inlet: The word symbol, followed by any word, opens a dialog box
prompting the user to enter text. The word following symbol is shown as the
default text. If you want more than one word to appear as the default text,
you must enclose the words in double quotes.

bang In left inlet: Opens the dialog box with the previous text displayed as the
default.

int In left inlet: Same as symbol.

In right inlet: The number 0 sets dialog so that whatever the user types into
the dialog box is sent out as a symbol preceded by the word symbol. A
nonzero number sets dialog so that the typed-in text is sent out exactly as is if
it begins with a word, or preceded by the word list if it begins with a number.
If no number is received, it is considered 0 by default.

Arguments

anything Optional. Sets the prompt which will appear above the text entry box in
the dialog window.

Output

symbol If the user clicks OK, dialog makes a symbol out of the entered text (even if
it’s a number or it’s more than one word) and sends it out its outlet with
the word symbol prepended. If a nonzero number has been received in the
right inlet, the typed-in message is sent out as is (without being preceded
by the word symbol). This message can be displayed by prepending the word
set and sending it to a message box (as shown in the example). If the user
clicks Cancel, nothing is sent out.

Since your patch continues to run while waiting for the user to type text
into your dialog box, you can’t count on getting the typed-in symbol
immediately after sending the message that opens the dialog box.

Open a dialog box
for text entry dialog

149

Examples

Typed-in message is sent out when OK button is clicked;
other processes continue while dialog box is open

A dialog box is opened by the
dialog object

See Also

message Send any message
opendialog Open a dialog to ask for a file or folder
savedialog Open a dialog to ask for a filename for saving
sprintf Format a message of words and number

Define a region for
dragging and dropping a file dropfile

150

Input

(drag) When a file icon is dragged from the Finder onto a dropfile object in a
locked patcher window, the object checks the file’s type against those that
it has been told to accept. If the file is of an acceptable type, the outline of
the dropfile box is highlighted. If the mouse button is released while the
cursor is inside the dropfile box, the dropfile object outputs the type and full
pathname of the file out its outlets.

types The word types, followed by one or more four-letter type codes, sets the file
types that will be accepted by the dropfile object. Example type codes for files
are TEXT for text files, maxb for Max binary format patcher files, and AIFF for
AIFF format audio files. types with no arguments makes the object accept
all file types, which is the default setting.

border The word border, followed by a 1 or 0, sets whether the dropfile object draws a
border around its box. The default is no border.

Arguments

None.

Output

symbol Out left outlet: When an acceptable file icon has been dragged onto dropfile
and the mouse released within its box, the absolute pathname of the file is
sent out as a single symbol. The output pathnames contain slash separators.

Absolute pathnames look like this:

“C:/Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

When aliases of folders are dragged onto dropfile, the aliases are resolved to
create the output path.

If you want to use the dropfile object to cause a file to be read by another
object that accepts the read message with a filename argument, put a prepend
read object between dropfile and the object that will open a file, as shown in
the example below.

Define a region for
dragging and dropping a file dropfile

151

any symbol Out right outlet: The four-letter type code of the acceptable file is sent out
the right outlet.

Examples

See Also

absolutepath Convert a file name to an absolute path
relativepath Convert an absolute to a relative path
strippath Get filename from an absolute pathname
opendialog Open a dialog to ask for a file or folders

Output random numbers
in a moving range drunk

152

Input

bang In left inlet: Causes drunk to take a step of random size up or down from its
currently stored value. It updates the stored value and sends it out the
outlet.

int In left inlet: The number replaces the stored value and is sent out the
outlet.

In middle inlet: The number is stored as the maximum value that can be
output by drunk. (Note: If the specified maximum is less than 0 it is set to 0.)

In right inlet: The number limits the step size taken in response to a bang in
the left inlet. The step (up or down) will always be less than the absolute
value of this number.

float Converted to int.

list In left inlet: The second number in the list sets the maximum value output by
drunk, and the third number (if present) limits the step size, then the first
number replaces the stored value and is sent out the outlet.

set In left inlet: The word set, followed by a number, sets the stored value of drunk
to that number without triggering output. The stored value is initially set
in the center of the total range (1/2 the maximum value).

seed In left inlet: The word seed, followed by a number, “seeds” the drunk object’s
random generator, which causes a specific (reproducible) sequence of
pseudo-random numbers to occur. The number 0 uses the time elapsed since
system startup (an unpredictable value) as the seed, ensuring an
unpredictable sequence of numbers. This unpredictable seed is used by
default when the drunk object is created.

Arguments

int Optional. The first argument sets an initial value for the maximum
number which can be output by drunk. The second argument sets an initial
limit on the size of random steps taken by drunk; the absolute value of the
step size will always be less than the absolute value of this limit. If there are
no typed-in arguments, the maximum value is set to 128 and the step size
limit is set to 2 (movement up or down by no more than 1).

Output random numbers
in a moving range drunk

153

Output

int The number sent out the outlet is automatically limited between 0 and the
specified maximum value, and differs from the previously stored number
by less than the maximum step size.

Examples

Numbers vary aimlessly in small steps taken within the total range

See Also

decide Choose randomly between on and off (1 and 0)
random Output a random number
urn Generate random numbers without duplicates

Script-configurable
envelope editors env/envi

154

Input

bang Same as dump. Sends out a series of two-element lists, showing the array
index and the value at that index for the horizontal and vertical position of
each point in the envelope, as specified in the object’s script.

float Converted to int.

set The word set, followed by an array index number and a value to be stored
at that index, sets the value of that array index and redraws the point,
without sending anything out the oußtlet.

embed The word embed, followed by any non-zero number, causes the contents of
the script file to be saved as part of the patch that contains the env
object—the next time the patch is saved—so that the env object no longer
needs to find the script file. The message embed 0 causes the env object to
forget the contents of the script file when the patch is closed. In either case,
the patch must be saved after the embed message has been received in order
for a change to take effect.

open Causes the window associated with the env object to become visible. The
window is also brought to the front. Double-clicking on the env object in a
locked patcher has the same effect.

wclose Closes the window associated with the env object.

The env object is a script-configurable user interface for function editing, oriented toward
the task of editing envelope data in synthesizer patch editors.

There are two flavors of this object— env displays and edits the envelope in its own
windows, while envi (pronounced “envy”) is a user interface object which allows an
envelope to be seen inside a patcher window. Unless otherwise noted, both objects will be
referred to generically in the documentation as the env object.

The env object is configured by a script—a text file—which defines the number of points
in an envelope and associates them with some number of data values. If the script is read
in successfully (i.e. it contains no syntax errors), the user should be able to change
displayed data points in the env window. The env object saves the name of the last script file
read and will try to locate it the next time its owning patch is loaded.

Script-configurable
envelope editors env/envi

155

Arguments

symbol The env object takes an optional argument which is a symbol that names a
script file to be read in which will define the behavior and appearance of
the envelope.

Since the envi object is a user interface object, it doesn’t have a typed-in
argument. However, in both the env and envi objects, the name of the last
script file read in is saved in the patcher file containing the object.

A new script file can be opened with the read message. And selecting the
envi object and choosing Get Info… from the Object menu puts up Open
Document dialog box for selecting a new script file to be read in.

Structure of an Envelope

The envelope is defined by a set of hierarchically arranged script messages. Both env and
envi use identical format for script files.

Each env object consists of a window (technically in envi, a box in a patcher window), a
number of groups, each of which contain points which are logically connected. Each point
contains horizontal and/or vertical aspects, and each aspect can contain one or more
display scales, which map internal data values to those displayed on the legend of the
envelope window.

Script Messages

The format of a script file consists of #E followed by a message keyword (such as group or
point), followed by that message’s arguments. See the Script Examples section below for
examples.

The window message

Defines parameters applying to the entire env object and its display.

symbol 1. Title of the envelope window (doesn’t apply to envi). To use spaces in the
title, use single “smart” quotes (option-right bracket and option-right
brace).

int 2. Horizontal size. Size of the window (or box, in the case of envi) in pixels.
For the window, the size will be actually be 15 pixels larger to
accommodate the scroll bars.

Script-configurable
envelope editors env/envi

156

int 3. Vertical size.

int 4. Number of groups. Each group will be defined in subsequent group
messages (see below).

int 5. Number of data values that define the envelope(s).

int 6. Left margin. Distance in pixels from left edge of the window (box)
where the envelope and text legend is drawn.

int 7. Bottom margin. Distance in pixels from bottom edge of the window
(box) where the envelope is drawn.

int 8. Top margin. Distance from the top of the window (box) where the
envelope is drawn. This should take into account the legend (which is 15
pixels), so a value of 20 or more pixels is suggested.

The group message

Defines a group of logically connected points, what would usually be thought of as an
“envelope”—but the env object allows an arbitrary number of groups in a single window.

int 1. Group number. Specifies the group (starting at 1) being defined.

symbol 2. Group name. Precedes the name of any specific parameter and value in
an envelope legend display. The word none can be used to indicate that no
group name is desired.

int 3. Number of points in this group. Each will be defined below with a point
message.

int 4. Visible. 1 if this group is initially visible, 0 if it isn’t.

int 5. Display flags. 1 if you only want the parameter names and values of a
point being dragged. 0 if you want all the parameter names and values
displayed when a point in the group is being dragged. Other display flags
may be defined later.

int 6. (Optional) Color. 1-15 as an index into the color palette and correspond
to the colors set in the Edit Colors... patch accessed via the Options menu.

Script-configurable
envelope editors env/envi

157

The point message

Defines the appearance of a “point” in an envelope.

int 1. Point number being defined. The first point in any group is number 1.

int 2. Button size (in pixels) of the round or square “button” centered at this
point.

int 3. Button flags. The rightmost bit (i.e. 0 or 1) is 0 if the button is to be
square and 1 if the button is to be round. Bit 1 (i.e. 0 or 2) is 1 if the
button is solid, 0 if it is transparent. Bits 2-6 (inclusive) specify an index
for a black and white pattern. Use ResEdit to examine the System File and
look at PAT# ID 1 for the indices of common black and white patterns.

int 4. Line-from point. If non-zero, specifies another point, which should
always be numbered less than this point, which is to be connected to this
point with a line. This connection is only a display property. Logical
dependencies between points are specified in the horiz and vert messages
below.

The horiz and vert messages

These messages define the two directional aspects of each point. Most of the “meat” of the
envelope specification is contained in these messages. If you wish to keep one of the
directions fixed, you need not define that direction for a particular point. The arguments
to horiz and vert are identical, except where noted.

symbol 1. Parameter name. The name (e.g. ‘Rate 1’) associated with moving the
point in this direction. none can be used if there is no parameter name
associated with this point.

int 2. Data index. The index into the array of data values (starting at 0)
corresponding to the value of this parameter. If there is no data associated
with this direction, use -1 (this will not be uncommon for one or more
directions of one or more points in an envelope). When a list containing
this data index and a value is sent to the env object, this point will move
accordingly.

Note that all data values are stored as integers. You can display a floating
point number in the legend for this parameter by defining a scale
expression or table (see the scale message below).

Script-configurable
envelope editors env/envi

158

int 3. Minimum value of this parameter.

int 4. Maximum value of this parameter.

int 5. Initial value of this parameter.

int 6. Increment of this parameter. Not currently supported, should be set to
1.

symbol 7. Unit name. The units of this parameter (e.g. ms for milliseconds or % for
percentage). none may be used if the units are not tied to any particular
units, such as the rate and level units on Yamaha synthesizers).

When two points are “tied together” in the horizontal or vertical direction
it means that changes in one point are linked to others. Ties are expressed
in terms of higher numbered points being tied to lower numbered ones.

There are two types of ties—absolute and relative. An absolute tie means
that a point changes its position on the screen to assume the exact value of
another point. A relative tie, which is very common for horizontal aspects,
means that the location of any point on the screen is based on a distance
from another point. The common envelope shown in the second Script
Example section below has point 2 with a relative horizontal tie to point 1,
point 3 with a relative horizontal tie to point 2 (and hence to point 1), and
point 4 with a relative horizontal tie to point 3. If point 1 is allowed to
move left and right (as for example if there were an initial delay for the
envelope, all the other points would move as well. None of the points are
vertically tied to each other, although in a DX7 envelope which has a non-
zero final level, it is customary to tie points, points 1 and 4 would be
absolutely vertically tied. You cannot tie the horizontal direction of one
point to the vertical direction of another.

int 8. Absolute tie point. Point number that this point is absolutely tied to
(must be less than this point number). This point will appear at the exact
same horizontal or vertical position as the point it is tied to. Use 0 if this
point is not tied.

int 9. Fixed. If this point is fixed at a particular position on the screen, use 1.
Otherwise use 0. This may be true for the horizontal or vertical direction of
the first (leftmost) point in an envelope.

int 10. Relative tie point. Point number that this point is relatively tied to
(must be less than this point number) in this direction. This point’s

Script-configurable
envelope editors env/envi

159

position will be an offset (depending on its value) from the position of the
point being tied to in the horizontal or vertical direction. Use 0 if this
point is not relatively tied to other points in this direction (commonly true
for the vertical direction).

int 11. Positive direction. Sets which direction the value of a point increases.
For the vertical direction, 0 indicates that the value increases as the cursor is
moved to the top of the screen, while 1 indicates that the value increases as
the mouse is moved to the bottom of the screen. For the horizontal
direction, 0 indicates that the value increases as the cursor is moved to the
right, while 1 indicates that the value increases as the cursor is moved to the
left.

int 12. Coverage size. Determines how many pixels the range of the parameter
is mapped into. For a garden variety envelope, you generally use most of
the entire vertical space for the vertical direction, so you would use a
formula like:

<window vertical size> - <legend height> - <top margin> - <bottom margin>

For the horizontal direction, the amount of space you use should be
determined by the number of points in the envelope, and how much
scrolling you want to require the user to do if the envelope is stretched to
its maximum width.

The scale message

Defines a conversion between the internal values (integers) used to store the data in an
envelope and their displayed values, which may be floating point numbers. When
envelope parameters represent physical quantities, manufacturers often use scale factors.
In the scale message, you can specify a mathematical expression to convert the internal
format to another integer or floating point number which is displayed in the legend.

A scale can be expression in the form of the arguments to the expr object, or it can be a list
of values (including symbols) to which the internal data values map.

Each direction can have an arbitrary number of scales, each of which is applicable over a
specified range. If there is no scale which applies to a data value, the legend will display the
internal data value. One use of a scale in this context might be if the lowest value of an
envelope signified “Off”—you could have a scale that mapped 0 to the word “Off” but left
the other values unchanged.

Script-configurable
envelope editors env/envi

160

int 1. Minimum. Lowest value for which this scale applies.

int 2. Maximum. Highest value for which this scale applies.

int 3. Floating-point digits. Number of digits after the decimal point used to
display floating-point numbers in the legend.

symbol 4. The word is or table. Determines whether what follows is interpreted as a
mathematical expression or a table of values used for mapping.

5. Additional data. For expressions: $i1 represents the internal data being
mapped to the legend. Examples:

is $i1 * .07; Multiplies the internal value by a scale factor

is $i1 - 1; Subtracts 1 from the internal value

is ($i1-1)*.07; Compound expression

is 100 - $i1; Inverting an internal value

For tables: a list of values which map successive values of the internal data
separated by spaces. The table can contain up to 240 elements. Use
additional scale messages for larger tables. Example:

table Off 10 20 30 40;

Here, the minimum value will be mapped to the word “Off”, next value to
10, next value to 20 etc.

Other Example scale messages:

#E scale 0 0 0 table Off; (Maps minimum value to the word “Off.”)

#E scale 1 10 2 is $i1 * .04; (Scales additional values by .04 and prints as
floating-point number with 2 decimal places.)

The phase message

This message specifies that the previously defined vert aspect of a point has a signed
component. Either the parameter of the envelope can be a negative number, or there is a
separate data value that represents the phase (0 for negative, 1 for positive). The phase
message must immediately follow the vert message it modifies.

Script-configurable
envelope editors env/envi

161

The comment message

This message begins a comment in the envelope script, which must be contained on a
single line and terminated with a semicolon.

The end message

This message is required at the end of an envelope script. It reconfigures the env object and
changes the display in its window or box if necessary. It has no arguments.

Script Examples

The following script defines an envelope which consists of 4 groups of individual points
which are used in an early reflection tap editor. The horizontal position of the point
determines a delay and the vertical position determines a percentage of the original signal
to repeat. A picture is shown after the script.

#E window ERFEnv 400 148 4 96 8 8 24;
#E group 1 EarlyReflection1 1 1 1;
#E point 1 8 1 0;
#E horiz time 0 1 500 1 1 ms 0 0 0 0 100;
#E vert level 1 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 2 EarlyReflection2 1 1 1;
#E point 1 8 1 0;
#E horiz time 2 1 500 1 1 ms 0 0 0 0 100;
#E vert level 3 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 3 EarlyReflection3 1 1 1;
#E point 1 8 1 0;
#E horiz time 4 1 500 1 1 ms 0 0 0 0 100;
#E vert level 5 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 4 EarlyReflection4 1 1 1;
#E point 1 8 1 0;
#E horiz time 6 1 500 1 1 ms 0 0 0 0 100;
#E vert level 7 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

Script-configurable
envelope editors env/envi

162

#E end;

Picture of object for Script Example #1

The following script defines a two groups with more traditional synthesizer amplitude
envelopes that have three points. The first point is fixed in the vertical direction but
moves horizontally. The other two points move in both directions, and all three points are
connected by a line. A picture is shown after the script.

#E window TestEnv 400 148 2 10 8 8 24;

#E group 1 Thing1 3 1 0;
#E point 1 8 0 0;
#E horiz Delay 0 0 99 0 1 ms 0 0 0 0 100;
#E vert none -1 0 99 0 0 none 1 0 0 0 100;
#E point 2 8 0 1;
#E horiz Rate1 1 0 99 50 1 ms 0 0 1 1 100;
#E vert Level1 2 0 99 50 1 ms 0 0 0 0 100;
#E point 3 8 0 2;
#E horiz Rate2 3 0 99 50 1 ms 0 0 2 1 100;
#E vert Level2 4 0 99 50 1 ms 0 0 0 0 100;

#E group 2 Thing2 3 1 0;
#E point 1 8 3 0;
#E horiz Delay 5 0 99 0 1 ms 0 0 0 0 100;
#E vert none -1 0 99 0 0 none 1 0 0 0 100;
#E point 2 8 3 1;
#E horiz Rate1 6 0 99 50 1 ms 0 0 1 1 100;
#E vert Level1 7 0 99 50 1 ms 0 0 0 0 100;
#E point 3 8 3 2;

Script-configurable
envelope editors env/envi

163

#E horiz Rate2 8 0 99 50 1 ms 0 0 2 1 100;
#E vert Level2 9 0 99 50 1 ms 0 0 0 0 100;
#E end;

Picture of Object for Script Example #2

Input Messages

Because it can have an arbitrary number of data values, the env object has only one inlet.
The envelope data is stored in an array. The script file specifies how array indices
correspond with horizontal and vertical aspects of the points in an envelope.

list A list received by env stores a new value in a data point. The first number in
the list specifies the location (array index), and the second number is the
data value to store at the location. The env object limits the range of its
input values, according to the minimum and maximum of each data point
specified in the script file.

The funnel object takes a number in one of its inlets and outputs a list with
the first element being the index of the inlet and the second element being
the incoming number. It was designed to be used to prepare the lists
required by the env object.

int If the number is between 0 and the maximum array index, env outputs a
list containing the index followed by the data value at the array index.

show The word show, followed by a group number, makes that group visible.
Followed by two numbers, makes a range of groups visible from the first to
the second number.

Script-configurable
envelope editors env/envi

164

hide The word hide, followed by a group number, makes that group invisible.
Followed by two numbers, makes a range of groups invisible from the first
to the second number.

open Opens the env object’s display window if its closed, or brings it to the front.
Doesn’t apply to the envi object.

read Puts up a standard Open Document dialog for the user to select a new
script file for configuring the object.

dump Outputs all the current data values of the envelope, as successive two
element lists. The first number is the data index and the second is the data
value.

Output

list When the mouse button is released or a number is received in its inlet, env
sends lists outs its outlet which consist of two numbers. The first is an array
index and the second is the new value at that index. Only newly modified
values are output. When env receives the dump message in its inlet, all data
values are sent out in this list format.

The spray object takes a list as input and sends the second element out the
outlet number specified by the first element. It was designed to distribute
the lists output by the env object to individual outlets for display by number
boxes.

Using an Envelope Window or Box

The envelope display has two areas separated by a horizontal line—the upper area of 15
pixels contains a legend of text in 9 point Geneva that indicates the names and values of
the points the user is currently changing. The lower area contains the actual groups of
points which may or may not be connected by lines.

The use of the env object’s window (or the envi object’s box) is simple—just click on one of
the visible points. With no modifier keys held down, data values are incremented by a
pixel’s worth of movement. How much this amounts to is determined by the ratio of each
direction’s Coverage size argument to its parameter range (difference between maximum
and minimum values). For example, in the first example script above, there are 1024 data
points and a Coverage size of 100, so moving the cursor one pixel changes the value by
1024/100, or about 10.

Script-configurable
envelope editors env/envi

165

With the Shift key down, movement of a point being dragged is constrained to the
direction the cursor moves in first. Releasing the Shift key at any time removes the
constraint.

With the Command key on Macintosh or Control key on Windows held down, mouse
movement is in “fine mode”—no matter what the ratio of parameter range to Coverage
size, the parameter data is changed by 1 with each pixel you move the mouse.

Fine mode can be entered or left instantaneously by pressing or releasing the Command
key on Macintosh or Control key on Windows while dragging the mouse.

See Also

bline Event-driven, multi-segment line object
envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
funnel Tag data with a number that identifies its inlet
line Output numbers in a ramp from one value to another
multislider Multiple slider and scrolling display
spray Distribute an integer to a numbered outlet

Max window errors
as messages error

166

Input

int The error object allows you to catch errors and output them as Max
messages. A non-zero number starts the error object “listening” for Max
errors. The error object must be listening to produce any output. A 0 turns
off listening.

float Converted to int.

Arguments

None.

Output

symbol Any Max error generated by any object in any patch while the error object
is listening is sent out the outlet preceded by the symbol error. The messages
are output as individual words so you can check for specific failures.

If you want to strip off the initial error message from the object’s output,
use a route error object. If you want to use the error object’s output as a
message, put a prepend read object between route error and the object that will
process the error message.

Examples

Intercept error messages

See Also

print Print any message in the Max window

Evaluate a
mathematical expression expr

167

Input

int The number received in each inlet will be stored in place of the $i or $f
argument associated with it. (Example: The number in the second inlet
from the left will be stored in place of the $i2 and $f2 arguments, wherever
they appear.)

float The number in each inlet will be stored in place of the $f or $i argument
associated with it. The number will be truncated by a $i argument.

symbol The word symbol, followed by the name of a table, will be stored in place of
the $s argument associated with that inlet, for accessing values stored in the
table.

bang In left inlet: Evaluates the expression using the values currently stored.

list In left inlet: The items of the list are treated as if each had come in a
different inlet, and the expression is evaluated. If the list contains fewer
items than there are inlets, the most recently received value in each
remaining inlet is used.

Any of the above messages in the left inlet will evaluate the expression and
send out the result. If a value has never been received for each changeable
argument, that value is considered 0 when the expression is evaluated.

The number of inlets is determined by how many changeable arguments
are typed in. The maximum number of inlets is 9.

set In left inlet: The word set, followed by one or more numbers, treats those
numbers as if each had come in a different inlet, replacing the stored value
with the new value, but the expression is not evaluated and nothing is sent
out the outlet. If there are fewer numbers in the message than there are inlets,
the stored value in each remaining inlet stays unchanged.

Arguments

Obligatory. The argument is a mathematical expression, in a format
resembling the C programming language. The expression is made up of
numbers, arithmetic operators such as + or *, comparisons such as < or >,
C functions such as min() or pow(), names of table objects, and changeable
arguments ($i, $f, and $s) for ints, floats, and symbols received in the inlets.

int or float Numbers can be used as constants in the mathematical expression.

Evaluate a
mathematical expression expr

168

$i or $f A changeable int argument is specified by $i or $f and an inlet number
(example: $i2). The argument will be replaced by numbers received in the
specified inlet.

$s The argument $s and an inlet number is replaced by the name of a table to be
accessed. The argument should be immediately followed by a number in
brackets specifying an address in the table. (Examples: $s2[7] or $s3[$i1].)

(other) Arithmetic operators understood by expr are: +, -, *, /, %. Other operators are
~ (one’s complement), ^ (bitwise exclusive or), &, &&, |, ||, and ! (not).

Many C language math functions can be understood by expr. A function
must be followed immediately by parentheses containing any arguments
necessary to the function. If the function requires a comma between
arguments, the comma must be preceded by a backslash (\) so that Max will
not be confused by it. For example: pow($i1\,2).

C language functions understood by expr are: abs, min, max, sin, cos, tan,
asin, acos, atan, atan2, sinh, cosh, tanh, int (convert to integer), float (convert
to float), pow, sqrt, fact (factorial), exp (power of e to x), log10 (log), ln or
log (natural log), and random. Additional functions can be added by means
of external code resources placed in Max’s startup folder.

Output

int or float The output is the result of the evaluated expression.

Examples

Combine many calculations into one object, even using functions not available in other
objects

See Also

if Conditional statement in if/then/else form
vexpr Evaluate a math expression for a list of different inputs
Tutorial 38 expr and if

Evaluate a
mathematical expression expr

169

Tutorial 48 Basic JavaScript
Tutorial 49 Scripting and Custom Methods in JavaScript
Tutorial 50 Tasks, Arguments and Global Objects in JavaScript

Report the modification
date of a file filedate

170

Input

symbol A file pathname as a symbol. An absolute pathname looks like this:

’MyDisk:/Max Folder/extras/filename’

Arguments

None.

Output

list Sends the date that the file was last changed as a list (month, day, year,
hours, minutes and seconds).

Examples

filedate displays how recently a file has been changed

See Also

date Report current date and time
filein Read in a file of binary data
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder

Read in a file
of binary data filein

171

Input

int Specifies a byte offset in a binary file, and outputs the data stored at that
point in the file.

In left inlet: The byte contained at that offset in the file is sent out the left
outlet.

In middle inlet: The 16-bit word contained at that byte offset in the file is
sent out the left outlet as an unsigned (short) integer.

In right inlet: The 32-bit word contained at that byte offset within the file
is sent out the left outlet as an unsigned (long) integer.

list In left inlet: The second number in the list is received in the middle inlet,
then the third number in the list (if present) is received in the right inlet,
and then the first number in the list is received in the left inlet. Output is
sent out the left outlet in the corresponding order.

read Displays a standard file dialog to select a file to be read into memory. If the
word read is followed by a filename found in Max’s search path, that file
will be automatically read into memory.

spool Displays a standard file dialog to select a file, which will be accessed from
disk whenever an int is received. If the word spool is followed by a filename
found in Max’s search path, that file will be automatically pointed to for
future access. This method of accessing a file occupies less RAM, but does
not output data immediately at interrupt level in response to an int
message.

fclose Closes the file being read, making filein no longer respond to int or list
messages.

Arguments

symbol Optional. Specifies a filename to be read into the filein object automatically
when the patch is loaded. If the filename is followed by a second argument,
spool, the file will be accessed from disk rather than read into memory.

Read in a file
of binary data filein

172

Output

int Out left outlet: An unsigned integer representing the 8, 16, or 32 bits
stored in the file at the location specified by the input int.

bang Out middle outlet: When a number greater than or equal to the number of
bytes in the file is received in an inlet, a bang is sent out signifying that the
end of the file (EOF) has been reached.

Out right outlet: Signifies that a read or spool operation has been completed.
This bang indicates that the file has been accessed successfully and that filein
is ready to receive int messages.

Examples

Retrieve data from any binary file

Read in a file
of binary data filein

173

Output the content of a file in 8-, 16-, or 32-bit chunks

See Also

text Format messages as a text file

Report information about
the current Max search path filepath

174

Input

any symbol The pathname of a file in the search path as a symbol. Input pathnames
can contain slashes, colons, or backslashes as separators.

A pathname looks like this:

“drive:/folder/filename.ext” (absolute pathname)
“./mypatches/steaksauce.ext” (relative pathname)

bang A bang causes the currently saved path name(s) to be output as a list.

append The word append, followed by a symbol which specifies a folder, adds the
folder to the list of paths (but does not save it in the Preferences file).

set The word set, followed by the name of a Max search path type (search, startup,
help, action, or default), sets the current search path to the type specified.

revert Causes the pathnames to be reset to the last set of Max file preferences to
be saved.

clear Causes the currently specified search path to be cleared.

Arguments

symbol Obligatory. Specifies one of the Max search path types (search, startup, help,
action, or default)

int Optional. A number greater than zero specifies a slot in the Preferences
file. If the argument is 0 or no number is supplied, the path will not be
saved in the Preferences file—you can use this feature to create temporary
search paths for a patch. The action, help, and startup paths only have one
slot. The search path can have up to 256 slots (normally there are about 8).
The default path is never saved in the Preferences file.

Output

symbol The currently stored path name in response to a bang.

Report information about
the current Max search path filepath

175

Examples

Use filepath to check your search path or temporarily set search path slots for a patch

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
filedate Report the modification date of a file
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder

Notify Max of a file change filewatch

176

Input

symbol A file name or path as a symbol. The filewatch object will be notified by the
operating system of any changes to the file.

int Turns on the filewatch object. Sending a 1 causes the filewatch object to begin
watching the file for changes. Sending a 0 causes the object to ignore
changes to the file.

Arguments

symbol Optional. An optional symbol argument specifies the file name to watch.

Output

bang When the filewatch object is active, any change to the specified file will
cause filewatch to output a bang.

Examples

Max will be notified of any changes in a file

See Also

absolutepath Convert a file name to an absolute path

Notify Max of a file change filewatch

177

opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving

Store a
decimal number float / f

178

Input

float In left inlet: The number replaces the currently stored value and is sent out
the outlet.

In right inlet: The number replaces the stored value without triggering
output.

bang In left inlet: Sends the stored value out the outlet.

set In left inlet: The word set, followed by a number, replaces the stored value
without triggering output.

send In left inlet: The word send, followed by a name of a receive object, sends the
number stored in the float object to all receive objects with that name,
without sending it out the float object’s outlet.

int Converted to float.

Arguments

float Optional. Sets an initial value to be stored in float. If there is no argument,
the initial value is 0.0. A float argument by itself, without the word float, is
another way of creating and initializing a float object.

Output

float A number is stored in float as a single-precision floating point number. The
precision possible in the decimal portion of the number decreases as the
integer part increases. Note: Because of the way decimal numbers are
stored, a float value saved in a patcher file might be slightly altered when
the file is reopened.

Store a
decimal number float / f

179

Examples

Output the stored value Replace stored value and output
it

Initial value is given

See Also

int Store an integer value
pv Share variables specific to a patch and its subpatches
value Share a stored message with other objects
Tutorial 21 Storing numbers
Data Structures Ways of storing data in Max

Provide note-offs
for held notes flush

180

Input

int In left inlet: The number is treated as the pitch value of a pitch-velocity
pair and the note is sent out.

In right inlet: The number is stored as the velocity to be paired with
numbers received in the left inlet.

list In left inlet: The numbers must be ints. The first number is treated as the
pitch, and the second number is treated as the velocity, of a pitch-velocity
pair, and the numbers are sent out the outlets.

bang In left inlet: Immediately sends note-offs for any pitches that have passed
through as note-ons but not as note-offs by sending 0 out its right outlet
followed by a pitch value out its left outlet.

clear In left inlet: Erases any numbers held by flush, without sending any note-
offs.

Arguments

None.

Output

int Out left outlet: The output is the pitch of the note-on or note-off.

Out right outlet: The number is the velocity of the note-on or note-off.

The flush object keeps track of the notes that have passed through it. When
a bang is received in the inlet, note-off messages are provided for any
notes that have passed through as note-ons only.

Provide note-offs
for held notes flush

181

Examples

Make sure all notes are turned off by providing note-offs for held notes

See Also

bag Store a collection of numbers
borax Report current information about note-ons and note-offs
makenote Generate a note-off message following each note-on
midiflush Send note-offs for hanging note-ons in raw MIDI data
offer Store x,y pairs of numbers temporarily
stripnote Filter out note-off messages, pass only note-on messages
sustain Hold note-off messages, output them on command
Tutorial 13 Managing note data

List the files
in a specific folder folder

182

Input

bang Gets the names of all files of a specific type within a specific folder, and
outputs those names to be placed in a message object or a pop-up umenu
object.

symbol Specifies the pathname of a folder in the search path, and causes the
contents of that folder to be output for storage in a umenu or a message.
Input pathnames can contain slashes, colons, or backslashes as separators.

A pathname looks like this:

“drive:/folder/filename.ext” (absolute pathname)
“./mypatches/steaksauce.ext” (relative pathname)

If the pathname contains any spaces, you will need to enclose the
pathname in double quotes in order to cause folder to understand the
pathname as a single argument. Alternatively, you can precede each space
with a backslash (\) so that folder won’t treat that space as a special character.

types The word types, followed by one or more four-letter type codes, sets the file
types that the folder object will look for in the specified folder. Example
four-letter type codes for files are TEXT for text files, maxb for Max binary
format patcher files, and AIFF for AIFF format audio files.

By default, the folder object looks for TEXT and maxb (Max binary) files.

int Same as bang.

Arguments

symbol Optional. Specifies the absolute path to a folder on any mounted volume.

Output

clear Out left outlet: When a pathname or a bang is received in the inlet, the
first message that is sent out the left outlet is clear, which is intended to
erase the contents of a receiving message or umenu object.

append Out left outlet: Immediately following the clear message, each filename in
the specified folder is sent out in alphabetical order preceded by the word
append.

List the files
in a specific folder folder

183

int Out right outlet: When a pathname or a bang is received in the inlet, the
number of items in the folder is sent out the right outlet.

Examples

Read in filenames from a folder, then call them up from a pop-up menu

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
filein Read in a file of binary data
filepath Report information about the current search path
opendialog Open a dialog to ask for a file or folder
pcontrol Open and close subwindows within a patcher

Compare a live performance
to a recorded performance follow

184

Input

record Starts recording integers received in the inlet.

bang Starts playing back the sequence stored in follow.

start The word start by itself has the same effect as bang. The word start, followed
by a number, plays the stored sequence at a tempo determined by the
number. The message start 1024 indicates normal tempo. If the number is
512, follow plays the sequence at half the original recorded speed, start 2048
plays it back at twice the original speed, and so on.

follow The follow message is the main feature that distinguishes follow from seq. In
effect, follow is like a score reader, comparing a live performance with the
one previously stored.

The word follow, and a number, causes follow to begin comparing incoming
numbers to its own stored numbers, beginning at the specified index (the
specified event in its own stored sequence). When follow is following, and a
number is received that matches the number recorded in follow, it sends out
the index of that number.

The follow object is a forgiving score reader, and will try to follow along
even if the incoming numbers do not exactly match the recorded
sequence. If a number arrives that does not match the next number, or
either of the two subsequent numbers in the sequence, follow does nothing.
If a number arrives that matches a number up to two notes ahead in the
sequence, follow assumes that the performer simply missed a note or two,
and jumps ahead to the matched number.

stop Stops follow from recording, playing, or following. A stop message need not
be received before switching directly from recording to playing, following
to recording, etc.

next Causes follow to send out the index and the stored number it is currently
trying to match, and move on to the next number.

append Starts recording at the end of the stored sequence, without erasing the
existing sequence.

int When follow is recording, the numbers received in its inlet are recorded as a
sequence. The numbers may be bytes of MIDI messages (from midiformat or

Compare a live performance
to a recorded performance follow

185

midiin), exactly as with the seq object. However, follow differs from seq in its
ability to record individual integers; with follow you can record notes as a
single pitch value. Whether the performance is recorded as complete MIDI
messages or just as note-on pitches, follow can effectively step through the
note-on pitch numbers later, when following a performance.

When follow is following, numbers received in its inlet are compared to the
numbers recorded in the sequence. When a number is received that
matches the number in the sequence, follow sends out the index of that
number.

float Converted to int.

delay The word delay, followed by a number, sets the onset time, in milliseconds,
of the first event in the recorded sequence.

hook The word hook, followed by a float, multiplies all the event times in the
stored sequence by that number. For example, if the number is 2.0, all
event times will be doubled, and the sequence will play back twice as
slowly. Multiplications can even be performed while the sequence is
playing.

write Opens a standard Save As dialog box to save the follow sequence as a file.

read The word read with no arguments puts up a standard Open Document
dialog box for choosing a sequence file to load into follow. If read is followed
by a symbol filename argument, the named file is located and loaded into
follow.

print Prints the first few events of the recorded sequence in the Max window.

dump Calls up the standard Open Document dialog box, so that a previously
recorded sequence or standard MIDI file can be opened as text and
displayed in a new Untitled text window. This in fact has no direct effect
on the follow object, but does allow you to view or edit a sequence, save
your changes in a file, then load the new file into follow with a read message.

Arguments

any symbol Optional. The argument is the name of a file containing a previously
recorded sequence, to be read into follow automatically when the patch is
loaded.

Compare a live performance
to a recorded performance follow

186

Output

int Out left outlet: When follow is following, and the number received in the
inlet matches the next number in the stored sequence (or one of the two
numbers after that), the index of the matched number is sent out. The
index of the next number is also sent out when a next message is received.

Out right outlet: When follow receives a bang or a start message, the recorded
numbers are played back. When follow is following, and a next message is
received, the next number in the recorded sequence is sent out.

Examples

A note that matches the recorded note can trigger a
process, or the notes can be stepped through

See Also

seq Sequencer for recording and playing MIDI
detonate Graphic score of note events
Tutorial 35 seq and follow
Sequencing Recording and playing back MIDI performances

List
system fonts fontlist

187

Input

bang Sends the names of all currently installed fonts (and, optionally, their ID

numbers) out the fontlist object's outlet as a series of messages. The

messages are formatted for use by the umenu or ubumenu menu display

objects. The list begins with a single line containing the message clear,
followed by single line messages in the form append font-name fontID-

number. The font ID number is not displayed unless the mode flag is set.

filter The word filter, followed by a list of font types, specifies which types of
fonts the fontlist object should report (default = truetype postscript bitmap).
Multiple selectors may be listed. If the none selector is used, all other filters
will be ignored. Possible font types are:

truetype TrueType fonts
postscript Laserwriter and Postscript Type 1 fonts
bitmap bitmap fonts (no TrueType or Postscript version available)
other unclassified fonts (special system fonts, in most cases)
opentype Open Type fonts (OSX only)
none no filtering

mode The word mode, followed by a 0 or 1, toggles the Font ID flag. When the
flag is set, the name of each installed font is followed by its system
identification numbers when reported.

Arguments

symbol Optional. Font types (see above) may be used as arguments to specify font
types the fontlist object will recognize.

Output

list The fontlist object generates a list of installed fonts and, optionally, their

system identification numbers.

List
system fonts fontlist

188

Examples

See Also

ubumenu Non-interrupting pop-up menu
umenu Pop-up menu to display and send commands

Send remote messages
to a variety of objects forward

189

Input

anything Sends any message to all receive objects which share the name currently
referred to by forward.

send The word send, followed by the name of a receive object, sets the destination
for any subsequent messages received by the forward object. This ability to
change the destination of messages on the fly distinguishes forward from the
send object.

Arguments

any symbol Optional. Sets the name for the receive object which will receive messages.
This name can later be changed with the send message.

Output

anything There are no outlets. A message (other than send) received in the inlet of
forward is sent out the outlet of each receive object of the same name, even if
the receive is in another patch.

Examples

Using forward to send
messages to multiple objects

at once

The same thing, with two send
objects

The message box can perform
the same function

See Also

message Send any message
receive Receive messages without patch cords

Send remote messages
to a variety of objects forward

190

route Selectively pass the input out a specific outlet
send Send messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive

Display a picture
from a graphics file fpic

191

Note: The fpic object requires that QuickTime be installed on your system to open any
files other than PICT files. If you are using Max on Windows, we recommend that you
install QuickTime and choose a complete install of all optional components.

Input

(mouse) In an unlocked patcher, you can change the offset of the picture by
holding down the Shift and Command keys on Macintosh or Shift and
Control keys on Windows and dragging on fpic; the current offset of the
picture is shown in the Assistance portion of the patcher window as you
drag.

autoerase The word autoerase, followed by a nonzero number, causes the picture to
erase after a new picture is loaded. This mode is disabled by default (autoerase
0).

autofit The word autofit, followed by a nonzero number, scales the graphic to fit in
the bounding rectangle of the fpic object.

erase The word erase will erase the current picture and then redraw it.

link The word link, followed by symbol which specifies a filename, it will check
to see if the graphic has already been loaded by another fpic object. If the
object has already been loaded into RAM, the fpic object will reference the
image loaded earlier, conserving memory resources.

matrix The word matrix, followed by nine floating point numbers, reloads the
current file into RAM after performing a transformation matrix operation
on the image. This transformation is the same one used for the mapping in
QuickTime of points from one coordinate space (i.e, the original image)
into another coordinate space (a scaled, rotated, or translated version of the
original image).

The transform matrix operation consists of nine matrix elements

a b u

c d v

t_x t_y w

Display a picture
from a graphics file fpic

192

if u and v are 0., and w is 1., we have the following translation formula.

x’ = a*x + c*y + t_x;

y’ = b*x + d*y + t_y

The following formulas are used for scaling/rotation:

a=xscale*cos(θ)

b=yscale*sin(θ)

c=xscale*(-sin(θ))

d=yscale*cos(θ)

For more on the transformation matrix, consult the Apple QuickTime
Developer documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/iqMovieToolbox.
c.htm#18006

noscale The word noscale disables image scaling.

offset The word offset, followed by two numbers, specifies the number of pixels by
which the left upper corner of the picture is to be offset horizontally and
vertically from the left upper corner of the fpic box. By default the left
upper corner of the picture is located at the left upper corner of fpic (that is,
with an offset of 0,0). With successive slightly different offset messages, a
picture can be moved inside fpic, and fpic can window different portions of
a large picture. (In order to give the appearance of smooth transitions
when moving an image, the old image is not erased when using the offset
message. This may cause an undesired appearance if your picture contains a
blank background that doesn’t cover up what’s beneath it.)

pict The word pict, followed by the name of a graphics file in Max’s search path,
opens the file and displays the picture, replacing whatever picture was
previously displayed. The fpic object accepts PICT files and, if QuickTime
Version 3.0 or later is installed, other picture file formats that are listed in
the QuickTime appendix.

read The word read, followed by a symbol which specifies a filename, looks for a
QuickTime graphic file with that name in Max’s file search path, and opens

Display a picture
from a graphics file fpic

193

it if it exists, displaying it in a graphic window. If the filename contains
any spaces or special characters, the name should be enclosed in double
quotes or each special character should be preceded by a backslash (\). The
word read by itself puts up a standard Open Document dialog box and
displays the common graphics files supported by QuickTime.

readany The word readany, followed by a symbol which specifies a filename,
functions in the same manner as the read message, except that the Open
Document dialog box does not filter its display by the currently supported
filetypes.

rect The word rect, followed by four numbers that specify the size of scaling
rectangle to apply to fit the input image within, loads the graphics file
from disc into RAM and displays it. The first two numbers specify the
placement in the graphic window as offset values, and the second two
numbers specify the width and height, in pixels, of the rectangle.

scalemode The word scalemode, followed by number in the range 0-3, sets the scaling
mode used by the fpic object.

If the fpic object is set to scaling mode 0, no scaling is performed; the image
is displayed as read into memory.

If the fpic object is set to scaling mode 1, scaling is performed using the
QuickTime transformation matrix (see the matrix message for more
information); the image will be scaled and rotated according to the current
or default settings of the transformation matrix. The matrix variables can
be changed using the fpic object’s Inspector or by using the matrix message.

If the fpic object is set to scaling mode 2, rectangular scaling is performed
(see the rect message for more information). The image will be loaded and
displayed according to the current or default settings of the rect message.

If the fpic object is set to scaling mode 3, the image is autosized; the fpic
object scales the graphic to fit in the window currently displayed.

storage The word storage, followed by two numbers which specify horizontal and
vertical distances in pixels, will load only a portion of the graphic image
into RAM, which can be used to conserve memory resources.

Note: if either of the arguments are 0, fpic will not limit its storage.

Display a picture
from a graphics file fpic

194

time The word time, followed by a number which specifies a time in QuickTime
time units, loads an individual frame from a QuickTime movie and
displays it. Typically, QuickTime movies display at a rate of 600
units/second. The default is 0 (i.e., frame one).

Inspector

The behavior of a fpic object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any fpic object
displays the fpic Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The fpic Inspector lets you set the following attributes:

Picture Offset specifies the number of pixels by which the left upper corner
of the picture is to be offset horizontally and vertically from the left upper
corner of the fpic box. By default the left upper corner of the picture is
located at the left upper corner of fpic (that is, with an offset of 0,0). This
offset can be changed by entering new pixel values into the number boxes.
The default is no offset (i.e. 0 horizontal, 0 vertical).

Time Offset mode allows you to specify a frame offset in QuickTime time
units and load an individual frame of a movie as a graphic. The default is 0
(i.e., frame one).

The Scaling Mode pop-up menu can be used to select the type of scaling
used by the fpic object. There are four scaling modes available: The None
option (the default) performs no image scaling. Choosing the Matrix
option will open a patcher window and let you input matrix values for
image scaling and rotation. If you have not previously specified matrix
values, the defaults will be used. The Rectangular option also brings up a
patcher window which lets you specify the position of the rectangle within
the graphic window, in relative coordinates, and the width and height, in
pixels, of the rectangle (the default values are all set to 0). The Auto-Fit
option will automatically scale the image to fit the display area.

Internal Storage can be used to conserve RAM by only loading a portion
of the graphic file into RAM. The area is specified by horizontal and
vertical pixel values. Note: if either value is entered as 0, fpic will not limit
its storage.

Display a picture
from a graphics file fpic

195

The Picture File option lets you choose a picture file for the fpic object to
display by clicking on the Open button. The current file’s name appears in
the text box to the left of the button. You can also choose a file by typing
its name in this box, or by dragging a file icon from the Finder into this
box.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

(Get Info…) After placing an fpic object in a patcher window, while it is still selected,
choose the Get Info… command from the Object menu. This brings up
the Inspector window for the fpic object, where you can choose a graphics
file to display inside the fpic object’s box. The picture appears at 100% size,
and the fpic object’s box may then be resized manually to accommodate it.
The lower right part of the picture will be cropped by an fpic box which is
smaller than the size of the picture.

The fpic object is simply for displaying pictures in patcher windows. The
same visual effect can be achieved by choosing the Paste Picture command
from the Edit menu, but that includes the picture in the patcher file, often
making the file slow to save and load. Instead, fpic just references the
graphics file on disk. Another advantage of using the fpic object is that it
may reduce disk space and memory usage, since the same picture file may
be referenced in many patcher windows, rather than being saved in each
one. The external graphics file must be in Max’s search path, however, in
order to be automatically displayed the next time the patch is opened.

Output

None.

Display a picture
from a graphics file fpic

196

Examples

Place a picture in a patch (for the sheer
beauty of it)...

...or make it functional by placing ubutton
objects over it.

Make a slide show by changing pictures, or move a picture by changing its offset

See Also

imovie Play a QuickTime movie in a patcher window
lcd Draw graphics in a patcher window
matrixcrtrl Matrix-style switch control
panel Colored background area
pictctrl Picture-based control
pictslider Picture-based slider
ubutton Transparent button, sends a bang
Menus Explanation of commands

Draw a framed rectangle
in a graphic window frame

197

Input

bang In left inlet: Draws a framed rectangle using the current screen
coordinates, drawing mode, and color.

int In left inlet: Sets the left screen coordinate of the rectangle and draws the
shape.

In 2nd inlet: Sets the top screen coordinate of the rectangle.

In 3rd inlet: Sets the right screen coordinate of the rectangle.

In 4th inlet: Sets the bottom screen coordinate of the rectangle.

In 5th inlet: Sets the drawing mode of the rectangle.The following are
drawing mode constants; not all modes will be available on all operating
systems.

Copy 0 blend 32
Or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the frame according to
the graphics window’s current palette. When the monitor is in black and
white mode, any nonzero index is black, and 0 is white.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the RGB values for the color of the frame the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a
frame object’s sprite priority in its graphics window. Objects with lower
priority will draw behind those with a higher priority.

Arguments

any symbol Obligatory. The first argument to frame must be the name of a graphics
window into which the rectangle will be drawn. The window need not exist

Draw a framed rectangle
in a graphic window frame

198

at the time the frame object is created, but the rectangle will not be drawn
until the name matches that of an existing and visible window.

int Optional. Sets the initial sprite priority of the frame. If no priority is
specified, the default is 3.

 Output

(visual) When the frame object’s associated graphics window is visible, and a bang
message or number is received in its left inlet, a shape is drawn in the
window, and the object’s previously drawn rectangle (if any) is erased.

Examples

See examples under oval or rect. frame can be directly substituted for oval, rect,
or ring.

See Also

graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects

Transform a symbol into
individual numbers/messages fromsymbol

199

Input

symbol The fromsymbol object accepts a symbol for input, and outputs a list of
numbers or messages correspond to the “contents” of the symbol. The
fromsymbol object is useful for parsing a text symbol composed of numbers,
(e.g., “3.5 5 6.5 20”) or dividing a symbol up into individual messages.

Arguments

None.

Output

messages, lists, A list of numbers or messages which correspond to parsed contents of the
or numbers original symbol.

Examples

See Also

sprintf Format a message of words and numbers
tosymbol Convert messages, numbers, or lists to a single symbol
zl Multi-purpose list processor

Reverse the sequential order
of two floating-point numbers fswap

200

Input

float In left inlet: The number is sent out the right outlet, then the number in
the right inlet is sent out the left outlet.

In right inlet: The number is stored to be sent out the left outlet when a
number is received in the left inlet.

int If there is a float argument, the numbers are converted to float. If there is
an int argument or no argument, the number received in the right inlet is
stored as an int.

list In left inlet: The numbers are stored in fswap. The first number is sent out
the right outlet, then the second number is sent out the left outlet.

bang In left inlet: Swaps and sends out the numbers currently stored in fswap.

Arguments

int or float Optional. Sets an initial value for the number which is to be sent out the
left outlet. If there is no argument, the initial value is 0. If there is an int
argument or no argument, an int is sent out the left outlet. (The number
sent out the right outlet is always a float.)

Output

int When a number is received in the left inlet, the number in each inlet is
sent out the opposite outlet. If there is an int argument or no argument,
an int is sent out the left outlet.

float The number sent out the right outlet is always a float. The number sent out
the left outlet is a float only if there is a float argument.

Reverse the sequential order
of two floating-point numbers fswap

201

Examples

Numbers are sent out in reverse order from the order in which they were received

See Also

pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
unpack Break a list up into individual messages

Convert frequency
to a MIDI note number ftom

202

Input

float or int A frequency value. The corresponding MIDI pitch value (from 0 to 127) is
sent out the outlet.

Arguments

float Optional. If a float value is present, the ftom object outputs floating-point
values. By default, it outputs int values.

Output

int or float The MIDI note value that corresponds to the input frequency. When an
input frequency falls between two equal tempered pitches, the value is
rounded to the nearest int when ftom is used in its default int mode. When
ftom is used in the optional float mode, the fractional part of the float is
included. The fractional part could be used to calculate an additional pitch
offset for applying MIDI pitch bend.

Examples

Find the MIDI key number to play the same pitch as an MSP oscillator

See Also

expr Evaluate a mathematical expression
mtof Convert a MIDI note number to frequency

Store x,y pairs
of numbers together funbuff

203

Input

list In left inlet: x and y values for a data pair stored in funbuff. If the x value is
the same as an x value already stored in funbuff, the previously stored pair is
replaced by the new pair.

int In left inlet: The number is the x value of an x,y pair. If a y value has been
received in the right inlet, the two numbers are stored together in funbuff.
Otherwise, the x value causes the corresponding y value stored in funbuff to
be sent out the left outlet.

If there is no stored x value which matches the number received, funbuff
uses the closest x value which is less than the number received, and sends
out the corresponding y value.

In right inlet: The number is a y value which will be paired with the next x
value received in the left inlet, and stored in funbuff.

bang In left inlet: Prints information in the Max window concerning the
current status of funbuff’s contents: how many elements it contains, the
minimum and maximum x and y values it contains, and its domain and
range (the maximum minus the minimum, for the x and y axes
respectively).

float In either inlet: Converted to int.

clear Erases the contents of funbuff.

copy Copies the current selection (made by using the select message) into the
global funbuff clipboard. The data stored on this clipboard can then be
pasted into another funbuff object using the paste message.

cut Copies the current selection (made by using the select message) into the
global funbuff clipboard and deletes it from the funbuff object. The data
stored on this clipboard can then be pasted into another funbuff object using
the paste message.

delete In left inlet: The word delete, followed by two numbers, looks for such an
x,y pair in funbuff, and deletes it if it exists. If delete is followed by only one
number, only the x value is sought, and deleted if it is present.

Store x,y pairs
of numbers together funbuff

204

dump In left inlet: Sends all the stored pairs out the middle and left outlets in
immediate succession. The y values are sent out the middle outlet, and the
x values are sent out the left outlet, in alternation. The pairs are sent out in
ascending order based on the x value.

embed The word embed, followed by a non-zero number, causes the funbuff data to
be stored inside the patcher. The default setting is not to store the funbuff
data inside the patcher.

find The word find, followed by a number, will output (out the left outlet) all x
values (indexes) whose y value is equal to the number indicated.

goto The word goto, followed by a number, sets a pointer to the x value (index)
specified by the number. A subsequent next message will return the y value
at the specified x.

interp In left inlet: The word interp, followed by a number, uses that number as an
x value, measures its position between its two neighboring x values in the
funbuff, and then sends—out the left outlet—the y value that holds a
corresponding position between the two neighboring y values. If the
received number is already the x value in a stored x,y pair, the
corresponding y value is sent out. If the received number exceeds the
minimum or maximum x values stored in funbuff, the y value that’s
associated with the minimum or maximum x value is sent out. If the funbuff
is empty, 0 is sent out.

interptab In left inlet: The word interptab, followed by a number and the name of a
named table object functions similarly to the interp message (mentioned
above), except that it uses the data in the table as an interpolating
function. This allows you to easily perform non-linear interpolation
between consecutive values in a funbuff.

max Sends the maximum y value currently stored in the funbuff out the left
outlet.

min Sends the minimum y value currently stored in the funbuff out the left
outlet.

next Finds the x value pointed to by the pointer (or, if the pointer points to a
number not yet stored as an x value, to the next greater x value), and
sends the corresponding y value out the left outlet. Also, funbuff calculates
the difference between that x value and the value previously pointed to by

Store x,y pairs
of numbers together funbuff

205

the pointer, sends the difference out the middle outlet, and resets the goto
pointer to the next greater x value.

paste The word paste will copy the contents of the global funbuff clipboard into a
funbuff object. The contents of the clipboard are set using the select, copy and
cut messages. These messages provide a handy way of copying data between
different funbuff objects in any open patchers.

read Calls up the Open Document dialog box so that a file of x,y values can be
read into funbuff. If the word read is followed by a symbol, Max looks for a
file with that name (in the file search path) to load directly into the funbuff.
The funbuff file format is described on the next page.

select In left inlet: The word select, followed by an two integers representing a
starting index and a range will select a region of the funbuff which can be
edited using the cut, copy and paste messages. For example select 2 3 will select
the part of a funbuff from index 2 through index 5.

set In left inlet: The word set, followed by one or more space-separated pairs of
numbers, stores each pair as x,y pair.

undo The undo message is used to undo the results of the previous cut or paste
message.

write Calls up the standard Save As dialog box, so that the contents of funbuff can
be saved as a separate file. If the word write is followed by a symbol, the
contents of the funbuff are saved immediately in a file, using the symbol as
the filename.

Arguments

any symbol Optional. The argument specifies the name of a file to be read into funbuff
when the patch is loaded. Changes to the contents of one funbuff will not
affect the contents of another funbuff object with the same name.

A file for funbuff can also be created using a text editor window, beginning
the text with the word funbuff, followed by a list of space-separated numbers
which specify alternating x and y values. A funbuff that has been saved as a
file can be viewed and edited as text by choosing Open as Text… from the
File menu. Numbers in the form of text can be pasted in from other
sources such as the editing window of a capture object, or even from another
program such as a word processor.

Store x,y pairs
of numbers together funbuff

206

Output

int Out left outlet: When an x value is received in the left inlet, the
corresponding y value is sent out. (Or, if there is no such x value yet stored
in funbuff, the y value corresponding to the next lesser x value is sent out.)
When the word next is received in the left inlet, funbuff sends out the y value
that corresponds to the x value pointed to by its pointer (or, if there is no
such x value, the y value of the next greater x value).

Out middle outlet: When the word next is received in its left inlet, funbuff
sends out the difference between the x value pointed to by its pointer, and
the x value previously pointed to, then resets the pointer to the next x
value.

bang Out right outlet: When the pointer reaches the end of a funbuff, no
numbers are sent out in response to a next message, but a bang is sent out to
notify that the end has been reached.

Examples

Pairs or lists are stored as x,y pairs; an x value alone, or next, sends out a y value

Store x,y pairs
of numbers together funbuff

207

Interpolating between points stored in funbuff

See Also

bline Event-driven, multi-segment line object
coll Store and edit a collection of different messages
envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
line Output numbers in a ramp from one value to another
table Store and graphically edit an array of numbers
Tutorial 27 Your object
Timeline Graphically edit a score of Max messages

Graphical breakpoint
function editor function

208

Input

(mouse) You can use the mouse to draw points in a line segment function; the
finished function can then be sent to a line~ object for use as a control
signal in MSP. Clicking on empty space in the function adds a breakpoint,
which you can begin to move immediately by dragging (unless function has
been sent the clickadd 0 message). Clicking on a breakpoint allows you to
move the breakpoint by dragging (unless function has been sent the clickmove
0 message). The X and Y values of the breakpoint are displayed in the
upper part of the object’s box. Shift-clicking on a breakpoint deletes that
point from the function. Command-clicking on Macintosh or Control-
clicking on Windows on a breakpoint toggles the sustain property of the
point. Sustain points are outlined in white. Whenever an editing operation
with the mouse is completed, a bang is sent out the right outlet.

Points with a Y value of 0 are outlined circles; other points are solid. This
allows you to see at a glance whether a function starts or ends at Y = 0.

float or int The value is taken as an X value and outputs a corresponding Y value out
the left outlet. The Y value is produced by linear floating-point
interpolation of the function. If the X value lies outside the first or last
breakpoint, the Y value is 0.

bang Triggers a list output of the current breakpoints from the middle-left outlet
formatted for use by the line~ object. As an example, if the function
contained breakpoints at X = 1, Y = 0; X = 10, Y = 1; and X = 20, Y = 0,
the output would be 0, 1 9 0 10. If the optional output mode is enabled, the
output would be 0 0 1 9 0 10.

If there are any sustain points in the function, bang outputs a list of all the
points up to the sustain point. Additional points in the function, up to a
subsequent sustain point or the end point, whichever applies, can be output
by sending the next message. See the description of the next and sustain
messages for additional information.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
RGB values for the background color of the function object. The default
value is light gray (brgb 204 204 204).

Graphical breakpoint
function editor function

209

clear The word clear by itself erases all existing breakpoints. The word clear can
also be followed by one or more breakpoint indices (starting at 0) to clear
selected breakpoints.

clickadd The message clickadd 0 prevents the user from creating new breakpoints by
dragging them with the mouse. clickadd 1 allows the user to create new
breakpoints. The default behavior allows the user to create new
breakpoints. The current setting is saved with the object when its patcher is
saved.

clickmove The message clickmove 0 prevents the user from moving existing breakpoints
by dragging them with the mouse. clickmove 1 allows the user to drag
breakpoints. The default behavior allows the user to drag breakpoints. The
current setting is saved with the object when its patcher is saved.

color The word color, followed by a number between 0 and 15, sets the color of
the displayed breakpoints to the specified color. The colors corresponding
to the index are displayed in the Color… dialog in the Max menu.

(Color…) You can change the color of breakpoints by selecting a function object in an
unlocked patcher window and choosing Color… from the Max menu.

domain The word domain, followed by a float or int value, sets the maximum
displayed X value. The minimum value is always 0. The actual values of
breakpoints are not modified, so this message could cause breakpoints
whose X values are greater than the new maximum displayed X value to
disappear.

dump Outputs a series of two-item lists, containing the X and Y values for each
of the breakpoints, out the function object’s middle-right outlet. An optional
symbol argument can be used to specify a receive objects as a destination.

fix The word fix, followed by a number specifying the index of a point and 0
or 1, prevents the user from changing the point if the second number is 1,
and allows the user to change the point if the second number is 0. By
default, points are moveable unless clickmove 0 has been sent to disable
moving of all points.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the breakpoints displayed by the function object. The default value
is grey (frgb 82 82 82).

Graphical breakpoint
function editor function

210

legend The word legend, followed by a 1 or 0, enables (1) or disables (0) the
numerical display (legend) of the function object, displayed when a point is
highlighted or updated. The default value is on (legend 1).

list If the list contains two values, a new point is added to the function. The first
value is X, the second is Y.

If the list contains three values, an existing point in the function is modified.
The first value is the index (starting at 0) of a breakpoint to modify, the
second is the new X value for the breakpoint, and the third is the new Y
value for the breakpoint. (If the index number in the list refers to a
breakpoint that does not exist, the message is ignored.)

listdump Outputs a single list which contains all X and Y values for each of the
breakpoints out the function object’s middle-right outlet.An optional symbol
argument can be used to specify a receive objects as a destination.

next The next message continues a list output from the sustain point where the
output of the last bang or next message ended. For instance, if the function
contained breakpoints at (a) X = 1, Y = 0; (b) X = 10, Y = 1; and (c) X =
20, Y = 0, and point b was a sustain point, a bang message would output 0, 1
9 and a subsequent next message would output 1, 0 10. After a next message
reaches the end point, a subsequent next message is equivalent to a bang
message. next is also equivalent to a bang when no bang has been sent that
reached a sustain point, or when a function contains no sustain points.

nth The word nth, followed by a number, uses the number as the index (starting
at 0) of a breakpoint, and outputs the Y value of the breakpoint out the left
outlet. If no breakpoint with the specified index exists, no output occurs.

outputmode The word outputmode, followed by a 1 or 0, enables (1) or disables (0) the
optional output mode. If on, when the function object receives a bang, it
sends its values in single list in which the first Y value is followed by a 0,
followed by any additional Y values and associated times. When off, the
object outputs its values as described above in the description of the bang
message. The optional output mode is off by default.

range The word range, followed by two float or int values, sets the minimum and
maximum display range for Y values. The actual values of breakpoints are
not modified, so this message could cause breakpoints to disappear from
view.

Graphical breakpoint
function editor function

211

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the
RGB values for the line segments displayed by the function object. The
default value is dark gray (rgb2 85 85 85).

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the
RGB values for the sustain points displayed by the function object. The
default value is white (rgb3 255 255 255).

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the
RGB values for the numerical display (legend) of the function object when it
is highlighted or being updated. The default value is black (rgb4 0 0 0).

setrange The word setrange, followed by two float or int values, sets the minimum and
maximum display range for Y values, then modifies the Y values of all
breakpoints so that they remain in the same place given the new range.

setdomain The word setdomain, followed by a float or int value, sets the maximum
displayed X value, then modifies the X values of all breakpoints so that
they remain in the same place given the new domain.

sustain The word sustain, followed by number specifying the index of a point and 0
or 1, turns that point into a sustain point if the second number is 1, or into
a regular point if the second number is 0. By default, points are regular
(non-sustain). The behavior of sustain points is discussed in the description
of the bang message above. Command-clicking on Macintosh or Control-
clicking on Windows also toggle the sustain property of a point.

(preset) You can save and restore the breakpoint settings of function using a preset
object.

Inspector

The behavior of a function object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any function object
displays the function Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The function Inspector lets you set the following attributes:

The Graph Range options allow you to set the minimum (default 0.) and
maximum (default 1.0) display ranges for Y values.

Graphical breakpoint
function editor function

212

The Graph Domain option sets the maximum (default 1000.) maximum
displayed X value in milliseconds. The minimum value is always 0.

Checking the Enable Dragging Points checkbox will allow the user to
create new breakpoints by clicking with the mouse. The default enables
behavior allows the user to create new breakpoints. The current setting is
saved with the object when its patcher is saved. Checking the Enable
Dragging Points checkbox will allow the user to move existing breakpoints
by dragging them with the mouse. The default behavior allows the user to
drag breakpoints. Checking the Show Legend checkbox enables the
numerical display (legend) of the function object, displayed when a point is
highlighted or updated. The default value is enabled. Checking the Output
Only List for line~ checkbox enables the optional output mode of the
function object. When enabled, the function object will output a single list
which consists of all breakpoints when the object receives a bang. The
optional output mode is off by default.

The Color pop-up menu lets you use a swatch color picker or RGB values to
specify the colors used for display by the function object. Points sets the
color for the breakpoints displayed (default 82 82 82), and Background sets
the color for the message area in which the hint appears (default 204 204
204). Line Segments sets the color for the line segments that connect the
breakpoints (default 85 85 85). Sustain Points sets the color used to display
sustain points (default 255 255 255). Legend Text sets the color for the
legend text (default 0 0 0).

 The Revert button undoes all changes you've made to an object's settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

float Out left outlet: The interpolated Y value is sent out in response to a float or
int X value received in the inlet; or a stored Y value is sent out in response
to an nth message.

Graphical breakpoint
function editor function

213

list Out middle-left outlet: When bang is received, a float is sent out for the first
stored Y value, followed by a list containing pairs of numbers indicating
each subsequent stored Y value and its transition time (the difference
between X and the previous X). This format is intended for input to the
line~ object.

Out middle-right outlet: A series of two-item lists, containing the X and Y
values of each of the function object’s breakpoints, is sent out when a dump
message is received.

bang Out right outlet: When a mouse editing operation is completed, a bang is
sent out.

Examples

Send line segment information to line~, or look up (and interpolate) individual Y values

See Also

line Output numbers in a ramp from one value to another

Tag data with a number
that identifies its inlet funnel

214

Input

int or float In any inlet: The number of the inlet and the received number are sent out
as a list.

list In any inlet: The number of the inlet is prepended to the list, and the new
list is sent out. In a list floats are not converted to ints. The list may
contain ints, floats, and symbols (provided that the first element of the list
is not a symbol).

bang In any inlet: The number of the inlet and the stored (most recently
received) number in that inlet are sent out as a two-item list.

Arguments

int Optional. The first arguments sets the number of inlets in the funnel. If
there is no argument there will be two inlets. The second argument
specifies an offset for the first inlet number. If no second argument is
present, the inlets are numbered beginning with 0.

Output

list When a number or list is received in any inlet, funnel outputs a list
consisting of the inlet number followed the input. funnel is designed for
“funneling” many streams of numbers into the env or envi objects, but it
can be useful in conjunction with other objects such as coll, funbuff and table.

Examples

Use funnel to tag incoming data, or to store data into a coll object

Tag data with a number
that identifies its inlet funnel

215

See Also

env Script-configurable envelope editor
envi Script-configurable envelope in a patcher window
listfunnel Index elements of a list and output them individually
spray Distribute a value to a numbered outlet

Pass the input out
a specific outlet gate

216

Input

int In left inlet: The number specifies an open outlet through which to pass all
messages received in the right inlet. A number in the left inlet does not
trigger any output itself.

float In left inlet: Converted to int.

bang In left inlet: Reports the current open outlet, or 0 if closed, out the left
outlet. This message is designed to be used in conjunction with the grab
object.

anything In right inlet: All messages are passed out the open outlet, which is
specified by the number in the left inlet.

Arguments

int Optional. Specifies the number of outlets. Limited between 1 and 10. If
there is no argument, there is only one outlet.

Output

anything Messages received in the right inlet are passed out the outlet specified by
the number in the left inlet. If the number in the left inlet is 0, or if no
outlet number has been received yet, all messages are ignored. If the
number in the left inlet is less than 0, messages are sent out the leftmost
outlet. If it is greater than the number of existing outlets, messages are sent
out the rightmost outlet.

Examples

Message is passed out the specified outlet This one closes the door behind itself

Pass the input out
a specific outlet gate

217

See Also

Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
onebang Traffic control for bang messages
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Inquire about
the current system gestalt

218

Input

various The gestalt object accepts a four-letter symbol specifying a Gestalt selector (a
term originating from the Macintosh OS). Examples of useful four-letter
codes include sysv for system version and qtim for QuickTime version. For a
complete list of Gestalt selectors refer to Apple developer documentation
(http://developer.apple.com). On Mac OS, the object uses the Macintosh
Gestalt feature to get a response to the selector. On Windows this feature is
emulated, and may consequently report slightly different, though
meaningful, information.The response and an error code are sent out the
object’s outlets.

Arguments

None.

Output

int Out left outlet If there was no error in obtaining the response to a selector
to the object, the response is sent out the left outlet. Binary or hex display
and/or the use of the bitwise and operator & may aid in interpreting the
response.

Out right outlet: If there was an error in obtaining the response to a
selector, an error code is sent out the right outlet. Refer to Apple developer
documentation for a complete list of error codes. If the input selector was
undefined, -1 is sent out. If there was no error, 0 is sent out.

Inquire about
the current system gestalt

219

Examples

gestalt can give you info about the system in use and info about hardware features

See Also

screensize Output the monitor size

Pass the input out
one of two outlets Ggate

220

Input

int In left inlet: The number specifies which one of the two outlets is to be
open. 0 specifies the left outlet, any number other than 0 specifies the right
outlet. The arrow on Ggate points to the open outlet.

bang In left inlet: Causes the arrow to point to the other outlet. Clicking on Ggate
with the mouse has the same effect.

float In left inlet: Converted to int.

anything In right inlet: All messages are passed out the open outlet.

Arguments

None.

Output

anything Messages received in the right inlet are passed out one of the two outlets. If
the number in the left inlet is 0, incoming messages are sent out the left
outlet. If the number in the left inlet is not 0, messages are sent out the
right outlet.

Examples

Specify one of two outlets Any comparison can be used as a criterion

See Also

gate Pass the input out a specific outlet
Gswitch Receive the input in one of two inlets

Pass the input out
one of two outlets Ggate

221

onebang Traffic control for bang messages
pictctrl Picture-based control
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Intercept the output
of another object grab

222

Input

anything The message is sent out the right outlet, or if a second argument is present
the message is sent to receive objects named by the second argument.

set If a second argument has been typed into grab specifying the name of a
receive object, then the word set, followed by a symbol, specifies the name of
a (different) receive object via which grab can grab messages from remote
objects.

Arguments

int Optional. The first argument sets the number of outlets, in addition to the
right outlet. If there is no argument, grab has 1 additional outlet.

symbol Optional. If a symbol is present as a second argument, the message
received in the inlet is sent to all receive objects named by the symbol,
instead of being sent out the right outlet. In this case the rightmost outlet,
which would normally send out the incoming message if no second
argument were present, will not exist.

Output

anything Out right outlet: The right outlet should be connected only to the leftmost
inlet of other objects. The message received in the inlet is sent out to the
left inlet of all objects connected to the right outlet. Whatever goes out
their outlets, however, is then intercepted by grab.

Out other outlets: Whatever would normally be sent out the outlets of the
objects connected to the right outlet, is sent out grab’s outlets instead, in
response to a message from grab. Whatever would be sent out the leftmost
outlet of the other objects is sent out the leftmost outlet of grab, and so on.
Note: Only the output that is sent out the outlets of other objects can be
intercepted by grab. Other types of output, such as transmission of MIDI
messages or printing in the Max window, cannot be intercepted by grab.
Also, grab does not intercept the output of timing objects such as seq, metro,
and clocker.

Connecting the right outlet of grab to the inlet of a patcher object,
however, will not grab the output of the subpatch. It will simply grab the
output of the inlet object inside the subpatch, which is exactly the same as its

Intercept the output
of another object grab

223

input. However, grab can communicate with remote objects via a receive
object named as the second argument to grab.

If a second argument is present, the message received in the inlet is sent
directly to receive objects named by the argument instead of being sent out
the right outlet. Any such receive objects should be connected only to the
leftmost inlet of other objects. The rightmost outlet, which would
otherwise be used to grab the output of other objects, does not appear if the
second argument is used.

Note that if grab is connected to other objects remotely via numerous receive
objects of the same name, the order in which grab communicates with those
other objects is undefined, so the order in which their output will be sent
out of the grab object’s other outlets is unpredictable.

Examples

Get an object’s output by “grabbing” it before it comes out the outlet

grab can communicate with any receive object specified by a set message

See Also

preset Store and recall the settings of other objects
table Store and graphically edit an array of number

Window for drawing
sprite-based graphics graphic

224

Input

open Causes the graphics window associated with the graphic object to become
visible. The window is also brought to the front. Double-clicking on the
graphic object in a locked patcher has the same effect.

wclose Causes the window associated with the graphic object to become invisible.

Arguments

symbol Optional. Identifies the graphic object’s window. Drawing and animation
objects use this symbol to tell Max which window to draw in. If no
argument is typed in, the window will be named Graphics—1 (and
subsequent graphics windows will be numbered sequentially).

int Optional. Following the name of the graphic object, four coordinates can be
specified for the location of the window on the screen. The numbers
represent the screen coordinates of the left, top, right, and bottom corners
(respectively) of the drawing area. Note that when you save a patch
containing a graphic object with no coordinate arguments, the current
window location is saved. The coordinate arguments are useful in the case
where you want the object’s window to be guaranteed to appear in a
certain position each time the patch is opened, regardless of where it may
have been dragged in the past.

Optional. Following the name of the graphic object, but preceding the four
coordinate arguments, a fifth non-zero number argument may be inserted,
which will cause the graphics window’s title bar to be hidden. A graphics
window without a title bar can still be dragged by Command-clicking on it
on Macintosh or Control-clicking on Windows.

Output

None. Other objects draw into a graphic object’s window.

Window for drawing
sprite-based graphics graphic

225

Examples

The graphic object creates a window for the output of graphics objects. The window can be
resized by dragging in the lower right corner where you’d expect the grow box to be.

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
pict Draw picture in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
Tutorial 42 Graphics

Receive the input in
one of two inlets Gswitch

226

Input

int In left inlet: The number specifies which one of the other two inlets is to be
open. 0 specifies the middle inlet, any number other than 0 specifies the
right inlet. The arrow on Gswitch points to the open inlet.

bang Causes the arrow to point to the other inlet. Clicking on Gswitch with the
mouse has the same effect.

float In left inlet: Converted to int.

anything In middle or right inlet: Messages received in the open inlet are passed out
the outlet, while messages received in the other inlet are ignored.

Arguments

None.

Output

anything If the number in the left inlet is 0, all messages received in the middle inlet
are passed out the outlet, and messages received in the right inlet are
ignored. If the number in the left inlet is not 0, messages received in the
middle inlet are ignored, and all messages received in the right inlet are
passed out the outlet.

Examples

Specify one of two inlets Any comparison can be used as a criterion

Receive the input in
one of two inlets Gswitch

227

See Also

gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
pictctrl Picture-based control
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Human Interface (gaming)
device input hi

228

Input

anything Sending the name of any device to the hi object will set the object to focus on
the specified device.

int An incoming int causes the object to focus on the device in the device list
with that index.

bang A bang message will output the current event queue.

clear The message clear will reset all values set using the ignore and delta messages
to their default values.

delta The word delta, followed by an integer that represents an element of the
device will cause the hi object to report an event from the specified element
only if it is different then the last value that was reported.

ignore The word ignore, followed by an integer that represents an element of the
device, disables event reporting from the specified element.

info The info message causes device information to be output to the Max
console.

menu The menu message causes a device list to be output from the right outlet in a
format fit for a umenu object.

poll The word poll, followed by a number, sets the time in milliseconds between
outputs of the event queue. The message poll 0 disables automatic polling.

(devices) If a device has been selected for focus, movement or action in the device
will produce corresponding output from the hi object.

Arguments

anything Optional. An argument can be used to specify the object for focus on the hi
object.

Output

list The object collects data from the selected device and will output all
collected data when a bang or a timing trigger from to a poll message is
received. Data is output as a two-element integer list; he first element

Human Interface (gaming)
device input hi

229

represents the element of the device to which the data applies, and the
second element represents the data value.

Examples

Affect the pitch and duration of notes

See Also

key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard

Pop-up style
hint text hint

230

Input

(mouse) When the cursor moves within the hint object’s rectangle, its text message
will appear in a colored area beneath the rectangle after the specified delay.

delay The word delay, followed by a number, sets the delay in milliseconds until
the hint appears. The default is 1000 (i.e., one second).

brgb (Windows only) The word brgb, followed by three numbers between 0 and
255, sets the RGB values for the background color of the hint object. The
default value is white (brgb 255 255 255).

frgb (Windows only) The word frgb, followed by three numbers between 0 and
255, sets the RGB values for the text displayed by the hint object. The default
value is black (frgb 0 0 0).

set The word set, followed by any message, will replace the message stored in
hint. This message will be displayed when the mouse is positioned over the
hint object after an interval of time specified by the delay message.

Inspector

The behavior of a hint object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any hint object
displays the hint Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The hint Inspector lets you set the following attributes:

Type the text you want displayed when the mouse is positioned over the
area bounded by the hint object into the Set Hint Text box.

The Pop-up Delay lets you set the delay in milliseconds until the hint
appears. The default is 1000 (one second).

Check Interval sets the interval in milliseconds at which the mouse
position is checked. The default is 100.

If the Redraw Behind Hint checkbox is checked, anything in the patcher
window which is underneath the hint will be erased and redrawn. This
mode should be used if the hint message will appear, in an area over

Pop-up style
hint text hint

231

something which could change its appearance while the hint is visible (i.e.,
a number box or a slider). The default is on (checked).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

message The message stored in the hint object.

Examples

Provide optional hints to UI objects

See Also

comment Explanatory note or label
umenu Pop-up menu, to display and send commands

Make a histogramof
the numbers received histo

232

Input

int In left inlet: histo keeps count of how many times it has received a number
between 0 and 127 in the left inlet. When a number is received, histo
includes it in the count, sends the number of times that number has been
received out the right outlet, and passes the number itself out the left
outlet. Numbers outside the range 0-127 are ignored.

In right inlet: Has the same effect as a number in the left inlet, except that
the number is not counted by histo.

clear Erases the memory of histo, to begin a new histogram.

bang In left inlet: Using the number most recently received in the left inlet, histo
reports out the right outlet how many times that number has been received,
and sends the number itself out the left outlet. If no number has been
previously received in the left inlet, 0 is sent out both outlets.

Arguments

None.

Output

int Out left outlet: The number received in the inlet.

Out right outlet: The count of the number of times that number has been
received.

Examples

Store a histogram of the numbers received; display it in a table

Make a histogramof
the numbers received histo

233

See Also

anal Make a histogram of number pairs received
prob Make weighted random series of numbers
table Store and graphically edit an array of numbers
Tutorial 33 Probability tables
Quantile Using table for probability distribution

Output numbers by
moving a slider onscreen hslider

234

Input

int The number received in the inlet is displayed graphically by hslider, and is
passed out the outlet. Optionally, hslider can multiply the number by some
amount and add an offset to it, before sending the number out its outlet.

The hslider will also send out numbers in response to mouse clicking or
dragging.

float Converted to int.

bang Sends out the number currently stored in hslider.

color The word color, followed by a number from 0 to 15, sets the color of the
center portion of the hslider to one of the object colors which are also available
via the Color command in the Object menu.

local The word local, followed by a non-zero number, enables object response to
mouse clicks (the default). The message local 0 disables the object’s response
to the mouse; the hslider object will respond only to input in its inlet and
ignore all mouse clicks.

min The word min, followed by a number, sets value that will be added to the
hslider object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The hslider
object’s value will be multiplied by this number before it is sent out the
outlet. The multiplication happens before the addition of the Offset value.
The default value is 1.

resolution The word resolution, followed by a number, sets the sampling interval in
milliseconds. This controls the rate at which the display is updated as well as
the rate that numbers are sent out the hslider object’s outlet.

set The word set, followed by a number, resets the value displayed by hslider,
without triggering output.

size The word size, followed by a number, sets the range of the hslider object. The
default value is 128. Setting the size to 1 disables the hslider visually (since it
can only display one value). Any specified size less than 1 will be set to 2.

Output numbers by
moving a slider onscreen hslider

235

Inspector

The behavior of an hslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any hslider object
displays the hslider Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The hslider Inspector lets you enter a Slider Range value. Numbers received in
the inlet are automatically limited between 0 and the number 1 less than the
specified range value. The default range value is 128. You can specify an
Offset value which will be added to the number, after multiplication. The
default offset value is 0. The hslider Inspector also lets you specify a
Multiplier. The hslider object’s value will be multiplied by this number
before it is sent out the outlet. The multiplication happens before the
addition of the Offset value. The default multiplier value is 1.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

int Numbers received in the inlet, or produced by clicking or dragging on
hslider with the mouse, are first multiplied by the multiplier, then have the
offset added to them, then are sent out the outlet.

Output numbers by
moving a slider onscreen hslider

236

Examples

Produce output by dragging onscreen... or use to display numbers passing through

See Also

kslider Output numbers from a keyboard onscreen
multislider Multiple slider and scrolling display
nslider Output numbers from a notation display onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Conditional statement in
if/then/else form if

237

Input

int The number in each inlet will be stored in place of the $i or $f argument
associated with it. (Example: The number in the second inlet from the left
will be stored in place of the $i2 and $f2 arguments, wherever they appear.)

float The number in each inlet will be stored in place of the $f or $i argument
associated with it. The number will be truncated by a $i argument.

symbol In left inlet: The word symbol, followed by a symbol (a word), will be stored
in place of the $s argument.

bang In left inlet: Evaluates the conditional statement using the values currently
stored.

Any of the above messages in the left inlet will evaluate the conditional
statement and send out the result. Any inlets which have not yet received a
value have the value 0 by default.

The number of inlets is determined by how many different changeable
arguments are typed in. The maximum number of inlets is 9.

list In left inlet: The items of the list are treated as if each had come in a
different inlet, and the conditional statement is evaluated. If the list
contains fewer items than there are inlets, the most recently received value
in each remaining inlet is used.

set In left inlet: The word set, followed by one or more numbers, treats those
numbers as if each had come in a different inlet, replacing the stored value
with the new value, but the conditional statement is not evaluated and
nothing is sent out the outlet. If there are fewer numbers in the message
than there are inlets, the stored value in each remaining inlet is left
unchanged.

Arguments

Obligatory. The arguments for the if object start with a conditional
statement that uses the same syntax as expr. Refer to the description of the
expr object for details. The word then follows the conditional statement,
which is then followed by a message expression described below. After the
message expression, there is an optional else and a second message
expression.

Conditional statement in
if/then/else form if

238

if evaluates the conditional expression, and if the result is non-zero,
evaluates the message expression after the word then. Otherwise, it
evaluates the second message expression after the word else (or does
nothing in the case where no else and second message expression have
been typed in.

then, else Message expressions are similar to what you type into a message box, with
the following differences:

$i1,$f1,$s1 You use $i1, $f1, or $s1 instead of $1 for changeable arguments.

send No commas or semicolons are allowed. Messages can be sent to remote
receive objects by preceding the message expression with send, followed by
the name of the receive object.

out2 The keyword out2 in a message expression creates a second, right outlet for
the if object. If out2 precedes a message expression, the result of the
expression is sent out the right outlet instead of the left outlet.

Output

anything The message after the then or else portion of the arguments is sent out the
outlet. If the word out2 is present as an argument, there will be two outlets,
and messages following out2 will be sent out the right outlet. If the word
send is present as an argument, the word that follows it is the name of a
receive object, and the message that follows it will be sent to receive objects
with that name.

Examples

Complex comparisons and results can be described in a single object

Conditional statement in
if/then/else form if

239

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
expr Evaluate a mathematical expression
select Select certain inputs, pass the rest on
Tutorial 38 expr and if

Play a QuickTime movie
in a patcher window imovie

240

Note: The imovie object requires that QuickTime be installed on your system. If you are
using Max on Windows, we recommend that you install QuickTime and choose a
complete install of all optional components.

Input

(see movie) All messages recognized by the movie object are similarly recognized by
imovie.

border The object is initially shown with a black line border drawn around its
movie. The message border 0 erases the black line border; border 1 redraws the
border.

Arguments

(Get Info…) Optional. Selecting the object (when the patcher window is unlocked) and
choosing the Get Info… command from the Object menu opens a
standard file dialog, allowing you to select a QuickTime movie to be read
into the object automatically when the patch is loaded. The movie must be
located in Max’s file search path (specified with the File Preferences…
command in the Options menu) in order for imovie to find it
automatically.

Output

int Out left outlet: The end time of the movie is sent out in response to the
length message; the current time in the movie is sent out in response to the
time message; 0 is sent out in response to the start message.

Out middle outlet: The horizontal position of the mouse, relative to the left
edge of the movie, is sent out when the mouse is clicked or dragged inside
the movie.

Out right outlet: The vertical position of the mouse, relative to the top
edge of the movie, is sent out when the mouse is clicked or dragged inside
the movie.

Play a QuickTime movie
in a patcher window imovie

241

Examples

A movie can be displayed within a patch, and mouse motion can be detected within it

See Also

lcd Draw graphics in a patcher window
movie Play a QuickTime movie in a window
playbar QuickTime movie play controller

Buttons that
increment/decrement a value IncDec

242

Input

int A number sent to the IncDec object’s inlet sets the value that will be
incremented or decremented by clicking on the top or bottom of half of
the object. The number is not sent out the outlet. IncDec is designed to be
used with user interface objects such as the number box, dial, and the
various sliders.

bang A bang message causes the IncDec object to output the currently stored value.

dec The dec message can be used to decrement and output the stored value.

inc The inc message can be used to increment and output the stored value.

set The word set followed by an integer value functions identically to the int
message, and is provided for convenience.

(mouse) A mouse click increments or decrements the stored value (depending on
which arrow is clicked) and sends it out the outlet.

(Font menu) The height of an IncDec object can be altered by selecting it and choosing a
different font or size from the Font menu.

Arguments

None.

Output

int When you click on the top half of an IncDec object, it sends out a value that
is one greater than the last value received at its inlet or sent out its outlet,
whichever happened most recently. Holding the mouse button down
continues to increment the output, gradually increasing in rate of output.

The same is true for the bottom half of the IncDec object, except that the
values are decremented.

Buttons that
increment/decrement a value IncDec

243

Examples

IncDec works well in combination with number box and hslider

See Also

counter Count the bang messages received, output the count
number box Display and output a number
hslider Output numbers by moving a slider onscreen
umenu Pop-up menu, to display and send commands
uslider Output numbers by moving a slider onscreen

Receive messages from
outside a patcher inlet

244

Input

(patcher) Each inlet object in a patcher will show up as an inlet at the top of an object
box when the patch is used inside another patcher (as an object or a
subpatch). Messages sent into such an inlet will be received by the inlet
object in the subpatch. A patcher can have a maximum of 250 signal inlets.
The number of data inlets is a much bigger number than that.

Inspector

A descriptive Assistance message can be assigned to an inlet object and can
be edited using its Inspector. If you have enabled the floating inspector by
choosing Show Floating Inspector from the Windows menu, selecting any
inlet object displays the inlet Inspector in the floating window. Selecting an
object and choosing Get Info… from the Object menu also displays the
Inspector.

Typing in the Describe Outlet text area specifies the content of the
Assistance message.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

anything In a subpatch inlet sends out whatever messages it receives through patch
cords from the patch that contains it.

Receive messages from
outside a patcher inlet

245

Examples

Inlets of the subpatch... correspond to the inlet objects in the subpatch

See Also

bpatcher Embed a visible subpatch inside a box
outlet Send messages out of a patcher
pcontrol Open and close subwindows within a patcher
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 26 The patcher object

Store an
integer value int / i

246

Input

int In left inlet: The number replaces the currently stored value and is sent out
the outlet.

In right inlet: The number replaces the stored value without triggering
output.

float Converted to int.

bang In left inlet: Sends the stored value out the outlet.

set In left inlet: The word set, followed by a number, replaces the stored value
without triggering output.

send In left inlet: The word send, followed by the name of a receive object, sends
the value stored in int to all receive objects with that name, without
sending it out the outlet of the int.

Arguments

int Optional. Sets an initial value to be stored in int. If there is no argument,
the initial value is 0. An int argument by itself, without the word int, is
another way of creating and initializing an int object.

float Converted to int.

Output

int A number is stored in (and output from) int as a long (32-bit) integer.

Examples

Output the stored
value

Replace the stored value
and output it

Initial value is given

Store an
integer value int / i

247

See Also

float Store a decimal number
pv Share variables specific to a patch and its subpatches
value Share a stored message with other objects
Tutorial 21 Storing numbers

Break a list up into
a series of numbers iter

248

Input

list The numbers in the list are sent out the outlet in sequential order.

int or float The number is sent out the outlet.

bang Sends the number or list most recently received, in sequential order.

Arguments

None.

Output

int The numbers received in the inlet are sent out one at a time.

Examples

Numbers in a list pass through iter one at a time

See Also

cycle Send a stream of data to individual outlets
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages
zl Multi-purpose list processor
Tutorial 30 Number group

Convert integers
to ASCII chartacters itoa

249

Input

bang In left inlet: a bang message can be used to trigger the output of the currently
stored string of ascii characters as a symbol.

clear In left inlet: The clear message is used to clear the contents of the internally-
stored string of ascii characters.

int In left inlet: The integer is interpreted as an ASCII character which is stored
internally and sent out the outlet as a symbol.

In middle inlet: The integer is interpreted as an ASCII character which is
appended to the internally stored character string. No output is triggered.

In right inlet: The integer is interpreted as an ASCII character which is stored
internally, replacing the previously stored character string, but not output.

list In left inlet: Each value in list of integers sent to the left inlet is interpreted as
an ASCII character and stored internally as an ASCII character string,
replacing the previously stored character string, and output as a symbol.

In middle inlet: A list of integers sent to the middle inlet will be converted to
ASCII characters and appended to the current internally-stored character
string, without causing output.

In right inlet: A list of integers sent to the right inlet will be converted to
ASCII characters and stored internally as an ASCII character string, replacing
the previously stored character string, without triggering output.

Arguments

None.

Output

symbol The ASCII character string converted from the input is sent out as a symbol.

Convert integers
to ASCII chartacters itoa

250

Examples

Collect typed keys into a symbol (output with return key).

See Also

atoi Convert ASCII characters to integers
key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
message Send any message
spell Convert input to ASCII codes
sprintf Format a message of words and numbers

Two-dimensional storage
and viewing jit.cellblock

251

The jit.cellblock object provides storage, viewing and editing of two-dimensional data. The
format is similar to the “grid” display tools found in many other development
environments. The current cell location, format, display and contents within jit.cellblock
can be set with the mouse or using Max messages.

Input

append The word append, followed by a data element or a list of elements, will add
the specified valid Max data to the contents of the currently selected cell.

bang Sends the contents out the object’s left outlet, and sends a message
through the third outlet in the form set value-list.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
default background color of the object text in RGB format.

cell The cell message allows you to control the appearance of a single cell within
the cellblock. Using the cell message will override changes for both row and
col message.

The word cell, followed by a list in the form cell col-number row-number label text,
sets a text label for the selected cell. The label will always be displayed, but
does not replace any data stored for the cell. If col-number and row-
number are omitted from the list, the currently selected cell is changed.

The word cell, followed by a list in the form cell col-number row-number frgb red
green blue, sets the foreground color of the selected cell. All values should be
in the range 0-255. If col-number and row-number are omitted from the
list, the currently selected cell is changed. If no color values are provided,
the cell override will be eliminated and the color returned to the default
setting.

The word cell, followed by a list in the form cell col-number row-number brgb red
green blue, sets the background color of the selected cell. All values should be
in the range 0-255. If col-number and row-number are omitted from the
list, the currently selected cell is changed. If no color values are provided,
the cell override will be eliminated and the color returned to the default
setting.

Two-dimensional storage
and viewing jit.cellblock

252

The word cell, followed by a list in the form cell col-number row-number just
justification-value, sets the justification for the cell. Justification values are:

-1 remove cell-based override
0 left-justified
1 center-justified
2 right-justified

If col-number and row-number are omitted from the list, the currently
selected cell is changed.

The word cell, followed by a list in the form cell col-number row-number precision
precision-value, sets the displayed floating-point precision for the cell.
Precision values are:

-1 remove cell-based override
0-9 set displayed precision

If col-number and row-number are omitted from the list, the currently
selected cell is changed.

The word cell, followed by a list in the form cell col-number row-number readonly
readonly-value, sets the read-only setting for the cell. Readonly values are:

-1 remove cell-based override
0 read/write capable
1 read-only

If col-number and row-number are omitted from the list, the currently
selected cell is changed.

Note: Using cell messages without explicitly specifying column or row
locations is not recommended when using selmode 2, selmode 3 or selmode 4.

clear The clear message removes data from the cellblock. The message clear col-
number row-number clears the contents of the specified cell. clear all will clear
the entire contents of the cellblock. The message clear current will clear the
contents of the currently selected cell(s). The clear message with no
arguments is equivalent to the message clear current.

Two-dimensional storage
and viewing jit.cellblock

253

col The col message allows you to control the appearance of a single column
within the cellblock. Using the col message to override color settings will
override any color changes made with the row message. Using the cell
message will, however, override color changes for both col and row
messages.

The word col, followed by a list in the form col col-number frgb red green blue, sets
the foreground color of the column. All values should be in the range 0-
255. If col-number is omitted from the list, the currently selected column
is changed. If no color values are provided, the column override will be
eliminated and the color returned to the default setting.

The word col, followed by a list in the form col col-number brgb red green blue,
sets the background color of the column. All values should be in the range
0-255. If col-number is omitted from the list, the currently selected
column is changed. If no color values are provided, the column override
will be eliminated and the color returned to the default setting.

The word col, followed by a list in the form col col-number just justification-value,
sets the justification for the cell. Justification values are:

-1 remove column-based override
0 left-justified
1 center-justified
2 right-justified

If col-number is omitted from the list, the currently selected column is
changed.

The word col, followed by a list in the form col col-number precision precision-value,
sets the displayed floating-point precision for the column. A precision of
–1 will remove the column-based precision override.

The word col, followed by a list in the form col col-number readonly readonly-value,
sets the read-only setting for the column. readonly values are:

-1 remove column-based override
0 read/write capable
1 read-only

If col-number is omitted from the list, the currently selected column is
changed.

Two-dimensional storage
and viewing jit.cellblock

254

The word col, followed by a list in the form col col-number width width, sets the
width of the column in pixels. If col-number is omitted from the list, the
currently selected column is changed.

color The color message, followed by an integer, replaces the background color
with the selected color from the Max color palette. Color index values
should be in the range 0-16.

deref Disconnects a jit.cellblock object from any attached coll objects.

dump Sends a listing of the contents of all non-empty cells out the object’s left
outlet, one line per cell. Each output line takes the form col-number row-
number cell-contents.

frgb The word frgb, followed by three numbers between 0 and 255, sets the
default foreground color of the object text in RGB format.

list Selects a cell within the cellblock. The message list col-number row-number is
equivalent to the message select col-number row-number.

mode The mode message sets the operational modes of the jit.cellblock. The message
mode selmode int specifies the selection function of the cellblock. The selection
mode settings are:

0. no selection

1. select a single cell

2. select an entire column

3. select an entire row

4. select a single cell unless a column or row header is selected, in which
case the entire column or row is selected.

5. in-place editing. A single cell is selected and values can be typed directly
into the cell.

The message mode saveatoms int toggles whether or not the cell contents will
be saved with the patcher.

The message mode sync horizontal-sync-flag vertical-sync-flag select-flag sets the sync
modes. The sync modes determine if sync messages received in the
rightmost inlet are accepted or ignored. mode sync 1 1 1 would accpt all sync

Two-dimensional storage
and viewing jit.cellblock

255

commands, while mode sync 0 0 0 would ignore all commands. Sync allows
multiple jit.cellblock objects to display “connected” information.

Two-dimensional storage
and viewing jit.cellblock

256

The message mode
outmode int specifies how cellblock output is formatted. Options are:

separate values: Each cell is sent separately, and each data item within the
cell is sent as a separate value.

as one list: If more than one cell is selected, all cell contents are formatted
into a single list and output as a single cell output.

as one symbol: If more than one cell is selected, or if a cell has more than
one value (e.g. a list), all values are combined into a single, space-separated
symbol for output.

prepend Adds the specified valid Max data to the beginning of the currently
selected cell contents.

read Opens and reads the contents of a cellblock file from disk if a filename is
specified. No attempts are made to verify the contents. If no filename is
specified, a file dialog box will be displayed to allow selection of a saved
cellblock file.

refer The word refer, followed by the name of a coll, object, displays the contents
of the named coll object’s internal list. Changes to the data in the jit.cellblock
will change the contents of the attached coll object.

rgb1 The word rgb1, followed by three numbers between 0 and 255, sets the
default foreground color of the grid lines in RGB format.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the
default cellblock border color in RGB format.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the
default column/row header background color in RGB format.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the
default column/row header foreground color in RGB format.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the
default color of the selected cells in RGB format.

rowblend The word rowblend, followed by two numbers in the range 0-100 specifying
foreground and background blend percentages. blends the foreground and
background colors for the cellblock object.

Two-dimensional storage
and viewing jit.cellblock

257

In cases where there are both column and row foreground and/or
background color overrides, the rowblend message will allow you to “blend”
the colors using column transparency. Column colors have a higher
priority than row colors; if you have a row and column color that affect a
cell, only the column color will normally be displayed. The rowblend
message allows you to make the column color transparaent using a
percentage value, thereby allowing the row color to be displayed. The
rowblend message applies the color transparancy to all column colors
without discrimination.

row The row message allows you to control the appearance of a single row
within the cellblock.

The word row, followed by followed a list in the form row row-number frgb red
green blue, sets the foreground color of the row. All values should be in the
range 0-255. If row-number is omitted from the list, the currently selected
row is changed. If no color values are provided, the row override will be
eliminated and the color returned to the default setting.

The word row, followed by followed a list in the form row row-number brgb red
green blue sets the background color of the row. All values should be in the
range 0-255. If row -number is omitted from the list, the currently selected
row is changed. If no color values are provided, the row override will be
eliminated and the color returned to the default setting.

The word row, followed by followed a list in the form row row-number just
justification-value sets the justification for the row. Justification values are:

-1 remove row-based override
0 left-justified
1 center-justified
2 right-justified

If the row-number is omitted from the list, the currently selected row is
changed.

The word row, followed by followed a list in the form row row-number precision
precision-value sets the displayed floating-point precision for the row. A
precision of –1 will remove the row-based precision override.

Two-dimensional storage
and viewing jit.cellblock

258

A list in the form row row-number readonly readonly-value sets the read-only
setting for the row. readonly values are:

-1 remove row-based override
0 read/write capable
1 read-only

If row-number is omitted from the list, the currently selected row is
changed.

The word row, followed by followed a list in the form row row-number width
sets the width of the row in pixels. If row-number is omitted from the list,
the currently selected row is changed.

select The select message, followed by a column number and row number, will
select the requested coll using the current selmode. The contents of the
selected cell(s) are output from the object’s left outlet, and the outputs a
message in the form set value out the third outlet.

send The word send, followed by the name of a receive object, will transmit
cellblock values without using connected patch cords; it is the equivalent of
sending the output through a send object.

send receive-object col-number row-number will send the data in the specified cell to
the specified received object. send receive-object all sends all non-empty cell
contents to the specified receive object as a series of lists in the form cell-
data-type value.

set Replaces a cell’s data with the data specified. Two forms are supported:
set current value replaces the currently selected cell’s contents.
set col-number row-number values replaces the specified cell’s contents.

sync Receives input in the jit.cellblock object’s right inlet from another jit.cellblock
object, so that two cellblocks can maintain location and selection
synchronization. Synchronization allows for multiple jit.cellblock objects to
react as if connected. One use of synchronization is used to force external
cellblock objects to act as header rows and columns for a main jit.cellblock.
For more information on setting synchronization, see the mode message.

text Replaces the value of the currently selected cell with the incoming text
values. This is provided as a convenient way of receiveing the output of a
textedit object.

Two-dimensional storage
and viewing jit.cellblock

259

writeagain If a file has been written, the writeagain message will allow it to be rewritten
without further user interaction.

write Opens a file and writes the contents of a cellblock file to disk. If a filename
is specified, that file is created and written. If no filename is specified, a file
dialog box will be displayed to allow selection of a pathname and file.

Arguments

None.

Output

list Out left outlet: A list containing the currently selected column number,
row number and the contents of the cell. The form of the output will be
dependent on the mode outmode setting, which will determine if the
contents will be provided individually, as a single list or as a single symbol.

list Out the middle outlet: The Max message set, followed by the cell contents,
is provded as a “helper” output for routing the cell contents to either a
textedit or messagebox object.

list Out the right outlet: Synchronization messages are sent out the right
outlet, meant as a source for the right inlet of other jit.cellblock objects. These
messages can also be used to determine the current state of movement
within the cellblock – for instance, the sync click message notifies that a
cell has been click-selected, while the sync select message notifies that a cell
has been selected (either by clicking, or programmatically).

Inspector

The behavior of a jit.cellblock object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any cellblock object
displays the jit.cellblock Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The jit.cellblock Inspector lets you set the following attributes:

Width and Height determine the size of the jit.cellblock frame.

Two-dimensional storage
and viewing jit.cellblock

260

Columns and Rows sets the number of columns and rows that are visible
within the jit.cellblock. If the number of columns or rows are greater than can
be displayed, scrollbars will be shown.

Column Width and Row Height set the default size of the individual cells.
Changing these settings may change whether the scrollbars are displayed.

Draw Border determines if a border edge is displayed around the jit.cellblock.

Draw Grid determines if a border edge is drawn around each individual
cell.

Column Headers and Row Headers will alter the behavior of the first row
and first column, respectively. If the header option is selected, the first row
will change color (to the rgb3 setting listed above), and will not be directly
editable in selmode 5.

Vertical Scroll Bars and Horizontal Scroll Bars, if turned off, will override
jit.cellblock’s automatic handling of scrollbar display when there is more
information to show than the current settings can manage.

Float Display Precision sets the default floating point precision for all cells.
The number represents the number of decimal places that will be displayed.
Note: This does not alter the actual contents of the cell; it only changes the
displayed precision of those contents.

Selection Mode provides a choice of selection options. It is the equivalent
of the mode selmode setting listed above.

Output Mode changes the left outlet’s format. It is the equivalent of the
mode outmode setting listed above.

Text Justification determines the default justification of all cells.

Sync Mode sets the jit.cellblock’s response to incoming sync messages.
Specific sync messages can be ignored in order to fine tune synchronization
response – see the sync message above for more details.

Read-only will set the read-only mode of the entire jit.cellblock.

Save Contents With Patcher, if set, will cause the cell contents to be saved
with the patcher.

Two-dimensional storage
and viewing jit.cellblock

261

The Colors option lets you use a swatch color picker or RGB values to
specify colors for the foreground, background, grid, border, header
foreground, header background and selected cells.

The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Examples

jit.cellblock displays data on a two-dimensional grid

See Also

coll Transform a symbol into individual numbers or messages
maximum Output the greatest in a list of numbers
minimum Output the smallest in a list of numbers

Execute
Javascript js

262

For more information about Javascript programming for the js and jsui objects, please refer to
the Javascript in Max manual as well as the Javascript tutorials (Tutorials 48-51) In the Max
Tutorials and Topics manual.

Input

Note: All messages listed below can be sent to any inlet of the js object. The Javascript inlet
property reveals the inlet that received the message that invoked the currently running script.

anything Invokes the function with the message name, assigning the message arguments
to the arguments to the function. For example, if the object has a function named
xyz defined, the message xyz 1 2 3 would invoke the xyz function with arguments
1 2 and 3.

autowatch The message autowatch, followed by a 1, turns on file watching for the
Javascript source file. When file watching is on, the file is recompiled
automatically when it is modified. This allows you to use an external editor for
your Javascript file. When you save the file, the js object will notice. autowatch 0
turns off file watching.

int Invokes the function named msg_int if defined.

bang Invokes the function named bang if defined.

compile Recompiles the current file.

delprop The word delprop, followed by a name, deletes the named property.

float Invokes the function named msg_float if defined.

getprop The word getprop, followed by a name, outputs the value of the property name
stored in the object out the left outlet.

loadbang Invokes the function named loadbang if defined. This message is sent when
the file is loaded.

setprop The word setprop, followed by name and one or more names or numbers, sets the
named property to what follows the name. For example, after sending setprop
xyz 1 2 3 to a js object. the xyz property would have a value of the list 1 2 3.

(mouse) Double-clicking on a js object opens a text window where the object’s
Javascript source file can be edited. When the text window is saved, the text is
compiled as the object’s script.

Execute
Javascript js

263

Arguments

symbol Optional. Specifies the name of a text file to be used as the Javascript source. If
no argument is specified, it will not initially have any Javascript associated with
it. You can still open a text window and edit and save the Javascript source, but
unless you recreate the object with the saved source filename as an argument, the
file will not be used when a patch containing the js object is loaded.

int Optional. If no filename is present as an argument, the number of inlets and
outlets is specified. If one int argument is present, the number of desired
outlets is specified. If two int arguments are present, the first number specifies
the number of outlets and the second number specifies the number of inlets.

anything Optional. Following the optional filename or number of outlets and inlets,
any symbols or numbers can be entered that will be assigned to the Javascript
variable jsarguments. jsarguments[0] is the filename entered, and
jsarguments[1] is the first typed-in argument following the filename. The
Javascript expression jsarguments.length will be one more than the number of
typed-in arguments

Output

anything Numbers, lists, or symbols are sent out the js object’s outlets when the
Javascript code executing within the js object invokes the outlet function.

Execute
Javascript js

264

Examples

Two js objects instantiated with different arguments; the Javascript code creates the objects
with different numbers of outlets based on the arguments

See Also

jstrigger Evaluate Javascript expressions sequentially
jsui Javascript user interface and OpenGL graphics
mxj Java in Max
Tutorial 48 Basic JavaScript
Tutorial 49 Scripting and Custom Methods in JavaScript
Tutorial 50 Tasks, Arguments and Global Objects in JavaScript
Tutorial 51 Designing User Interfaces in JavaScript

Execute Javascript
instructions sequentially jstrigger

265

The jstrigger object is similar to the trigger object, except that typed-in arguments within
parentheses are passed to the Javascript evaluator. For more information on the Max
implementation of Javascript, refer to the Javascript in Max manual. For complete information
about Javascript itself, consult a reference book such as Javascript: The Definitive Guide by
David Flanagan, published by O'Reilly.

Input

any message The first item in the input message or list becomes element 0 in the object's
pre-defined array a, e.g., a[0]. If the input is a message or list, the subsequent
items in the message are assigned to a[1], a[2], and so on. After the arguments
are assigned, the expressions in the object are evaluated, right to left, and the
value of each expression or constant is sent out the outlet corresponding to
each expression. For example, if there are three expressions, the right
expression is evaluated first, and its value is sent out the right outlet. Next, the
middle expression is evaluated and its value is sent out the middle outlet.
Finally, the left expression is evaluated and its value is sent out the left outlet.

bang The most recently stored values for each argument are assigned to the a array.
Then the expressions in the object are evaluated, right to left, and the value of
each expression or constant is sent out the outlet corresponding to each
expression.

Arguments

The arguments to the jstrigger object may be either constants or expressions.
Constants are numbers or symbols. For each constant, an outlet will be
created, and the constant value will be sent out the corresponding outlet when
the object receives a message in its left inlet. For example, jstrigger with the
arguments ready set 74 would send 74 out the right outlet, followed by set out the
middle outlet, followed by ready out the left outlet.

Expressions are Javascript expressions contained within parentheses. You can
include more than one Javascript statement can be contained within the
parentheses, but you must separate the statements by semicolons (;). A
semicolon after the last statements is not required, and the word return is not
required either. To return a list, you can either create an array object or place
items in square brackets separated by commas. Javascript allows you to enter
expressions between the commas. See the Examples section below.

Execute Javascript
instructions sequentially jstrigger

266

For each expression, an outlet will be created, and the value of the expression
will be sent out the corresponding outlet when the jstrigger object receives a
message in its left inlet.

Note that any use of semicolons or commas in an object box require a preceding backslash (\)
character, otherwise you will see the following error message in the Max window and the
object will not be created:

* error: object box has comma or semicolon

In addition, it is strongly recommended to use single quotes (‘) rather than double quotes to
define string literals. The use of double quotes can produce unexpected results in jstrigger
when the object is saved and recreated in a patcher.

Output

anything When the jstrigger object receives a message in its inlet, the expressions are
evaluated from right to left and their results are sent out the corresponding
outlets from right to left.

Execute Javascript
instructions sequentially jstrigger

267

Examples

See Also

bangbang Send a bang to many places, in order
jsui Javascript in Max
jsui Javascript user interface and OpenGL graphics

Javascript user interface
and OpenGL graphics jsui

268

For more information about Javascript programming for the js and jsui objects, please refer to
the Javascript in Max manual as well as the Javascript tutorials (Tutorials 48-51) In the Max
Tutorials and Topics manual.

Input

Note: All messages listed below can be sent to any inlet of the jsui object. The Javascript inlet
property reveals the inlet that received the message that invoked the currently running script.

anything Invokes the function with the message name, assigning the message arguments
to the arguments to the function. For example, if the object has a function named
xyz defined, the message xyz 1 2 3 would invoke the xyz function with arguments
1 2 and 3.

autowatch The word autowatch, followed by a 1, turns on file watching for the Javascript
source file. When file watching is on, the file is recompiled automatically when
it is modified. This allows you to use an external editor for your Javascript file.
When you save the file, the jsui object will notice. autowatch 0 turns off file
watching.

int Invokes the function named msg_int if defined.

bang Invokes the function named bang if defined.

border The message border, followed by a 1, turns on the black single pixel border.
border 0 turns off the border.

compile Recompiles the current file. If followed by a symbol, will load, compile, and set
the currently loaded Javascript file to be the Javascript file specified by the
symbol argument

delprop The word delprop, followed by a name, deletes the named property.

float Invokes the function named msg_float if defined.

getprop The word getprop, followed by a name, outputs the value of the property name
stored in the object out the left outlet.

loadbang Invokes the function named loadbang if defined. This message is sent when
the file is loaded.

jsargs Sets the current Javascript arguments to any following message arguments.

Javascript user interface
and OpenGL graphics jsui

269

jsfile The word jsfile, followed by a symbol , loads, compiles, and sets the currently
loaded Javascript file to be the Javascript file specified by the symbol argument.

nofsaa The message nofsaa, followed by a 1, disables any Full Scene Anti-Aliasing
(FSAA) that is being used by the Javascript file for drawing (by default FSAA is
used). nofsaa 0 enables any FSAA in drawing that is being used. Disabling FSAA
will make the object more efficient and render faster, but will be subject to
“jaggies”.

setprop The word setprop, followed by name and one or more names or numbers, sets the
named property to what follows the name. For example, after sending setprop
xyz 1 2 3 to a js object. the xyz property would have a value of the list 1 2 3.

size The word size, followed by two int arguments, sets the width and height of the
jsui object.

Inspector

The behavior of a jsui object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any jsui object displays the jsui
Inspector in the floating window. Selecting an object and choosing Get
Info… from the Object menu also displays the Inspector.

The Width and Height number boxes are used to set the size of the panel. The
default panel size has a width of 64 and a height of 64.

The Border checkbox enables/disables the black single pixel border.

The Disable FSAA checkbox permits overriding any Full Scene Anti-Aliasing
(FSAA) settings of the underlying Javascript file, Disabling FSAA will make
the object more efficient and render faster, but will be subject to “jaggies.”

The Javascript File option lets you specify the name of a text file to be used as the
Javascript source. If no file is specified, it will load the file in the search path
named “jsui_default.js”. However, you can still open a text window and edit
and save the Javascript source.

The Javascript Arguments option lets you enter symbols or numbers that will
be assigned to the Javascript variable jsarguments. jsarguments[0] is the
filename entered, and jsarguments[1] is the first typed-in argument following
the filename. The Javascript expression jsarguments.length will be one more
than the number of typed-in arguments.

Javascript user interface
and OpenGL graphics jsui

270

The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an object
before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

Output

anything Numbers, lists, or symbols are sent out the jsui object’s outlets when the
Javascript code executing within the jsui object invokes the outlet function.

Examples

A simple dial with logic and drawing defined in Javascript

See Also

js Javascript in Max
jstrigger Evaluate Javascript expressions sequentially
mxj Java in Max
Tutorial 48 Basic JavaScript
Tutorial 49 Scripting and Custom Methods in JavaScript
Tutorial 50 Tasks, Arguments and Global Objects in JavaScript
Tutorial 51 Designing User Interfaces in JavaScript

Report key presses
on the computer keyboard key

271

Input

(keyboard) The input to key comes directly from the computer keyboard. There are no
inlets.

Arguments

None.

Output

int Output is sent each time a key is depressed on the computer keyboard.
(Holding the key down does not produce repeated output.)

Out left outlet: The ASCII value of the typed key.

Out middle outlet: The key code of the typed key.

Out right outlet: The output values can be sent through the & object to
create toggles set by each modifier key. The numerical output of the right
outlet is listed below along with the argument to the & object that will create a
toggle.:

Modifier Key Output Toggle
key events 128 & 128 (reports 0 on Windows if a

mouse button is down, always
reports 0 on Macintosh

Windows Control key 384 & 256 (system uses this so it is not
reported)

Macintosh Command key 384 & 256 (system uses this so it is not
reported)

Shift key 640 & 512
Caps Lock key (on) 1152 & 1024
Windows Alt key 2176 & 2048 (on Windows the system

uses this so it is not reported)
Macintosh Option key 2176 & 2048
Windows R. Mouse Button 4224 & 4096
Macintosh Control key 4224 & 4096

Report key presses
on the computer keyboard key

272

Examples

Keys typed on the computer keyboard can be used to trigger messages

See Also

atoi Convert ASCII characters to integers
hi Human interface (gaming) device input
itoa Convert integers to ASCII characters
keyup Report key releases on the computer keyboard
numkey Interpret numbers typed on the computer keyboard
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
Tutorial 20 Using the computer keyboard

Report key releases
on the computer keyboard keyup

273

Input

(keyboard) The input to keyup comes directly from the computer keyboard. There are
no inlets.

Arguments

None.

Output

int Output is sent each time a key is released on the computer keyboard.
(Nothing is sent when the key is first depressed.)

Out left outlet: The ASCII value of the typed key.

Out right outlet: The key code of the typed key.

Out right outlet: The output values can be sent through the & object to
create toggles set by each modifier key. The numerical output of the right
outlet is listed below along with the argument to the & object that will create a
toggle.:

Modifier Key Output Toggle
key events 128 & 128 (reports 0 on Windows if a

mouse button is down, always
reports 0 on Macintosh

Windows Control key 384 & 256 (system uses this so it is not
reported)

Macintosh Command key 384 & 256 (system uses this so it is not
reported)

Shift key 640 & 512
Caps Lock key (on) 1152 & 1024
Windows Alt key 2176 & 2048 (on Windows the system

uses this so it is not reported)
Macintosh Option key 2176 & 2048
Windows R. Mouse Button 4224 & 4096
Macintosh Control key 4224 & 4096

Report key releases
on the computer keyboard keyup

274

Examples

ASCII value is sent when key is
released

Used with key to measure how long a key is down

See Also

atoi Convert ASCII characters to integers
hi Human interface (gaming) device input
itoa Convert integers to ASCII characters
key Report key presses on the computer keyboard
mousestate Report the status and location of the mouse
numkey Interpret numbers typed on the computer keyboard
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
Tutorial 20 Using the computer keyboard

Output numbers from
a keyboard onscreen kslider

275

Input

int In left inlet: The number received in the inlet is displayed graphically by
kslider if it falls within its displayed range. The current velocity value (from
1 to 127) that kslider holds is sent out its right outlet, followed by the
received number out the left outlet.

In right inlet: The number received in the right inlet sets the output key
velocity without triggering output.

(mouse) kslider also sends out numbers when you click or drag on it with the mouse.
The velocity value is determined by the vertical position of the mouse
within each key. Higher vertical positions produce higher velocities, to a
maximum of 127.

If the kslider object is in polyphonic mode, you need to click on a key twice:
once to send a note-on, and once again for a note-off.

Clicking on the very rightmost edge of the kslider sends out the note of the
key C that would be just to the right of the keys that are visible.

float Converted to int.

bang In left inlet: Sends out the pitch and velocity values currently stored in
kslider.

chord In left inlet: The word chord, followed by a list of MIDI note name and
velocity pairs, can be used to play chords on the kslider in polyphonic mode
(set by the mode 1 message). The chord message sends note-offs for currently
held notes, followed by note-on commands for the specified note and
velocity pairs. When the kslider object's state is saved by a preset object in
polyphonic mode, the preset object will store chord messages.

clear In left inlet: The clear message will clear any currently highlighted notes on
the keyboard, but will not trigger any output.

color In left inlet: The word color, followed by a number from 0 to 15, sets the
color of the keyboard that is highlighted to one of the object colors that are
also available with the Color submenu of the Object menu.

Output numbers from
a keyboard onscreen kslider

276

flush In left inlet: When the kslider object is in polyphonic mode (set by the mode 1
message), the flush message will send note-offs to currently held notes and
clear the kslider object’s display.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the RGB values for the color of the part of the keyboard that is
highlighted (default 128 128 128).

mode In left inlet: The word mode, followed by a 0 or 1, selects monophonic or
polyphonic operation for the kslider. mode 0 (default) sets monophonic
mode. Only one key can be selected and displayed at one time. mode 1 sets
the kslider to polyphonic mode. In polyphonic mode, kslider keeps track of
note-ons and note-offs, so it mirrors which notes are currently held down on
your MIDI keyboard. A key is “turned off” by sending the kslider object a
key on message with a velocity of 0.

offset In left inlet: The word offset, followed by a number, sets an offset value in
octaves for the kslider object. The default kslider keyboard outputs notes
from the lowest octave of the MIDI keyboard range (c-2). The message
offset 5 would mean that the kslider object’s leftmost key would be C3.
The default is 3.

range In left inlet: The word range, followed by a number, sets the range of the kslider
object in octaves. The default value is 4.

set In left inlet: The word set, followed by a number, changes the value displayed
by kslider, without triggering output.

size In left inlet: The word size, followed by a 0 or 1, sets the size of the keyboard
display. size 0 (default) sets the large keyboard, and key 0 selects the small
keyboard.

Inspector

The behavior of a kslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any kslider object
displays the kslider Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The kslider Inspector lets you enter a Slider Range value (default 4) that sets
the range of the kslider object in octaves. An Offset value (default 3)
specifies the number of octaves the lowest note on the displayed keyboard

Output numbers from
a keyboard onscreen kslider

277

will from C-2 (the lowest MIDI C). the Keyboard Size buttons select the
size of the keyboard, and the Keyboard Mode buttons select monophonic
or polyphonic modes. The Color option lets you use a swatch color picker
or RGB values to specify the color of the highlighted portion of the
keyboard. The default color is 128 128 128.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

int kslider sends its current velocity value out its right outlet, followed by the
(displayable) pitch value out its left outlet, when a number is received in its
inlet or you click or drag on the object.

Examples

Produce output by clicking on the keyboard... or use to display incoming pitches

See Also

hslider Output numbers by moving a slider onscreen
makenote Generate a note-off message following each note-on
notein Output received MIDI note messages
noteout Transmit MIDI note messages
nslider Output numbers from a notation display onscreen
pictslider Picture-based slider

Output numbers from
a keyboard onscreen kslider

278

rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Draw graphics
in a Patcher window lcd

279

In Max 4.0 and later, all lcd object drawing commands are now lower case. For backwards
compatibility, old style capitalized message names are still understood; you can use either
lineto or LineTo.

Input

(mouse) You can draw freehand in lcd with the mouse (provided this feature has not
been turned off with a local 0 message). The mouse will draw with the
current pen and color characteristics, and the mouse location will be sent
out the outlet.

ascii The word ascii, followed by a number between 0 and 255, writes the
character corresponding to that ASCII value at the current pen position,
then moves the pen position to the right of that character. Numbers that
exceed the 0-255 range are restricted to that range with a modulus
operation.

backsprite The word backsprite, followed by a symbol, sets the named sprite’s drawing
order so that it is drawn first (and displayed last). This command can be
used to alter the order in which sprites are drawn. (Normally, sprites are
drawn in the order they are recorded.)

border border 1 sets lcd to draw a border around its window, which is on by default. A
message of border 0 turns this feature off.

brgb The word brgb, followed by three numbers between 0 and 255, specify an
RGB value sets the current background color of the lcd object.

clear Erases the contents of lcd.

clearpicts Deletes all of an lcd object’s named pictures.

clearregions Deletes all of an lcd object’s named regions.

clearsprites Deletes all of an lcd object’s named sprites.

clipoval followed by four int arguments specifying the left, top, right, and bottom
extremities of an oval, clips drawing commands to the oval. These
extremities are specified in pixels, relative to the top left corner of the lcd
display area.

clippoly The word clippoly may be followed by as many as 254 int arguments that
would specify a series of x/y pairs that define a polygon to which lcd will clip

Draw graphics
in a Patcher window lcd

280

drawing commands. These x/y pairs are specified in pixels, relative to the top
left corner of the lcd display area.

cliprect The word cliprect, followed by four int arguments specifying the left, top,
right, and bottom positions of a rectangle, clips lcd drawing commands to the
rectangle. These edge positions are specified in pixels, relative to the top left
corner of the lcd display area.

cliprgn The word cliprgn, followed by a symbol, clips drawing commands with the
named region.

cliproundrect he word cliproundrect, followed by six int arguments specifying the left, top,
right, and bottom positions of a rectangle and the amount of horizontal and
vertical roundness in pixels, clips drawing commands to a rounded rectangle.
The edge positions are specified in pixels, relative to the top left corner of the
lcd display area.

closeregion The word closeregion, followed by a symbol argument that names the region,
turns off region definition and associates the defined region with the
symbol. After the closeregion message, drawing commands function
normally again.

closesprite The word closesprite, followed by a symbol argument that names the sprite,
turns off sprite command collection and associates the defined region with
the symbol. After the closesprite message, drawing commands function
normally again.

color The word color, followed by a number from 0 to 255, specifies a color (from
Max's color palette) for subsequent graphics drawn in lcd. Numbers that
exceed the 0-255 range are restricted to that range with a modulus
operation.

deletepict The word deletepict, followed by a symbol, deletes the named picture.

deleteregion The word deleteregion, followed by a symbol, deletes the named region.

deletesprite The word deletesprite, followed by a symbol, deletes the named sprite.

drawpict The word drawpict, followed by a symbol, draws the named picture.
Optionally there may follow four numbers specifying a destination rectangle
in which the picture is scaled and drawn, and source rectangle that specifies
the area of the picture to use in the operation. These rectangles are specified
as left, top, width, and height values in pixels. The destination rectangle is
relative to the top left corner of the lcd display area. The source rectangle is

Draw graphics
in a Patcher window lcd

281

relative to the top, left corner of the picture. If not present, these
rectangles are both set to be the same size as the picture.

drawsprite The word drawsprite, followed by a symbol, draws the named sprite.
Optionally this may be followed by a pair of numbers that specify a
horizontal and vertical offset for drawing the sprite.

enablesprites enablesprites 1 turns on the drawing of sprites. The message enablesprites 0 turns
this feature off (the default). When sprites are enabled, lcd consumes more
memory.

font The word font, followed by two numbers, specifies a font ID and a font size
to be used when drawing text in response to a write or ascii message. Note that
most font ID numbers depend on what fonts are present in the Fonts folder
in the System Folder, so the effect of a font message may vary from one
computer to another.

Fonts can alternately be specified by substituting a font name instead of a
font ID.

framearc Same as paintarc except that only the unfilled outline of the arc is drawn.

frameoval Same as paintoval except that only the unfilled outline of the oval is drawn.

framepoly Same as paintpoly except that only the unfilled outline of the polygon is
drawn.

framerect Same as paintrect except that only the unfilled outline of the rectangle is
drawn.

framergn Same as the paintrgn message except that only the unfilled outline of the
region is drawn.

frameroundrect Same as paintroundrect except that only the unfilled outline of the rounded
rectangle is drawn.

frgb The word frgb, followed by three numbers between 0 and 255, specify an
RGB value sets the current foreground color of the lcd object.

frontsprite The word frontsprite, followed by a symbol, sets the named sprite’s drawing
order so that it is drawn last (and displayed first). This command can be
used to alter the order in which sprites are drawn. (Normally, sprites are
drawn in the order they are recorded.)

Draw graphics
in a Patcher window lcd

282

getpenloc The word getpenloc outputs a message consisting of the word penloc followed
by two numbers, out the lcd object’s right outlet. The numbers represent
local coordinates relative to the top-left corner of the lcd display area. The
first number is the number of pixels to the right of that corner, and the
second number is the number of pixels down from that corner.

getpixel The word getpixel, followed by two numbers which specify the location of a
pixel in local coordinates relative to the top-left corner of the lcd display area,
outputs a message consisting of the word pixel followed by five numbers out
the lcd object’s right outlet. The first three numbers, in the range 0-255
represent the RGB values of the pixel at the specified location, followed by
two numbers which specify the relative x and y coordinates of the selected
pixel. If a pixel is out of range, the getpixel message will output pixel 0 0 0 x y w,
where x and y are the out of range location specified.

hidesprite Turns off the drawing of a named sprite in lcd.

idle idle 1 turns on the reporting of idle mouse position over an lcd object. The
coordinates of the mouse position are sent out the middle outlet as a two-
item list as the mouse moves. The numbers represent local coordinates
relative to the top-left corner of the lcd display area. The first number is the
number of pixels to the right of that corner, and the second number is the
number of pixels down from that corner. idle 0 turns off this feature, which is
off by default.

line The word line, followed by two int arguments for horizontal and vertical
offset, in pixels, relative to the current pen position, draws a line from the
current pen position to a point determined by the specified offset, and that
point becomes the new pen position. Positive arguments draw the line to
the right or down; negative arguments draw up or to the left.

linesegment The word linesegment, followed by four int arguments that specify the
endpoints of a line segment, draw a line. The numbers represent the
horizontal and vertical offset of the beginning endpoint, and the horizontal
and vertical offset of the finishing endpoint, in pixels, relative to the top left
corner of the lcd display area. Optionally, a color may follow. If there is one
additional int argument, the color specifies a color from Max's color palette
in the same way as the color message. If there are three additional int
arguments, the color specifies a color as an RGB value in the same way as
the frgb message.

lineto The word lineto, followed by two int arguments for horizontal and vertical
ending point, draws a line from the current pen position to the position
specified by the arguments.

Draw graphics
in a Patcher window lcd

283

local local 0 turns off drawing in the lcd with the mouse; local 1 turns the feature back
on. In either case, lcd will still report the location of the mouse as it is
dragged within the object's rectangle.

move Moves the pen position a certain number of pixels down from, and to the
right of, its current position. The word move must be followed by two int
arguments for horizontal and vertical offset, in pixels, relative to the
current pen position. Negative arguments may be used to move the pen
position up or to the left.

moveto Sets the pen position at which the next graphic instruction will be drawn.
The moveto message must include two int arguments for horizontal and
vertical offset, in pixels, relative to the upper left corner of the lcd display
area.

noclip Removes any clipping area that may be in place.

onscreen onscreen 1 turns on the memory-saving feature of using the onscreen window
for drawing. A message of onscreen 0 turns this feature off. Onscreen mode is
off by default. When not using onscreen mode, lcd consumes more
memory, but remembers its contents so that it is not erased when covered
as happens with the onscreen mode.

oprgb The word oprgb, followed by three numbers between 0 and 255, specify an
RGB value used as the opcolor for penmodes that support it. For more
information on on the effects of each drawing mode, refer to the Apple
Developer website at

http://developer.apple.com/documentation/QuickTime/INMAC/MACWIN/imClrQuickDraw.a.htm

paintarc The word paintarc, followed by six int arguments that specify the left, top,
right, and bottom extremities of an oval across which the arc will be drawn,
and the start and end angle in degrees, paints an arc. The extremities are
specified in pixels, relative to the top left corner of the lcd display area.
Optionally, a color may follow. If there is one additional int argument, the
color specifies a color from Max's color palette in the same way as the color
message. If there are three additional int arguments, the color specifies a
color as an RGB value in the same way as the frgb message.

paintoval The word paintoval, followed by four int arguments specifying the left, top,
right, and bottom extremities of an oval, paints an oval. These extremities are
specified in pixels, relative to the top left corner of the lcd display area.
Optionally, a color may follow. If there is one additional int argument, the
color specifies a color from Max's color palette in the same way as the color

Draw graphics
in a Patcher window lcd

284

message. If there are three additional int arguments, the color specifies a
color as an RGB value in the same way as the frgb message.

paintpoly The word paintpoly may be followed by as many as 254 int arguments that
would specify a series of x/y pairs that define a polygon to be painted in lcd.
These x/y pairs are specified in pixels, relative to the top left corner of the lcd
display area. Optionally, a color may follow the last x/y pair that is the same
as the first one. If there is one additional int argument, the color specifies a
color from Max's color palette in the same way as the color message. If there
are three additional int arguments, the color specifies a color as an RGB
value in the same way as the frgb message.

paintrect The word paintrect, followed by four int arguments specifying the left, top,
right, and bottom positions of a rectangle, paints a rectangle. The edge
positions are specified in pixels, relative to the top left corner of the lcd
display area. Optionally, a color may follow. If there is one additional int
argument, the color specifies a color from Max's color palette in the same
way as the color message. If there are three additional int arguments, the color
specifies a color as an RGB value in the same way as the frgb message.

paintrgn The word paintrgn, followed by a symbol, paints the named region (filled).
Optionally this may be followed by a pair of integer arguments which
specify a horizontal and vertical offset to which the region's coordinates will
be relative, and a color. If there is one additional int argument for the color,
the color specifies a color from Max's color palette in the same way as the
color message. If there are three additional int arguments, the color specifies a
color as an RGB value in the same way as the frgb message.

paintroundrect The word paintroundrect, followed by six int arguments specifying the left, top,
right, and bottom positions of a rectangle and the amount of horizontal and
vertical roundness in pixels, paints a rounded rectangle. The edge positions
are specified in pixels, relative to the top left corner of the lcd display area.
Optionally, a color may follow. If there is one additional int argument, the
color specifies a color from Max's color palette in the same way as the color
message. If there are three additional int arguments, the color specifies a
color as an RGB value in the same way as the frgb message.

penmode The word penmode, followed by a number in the range 0-7, sets the transfer
mode for subsequent drawing operations. The following are transfer mode
constants;

Copy 0
Or 1
Xor 2
Bic 3
NotCopy 4

Draw graphics
in a Patcher window lcd

285

NotOr 5
NotXor 6
NotBic 7

Draw graphics
in a Patcher window lcd

286

For more information on the effects of each drawing mode, refer to the
Apple Developer website at

http://developer.apple.com/documentation/QuickTime/INMAC/MACWIN/imClrQuickDraw.a.htm

pensize The word pensize , followed by two int arguments specifying horizontal and
vertical thickness in pixels, sets the current pensize.

readpict The word readpict followed by a symbol which specifies a filename, looks for
a QuickTime graphic file (a .pct file openable on Windows using the
QuickTime Picture Viewer for Windows) with that name in Max’s file
search path, and reads the picture file from disk into RAM. This named
picture can then be drawn in lcd with the drawpict and tilepict messages. In
response to the readpict message, the object sends a message out the right
outlet of the lcd object consisting of the word pict followed by a symbol
which specifies the name of the picture file and two numbers which specify
the file’s width and height. If the read is unsuccessful, the error message pict
<pictname> error will be sent out the right outlet.

recordregion Initiates the recording of drawing commands which will be stored in a
named region. While recording, drawing commands will have no visible
effect on the contents of the lcd object’s window.

recordsprite Initiates the recording of drawing commands which will be stored in a
named sprite. While recording, drawing commands will have no effect on the
contents of the lcd object’s window.

reset Erases the contents of lcd and resets pen state to default values. The reset
message is equivalent to the sequence

clear
pensize 1
penmode 0
frgb 0 0 0(black)
brgb 255 255 255(white)
moveto 0 0

scrollrect The word scrollrect, followed by six int arguments that specify the left, top,
right, and bottom positions of a rectangle to be scrolled and the number of
pixels to scroll in the x and y direction, scrolls a rectangle within the lcd
object’s display area.

Draw graphics
in a Patcher window lcd

287

size Changes the size of the lcd object. The word size must be followed by two
int arguments which specify the dimensions (horizontal and vertical) in
pixels of the new size.

textface The word textface, followed by one or more names specifying text style(s),
sets the font style(s) to be used when rendering text. Text style names are
normal, bold, italic, underline, outline, shadow, condense, and extend.

textmode The word textmode, followed by a number in the range 0-7, sets the transfer
mode for subsequent drawing operations. For more information on the
effects of each drawing mode, refer to the Apple Developer website at

http://developer.apple.com/documentation/QuickTime/INMAC/MACWIN/imClrQuickDraw.a.htm

tilepict The word tilepict, followed by a picture name argument, fills a rectangle by
tiling a picture. Optionally there may follow, four numbers that specify a
destination rectangle in which the picture is tiled and four numbers that
specify a source rectangle that specifies the area of the picture to use in the
operation. These rectangles are specified as left, top, width, and height values
in pixels. The destination rectangle is relative to the top left corner of the lcd
display area. The source rectangle is relative to the top, left corner of the
picture. If not present, the destination rectangle is set to the same size of lcd,
and the source rectangle is set to be the same size as the picture.

write The word write, followed by any symbol, writes that symbol beginning at
the current pen position, and moves the pen position to the end of the
text.

writepict The word writepict, followed by an optional filename argument, writes the
current contents of the lcd display area to a PICT file (a .pct file openable on
Windows using the QuickTime Picture Viewer for Windows). If no
filename argument is present, a Save As dialog will prompt you to choose a
filename and location to write the PICT file.

Inspector

The behavior of an lcd object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any lcd object
displays the lcd Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

Draw graphics
in a Patcher window lcd

288

The size of the lcd display, in pixels, can be set by typing in the Width and
Height number boxes. The default size of the lcd object is 128 pixels high
and 128 pixels wide.

Checking Local Mousing Mode lets you draw in the lcd display ares with the
mouse. This feature is enabled by default.

The Draw Border checkbox is enabled by default. Checking it creates a
border around the lcd object’s display area.

Checking the Respond to Idle Mousing option will report idle-time mouse
positions over the lcd object. This feature is disabled by default.

Checking the Onscreen Mode option will set the lcd object to remembers its
contents so that it is not erased when it is covered. This feature is disabled
by default.

Checking the Enable Sprites option will enable the drawing of sprites. This
feature is disabled by default. When sprites are enabled, lcd consumes more
memory.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

list Out 1st outlet: When you click and drag in the lcd display area with the
mouse button held down, the coordinates of the mouse position are sent
out the outlet as a two-item list as the mouse moves. The numbers
represent local coordinates relative to the top-left corner of the lcd display
area. The first number is the number of pixels to the right of that corner,
and the second number is the number of pixels down from that corner.

int Out 3rd outlet: A 1 is sent out the 2nd outlet if the mouse button is currently
being held down. A 0 is sent, otherwise.

Draw graphics
in a Patcher window lcd

289

list Out 2nd outlet: When you click and drag in the lcd display area with the
mouse button held down, the coordinates of the mouse position are sent out
the outlet as a two-item list as the mouse moves. The numbers represent
local coordinates relative to the top-left corner of the lcd display area. The
first number is the number of pixels to the right of that corner, and the
second number is the number of pixels down from that corner.

list Out 1st outlet: When you draw in the lcd with the mouse button held down,
the coordinates of the mouse position are sent out the outlet as a two-item
list as the mouse moves. The numbers represent local coordinates relative to
the top-left corner of lcd. The first number is the number of pixels to the
right of that corner, and the second number is the number of pixels down
from that corner.

list Out 4th outlet: When mouse idle mode is using the idle message or by
enabling the Respond to Idle Mousing Inspector option, a list of current
mouse coordinates is sent out the third outlet when the mouse is positioned
over the lcd object’s display area.

update Out 4th outlet: The word update is output whenever lcd receives an update
message from Max telling it to redraw itself. This is only done when lcd is in
onscreen mode

penloc Out 4th outlet: In response to the getpenloc message, lcd outputs a message
consisting of the word penloc followed by two numbers representing the pen
location in local coordinates relative to the top-left corner of the lcd display
area. The first number is the number of pixels to the right of that corner, and
the second number is the number of pixels down from that corner.

Draw graphics
in a Patcher window lcd

290

Examples

Draw an angular snake diagram using lcd

Draw graphics
in a Patcher window lcd

291

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
mousestate Report the status and location of the mouse
oval Draw solid oval in a graphic window
panel Colored background area
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Tutorial 43 Graphics in a patcher
Graphics Overview of Max graphics windows and objects

Display on/off
status in color led

292

Input

int If the number is 0, led shows its darkened state, and outputs 0. If the
number is not 0, led shows its brightened state and outputs 1.

float Converted to int.

bang Flashes led on and off quickly, and outputs 0.

Clicking on an led toggles it back and forth between bright and dark,
outputting 1 and 0.

blinktime In left inlet: the word blinktime, followed by a number, specifies the duration
(in milliseconds) that led will flash when it is clicked upon or receives a bang
message.

pict In left inlet: the word pict, followed by an integer from 0 to 4, changes the
color used by led.

set The word set, followed by a non-zero number causes led to show its
brightened state, but causes no output; set 0 shows the led object in a
darkened state, but causes no output.

toggle Switches the led from dark to bright and sends 1 out the outlet; or vice-versa,
from bright to dark, sending 0 out the outlet.

Inspector

The behavior of an led object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any led object
displays the led Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The led Inspector lets you set the following attributes:

The LED Pict option lets you use from among five colors for the led object’s
display: red (the default), green, blue, yellow, or black and white.

Flash Time specifies the duration (in milliseconds) that led will flash when it
is clicked upon or receives a bang message. The default is 150.

Display on/off
status in color led

293

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

int The output is 1 when led is bright, 0 when it is dark. A bang in the inlet
flashes led on and off and sends 0 out the outlet.

Examples

Displays an on/off state, announces activity with a flash, or can be used as a toggle

See Also

button Flash on any message, send a bang
pictctrl Picture-based control
togedge Report a change in zero/non-zero values
toggle Switch between on and off (1 and 0)
Tutorial 40 Automatic actions

Output numbers in a ramp
from one value to another line

294

Input

list The first number specifies a target value, and the second number specifies a
total amount of time (in milliseconds). In that amount of time, numbers
are output regularly in a line from the currently stored value to the target
value.

int or float In left inlet: The number is the target value, to be arrived at in the time
specified by the number in the middle inlet. If no time has been specified
since the last target value, the time is considered 0 and line immediately
outputs the target value.

Note: the output type for the line object is set by using the first argument to
the object (see Arguments).

In middle inlet: The number is the time, in milliseconds, in which to arrive
at the target value.

In right inlet: The number is the interval (in milliseconds) at which
intermediary numbers are regularly sent out.

clock The word clock, followed by the name of an existing setclock object, sets line
to be controlled by that setclock rather than by Max’s internal millisecond
clock. The word clock by itself sets line back to using Max’s regular
millisecond clock.

stop In left inlet: Stops line from sending out numbers, until a new target value
is received.

set In left inlet: The word set, followed by a number, makes that number the
new starting value from which to proceed to the next received target value.
The set message also stops line if it is in the process of sending out numbers.

Arguments

int or float Optional. The first argument sets the output type for the object—if the
first argument is an int, the line object outputs integer values, and a float
will set the line object to output floating point values. The first argument
also sets the initial value to be stored in line and the output type for the
object. If there is no argument, the initial value is 0 and the output type is
int. The second argument sets an initial value for the grain, the time
interval at which numbers are sent out. If the grain is not specified, line

Output numbers in a ramp
from one value to another line

295

outputs a number every 20 milliseconds. The minimum grain allowed is 1
millisecond; any number less than 1 will be set to 20.

Output

int Out left outlet: Numbers are sent out at regular intervals, describing a
straight line toward a target value. If a new target value and time are
specified before the line is completed, the new line starts from the most
recent output value, in order to avoid discontinuities.

If a value is received in the left inlet without an accompanying time value,
it is sent out immediately (time is considered 0).

bang Out right outlet: When line has arrived at its target value, bang is sent out.

Note: In practice, the target value is arrived at in just under the amount of
time specified (time minus grain).

Examples

Output values in a straight line... and bang when finished

See Also

bline Event-driven, multi-segment line object
envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
setclock Control the clock speed of timing objects remotely
uzi Send a specific number of bang messages
Tutorial 31 Using timers

Scale numbers
exponentially linedrive

296

Input

int or float In left inlet: The number is converted according to the following
expression

y = b e-a log c ex log c

where x is the input, y is the output, a, b, and c are the three typed-in
arguments, and e is the base of the natural logarithm (approximately
2.718282).

The output is a two-item list containing y followed by the delay time most
recently received in the right inlet.

int In right inlet: Sets the current delay time appended to the scaled output. A
connected line~ object will ramp to the new target value over this time
interval.

Arguments

int or float Obligatory. The first argument is the maximum input value, followed by
the maximum output value. The third argument specifies the nature of the
scaling curve. The third argument must be greater than 1. The larger the
value, the more steeply exponential the curve is. An appropriate value for
this argument is 1.06. The fourth argument is the initial delay time in
milliseconds. This value can be changed via the right inlet.

Output

list When an int or float is received in the left inlet, a list is sent out containing a
scaled version of the input (see the formula above) and the current delay
time.

Scale numbers
exponentially linedrive

297

Examples

Use linedrive for exponential value scaling

See Also

expr Evaluate a mathematical expression
scale Maps input to output range

Index elements of a list
and output them
individually

listfunnel

298

Input

int or float The low index value and the received number are sent out as a two-
element list.

list Each element of the list is indexed and this index is prepended to the list
element and sent out the outlet as a two-element list. The input list may
contain ints, floats, and symbols (provided that the first element of the list
is not a symbol).

Arguments

int Optional. An integer argument is used to specify an offset for the first
index value. If no argument is present, the list elements are numbered
beginning with the default index of 0.

Output

list When a list is received in the inlet, listfunnel outputs a two-element list for
each element of the input list, consisting of the elements index followed
the liost element. listfunnel is designed for conveniently replacing a
combination of unpack and funnel objects.

Examples

Use listfunnel not only for convenience, but for variable-length lists.

See Also

funnel Tag data with a number that identifies its inlet
spray Distribute a value to a numbered outlet

Send a bang automatically
when a patcher is loaded loadbang

299

Input

Output is triggered automatically when the file is opened, or when the
patch is part of another file that is opened.

bang Sending a bang message to a loadbang object causes it to output a bang
message.

(mouse) Double-clicking on a loadbang object causes it to output a bang message.

Arguments

None.

Output

bang Sent automatically when the patch is loaded. You can also cause loadbang to
send out a bang by double-clicking on it in a locked patcher, or by sending
a loadbang message to a thispatcher object in the same patcher. Holding down
the Shift and Command keys on Macintosh or Shift and Control keys on
Windows while a patch is loading prevents loadbang objects in that patch
from sending any output.

Examples

Set initial values when a patch is loaded... or start a process automatically

See Also

active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
closebang Send a bang when patcher window is closed
loadmess Send a message when patcher is loaded

Send a bang automatically
when a patcher is loaded loadbang

300

thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

Send a message when
a patch is loaded loadmess

301

Input

Output is triggered automatically when the file is opened, or when the
patch is part of another file that is opened.

bang Sending a bang message to a loadmess object causes it to output its typed
message.

(mouse) Double-clicking on a loadmess object causes it to output its typed message.

Arguments

Any arguments you type into a loadmess object are treated as a message to
be sent when output is triggered.

Output

The loadmess object’s typed message is sent automatically when the patch is
loaded. As with the loadbang object, you can also cause loadmess to send out
its message by double-clicking on it in a locked patcher, or by sending a
loadbang message to a thispatcher object in the same patcher. Holding down
the Shift and Command keys on Macintosh or Shift and Control keys on
Windows while a patch is loading prevents loadmess objects in that patch
from sending any output.

Examples

The same thing as loadbang and a message box for extremely lazy people...

Send a message when
a patch is loaded loadmess

302

See Also

active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
closebang Send a bang when patcher window is closed
loadbang Send a bang automatically when patcher is loaded
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

Generate a note-off message
following each note-on makenote

303

Input

int In left inlet: The number is treated as a pitch value for a MIDI note-on
message. It is paired with a velocity value and the numbers are sent out the
outlets. After a certain time, a note-off message (a note-on with a velocity
of 0) is sent out for that pitch.

In middle inlet: The number is stored as a velocity to be paired with pitch
numbers received in the left inlet.

In right inlet: The number is stored as the duration (in milliseconds) that
makenote waits before a note-off message is sent out.

float Converted to int.

list The second number is treated as the velocity and is sent out the right
outlet. The first number is treated as the pitch and is sent out the left
outlet. A corresponding note-off message is sent out later.

stop Causes makenote to send out immediate note-offs for all pitches it currently
holds.

clear Erases all notes currently held by makenote, without sending note-offs.

Arguments

int Optional. The first argument sets an initial velocity value to be paired with
incoming pitch numbers. If there is no argument, the initial velocity is 0.

The second optional argument sets an initial note duration (time before a
note-off is sent out), in milliseconds. If the second argument is not
present, the note-off follows the note-on immediately.

float Converted to int.

Output

int Out left outlet: The number received in the left inlet is sent out
immediately, paired with a velocity value out the other outlet. After a
certain duration, the same number is sent out paired with a velocity of 0.

Generate a note-off message
following each note-on makenote

304

Out right outlet: The number in the middle inlet is sent out as a velocity
value in conjunction with a pitch value out the left outlet. After a certain
duration, 0 is sent out paired with the same pitch.

Examples

Supply note-offs for note-ons generated within Max

See Also

flush Provide note-offs for held notes
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages
nslider Output numbers from a notation display onscreen
stripnote Filter out note-off messages, pass only note-on messages
xnoteout Format MIDI note messages with release velocity
Tutorial 13 Managing note data

Look for a series of numbers
output it as a list match

305

Input

int If the numbers match the arguments, in the proper order, they are sent out
as a list.

clear Causes match to forget all numbers it has received up to that time.

set The word set, followed by a list of numbers, specifies a new series of
numbers match will look for.

Arguments

list Obligatory. The arguments specify numbers to look for, in the proper
order. The word nn can be used as a wild card that will match any number.

Output

list The numbers received in the inlet are compared with the arguments. If the
numbers are the same, and in the same order, they are sent out the outlet
as a list.

Examples

Numbers must be the same, and in the same order

See Also

iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
select Select certain inputs, pass the rest on

Matrix switch control matrixctrl

306

matrixctrl is a user interface object that consists of a rectangular grid of switch-like controls
called cells. All of the cells in a matrixctrl object have the same appearance and behavior.
Each cell has two or more states. By default, the cells have two states, representing “off”
and “on.” You can create cells with any number of states. Clicking on a cell increases its
state by one. After a cell reaches its last state, it returns to its zero state when clicked
again—thus, a cell with only two states will toggle back and forth between these states
with each mouse click.

matrixctrl was originally constructed to control the MSP object matrix~, but is useful for other
user interface applications, such as groups of switches, groups of visual indicators, and
drum-machine-oriented sequencers.

Note: The matrixctrl object requires that QuickTime be installed on your system to open any
files other than PICT files (i.e., files with a .pct extension on Windows). If you are using
Max on Windows, we recommend that you install QuickTime and choose a complete
install of all optional components.

Input

(Mouse) A mouse click on a cell will increase its value by one. Values in matrixctrl will
wrap back to 0 once they have reached their maximum possible state.
Dragging across several cells will set their values to that of the first cell
clicked. Dragging across cells while holding down the Shift key will allow
you to drag in straight horizontal or vertical lines only.

bang A bang causes matrixctrl to dump its current state in lists of three values for
each cell pair, in the format

horizontal-coordinate vertical-coordinate value

list A list of ints sets cells in the matrixctrl object using the format <horizontal-
coordinate vertical-coordinate value>. Multiple triplets of values can be
used to set more than one cell. Coordinates for the cells start at 0 in the
upper-left hand corner and the values for each cell start at 0 and go up to
the value range minus one, set by the object’s inspector. Substituting the
symbols inc and dec in place of the value will increment or decrement that
cell coordinate by a value of one. Changing the cell state with a list causes
the list to be output from matrixctrl.

set The word set, followed by a list as described above, changes the state of
matrixctrl without echoing the values to the output.

Matrix switch control matrixctrl

307

active The word active, followed by a 0 or 1, causes matrixctrl to ignore or respond to
mouse clicks, respectively. By default, matrixctrl responds to mouse clicks.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename,
designates the graphics file that the matrixctrl object will use for the matrix
background image. The matrixctrl object accepts PICT files and, if QuickTime
Version 3.0 or later is installed, other picture file formats that are listed in the
QuickTime appendix. The symbol used as a filename must either be the
name of a file in Max’s current search path, or an absolute pathname for the
file (e.g. “MyDisk:/Documents/UI Pictures/CoolBkgnd.pct”). The word bkgndpicture by
itself puts up a standard Open Document dialog box and displays the
common graphics files supported by QuickTime.

cellpicture The word cellpicture, followed by a symbol that specifies a filename,
designates the graphics file that the matrixctrl object will use for each cell. The
matrixctrl object accepts PICT files and, if QuickTime Version 3.0 or later is
installed, other picture file formats that are listed in the QuickTime
appendix.The symbol used as a filename must either be the name of a file in
Max’s current search path, or an absolute pathname for the file (e.g.
“MyDisk:/Documents/UI Pictures/Cell.pct”). The word cellpicture by itself puts up a
standard Open Document dialog box and displays the common graphics
files supported by QuickTime.

clickedimage The word clickedimage, followed by a nonzero value, specifies that the graphics
file used by the matrixctrl object contains an additional image to be displayed
when a cell is clicked.

clickvalue The word clickvalue, followed by a number, toggles the click value mode. If the
clickvalue message is followed by a 0 or a positive number, clicking on a cell
sets its value to the given number. If clickvalue is followed by a negative
number, the matrixctrl object reverts to its default behavior in which clicking
a cell increments its value. The clickvalue message allows the use of the
matrixctrl object to create grid editors by creating graphics files which contain
a sequence of images, each of which is assigned to a different value; as you
click through the sequence of images, the cell image will change to reflect
velocity, note, etc.

disablecell The word disablecell, followed by a list of number pairs which specify the
horizontal and vertical coordinates of a cell or cells, sets the designated cell
or cells so that they do not respond to mouse clicks. The disablecell message
expects at least one pair of numbers, but more may be added to disable
multiple cells (e.g., disable 0 0 3 4 9 12). Although disabled cells will ignore
mouse clicks, their values can be set using messages.

Matrix switch control matrixctrl

308

enablecell The word enablecell, followed by a list of number pairs which specify the
horizontal and vertical coordinates of a cell or cells, will set any designated
cell or cells which have been disabled using the disablecell message to respond
to mouse clicks again. The enablecell message expects at least one pair of
numbers, but more may be added to enable multiple cells (e.g., enable 1 1 1 2 2
2).

getrow The word getrow, followed by a number, sends the values of the cells in the
row designated by the number out its right outlet.

getcolumn The word getcolumn, followed by a number, sends the values of the cells in
the column designated by the number out its right outlet.

horizontalmargin The word horizontalmargin, followed by a number, sets a horizontal margin
(in pixels) between the outermost cells and the edge of the matrixctrl
object’s bounding box.

horizontalspacing The word horizontalspacing, followed by a number, sets the horizontal distance
(in pixels) between adjacent cells in the matrixctrl object.

imagemask The word imagemask, followed by a nonzero value, specifies that the matrixctrl
cell graphics file has additional rows of images for use as image masks.

inactiveimage The word inactiveimage, followed by a nonzero value, specifies that the matrixctrl
cell graphics file has additional rows of images for use in an inactive state
(set with an active 0 message).

invisiblebkgnd The word invisiblebkgnd, followed by a nonzero value, specifies that the matrixctrl
will be drawn without a background image, and its cells will be
superimposed over any underlying Max objects. invisiblebkgnd 0 disables this
feature.

one/row The word one/row, followed by a nonzero value, only allows one cell per row
to have a non-zero state. Setting any cell in a row to a non-zero state
causes any other non-zero cells to change to the zero state. one/row 0
removes this constraint.

one/column The word one/column, followed by a nonzero value, only allows one cell per
column to have a non-zero state. Setting any cell in a column to a non-
zero state causes any other non-zero cells to change to the zero state.
one/column 0 removes this constraint.

one/matrix The word one/matrix, followed by a nonzero value, only allows one cell in the
entire object to have a non-zero state. Setting any other cell in the matrix

Matrix switch control matrixctrl

309

to a non-zero state causes any other non-zero cells to change to the zero
state. one/matrix 0 removes this constraint.

range The word range, followed by an int, sets the number of possible states each
cell can have. It must be set to a value of at least 2 (for states 0 and 1).

verticalmargin The word verticalmargin, followed by a number, sets a vertical margin (in
pixels) between the outermost cells and the edge of the matrixctrl object’s
bounding box.

verticalspacing The word verticalspacing, followed by a number, sets the vertical distance (in
pixels) between adjacent cells in the matrixctrl object.

Inspector

The behavior of a matrixctrl object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any matrixctrl object
displays the matrixctrl Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The Cell Spacing number boxes set the horizontal and vertical distance (in
pixels) between adjacent cells in the matrixctrl object.

The Margin number boxes are used to specify horizontal and vertical
margins (in pixels) between the outermost cells and the edge of the object’s
bounding box.

Checking the Has Clicked Images option will use an alternate set of image
frames in your graphics file to give the cell a different appearance when the
user clicks and drags it.

The Has Inactive Images checkbox tells the matrixctrl object that your
graphics files have additional images for the cell’s inactive state. Leave this
box unchecked if the picture files used by the control do not have these
images.

If you want to use image masks in your cell’s graphics file to draw the cell,
select the Has Image Mask option. Masks can be used to create cells with a
non-rectangular shape. If your cell picture has separate images for the
clicked and/or inactive state, you must supply masks for those as well.

Matrix switch control matrixctrl

310

Checking the Invisible Background box tells the matrixctrl object not to draw
anything for the background of the matrix. The cells will appear to “float”
over any underlying objects.

The One Per Column, One Per Row, and One Per Matrix checkboxes
define the matrixctrl object’s behavior. If checked, matrixctrl only allows one
cell per column, row, or in the entire object to have a non-zero state.
Setting any cell to a non-zero state causes any other non-zero cells to
change to the zero state.

Cell Value Range is used to set the number of possible states each cell can
have. It must be set to a value of at least 2 (for states 0 and 1).

Cell Picture File and Background Picture File lets you choose graphics files
for the matrix cells and its background by clicking on the Open buttons. It
can open PICT files and, if QuickTime Version 3.0 or later is installed,
other picture file formats that are listed in the QuickTime appendix. The
current file’s name appears in the text box to the left each of the buttons.
You can also choose a file by typing its name in this box, or by dragging
the file’s icon from the Finder into this box.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Picture File Format

Background picture files for matrixctrl can be any Macintosh PICT file or, if
QuickTime Version 3.0 or later is installed, other picture file formats that
are listed in the QuickTime appendix.If the matrixctrl is larger than the
chosen picture, copies of the picture will be added to fill the object.

Matrix switch control matrixctrl

311

Cell picture files must be in the following format:

The picture is made up of a grid of images. All images have the same width
and height. Each column of images represents one cell state. The picture
must have at least two columns, since cells must have at least two states.

The first row of images is used for the idle (or “not clicked”) appearance of
the cells. The first row of images is mandatory; all subsequent rows are
optional. The second row are images for the clicked appearance; these
images will be used to draw the cell when it is clicked. The appearance of
the cell reverts to its idle image when the mouse is released. The third row
of images are used when the matrixctrl is in its inactive state, i.e. when it has
received an active 0 message.

Image masks can be used to create cells with non-rectangular outlines.
These masks are in the lower rows of the picture file. If you wish to use
masks for any of the cell images, you must provide masks for all of
them—each row of images will have a corresponding row of masks. Like all
masks for Max’s picture-based controls, black pixels create areas of the

Matrix switch control matrixctrl

312

corresponding image that will be drawn, and while pixels create invisible
areas.

Output

list When a cell changes state in response to a mouse click, a list is sent out the
matrixctrl object’s left outlet. The list contains the row, column, and value
(state) of the clicked control. Individual cells can also be set by sending
lists to the object’s left inlet. Rows and columns are numbered starting
with zero, at the upper-left corner of the matrix.

The numbers received in the inlet are compared with the arguments. If the
numbers are the same, and in the same order, they are sent out the outlet
as a list.

Examples

matrixctrl can be used to control multiple gates and switches at once

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider

Matrix switch control matrixctrl

313

rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Output the greatest
in a list of numbers maximum

314

Input

int In left inlet: If the number is greater than the value currently stored in
maximum, it is sent out the outlet. Otherwise, the stored value is sent out.

In right inlet: The number is stored for comparison with subsequent
numbers received in the left inlet.

float Converted to int, unless there is a float argument, in which case all numbers
are compared as floats.

list In left inlet: The numbers in the list are all compared to each other, and the
greatest value is sent out the outlet. The value stored in maximum is replaced
by the next greatest value in the list.The maximum object accepts lists of up to
256 elements.

bang In left inlet: Sends the most recent output out the outlet again.

Arguments

int or float Optional. Sets an initial value to be compared with numbers received in
the left inlet. If the argument contains a decimal point, all numbers are
compared as floats, and the output is a float. If there is no argument, the
initial value is 0.

Output

int The number received in the left inlet is compared with the value currently
held by maximum (or numbers received as a list are compared with each
other), and the greatest of the numbers is sent out the outlet.

float Only if there is an argument with a decimal point.

Examples

The output is the greater of two numbers, or the greatest in a list of numbers

Output the greatest
in a list of numbers maximum

315

See Also

minimum Output the smallest in a list of numbers
past Report when input increases beyond a certain number
peak If a number is greater than previous numbers, output it
> Is greater than, comparison of two numbers

Find the running average
of a stream of numbers mean

316

Input

int or float The number is added to the sum of all numbers received up to that point,
and the mean is sent out.

bang Sends out the previous output (the stored average value).

list The numbers in the list are added together, the sum is divided by the
number of items in the list, and the mean is sent out. All previously
received numbers are cleared from memory.

clear Resets the contents of the object to zero.

Arguments

None.

Output

float Out left outlet: The mean (average) value of all numbers received up to
that point, or of all the numbers received together in a list.

int Out right outlet: How many numbers have been included in the averaging
process.

Examples

Find the average value of many numbers

See Also

accum Store, add to, and multiply a number
anal Make a histogram of number pairs received

Find the running average
of a stream of numbers mean

317

bag Store a collection of numbers
histo Make a histogram of the numbers received
prob Make weighted random series of numbers

Put up a custom
menu bar menubar

318

The menubar object provides control over the Macintosh menu bar. It allows your patch to
put up its own menus, and add items to standard File and Edit menus. When a menu
item is chosen, the item number is sent out the outlet corresponding to the menu
containing the item. You configure the menubar by writing a script in a text editor window
available by double-clicking on the object in a locked patcher.

Input

int A nonzero number displays the menubar object’s menus, 0 restores the
previous contents of the menu bar (either the Max menus or the menus of
another menubar object).

checkitem Followed by a menu number, an item number, and a code 0 or 1, checkitem
puts a check before the specified item if the code is 1, otherwise it removes
the check.

enableitem Followed by a menu number, an item number, and a code 0 or 1, enableitem
enables the specified item if the code is 1, otherwise it disables (and grays
out) the item.

markitem (Macintosh only) Followed by a menu number, an item number, and an
ASCII character code, markitem places the character next to the specified
item. Common mark character ASCII codes are 18 for the check mark and
19 for the diamond mark. You may also wish to use the em dash (209) or
bullet (165).

(menu bar) When the menubar object has been activated (by a nonzero number in its inlet)
and an item is selected in the menu bar, the menu number and item number
are received by the menubar object, and the item number is sent out the
appropriate outlet.

Arguments

int Optional. The first argument sets the number of menus in the object’s
menu bar. If present, it must be at least 5 (one additional menu). The four
default menus, which are always present, are File, Edit, Windows., and
Help. On Macintosh, the Standard System Menu with the Apple icon and
the Max/MSP application menu will appear to the left of the other menus.

The second optional argument is a numerical code to indicate that certain
items in the default menus are to be removed from those menus.

Put up a custom
menu bar menubar

319

The code is a sum of the following values assigned to the commands to be
suppressed: 1=Overdrive in the Options menu, 2=Resume, and 4=Midi
Setup.... in the File menu For example, to eliminate the Overdrive and Midi
Setup commands from the Edit menu, the appropriate second argument is 5
(1+4).

Script Messages

You define a menubar with a series of script messages, typed into a text editor window
opened by double-clicking on a menubar object in a locked patcher. When you close the
script window and confirm saving the changes, the script file is interpreted. If there are no
errors, the customized menu bar will be ready for use when menubar receives a nonzero
number in its inlet.

Each message should be preceded by #X and end with a semicolon (;). The first script
message must be apple and the last end. An example script follows the definition of the
messages.

Messages to Modify Standard Menus

Message Arguments

about • Text of the first menu item (i.e. About My Program…).

On the Macintosh the About item appears as the first item in the
application menu (Max/MSP menu). On Windows, it appears as the first
item in the Help menu. The message apple may be used optionally for
compatibility with older Macintosh versions of Max.

file • Item number to output
• Text of item to add to file menu

The file message inserts items at the top of the standard File menu (before the
Midi Setup... menu item). Each item has a number associated with it which
is sent out the when the item is chosen. The order in which your additional
items appear in the File menu is determined by their order in the script,
not by the (arbitrary) number associated with each item.

edit • Item number to output
• Text of item to add to edit menu

The edit message inserts items into the standard Edit menu after the Clear
item and before the Overdrive and Resume items (which are moved into the

Put up a custom
menu bar menubar

320

Edit menu when menubar is activated). A blank line separates the custom
inserted items from the default items. Each item has a number associated
with it which is sent out the third outlet of menubar when the item is chosen.
The order in which your additional items appear in the Edit menu is
determined by their order in the script, not by the (arbitrary) number
associated with each item.

newitem • Item number to output.

The newitem message followed by a non-zero number directs Max to send the
specified number out the menubar object’s File menu outlet when the user
chooses the New command from the File menu, instead of opening a new
patcher window. The message newitem 0 (or the absence of any newitem
message) causes the New command to behave normally.

open • Item number to output.

The open message followed by a non-zero number directs Max to send the
specified number out the menubar object’s File menu outlet when the user
chooses the Open... command from the File menu, instead of displaying the
Open Document dialog box. The message open 0 (or the absence of any open
message) causes the Open... command to behave normally.

closeitem (No arguments.)

Causes a Close item to appear in the File menu, for closing the active
window.

saveas • Item number to output.

The saveas message followed by a non-zero number directs Max to send the
specified number out the menubar object’s File menu outlet when the user
chooses Save or Save As… from the File menu, instead of performing the
standard Save actions. The number sent out the outlet when Save is chosen
will be 1 less than the number sent when Save As… is chosen. The message
saveas 0 (or the absence of any saveas message) causes the Save and Save As...
commands to behave normally.

Messages for Creating New Menus and Items

Message Arguments

Put up a custom
menu bar menubar

321

menutitle • Menu number (must be at least 5 and must not exceed the number of
outlets specified in the argument to menubar
• Name of menu

The menutitle message adds a new menu before the Window menu. The first
additional menu is number 5. The menu number determines both the
order of the additional menu in the menu bar and the outlet it uses when
the user chooses its items. A menutitle message must appear in the script
before any item messages that refer to its menu number.

item • Menu number
• Item number
• Text of item
• (Optional.) “Meta-characters”

The item message adds an item to an additional menu previously defined with
a menutitle message. The order in which your items appear in the menu is
determined by their order in the script, not by the (arbitrary) number
associated with each item. The item number argument only specifies the
number which is sent out the menubar object’s outlet when the user chooses
this item. It’s a good idea to start your item numbers at 1 and list the items
in the order you want them to appear in a menu.

You can alter the appearance of a menu item by including “meta-
characters” in the item text. For more on metacharacters, consult the Apple
QuickTime Developer documentation found at:

http://developer.apple.com/documentation/Carbon/Reference/Menu_Manager/
menu_mgr_ref/function_group_4.html

A few of the recognized meta-characters are:

/ followed by a character, assigns that character as a
Command-key equivalent

< followed by B, I, O, S, or U, specifies a font style (such as O for
outline)

! followed by a character, marks the menu item with that
character

(disables the menu item

Put up a custom
menu bar menubar

322

Thus, these special characters cannot appear as part of the actual item text.
For example, the text On/Off will appear as “Onff_O”, not as “On/Off”.

Completing the Script Definition

Message Arguments
end (No arguments.)

The end message builds the menus and reports any errors encountered.

Output

int The default menubar object has four outlets. If the menubar object has been
activated (by receiving a nonzero number in its inlet), the leftmost outlet
sends a 1 when the first item in the Apple menu is chosen. The second
outlet sends the item number when an extra item is chosen from the File
menu. The third outlet sends the item number when an extra item is
chosen from the Edit menu. The fourth outlet sends an item number when
the user chooses an item from the Windows menu. If additional menus
have been defined, item numbers are sent out the additional outlets to the
right, starting with the fifth one.

Examples

Here is an example menubar script:

#X about About Note Algorithms…;
#X closeitem;
#X menutitle 5 Algorithm;
#X item 5 1 Transpose;
#X item 5 2 Invert;
#X item 5 3 Randomize;
#X end;

Note that we suggest capitalizing each letter in a menu item to maintain a consistent style
with other items in the menu.

The above script is used in a menubar in the following example, which uses the extra menu
to switch among three note-processing algorithms.

Put up a custom
menu bar menubar

323

An implementation of the example menubar script

See Also

umenu Pop-up menu to display and send commands
Menus Explanation of commands

Send any
message message

324

Input

The message object (a box that displays and sends out a message) is often
referred to as the message box, in order to distinguish it from a message (the
data that is actually sent from one object to another).

bang Sends out the contents of the message box. A mouse click on the message box
has the same effect.

int or float The number replaces the value stored in the argument $1, if such an
argument exists, then sends out the contents of the message box.

list Each item in the list is stored in place of its corresponding $ argument, if
such an argument exists, then the contents of the message box are sent out.

append The word append, followed by a message, appends that message (preceded by
a space) at the end of the contents of the message box, without triggering
output.

color The word color, followed by a number from 0 to 15, sets the color of the
message box to one of the object colors which are also available via the Color
command in the Object menu.

open Opens the message Inspector window. If the word open is followed by a 1, the
contents of the message box will be sent out its outlet when the text field in
the Inspector window is changed or the Inspector window is closed. The
second optional argument to the open message is a symbol which specifies
the prompt that will appear at the top of the dialog box. The default
prompt is Set Message Text. Use double quotes if you want to include
spaces in the prompt.

prepend The word prepend, followed by a message, places that message (followed by a
space) before the beginning of the contents of the message box, without
triggering output.

set The word set, followed by a message, sets the contents of the message box to
that new message, without triggering output. The word set by itself erases the
contents of the message box.

symbol The word symbol, followed by a symbol, stores that symbol in the $1
argument, then sends out the contents of the message box.

Send any
message message

325

Inspector

The contents of the message object can be changed by selecting the object
and choosing Get Info… from the Object menu. You cannot use the
Inspector for the message object in a floating window.

Typing in the Set Message Text text area specifies the contents of the
message box.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

anything The initial contents of the message box are typed in when the patcher
window is unlocked. Any message of up to 256 items can be contained in
a message box. Certain characters have special meaning.

$ A dollar sign ($), followed immediately by a number in the range 1-9, is a
changeable argument. This argument’s value can be replaced by the
corresponding item in a list received in the inlet. (Example: $2 stores the
second item in a list as its value before sending out the contents of the message
box.) The value of a changeable argument is initially 0.

, A comma (,) divides a message into separate messages which will be sent out
in order. (Example: 3, 4, 5 sends out 3, then 4, then 5.)

; A semicolon (;) sends a message to a receive object. The first item following a
semicolon is the name of the receive object. The rest of the message (or up to
the next semicolon) is sent to that object, rather than out the outlet. The first
item after the semicolon can be a changeable argument, so an incoming
message can set the destination of the message “on the fly.”

\ A backslash (\) is used to negate the special traits of a special character.
When a backslash immediately precedes a dollar sign, comma, or semicolon,
the character is treated as a normal character. (Example: Notes played were C\, E\,
and G.)

Send any
message message

326

Output

anything The contents of the message box are normally sent out the outlet. If a
semicolon is present, the rest of the message (or up to the next semicolon)
is sent to the specified receive object, rather than out the outlet.

Examples

Send a simple message, or construct a message of any degree of complexity

See Also

append Append arguments at the end of a message
atoi Convert ASCII characters to integers
 itoa Convert integers to ASCII characters
jit.cellblock Two-dimensional storage and viewing
prepend Place one message at the beginning of another
receive Receive messages without patch cords
Tutorial 1 Saying “Hello!”
Tutorial 25 Managing messages

Output a bang message
at regular intervals metro

327

Input

int or float In left inlet: Any number other than 0 starts metro. At regular intervals,
metro sends a bang out the outlet. 0 stops metro.

In right inlet: The number is the time interval, in milliseconds, at which
metro sends out a bang. A new number in the right inlet does not take effect
until the next output is sent. The metro object’s minimum interval time is .02
second.

bang In left inlet: Starts metro.

stop In left inlet: Stops metro.

clock The word clock, followed by the name of an existing setclock object, sets the
metro to be controlled by that setclock rather than by Max’s internal
millisecond clock. The word clock by itself sets metro back to using Max’s
regular millisecond clock.

Arguments

int or float Optional. The first argument sets an initial value for the time interval at
which metro sends its output. If there is no argument, the initial time
interval is 5 milliseconds. Any argument less than 5 will be set to 5. If the
second argument is 1, metro uses the MIDI Manager external clock (see the
ext message discussion above). If the second argument is 0 or not present,
metro uses Max’s internal millisecond clock.

Output

bang A bang is sent immediately when metro is started, and at regular intervals
thereafter.

Output a bang message
at regular intervals metro

328

Examples

Repeatedly send a message or trigger a process

See Also

clocker Report the elapsed time, at regular intervals
counter Count the bang messages received, output the count
cpuclock Precise “real-world” time measurements
delay Delay a bang before passing it on
setclock Control the clock speed of timing objects remotely
tempo Output numbers at a metronomic tempo
uzi Send a specific number of bang messages
Tutorial 4 Using metro

Send note-offs for hanging
note-ons in raw MIDI data midiflush

329

Input

int midiflush expects raw MIDI data from a source such as seq or midiin. midiflush
passes the data through unchanged, and observes which note-on messages
on each channel have not received matching note-off messages.

bang When midiflush receives a bang, it outputs MIDI note-off messages for all
note-ons which have not been matched by note-offs since the object was
created (or the last bang message was sent).

clear Erases any note-ons held by midiflush, without sending any note-offs.

Arguments

None.

Output

int midiflush passes all its input through to its output, and sends MIDI note-off
messages (as a series of numbers) for all note-ons which have not been
matched by note-offs at its input.

Examples

When midiflush receives a bang, it supplies note-offs for any held note-ons

See Also

flush Provide note-offs for held notes
midiin Output received raw MIDI data
midiinfo Set pop-up menu with names of MIDI devices
midiout Transmit raw MIDI data
seq Sequencer for recording and playing MIDI

Prepare data in the form
of a MIDI message midiformat

330

Input

Numbers received in the inlets are used as data for MIDI messages. The
data is formatted into a complete MIDI message (with the status byte
determined by the inlet) and sent out the outlet as individual bytes.

list In leftmost inlet: The first number is a pitch value and the second number
is a velocity value, to be formatted into a note-on message.

In 2nd inlet: The first number is an aftertouch (pressure) value and the
second number is a pitch value (key number), to be formatted into a
polyphonic key pressure message.

In 3rd inlet: The first number is a control value and the second number is a
controller number, to be formatted into a control message.

int In 4th inlet: The value is formatted into a program change message.

In 5th inlet: The value is formatted into an aftertouch (channel pressure)
message.

In 6th inlet: The value is formatted into a pitch bend message.

In rightmost inlet: The number is stored as the channel number of the
MIDI messages. The actual value of the status byte is dependent on the
channel. Numbers greater than 16 are wrapped around to stay between 1
and 16.

float Converted to int.

Arguments

int Optional. Sets an initial value for the channel number of the MIDI
messages. Numbers greater than 16 are wrapped around to stay between 1
and 16. If there is no argument, the channel number is initially set to 1.

float Converted to int.

Output

int MIDI messages are sent out as individual bytes, for recording by the seq
object or for transmission by the midiout object.

Prepare data in the form
of a MIDI message midiformat

331

Examples

Numbers are formatted into MIDI messages and sent out as individual bytes

See Also

borax Report current information about note-ons and note-offs
midiinfo Set pop-up menu with names of MIDI devices
midiout Transmit raw MIDI data
midiparse Interpret raw MIDI data
MIDI MIDI overview and specification
Tutorial 34 Managing raw MIDI data

Output received
raw MIDI data midiin

332

Input

(MIDI) midiin receives all MIDI messages from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming MIDI
messages. The word port is optional and may be omitted.

(mouse) Double-clicking on a midiin object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming MIDI
messages. If there is no argument, midiin receives from port a (or the first
input port listed in the MIDI Setup dialog.)

Output

int All MIDI messages received from the specified port are sent out the outlet,
byte-by-byte. Note that midiin does not “clean up” any use of running
status in the incoming MIDI stream.

Examples

MIDI messages received in a port are output by a midiin object

See Also

midiout Transmit raw MIDI data
midiparse Interpret raw MIDI data
midiinfo Set pop-up menu with names of MIDI devices

Output received
raw MIDI data midiin

333

notein Output received MIDI note messages
rtin Output received MIDI real time messages
sysexin Output received MIDI system exclusive messages
xnotein Interpret MIDI note messages with release velocity
xbendin Interpret extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data
Using MIDI Using Max with MIDI
MIDI MIDI overview and specification
Ports How MIDI ports are specified

Set a pop-up menu with
names of MIDI devices midiinfo

334

Input

int In left inlet: Causes midiinfo to send out a series of messages containing the
names of the current MIDI output devices. Those messages can be used to
set the individual items of a pop-up umenu object connected to the midiinfo
object’s outlet. The number received in the midiinfo object’s left inlet is then
sent in a set message to set the currently displayed menu item.

In right inlet: Causes midiinfo to send out a series of messages containing the
names of the current MIDI input devices. Those messages can be used to
set the individual items of a pop-up umenu object connected to the midiinfo
object’s outlet. The number received in the midiinfo object’s right inlet is then
sent in a set message to set the currently displayed umenu item, unless the
number is less than zero, in which case no set message is sent.

bang In left inlet: Same as int, but doesn’t send a set message after setting the
umenu items. The equivalent message to bang for retrieving input device
names is -1 in the right inlet.

controllers In left inlet: Causes midiinfo to send out a series of messages containing the
names of all MIDI controllers (devices that transmit MIDI) in the current
MIDI setup. Those messages can be used to set the individual items of a
pop-up umenu object connected to the midiinfo object’s outlet. The word
controllers may be followed by a number, which sets the pop-up umenu to that
item number after the menu items have been created.

Arguments

None.

Output

clear midiinfo first sends a clear message out its outlet to clear all the receiving
umenu object’s items.

append Immediately after sending the clear message, midiinfo sends an append message
for each MIDI input or output device name, to set the items of a connected
umenu object. The device names will be sent out in the order in which they
appear in Max’s MIDI Setup dialog.

Set a pop-up menu with
names of MIDI devices midiinfo

335

set If the incoming message to midiinfo is an integer greater than or equal to zero,
a set message is sent after the append messages, to set the currently displayed
menu item.

Examples

Get output device names for MIDI output objects …and for MIDI input objects

See Also

midiin Output received raw MIDI data
midiout Transmit raw MIDI data
umenu Pop-up menu to display and send commands
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Transmit
raw MIDI data midiout

336

Input

int The number is transmitted as a byte of a MIDI message to the specified
port.

float Converted to int.

list The numbers are transmitted sequentially as individual bytes of a MIDI
message to the specified port.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI output port or
device, specifies the port used to transmit the MIDI messages. The word port
is optional and may be omitted.

(mouse) Double-clicking on a midiout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI data. If there is no
argument, midiout transmits out port a (or the first output port listed in the
MIDI Setup dialog.)

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

Output

(MIDI) There are no outlets. The output is a byte of a MIDI message transmitted
directly to the object’s MIDI output port.

Transmit
raw MIDI data midiout

337

Examples

MIDI bytes received in the inlet are transmitted out the specified port

See Also

midiformat Prepare data in the form of a MIDI message
midiin Output received raw MIDI data
midiinfo Set pop-up menu with names of MIDI devices
noteout Transmit MIDI note messages
sxformat Prepare MIDI system exclusive messages
xbendout Format extra precision MIDI pitch bend messages
xnoteout Format MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
Using MIDI Using Max with MIDI
MIDI MIDI overview and specification
Ports How MIDI ports are specified

Interpret
raw MIDI data midiparse

338

Input

int Numbers received in the inlet are treated as bytes of a MIDI message
(usually from a seq or midiin object). The status byte determines the outlet
which will be used to output the data bytes.

float Converted to int.

bang Clears the midiparse object’s memory of any partial MIDI message received
up to that point.

Output

list Out leftmost outlet: A note-on message. The first number is a pitch value
and the second number is a velocity value.

Out 2nd outlet: A polyphonic key pressure message. The first number is an
aftertouch (pressure) value and the second number is a pitch value (key
number).

Out 3rd outlet: A control message. The first number is a control value and
the second number is a controller number.

int Out 4th outlet: The number is a program change.

Out 5th outlet: The number is an aftertouch (channel pressure) value.

Out 6th outlet: The number is a pitch bend value.

Out rightmost outlet: The number is the MIDI channel number.

Examples

Interpret the meaning of MIDI messages and filter different types of data

Interpret
raw MIDI data midiparse

339

See Also

borax Report current information about note-ons and note-offs
midiformat Prepare data in the form of a MIDI message
midiin Output received raw MIDI data
midiinfo Set pop-up menu with names of MIDI devices
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Output the smallest
in a list of numbers minimum

340

Input

int In left inlet: If the number is less than the value currently stored in
minimum, it is sent out the outlet. Otherwise, the stored value is sent out.

In right inlet: The number is stored for comparison with subsequent
numbers received in the left inlet.

float Converted to int, unless there is a float argument, in which case all numbers
are compared as floats.

list In left inlet: The numbers in the list are all compared to each other, and the
smallest value is sent out the outlet. The value stored in minimum is replaced
by the next smallest value in the list. The minimum object accepts lists of up
to 256 elements.

bang In left inlet: Sends the most recent output out the outlet again.

Arguments

int or float Optional. Sets an initial value to be compared with numbers received in
the left inlet. If the argument contains a decimal point, all numbers are
compared as floats, and the output is a float. If there is no argument, the
initial value is 0.

Output

int The number received in the left inlet is compared with the value currently
held by minimum (or numbers received as a list are compared with each
other), and the smallest of the numbers is sent out the outlet.

float Only if there is an argument with a decimal point.

Examples

The output is the lesser of two numbers, or the smallest in a list of numbers

Output the smallest
in a list of numbers minimum

341

See Also

maximum Output the greatest in a list of numbers
trough If a number is less than previous numbers, output it
< Is less than, comparison of two numbers

Report modifier key presses
on the computer keyboard modifiers

342

Input

(keyboard) The keyboard input to modifiers comes directly from the computer keyboard.

bang Sends out a report of the current modifier key states.

interval The word interval followed by a number, specifies the rate, in milliseconds,
used when polling the state of the modifier keys. A value of zero disables
polling.

Arguments

int Optional. Specifies a polling rate in milliseconds. The default value is 0 (no
polling).

Output

int Output is sent whenever a modifier key is pressed down on the computer
keyboard. Modifier key states are reported as 0 (not pressed) or 1 (pressed).

Out left outlet: The on/off state of the Shift key.

Out second outlet: The on/off state of the Caps Lock key.

Out third outlet: the on/off state of the Option key on Macintosh or the
Alt key on Windows.

Out fourth outlet: the on/off state of the Control key.

Out fifth outlet: the on/off state of the Command key on Macintosh or
the Control key on Windows.

Note: The fourth and fifth outlets both report the on/off state of the
Control key on Windows, since the Command key on Macintosh is
equivalent to the Control key on Windows. For cross-platform uses,
Windows users should use the fifth outlet of the modifiers object for reporting
the Control key state. The fourth outlet also reports the Control key on
Windows so that (older) Macintosh patches that use this key can be opened
on Windows systems. The Macintosh Control key normally corresponds to
the right-hand mouse button on Windows. See the section on file and key
mappings in the Max Tutorials for a complete discussion of cross-platform
keyboard issues.

Report modifier key presses
on the computer keyboard modifiers

343

Examples

Modifier keys typed on the computer keyboard can be used to trigger messages

See Also

key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
numkey Interpret numbers typed on the computer keyboard

Pass numbers only when
the mouse button is up mousefilter

344

Input

int If the mouse button is up, the number is sent out the outlet. Otherwise, the
number is ignored.

Arguments

None.

Output

int The number received in the inlet is sent out only if the mouse button is up.

Examples

Nothing gets through unless the mouse is up

See Also

mousestate Report the status and location of the mouse
Tutorial 39 Mouse control

Report the status and
location of the mouse mousestate

345

Input

bang Sends out the current horizontal and vertical coordinates of the location of
the mouse, as well as the change in location since the last output.

mode The word mode, followed by a long value specifices the type of reference to
use for the mouse coordinates from the second and third outlets. A value of
0 specifies to use screen-relative coordinates where 0,0 is the top left corner
of the primary display. A value of 1 specifies patcher-relative coordinates
where 0,0 is the top left corner of the content area of the mousestate object’s
patcher. A value of 2 specifies front-most patcher relative coordinates
where 0,0 is the top left corner of the content area of the top patcher
window.

poll Causes mousestate to send out the mouse location, and the change in mouse
location, whenever the mouse is moved, as well as when a bang is received. If
poll is followed by the name of a graphics window, the coordinates returned
by mousestate will be local to the graphics window, and only sent while the
graphics window is visible.

nopoll Undoes a poll message, reverting mousestate to its normal condition of waiting
for a bang before reporting.

zero Resets the point mousestate considers as the 0,0 point from which to measure
the mouse location. The current location of the mouse is considered the
new 0,0 point.

reset Resets the 0,0 point to its default setting, in the upper left corner of the
screen.

Arguments

None.

Output

int mousestate must have received at least one bang or poll message in its inlet
before any output is sent out.

Out left outlet: Each time the mouse button is pressed, 1 is sent out. Each
time the mouse button is released, 0 is sent out.

Report the status and
location of the mouse mousestate

346

Out 2nd outlet: The horizontal location of the mouse, measured in terms
of the number of pixels the mouse is to the right of the 0 point.

Out 3rd outlet: The vertical location of the mouse, measured in terms of
the number of pixels the mouse is below the 0 point.

Out 4th outlet: The change in horizontal location of the mouse, since the
last time the mouse location was reported.

Out right outlet: The change in vertical location of the mouse, since the
last time the mouse location was reported.

Examples

The mouse can provide continuous or discrete values

See Also

mousefilter Pass numbers only when the mouse button is up
Tutorial 39 Mouse control

Play a QuickTime
movie in a window movie

347

Note: The movie object requires that QuickTime be installed on your system. If you are
using Max on Windows, we recommend that you install QuickTime and choose a
complete install of all optional components.The movie object plays a QuickTime movie in
its own window, and the imovie object plays a QuickTime movie in a box inside a patcher
window.

Input

All messages below, recognized by the movie object, are similarly recognized by imovie.

int Sets the current time location of the movie. If the movie is playing, it will
play from the newly set location. 0 is always the beginning. The end time
varies from one movie to another. (The length message reports the end time
location out the left outlet.)

active The word active, followed by a nonzero number, makes the movie active (the
default). Followed by a 0, active makes the movie inactive. An inactive
movie will not play or change location.

autofit The word autofit, followed by a nonzero number, scales the movie to fit in
the window currently displayed.

bang Same as resume.

border The word border, followed by a 0 or 1, toggles the movie’s border type. The
message border 1 (the default) uses the traditional Macintosh-style border for
the movie window. The message border 0 displays only the rectangle in which
the movie plays.

clear Has the same effect as dispose with no arguments.

dispose Closes the movie window if it is open, and removes all movies from the movie
object’s memory. If the word dispose is followed by the name of a loaded
movie, only the named movie will be removed.

getrate Reports the current rate multiplied by 65536 out the right outlet. Thus,
normal speed is reported as 65536, half speed is reported as 32768, double
speed backward is reported as -131072, etc. If the movie is not playing, the
rate is reported as 0, and if no movie has yet been loaded nothing is sent
out.

length Reports the end time location of the movie.

Play a QuickTime
movie in a window movie

348

loadintoram The word loadintoram, followed by a nonzero number, attempts to load the
entire movie into memory, if possible. The default is 0.

loop The word loop, followed by a nonzero number, turns looping for the current
film on. loop 0 (the default) disables looping.

loopend The word loopend, followed by a number, sets the end point of a loop. The
default value is corresponds to the end of the film.

loopset The word loopset, followed by two numbers, sets the beginning and end
points of a loop. the default values are 0 (i.e., the start of the film) for the
start point and the end of the film for the endpoint.

loopstart The word loopstart, followed by a number, sets the beginning point of a
loop. The default value is 0 (i.e., the start of the film).

matrix The word matrix, followed by nine floating point numbers, reloads the current
movie into RAM after performing a transformation matrix operation on the
image. This transformation is the same one used for the mapping in
QuickTime of points from one coordinate space (i.e, the original image) into
another coordinate space (a scaled, rotated, or translated version of the
original image).

The transform matrix operation consists of nine matrix elements

a b u

c d v

t_x t_y w

if u and v are 0., and w is 1., we have the following translation formula.

x’ = a*x + c*y + t_x;

y’ = b*x + d*y + t_y

The following formulas are used for scaling/rotation:

a=xscale*cos(θ)

b=yscale*sin(θ)

c=xscale*(-sin(θ))

d=yscale*cos(θ)

Play a QuickTime
movie in a window movie

349

For more on the transformation matrix, consult the Apple QuickTime
Developer documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/
iqMovieToolbox.c.htm#18006

mute The word mute, followed by a nonzero number, turns off the movie’s sound
(if it has any). Followed by a 0, mute turns on the movie’s sound (the
default).

next The word next, followed by a number, moves the time location ahead by that
amount. If no number is supplied, next moves the time ahead by 5. (The
actual time meaning of these units varies from movie to movie.)

nextmovie Stops the movie if it is playing, and switches to the movie that was loaded
just prior to the current movie. (The movies are stored in reverse order from
the order in which they were loaded.) If there is no prior movie, nextmovie
wraps around back to the most recently loaded movie. Note that the title of
the movie window is not automatically changed, even though the “current
movie” has been changed by nextmovie.

open Brings the movie window to the foreground (applies only to movie, not imovie).

passive The word passive, followed by a nonzero number, sets the passive mode. In
passive mode, starting a movie will not cause the frame to change unless a
bang message is received. passive 0 (the default) sets the movie object to
respond to normal start messages.

pause Stops the movie.

prev The word prev, followed by a number, moves the time location backward by
that amount. If no number is supplied, prev moves the time backward by 5.

quality The word quality, followed by a number, sets the minimum interval, in
milliseconds, between movie redraws. The default is 0 (i.e., no minimum).

rate The word rate, followed by one or more integers or floats, sets the playing
speed of the movie. If rate is followed by one integer, that number is taken to
be a whole number playing speed. If rate is followed by two numbers, the
first number is taken to be the numerator and the second the denominator of
a fractional speed. 1 is the normal playing speed, 0 means the movie is
stopped, and a negative rate plays backwards. rate 1 2 would play the movie at
half speed. Immediately after you send a non-zero rate message, the movie

Play a QuickTime
movie in a window movie

350

will begin playing, so you may wish to precede any rate messages with an
integer to locate to the desired starting position.

read The word read, followed by a symbol, looks for a QuickTime movie file with
that name in Max’s file search path, and opens it if it exists, displaying the
movie’s first frame in a movie window. If the filename contains any spaces
or special characters, the name should be enclosed in double quotes or each
special character should be preceded by a backslash (\). The word read by
itself puts up a standard Open Document dialog box and reads in any movie
file you select. The read message will open at least 26 different types of files
that can be opened by QuickTime, these include movie files such as
MPEG, audio files including AIFF and MP3, and graphics files including
GIF and JPEG.

readany The readany message opens any type of file, using QuickTime routines to try
to interpret it as a movie or other supported media file.

rect The word rect, followed by four numbers, specifies the size of the rectangle
in which the movie is displayed within the movie window. The first two
numbers specify the position of the rectangle within the movie window, in
relative coordinates, and the second two numbers specify the width and
height, in pixels, of the rectangle.

resume Begins playing the movie from its current location, at the most recently
specified rate.

start Sets the movie’s rate to 1 and begins playing from the beginning. If the
word start is followed by the name of a specific loaded movie, that movie
becomes the current movie before starting.

startat The word switch, followed by a number, set the current time location of the
movie and begins playing from that point.

stop Stops the movie.

switch The word switch, followed by a symbol, make the named movie the active one
without changing the transport state (See the start message).

time Reports the current time location of the movie.

title Sets the title of the movie window to the name of the current movie. This is
necessary in conjunction with the nextmovie message (or a start message
specifying a different movie) if you want the title of the movie window to
show the name of the current movie correctly. You can set the title of the

Play a QuickTime
movie in a window movie

351

movie window to any text you want, using the message title followed by a
symbol.

vol The word vol, followed by a number, sets the movie’s sound volume. Any
number less than 1 mutes the sound. The maximum volume is 255.

wclose Closes the movie window.

windowpos The word windowpos, followed by four numbers, specifies the location and
size of the movie window on the screen. The four numbers specify the left,
top, right, and bottom of the movie window in global coordinates. This
message is only supported by the movie object, not the imovie object.

Arguments

symbol Optional. Specifies the name of a QuickTime movie file to be read into
movie automatically when the patch is loaded. The same effect can be
achieved for imovie by selecting the object in an unlocked patcher and
choosing Get Info... from the Object menu to select a movie file. Both
objects retain the name(s) of the movie(s) they have loaded at the time that
the patch is saved, and attempt to load the same movie(s) the next time the
patch is opened.

Output

int Out left outlet: The current time location, when a time message is received;
the end time location when a length message is received.

Out middle outlet: The horizontal position of the mouse, relative to the left
side of the movie box or window, when the mouse is clicked or dragged
inside the movie.

Out right outlet: The vertical position of the mouse, relative to the top of
the movie box or window, when the mouse is clicked or dragged inside the
movie.

Also, in response to a getrate message, the current movie rate multiplied by
65536 is sent out the right outlet.

Play a QuickTime
movie in a window movie

352

Examples

Play a QuickTime movie, or move through it in a variety of ways

Hold multiple movies (which are stored in reverse order from the order received)

See Also

imovie Play a QuickTime movie in a patcher window

Convert a MIDI
note number to frequency mtof

353

Input

float or int A MIDI note number value from 0 to 127. The corresponding frequency is
sent out the outlet.

Arguments

None.

Output

float The frequency corresponding to the received MIDI pitch value.

Examples

Use MIDI note number to provide frequency value for an oscillator

See Also

expr Evaluate a mathematical expression
ftom Convert frequency to a MIDI note number

Multi-track
sequencer mtr

354

Input

record In left inlet: Begins recording all messages received in the other inlets. The
word record, followed by one or more track numbers, begins recording
those tracks.

In other inlets: Begins recording messages on the track that corresponds to
the inlet.

play In left inlet: Plays back all messages recorded earlier, sending them out the
corresponding outlets in the same rhythm and at the same speed they were
recorded. The word play, followed by one or more track numbers, begins
playing those tracks.

In other inlets: Plays back all messages on the track that corresponds to the
inlet.

stop In left inlet: Stops mtr when it is recording or playing. The word stop,
followed by one or more track numbers, stops those tracks.

In other inlets: Stops the track that corresponds to the inlet.

next In left inlet: Causes each track to output only the next message in its
recorded sequence. When a next message is received, the track number and
the delta time of each message being output are sent out the leftmost outlet
as a list. The word next, followed by one or more track numbers, outputs
the next message stored in those tracks.

In other inlets: Outputs the next message stored on the track that
corresponds to the inlet.

rewind In left inlet: Resets mtr to the beginning of its recorded sequence. This
command is used to return to the beginning of the sequence when stepping
through messages with next. To return to the beginning of a sequence while
playing or recording, just repeat the play or record message. When mtr is
playing or recording, a stop message should precede a rewind message. The
word rewind, followed by one or more track numbers, returns to the
beginning of those tracks.

In other inlets: Returns the pointer to the beginning of the track that
corresponds to the inlet.

Multi-track
sequencer mtr

355

mute In left inlet: Causes mtr to stop producing output, while still continuing to
“play” (still moving forward in the sequence). The word mute, followed by
one or more tracks, mutes those tracks.

In other inlets: Mutes the track that corresponds to the inlet.

delay In left inlet: The word delay, followed by a number of milliseconds, sets the
first delta time value of each track to that number, so that all tracks begin
playing back that amount of time after the play message is received.

In other inlets: Sets the initial delta time of the track that corresponds to
the inlet.

first In left inlet: The word first, followed by a number of milliseconds, causes mtr
to wait that amount of time after a play message is received before playing
back. Unlike delay, first does not alter the delta time value of the first event
in a track, it just waits a certain time (in addition to the first delta time)
before playing back from the beginning.

write In left inlet: Calls up the standard Save As dialog box, allowing the contents
of mtr to be saved as a separate file. Note that the only way to save the
contents of mtr is with the write message; the object’s contents cannot be
embedded in a patcher file.

In other inlets: Writes a file containing only the track that corresponds to
the inlet.

read In left inlet: Calls up the standard Open Document dialog box, so that a
previously saved file can be read into mtr.

In other inlets: Opens a file containing only the track that corresponds to
the inlet.

int In any inlet other than the left inlet: If the track is currently being recorded,
numbers received in that track’s inlet are combined with a delta time (the
number of milliseconds elapsed since the previous event) and stored in mtr.

list In any inlet other than the left inlet: If the track is currently being recorded,
lists received in that track’s inlet are stored in mtr, preceded by the delta
time.

Multi-track
sequencer mtr

356

any symbol In any inlet other than the left inlet: If the track is currently being recorded,
symbols received in that track’s inlet are stored in mtr, preceded by the delta
time.

Although mtr can record individual bytes of MIDI messages received from
midiin, it stores each byte with a separate delta time, and does not format the
MIDI messages the way seq does. If you want to record complete MIDI
messages and edit them later, seq is better suited for the task. On the other
hand, mtr is perfectly suited for recording sequences of numbers, lists, or
symbols from virtually any object in Max: specialized MIDI objects such as
notein or pgmin, user interface objects such as number box, slider, and dial, or any
other object.

In order for a file to be read into mtr for playback, it must be in the proper
format. An mtr multi-track sequence can even be typed in a text file, provided
it adheres to the format. The contents of the different tracks are listed in
order in an mtr file, and the format of each track is as follows. Note that a
semicolon (;) ends each line.

Line 1: track <track number>; (Track in which to store subsequent data)
Line 2, etc.: <delta time> <message>;
Last line: end; (End of this track’s data)

clear In left inlet: Erases the contents of mtr. The word clear, followed by one or
more track numbers, clears those tracks.

In other inlets: Erases the track that corresponds to the inlet.

unmute In left inlet: Undoes any previously received mute messages. The word
unmute, followed by one or more track numbers, unmutes those tracks.

In other inlets: Unmutes the track that corresponds to the inlet.

Arguments

int Optional. Specifies the number of tracks in the mtr. The number of tracks
determines the number of inlets and outlets in addition to the leftmost
inlet and outlet. Up to 32 tracks are possible. If there is no argument, there
will be only one track.

Multi-track
sequencer mtr

357

Output

anything Out all track outlets: When a play message is received in the leftmost inlet,
the messages stored in each track are sent out the outlet of that track, in
the same rhythm and at the same speed they were recorded. A play message
received in the inlet of an individual track plays that particular track.

When a next message is received in the leftmost inlet, the next message in
each track is sent out its corresponding outlet. The word next, received in the
inlet of an individual track, sends out the next message in that track.

list Out left outlet: Whenever a value is sent out in response to a next message,
the track number and delta time of that value are sent out the left outlet as a
two-item list.

Examples

Record MIDI data or other events

See Also

hslider Output numbers by moving a slider onscreen
multislider Multiple slider and scrolling display
seq Sequencer for recording and playing MIDI
timeline Time-based score of Max messages
rslider Display or change a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 36 Multi-track sequencing

Multi-track
sequencer mtr

358

Sequencing Recording and playing back MIDI performances

Multiple slider
and scrolling display multislider

359

Input

int Sets all slider values and positions to the number received and outputs a list
reflecting the current values. If the multislider data type is set to float, the values
in the incoming list are converted to floats.

float Sets all slider values and positions to the number received and outputs a list
reflecting the current values. If the multislider data type is set to int, the values in
the incoming list are truncated and converted to ints.

list Sets each slider to a corresponding value in the list from left to right, with the
first value in the list setting the first slider. If the multislider has a different number
of sliders than is present in the list, the number of sliders is changed to the
number of items in the list. In such a case, the outside dimensions of the
multislider will not change, only the width or height of the sliders.

bang Outputs the current slider values as a list.

border The word border, followed by an integer, tells a multislider which of its outside bor-
ders to draw. This is useful for placing multislider objects next to each other.

It is both easier and more customary to use the Inspector to set the colors for
the border. The arguments to border are:

border 0 Draw no borders
border 1 Draw left border
border 2 Draw right border
border 4 Draw top border
border 8 Draw bottom border

Any combination of borders can be drawn by adding these values. For
example, border 15 draws all borders.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the multislider object. The default value is white
(brgb 255 255 255).

candycane The word candycane, followed by a integer value from 1 to 23, sets the multislider
object to use multiple colors for adjacent sliders, with the color pattern
repeating (like the stripes in a candycane) every N sliders (indicated by the
integer argument). The first eight colors can be set with the frgb and rgb 4 –
rgb10 messages, the next fifteen colors are taken from the Max application’s

Multiple slider
and scrolling display multislider

360

color palette. The number of stripes in the candycane can also be set using the
Inspector.

compatibility The word compatibility, followed by a one or zero, toggles the backwards-
compatibility mode for the maximum, minimum and sum messages. If this mode is
enabled, the multislider object will output a the single-value results of these
messages out the left outlet, otherwise the values will be output out the right
(single slider value) outlet, just like the fetch message. Patches saved before Max
4.5 will automatically open with compatibility mode enabled.

contdata The word contdata, followed by a one or zero, toggles continuous output mode
for non-scrolling display styles. If this mode is enabled, the multislider object will
output a list of its current slider values each time the mouse is clicked and
dragged. If this mode is turned off, the multislider object will only output a list
when the mouse button is pressed and when it is released. The continuous
output mode can also be set using the Inspector.

displayonly Toggles display only mode on and off. When display only mode is on, the
multislider object will not allow user interaction with the display. The default is
off (0).

echo Toggles echo mode on and off. When echo mode is on, the multislider object will
output any list received in its inlet. The default is off (0).

fetch The word fetch, followed by a number, sends the value of the numbered slider
out the right (single slider value) outlet.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the slider color of the multislider object. The default value is black (frgb 0
0 0).

ghostbar The word ghostbar, followed by a percentage value from 1 to 100, enables the
drawing of a “ghost” bar when mode the multislider object is in Thin Line mode.
A percentage value of 1 will draw a very light bar behind the Thin Line line, a
value of 50 will draw a half-dark bar, and a value of 100 will draw a bar the same
color as the Thin Line slider. When the word ghostbar is followed by a zero, this
drawing mode is disabled (which it is by default).

interp The word interp, followed by a one or zero, enables or disables interpolation
mode. When interpolation mode is on (the default), the multislider object will
output interpolated values when a slider is moved. In most cases you probably
will not want to disable interpolation mode.

max Sets all sliders to their maximum values.

Multiple slider
and scrolling display multislider

361

maximum The word maximum causes the value of the slider with the largest value to be sent
out the right outlet.

min Sets all sliders to their minimum values.

minimum The word minimum causes the value of the slider with the smallest value to be
sent out the right outlet.

(mouse) The way that a multislider responds to the mouse is determined by its chosen dis-
play style (see Arguments, below). A multislider will respond to mouse clicks
when its display style is non-scrolling (Thin Line or Bar). Clicking on a
forward or reverse scrolling display multislider (Point Scroll or Line Scroll) has no
effect.

If continuous output mode is enabled, the list of the current values will be sent
out each time the mouse moves while dragging. If the continuous output
mode is off, this list is only sent out when the mouse button is pressed or
released. The continuous output option can be set in the multislider object's
Inspector.

When the display style is non-scrolling, clicking on any slider in a multislider
immediately positions the slider at the click point. The current value of all sliders
is sent out. Dragging across a multislider will set the other sliders in the same
manner. If continuous output mode is enabled, the list of the current values will
be sent out each time the mouse moves while dragging. If the continuous output
mode is off, this list is only sent out when the mouse button is pressed or
released. The continuous output option can be set in the multislider object's
Inspector.

If the mouse is moved quickly across a range of sliders, the mouse's position is
likely not to be polled quickly enough by the computer to provide a value for
each and every slider it appears to pass. By default, multislider will automatically
interpolate slider values between successively polled mouse positions. You can
use the interp message to disable interpolation, if desired.

peakhold The word peakhold, followed by a one or zero, enables or disables peak hold
mode. When peak hold mode is on, the peak value of each slider is represented
by a thin line, whose color can be set in the multislider object's Inspector. the peak
values may be reset with the peakreset message.

peakreset Resets the current peak values to the current slider values.

quantiles In left inlet: The word quantiles, followed by a list of floats between 0 and 1.0,
multiplies each list element by the sum of all the values in the multislider. This

Multiple slider
and scrolling display multislider

362

result is then divided by 215 (32,768). Then, multislider sends out the address at
which the sum of all values up to that address is greater than or equal to the
result for each list element.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB
values for the peak indicators when Peak-Hold display is turned on (see peakhold
and peakreset messages). The default value is grey (rgb2 127 127 127). The color
can also be set using the Inspector.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB
values for the object’s rectangular one-pixel border The default value is black
(rgb3 0 0 0). The color can also be set using the Inspector.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the RGB
values for the 2nd slider color in candycane mode. The color can also be set
using the Inspector.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the RGB
values for the 3rd slider color in candycane mode. The color can also be set
using the Inspector.

rgb6 The word rgb6, followed by three numbers between 0 and 255, sets the RGB
values for the 4th slider color in candycane mode. The color can also be set
using the Inspector.

rgb7 The word rgb7, followed by three numbers between 0 and 255, sets the RGB
values for the 5th slider color in candycane mode. The color can also be set
using the Inspector.

rgb8 The word rgb8, followed by three numbers between 0 and 255, sets the RGB
values for the 6th slider color in candycane mode. The color can also be set
using the Inspector.

rgb9 The word rgb9, followed by three numbers between 0 and 255, sets the RGB
values for the 7th slider color in candycane mode. The color can also be set
using the Inspector.

rgb10 The word rgb10, followed by three numbers between 0 and 255, sets the RGB
values for the 8th slider color in candycane mode. The color can also be set
using the Inspector.

Multiple slider
and scrolling display multislider

363

select Selectively sets slider values. For example, select 1 30 2 4 5 50 sets the first slider to
30, the second to 4, and the fifth slider to 50 (the top or leftmost slider is
always number 1).

set The word set, followed by a slider number and a value, sets the numbered slider
to that value without triggering any output.

setborder The word setborder, followed by four integers representing the left, right, top and
bottom borders of the multislider object, set the object's borders. It is similar in
function to the border message (see above). A 0 indicates that the specified border
segment will not be drawn, and a 1 draws the border. The default is to draw all
borders (setborder 1 1 1 1).

setminmax The word setminmax, followed by two floats or two integers, sets the low and high
range values for the multislider object. The default values are -1.0 and 1.0 for
floating point sliders and 0 and 127 for integer sliders.

setstyle The word setstyle, followed by an int in the range 0-5, sets the display style of the
multislider object. The default value is Thin Line (setstyle 0). The display style values
are:

setstyle 0 Thin line
setstyle 1 Bar
setstyle 2 Point Scroll
setstyle 3 Line Scroll
setstyle 4 Reverse Point Scroll
setstyle 5 Reverse Line Scroll

When the display style is set to Thin Line or Bar, each slider displays its current
value as a thin line. When one of the other (scrolling) display styles is chosen,
each slider provides a continuously scrolling display of its current and most
recent past values. (The number of past values shown is determined by the
display size of the multislider, in pixels.) The different styles can also be chosen
using the Inspector.

Note: A scrolling display multislider may not be able to update at the rate it
receives data. This can result in some data points not being displayed.

settype The word settype, followed by a 0 or 1, sets the multislider object for integer (0) or
floating point (1) operation. The Inspector can also be used to set the multislider
object's type. The default is integer (settype 0).

Multiple slider
and scrolling display multislider

364

size The word size, followed by a number, sets the number of sliders the multislider
object has. The default is 1, and the maximum number of sliders is 4096.

signed The word signed, followed by a zero or one, sets the signed or unsigned display
mode for bar sliders. The default is 0 (off), and bar sliders are drawn from the
minimum value. When this mode is set to 1 (on) sliders are drawn from zero
to either a positive or negative slider value.

spacing The word spacing, followed by an integer value, sets the amount of space (in
pixels) between sliders. The default is 0 (all sliders touching one another).

sum Outputs a sum of all current slider values as a float.

thickness The word thickness, followed by an integer value, sets the pen thickness of “thin
line”style sliders. The default thickness is 2 pixels.

Inspector

The behavior of a multislider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any multislider object
displays the multislider Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The multislider Inspector lets you set the following attributes:

• Slider Range Minimum and Maximum values. The default Min. value is -
1. The default Max. value is 1.

• Number of Sliders. The maximum number of sliders a multislider object can
have is 4096, and the default is 1. You can also choose Integer or Floating
Point sliders. The default is floating point.

• Orientation lets you choose horizontal or vertical (default) data display.

• The Draw Borders checkboxes let you specify borders for all four sides of
the multislider object.

• Slider Style. You can choose Thin line, Bar, Point Scroll, Line Scroll,
Reverse Point Scroll, or Reverse Line Scroll styles. When the display style is
set to Thin Line (the default) or Bar, each slider displays its current value as
a thin line. When one of the other (scrolling) display styles is chosen, each
slider provides a continuously scrolling display of its current and most

Multiple slider
and scrolling display multislider

365

recent past values. (The number of past values shown is determined by the
display size of the multislider, in pixels.) You can also select Continuous Data
Output, Peak Hold and Signed Bar Graph display modes (the default is off
for all three modes).

• The Appearance options let you set the Spacing between sliders, the
thickness of the “Thin Line” style sliders, the number of stripes in
Candycane mode (a value of zero means candycane mode is off), and the
visibility percentage of the “ghost” bar behind the “Thin Line” style sliders.

• The Compatibility checkbox lets you specify whether the maximum, minimum
and sum messages will cause individual slider values be output out the left
outlet (for compatibility with old patches) or out the right outlet, as per the
fetch message. When old patches are opened this option will become
automatically checked (and saved with the patcher), but by default it is off
when a multislider object is freshly placed in a patcher and the patcher is
saved.

• The Color option lets you use a swatch color picker or RGB values to
specify colors for the Sliders, Background and Peak Indicators, Border, and
the seven Canycane Colors of the multislider object. The default color for the
sliders and border is 0 0 0, the default background color is 255 255 255,
and the default peak indicator color is 127 127 127.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an object
before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

list Out left outlet: When a multislider receives a list, int, or float in its inlet, it
outputs a list of its current values. The list is also sent out when the sliders are
changed with the mouse.

int or float Out right outlet: The value of a numbered slider specified by the fetch message.
The output reflects the current data type settings (see the settype message).

Multiple slider
and scrolling display multislider

366

int or float Out right outlet: The value of a numbered slider specified by the fetch message.
The output reflects the current data type settings (see the settype message).

Examples

multislider drawing styles

See Also

hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
matrixctrl Matrix-style switch control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Java in Max mxj

367

The mxj object instantiates specially-written Java classes and acts as a Max-level peer
object, passing data that originates in Max to the Java object and vice versa. The form
that an mxj object takes—the number of inlets, outlets and the messages it understands—is
determined by the Java class that it instantiates.

Using mxj requires that the host computer have a recent version of the Java Virtual
Machine (JVM) installed. Macintosh OS X users can ensure that they have the most up-
to-date version of the JVM by running Software Update from the System Preferences.
By default, Windows XP does not have a version of the JVM installed. As of the writing
of this document the most recent version of the JVM can be downloaded from this link:

http://java.sun.com/j2se/1.4.2/download.html

Max 4.5 includes a directory called "java-doc", which can be found on Windows machines
at

C:\Program Files\Common Files\Cycling '74\java-doc

and on Macintosh machines at

/Applications/Max4.5/java-doc

The following important subdirectories are in the java-doc directory:

classes contains the source code and class files of the example Java classes that are
included with Max/MSP 4.5.

help contains the help files that are associated with the example Java classes.
Exploring these patches is a good, quick way to see how mxj has extended
and will extend the Max universe.

doc/tutorial contains a step-by-step tutorial that leads you through the process of
creating your first Java class to the application of advanced mxj
programming techniques. The tutorial is in HTML format.

doc/api contains html files that specify mxj’s Application Programming Interface
(API). These pages will serve as an invaluable resource when you are
coding your own Java classes.

doc/ide contains example projects for some of the Integrated Development
Environments (IDEs) we think you may want to use to create Java classes.

Java in Max mxj

368

lib contains the code libraries that the mxj object uses to bridge the worlds of
Max and Java.

In addition, a file named max.java.config.txt. also is located in the java
directory This file allows you to specify which diretories should be in Java’s
classpath—a concept roughly analogous to the Max search path.

Input

various The number of inlets that an instance of mxj creates and the messages that
it will respond to are determined by declarations made in the peer Java
class.

viewsource The viewsource message brings up a text editor window and loads the source
code for the peer Java object. If the source code is not in the same
directory as the peer class’s .java file, a decompilation of the class file is
attempted and the resulting decompiled source is presented. From within
the editor window it’s possible to make edits to the source, save the file,
and recompile the class.

_zap When a _zap message is sent to an mxj object with Java peer class Foo, the
next mxj object that’s instantiated with the same peer Java class Foo (ie
typing in an object box “mxj Foo”) will cause the class to reload itself from
disk. This is most useful in a programming context: if one makes a change
to Foo.java and recompiles a new Foo.class the _zap message allows one to
create an instance of the new class without having to quit and restart the
Max environment. Without sending the _zap message Max would simply
use the cached definition of the class that was loaded when a Foo object was
instantiated prior to the changes being made.

Arguments

symbol The mxj object must be given the name of a valid Java class as the first
argument. The Java class file must exist somewhere within the classpath,
and it must be a class that was designed for use with the mxj object (the class
must subclass com.cycling74.max.MaxObject.)

attributes The mxj object supports the definition of attributes within the Java code for
a peer class. The attributes that are settable at the time of instantiation
using the @ paradigm. For instance, if a particular class Foo defined an
integer attribute called intBar, one could create an instance of the class

Java in Max mxj

369

with the attribute set to the value 74 by typing mxj Foo @intBar 74 in an object
box.

Output

various The number of outlets that an instance of mxj creates is determined by
declarations made in the constructor of the peer Java class. The furthest
outlet to the right may or may not be an info outlet whose sole
responsibility is to report information about the attributes when queried.

Examples

Instantiations of the keep (in-patcher storage) and Multiplex (list multiplexing) classes

See Also

js JavaScript in Max

Detect logical
separation of messages next

370

Input

anything Messages are tested to determine whether they are part of the same logical
event. A logical event is one of the following: a mouse click, the ongoing
polling of a mouse drag, an event generated by the scheduler (such as the
bang from a metro), a MIDI event, or a keyboard event. next determines
whether the current message is part of the same event as the previously
received message. For example, if you click on a bang twice, the two bangs
are not part of the same logical event. But if you put bang, bang in a message
box, or use the uzi object to send out two bangs in a row, these bangs are
part of the same logical event.

Arguments

None.

Output

bang Out left outlet: A bang is sent out if the current message is not part of the
same logical event as the previously received message.

Out right outlet: A bang is sent out if the current message is part of the same
logical event as the previously received message.

Examples

next detects when separate Max messages occur within the same logical event.

Detect logical
separation of messages next

371

See Also

uzi Send a specific number of bang messages
defer De-prioritize a message
delay Delay a bang before passing it on
Messages Using the comma in a message box

Output received
MIDI note messages notein

372

Input

(MIDI) notein receives its input from a MIDI note-on or note-off message received
from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming note messages.
The word port is optional and may be omitted.

(mouse) Double-clicking on a notein object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming note
messages. If there is no argument, notein receives from all channels on all
ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and
a specific MIDI channel on which to receive note messages. Channel
numbers greater than 16 will be wrapped around to stay within the 1-16
range.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the channel
offset specified for each port in the MIDI Setup dialog.

Output

int Out left outlet: The number is the pitch value of the incoming note
message.

Out 2nd outlet: The number is the velocity of the incoming note-on
message if non-zero, 0 for a note-off message. To receive release velocity,
use xnotein.

Output received
MIDI note messages notein

373

If a specific channel number is included in the argument, there are only
two outlets. If there is no channel number specified by the argument, notein
will have a third outlet, on the right, which will output the channel number of
the incoming note message.

Examples

Note-on messages can be received from everywhere, a specific port, or a specific port and
channel

See Also

ctlin Output received MIDI control values
midiin Output received raw MIDI data
noteout Transmit MIDI note messages
nslider Output numbers from a notation display onscreen
rtin Output received MIDI real time messages
xbendin Interpret extra precision MIDI pitch bend messages
xnotein Interpret MIDI note messages with release velocity
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 12 Sending and receiving MIDI notes

Transmit MIDI
note messages noteout

374

Input

int In left inlet: The number is the pitch value of a MIDI note message
transmitted on the specified channel and port. Numbers are limited
between 0 and 127.

In middle inlet: The number is stored as the velocity of a note message, to
be used with pitch values received in the left inlet. Numbers are limited
between 0 and 127. 0 is considered a note-off message, 1-127 are note-on
messages.

In right inlet: The number is stored as the channel number on which to
transmit the note-on messages.

float Converted to int.

list In left inlet: The first number is used as the pitch, the second number is
used as the velocity, and the third number is used as the channel, of a
transmitted MIDI note message.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or the name of a MIDI
output port or device, specifies the port used to transmit the MIDI messages.
The word port is optional and may be omitted.

(mouse) Double-clicking on a noteout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI note messages.
Channel numbers greater than 16 received in the right inlet will be
wrapped around to stay within the 1-16 range. If there is no argument,
noteout initially transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and
a specific MIDI channel on which to transmit note messages. Channel
numbers greater than 16 will be wrapped around to stay within the 1-16
range.

Transmit MIDI
note messages noteout

375

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the channel
offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI note-on message transmitted
directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one port Otherwise, number specifies both
port and channel

See Also

ctlout Transmit MIDI control messages
midiout Transmit raw MIDI data
notein Output received MIDI note messages
nslider Output numbers from a notation display onscreen
xbendout Format extra precision MIDI pitch bend messages
xnoteout Format MIDI note messages with release velocity
Ports How ports are specified
Tutorial 12 Sending and receiving MIDI notes

Output numbers from
a notation display
onscreen

nslider

376

Input

int In left inlet: The number received in the inlet is displayed graphically by
nslider if it falls within its displayed range. The current velocity value (from
1 to 127) that nslider holds is sent out its right outlet, followed by the
received number out the left outlet.

In right inlet: The number received in the right inlet sets the output key
velocity without triggering output.

(mouse) nslider also sends out numbers when you click or drag on it with the mouse.
The velocity value is determined by the previous value received in the right
inlet.

If the nslider object is in polyphonic mode, you need to click on a note
twice: once to send a note-on and drawe the note, and once again to send
a note-off and erase the note.

float Converted to int.

bang In left inlet: Sends out the pitch and velocity values currently stored in nslider.

chord In left inlet: The word chord, followed by a list of MIDI note name and
velocity pairs, can be used to play chords on the nslider in polyphonic mode
(set by the mode 1 message). The chord message sends note-offs for currently
held notes, followed by note-on commands for the specified note and
velocity pairs. When the nslider object's state is saved by a preset object in
polyphonic mode, the preset object will store chord messages.

clear In left inlet: The clear message will clear any notes on the staves, but will not
trigger any output.

flush In left inlet: When the nslider object is in polyphonic mode (set by the mode 1
message), the flush message will send note-offs to currently held notes and
clear the nslider object’s display.

mode In left inlet: The word mode, followed by a 0 or 1, selects monophonic or
polyphonic operation for the nslider. mode 0 (default) sets monophonic mode.
Only one note can be displayed at a time. mode 1 sets the nslider to polyphonic
mode. In polyphonic mode, nslider keeps track of note-ons and note-offs, so it
mirrors which notes are currently held down on your MIDI keyboard. A

Output numbers from
a notation display
onscreen

nslider

377

note is “turned off” by sending the nslider object a note-on message with a
velocity of 0.

set In left inlet: The word set, followed by a number, changes the value displayed
by nslider, without triggering output.

Inspector

The behavior of an nslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any nslider object
displays the nslider Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The nslider Inspector lets you set the Display Mode using two radiobuttons
to select either monophonic or polyphonic mode. By default, nslider is
monophonic..

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

int nslider sends its current velocity value out its right outlet, followed by the
(displayable) pitch value out its left outlet, when a number is received in its
inlet or you click or drag on the object. In polyphonic mode, it will send a
note value with a velocity of zero when a note is removed from the staves.

Output numbers from
a notation display
onscreen

nslider

378

Examples

A useful tool to monitor an incoming MIDI stream.

See Also

hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
makenote Generate a note-off message following each note-on
notein Output received MIDI note messages
noteout Transmit MIDI note messages
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Display and
output a number number box

379

Input

int or float The number received in the inlet is stored and displayed in the number box
and sent out the outlet. A float is converted to int by an int number box, and
vice versa.

When the active patcher window is locked, numbers can be entered into a
number box by clicking on it with the mouse and typing in a number on the
computer keyboard. Typing the Return or Enter keys on Macintosh or the
Enter key on Windows, or clicking outside the number box, sends the
number out the outlet.

Dragging up and down on the number box with the mouse (when the patcher
window is locked) moves the displayed value up and down, and outputs the
new values continuously. In the float number box, dragging to the left of the
decimal point changes the value in increments of 1. Dragging to the right
of the decimal point changes the fractional part of the number in
increments of 0.01.

bang Sends the currently displayed number out the outlet.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the number box. The default value is white
(brgb 255 255 255).

color The word color, followed by a number from 0 to 15, sets the background of
the number box to one of the standard object colors which are also
available via the Color submenu in the Object menu.

flags The word flags, followed by a number, sets characteristics of the appearance
and behavior of the number box. The characteristics (which are described on
the next page, under Arguments) are set by adding together specific
numbers to designate the desired characteristics, as follows: 4=Bold type,
16=Hexadecimal display, 32=No triangle, 64=Send on mouse-up only,
128=Can’t change with mouse, 256=MIDI C3 display, 1024=Roland octal
display, 2048=Binary display, 4096=MIDI C4 display, 8192 =Transparent
display mode (useful for displaying and editing numbers over other objects).
So, for example, flags 180 (4+16+32+128=180) will set the number box to
display its numbers in hexadecimal format, in bold type, with no triangle,
and unchangeable by the mouse.

Display and
output a number number box

380

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the number values displayed by the number box. The default value is
black (brgb 0 0 0).

max The word max, followed by a number, sets the maximum value that can be
displayed or sent out by the number box. The word max by itself sets the
maximum to None (removes a prior maximum value constraint).

min The word min, followed by a number, sets the minimum value that can be dis-
played or sent out by the number box. The word min by itself sets the
minimum to None (removes a prior minimum value constraint).

rgb2 The word brgb, followed by three numbers between 0 and 255, sets the RGB
values for the number values displayed by the number box when it is
highlighted or being updated. The default value is black (brgb 0 0 0).

rgb3 The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the background color of the number box when it is highlighted or
being updated. The default value is white (brgb 255 255 255).

set The word set, followed by a number, sets the stored and displayed value to
that number without triggering output.

(typing) When a number box is highlighted (indicated by a filled-in triangle) in a
patcher window, numerical keyboard input is sent to the number box to change
its value. Clicking the mouse or pressing Return on Macintosh or Enter on
Windows stores a pending typed number.

(Font menu) The font and size of a number box can be altered by selecting it and choosing a
different font or size from the Font menu.

Inspector

The behavior of a number box object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any number box
object displays the number box Inspector in the floating window. Selecting
an object and choosing Get Info… from the Object menu also displays the
Inspector.

The number box Inspector lets you set the following attributes:

Display and
output a number number box

381

You can set the range for stored, displayed, typed, and passed-through
values by typing values into the Range Min. and Max. boxes. If the No
Min. and No Max. checkboxes are checked (the default state), the number
box objects will have their minimum and maximum values set to “None.”
Unchecking these boxes sets the minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of
the number box. Other options available in the number box Inspector window
are: Bold (to display in bold typeface), Draw Triangle (to have an arrow
pointing to the number, giving it a distinctive appearance), Output Only on
Mouse-Up (to send a number only when the mouse button is released, rather
than continuously), Can’t Change (to disallow changes with the mouse or
the computer keyboard), and Transparent (to display only the number in the
number box and not the box, so that the number box resembles a comment
object).

The Display Style pop-up menu lets you select the way that number values
are represented. Decimal is the default method of displaying numbers. Hex
shows numbers in hexadecimal, useful for MIDI-related applications.
Roland Octal shows numbers in a format used by some hardware devices
where each digit ranges from 1 to 8; 11 is 0 and 88 is 63. Binary shows
numbers as ones and zeroes. MIDI Note Names shows numbers according
to their MIDI pitch value, with 60 displayed as C3. Note Names C4 is the
same as MIDI Note Names except that 60 is displayed as C4. With all
display modes, numbers must be typed in the format in which they are
displayed.

The Color option lets you use a swatch color picker or RGB values used to
display the number box and its background in its normal and highlighted
forms. Number sets the color for the number displayed (default 0 0 0),
Background sets the color for the number box object itself (default 221 221
221), Highlighted Number sets the color of the number display when the
number box is selected or its values are being updated (default 222 222
222), and Highlighted Background sets the color of the number box when
it is highlighted or being updated (default 0 0 0).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Display and
output a number number box

382

Arguments

None.

Output

int or float The number displayed in the number box is sent out the outlet. Numbers
received in the inlet or typed on the computer keyboard can exceed the
limits of the number box, but the value that gets stored, displayed, and sent
out will automatically be limited to the specified range.

The number box does not resize itself automatically according to the size of the
number it contains. If the number received is too long to be displayed in the
number box, it is displayed in abbreviated form followed by an ellipsis (…) in
the case of an int number box, or as a plus sign (+) in the case of a float number
box.

The number is stored and sent out of the number box as usual, despite this
abbreviated display.

Examples

Displays numbers passing through Can be used to output numbers

See Also

float Store a decimal number
int Store an integer value
Tutorial 3 About numbers
Tutorial 10 Number boxes

Interpret numbers typed
on the computer keyboard numkey

383

Input

int The number is an ASCII value received from a key or keyup object. When digits
are typed on the computer keyboard, numkey recognizes the ASCII values and
interprets them as the numbers being typed.

The keys recognized by numkey are the digits 0-9, the Delete (Backspace) key,
decimal point (period), Return, and Enter. Digits are combined as a single num-
ber and stored in numkey.

bang Sends the number currently stored in numkey out the left outlet, and resets the
stored number to 0.

clear Resets the stored number to 0.

Arguments

Optional. A float argument causes numkey to understand the decimal point and
the fractional part of a number, and send out floats instead of ints. (The
argument does not, however, set an initial value for numkey. The initial value is
always 0.)

Output

int When digits are typed on the computer keyboard, and the ASCII value (from
key or keyup) is received in the inlet, the digits are combined as a single number
and stored in numkey. The stored number is sent out the right outlet each time a
new digit is typed. The Delete key on Macintosh or Backspace key on
Windows erases the most recently typed digit, and sends the stored number
out the right outlet. The period key acts as a decimal point and causes numkey
not to store subsequent digits until a new number is started (unless there is a
float argument). Typing the Return or Enter keys on Macintosh or the Enter
key on Windows sends the stored number out the left outlet and resets the
number stored in numkey to 0, so that a new number can be typed in.

float When there is a float argument, numkey understands decimal points and fractional
parts of a number, and sends out floats instead of ints.

Interpret numbers typed
on the computer keyboard numkey

384

Examples

Recognizes all numbers typed in

See Also

key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
number box Display and output a number
Tutorial 20 Using the computer keyboard

Store x,y pairs of
numbers temporarily offer

385

Input

list In left inlet: The first number is the x value, and the second number is the
y value, of an x,y pair to be stored in offer. The first number must be an int;
the second number may be a float, but will be Converted to int.

int In left inlet: The number specifies the x value of an x,y pair. If a y value has
been received in the right inlet, the two numbers are stored together in offer;
otherwise, offer looks for an x value that matches the incoming number, sends
out the corresponding y value, then deletes the stored pair. If there is no x
value stored in offer that matches the number received, offer does nothing.

In right inlet: The number specifies a y value to be stored in offer. The next
x value (int) received in the left inlet causes the two numbers to be stored
together as an x,y pair.

float In right inlet: Converted to int.

clear In left inlet: Deletes the entire contents of offer.

Arguments

None.

Output

int If the number received in the left inlet matches the x value of an x,y pair
stored in offer, the corresponding y value is sent out and the stored pair is
deleted.

Examples

A pair of numbers can be stored, then recalled a single time.

Store x,y pairs of
numbers temporarily offer

386

See Also

coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
table Store and graphically edit an array of numbers

Traffic control for
bang messages onebang

387

Input

bang In left inlet: Causes a bang to be sent out the left inlet only if a bang has
been received in the right inlet since the last bang was sent out.

In right inlet: Resets onebang to permit a bang to be sent out the next time a
bang is received in the left inlet.

stop In left inlet: Undoes the effect of a bang in the right inlet.

anything In either inlet: Converted to bang.

Arguments

int Optional. A non-zero argument sets onebang to permit a bang to be sent out
the left outlet the first time a bang is received in the left inlet.

Output

bang When onebang receives a bang in its left inlet, it sends a bang out its left
outlet only if it has received a bang in its right inlet since the last time it
sent out a bang. Otherwise, it sends a bang out its right outlet.

Examples

Allow just one of (potentially) many bang messages to get through

See Also

gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets

Prevent multiple copies of the
same patcher from being
opened

onecopy

388

Use the onecopy object inside a patcher that you want to place in the extras folder for
inclusion in the Extras menu. When the patcher's name is chosen using the Extras menu,
its window will be brought to the front instead of opened a second time if it has already
been loaded. The patch will be loaded if it is not currently open. The onecopy object
cooperates with the Extras menu to ensure that only one copy of the patcher is opened at
a time. However, opening the patcher containing a onecopy object by choosing Open...
from the File menu will open additional copies.

Input

None.

Arguments

None.

Output

None.

Example

Use onecopy to prevent multiple copies of the same patch from being opened from the
Extras menu

See Also

thispatcher Send messages to a patcher
pcontrol Open and close subwindows within a patcher

Open a dialog to
ask for a file or folder opendialog

389

Input

bang Opens a standard Open Document dialog box for choosing a file.

set The word set, followed by a four-letter symbol (e.g., TEXT, maxb) which
specifies a file type, sets the opendialog object to search for the designated file
type when opening the dialog box.

sound Sets opendialog to list audio files (AIFF, Sound Designer II, NeXT/Sun, and
WAV, along with some generic data file types).

types The word types, followed by one or more four-letter type codes, determines
which file types are listed by the opendialog object. Example type codes for
files are TEXT for text files, maxb for Max binary format patcher files, and AIFF
for AIFF format audio files. types with no arguments makes the object
accept all file types, which is the default setting.

any symbol One or more symbols are interpreted as one or more type codes used to
determine which files are listed by the opendialog object.

Arguments

fold Optional. Sets opendialog to choose folders instead of files.

sound Optional. Sets opendialog to list audio files (AIFF, Sound Designer II,
NeXT/Sun, and WAV, along with some generic data file types). The
QuickTime appendix lists all the files that can be opened.

any symbol Optional. One or more symbols set the list of file types that determine
which files are listed by the opendialog object.

Output

symbol Out left outlet: The absolute pathname of the file chosen by the user as a
symbol. The output pathnames contain slash separators.

Absolute pathnames look like this:

“C:/Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

Open a dialog to
ask for a file or folder opendialog

390

bang If the dialog box is cancelled by the user, a bang message is sent out the right
outlet.

Examples

Look for folders or a certain kind of file

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
dialog Open a dialog box for text entry
dropfile Define a region for dragging and dropping a file
date Report current date and time
filedate Report the modification date of a file
filein Read in a file of binary data
filepath Report information about the current search path
folder List the files in a specific folder
strippath Get filename from an absolute pathname

Send messages
out of a patcher outlet

391

Input

(patcher) Each outlet object in a patch will show up as an outlet at the bottom of an
object box when the patcher is used inside another patcher (as an object or
a subpatch). Messages received in the outlet object in the subpatch will come
out of corresponding outlet in the subpatch’s object box in the patcher that
contains it.

Inspector

A descriptive Assistance message can be assigned to an outlet object and can
be edited using its Inspector. If you have enabled the floating inspector by
choosing Show Floating Inspector from the Windows menu, selecting any
outlet object displays the outlet Inspector in the floating window. Selecting
an object and choosing Get Info… from the Object menu also displays the
Inspector.

Typing in the Describe Outlet text area specifies the content of the
Assistance message.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

anything Any messages received by outlet in a subpatch are sent out the outlet of that
subpatch, through patch cords.

Send messages
out of a patcher outlet

392

Examples

Outlets of the subpatch object correspond to the outlet objects inside the subpatch

See Also

bpatcher Embed a visible subpatch inside a box
forward Send remote messages to a variety of objects
inlet Receive messages from outside a patcher
patcher Create a subpatch within a patch
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 26 The patcher object

Draw a solid oval in
a graphic window oval

393

Input

bang In left inlet: Draws the oval using the current screen coordinates, drawing
mode, and color.

int In left inlet: Sets the left screen coordinate of the oval and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the oval.

In 3rd inlet: Sets the right screen coordinate of the oval.

In 4th inlet: Sets the bottom screen coordinate of the oval.

In 5th inlet: Sets the drawing mode of the oval. The following are drawing
mode constants; not all modes will be available on all operating systems.

Copy 0 blend 32
Or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the oval according to the
graphics window’s current palette. This setting has no effect when the monitor
is in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the RGB values for the color of the oval the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets an oval
object’s sprite priority in its graphics window. Objects with lower priority will
draw behind those with a higher priority.

Arguments

any symbol Obligatory. The first argument to oval must be the name of a graphics window
into which the oval will be drawn. The window need not exist at the time the
oval object is created, but the oval will not be drawn unless the name matches
that of an existing and visible window.

Draw a solid oval in
a graphic window oval

394

int Optional. Sets the initial sprite priority of the oval. If no priority is specified, the
default is 3.

Output

(visual) When the oval object’s associated graphics window is visible, and a bang message
or a number is received in its left inlet, a shape is drawn in the window, and
the object’s previously drawn oval (if any) is erased.

Examples

The oval object on the right will appear to pass in front of the one on the left
when both move across the screen, since it has a higher sprite priority

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects

Combine numbers an
symbols into a list pack

395

Input

int The number is stored in pack as an item in a list, with its position in the list
corresponding to the inlet in which it was received. A number in the left
inlet is stored as the first item in the list, and causes the entire list to be
sent out the outlet. If the inlet in which the number is received has been
initialized with a float or symbol argument, the incoming number will be
converted to a float or a blank symbol, respectively.

float The number is stored in pack as an item in a list, with its position in the list
corresponding to the inlet in which it was received. A number in the left inlet
is stored as the first item in the list, and causes the entire list to be sent out
the outlet. If the inlet in which the number is received has been initialized
with an int or symbol argument, the incoming number will be converted to an
int or a (blank) symbol, respectively. If no argument has been typed in, float
is converted to int.

bang In left inlet: Causes pack to send out a list of the items currently stored.

any symbol If the inlet in which the symbol is received has been initialized with a symbol
argument, the symbol is stored in the corresponding location in pack.
Otherwise, the symbol is converted to 0 before being stored. A symbol in the
left inlet triggers output of the pack object’s contents.

list Any multi-item message, regardless of whether it begins with a number, is
treated as a list by pack. The first item in the incoming list is stored in pack in
the location that corresponds to the inlet in which it was received, and each
subsequent item is stored as if it had arrived in subsequent inlets (limited
by the number of inlets available). A list received in the left inlet causes the
entire stored list to be sent out the outlet.

set The word set, followed by any message, allows that message to be received
by pack without triggering any output. Although a set message may be
received in any inlet, it is only meaningful in the left inlet, which is the only
triggering inlet. In any other inlet, the word set is ignored and the rest of the
message is used as normal.

nth The word nth, followed by the number of an inlet (starting at 1 for the
leftmost inlet), causes the value of the item stored at that location in pack to be
sent out the outlet.

Combine numbers an
symbols into a list pack

396

send In left inlet: The word send, followed by the name of a receive object, sends a
list of the currently stored items to all receive objects with that name, instead
of out pack object’s outlet.

Arguments

int, float, symbol Optional. The number of inlets is determined by the number of
arguments. Each argument sets an initial type and value for an item in the
list stored by pack. If a number argument contains a decimal point, that
item will be stored as a float. If the argument is a symbol, that item will be
stored as a symbol. If there is no argument, there will be two inlets, and the
two list items will be set to (int) 0 initially. Note: Typing a list into an
object box automatically identifies it as a pack object, so you may omit the
word pack from the object box, provided that you type in a list of
arguments (that has at least two items and begins with a number).

Output

list The length of the list is determined by the number of arguments. When
input is received in the left inlet, the stored list is sent out the outlet.

int, float, symbol When the nth message is received, the value of the specified item is sent out.

Examples

Numbers and symbols may be mixed as needed in pack

See Also

bondo Synchronize a group of messages
buddy Synchronize arriving data, output them together
match Look for a series of numbers, output it as a list
swap Reverse the sequential order of two numbers

Combine numbers an
symbols into a list pack

397

thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages
zl Multi-purpose list processor
Tutorial 30 Number groups

Output a combined list
when any element changes pak

398

The pak object (pronounced "pock") offers much of the functionality of its big brother,
pack, but works like a combination of the pack and bondo objects—output of the entire
stored list occurs whenever input is received in any inlet.

Input

int The number is stored in pak as an item in a list, with its position in the list
corresponding to the inlet in which it was received, and the entire list is
sent out the outlet. If the inlet in which the number is received has been
initialized with a float or symbol argument, the incoming number will be
converted to a float or a blank symbol, respectively.

float The number is stored in pak as an item in a list, with its position in the list
corresponding to the inlet in which it was received, and the entire list is sent
out the outlet. If the inlet in which the number is received has been initialized
with an int or symbol argument, the incoming number will be converted to an
int or a (blank) symbol, respectively. If no argument has been typed in, float
is converted to int.

bang In left inlet: Causes pak to send out a list of the items currently stored.

any symbol If the inlet in which the symbol is received has been initialized with a symbol
argument, the symbol is stored in the corresponding location in pak, and the
entire list is sent out the outlet. If the inlet has not been initialized with a
symbol argument, the symbol is converted to 0 before being stored. A
symbol in the left inlet triggers output of the pak object’s contents.

list Any multi-item message, regardless of whether it begins with a number, is
treated as a list by pak. The first item in the incoming list is stored in pak in
the location that corresponds to the inlet in which it was received, and each
subsequent item is stored as if it had arrived in subsequent inlets (limited
by the number of inlets available). The entire stored list to be sent out the
outlet.

set The word set, followed by any message, allows that message to be received
by pak without triggering any output. A set message may be received in any
inlet.

Arguments

int, float, symbol Optional. The number of inlets is determined by the number of
arguments. Each argument sets an initial type and value for an item in the

Output a combined list
when any element changes pak

399

list stored by the pak object. If a number argument contains a decimal
point, that item will be stored as a float. If the argument is a symbol, that
item will be stored as a symbol. If there is no argument, there will be two
inlets, and the two list items will be set to (int) 0 initially.

Output

list The length of the list is determined by the number of arguments. When
input is received in any inlet, the stored list is sent out the outlet.

Examples

See Also

bondo Synchronize a group of messages
buddy Synchronize arriving data, output them together
match Look for a series of numbers, output it as a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages
zl Multi-purpose list processor
Tutorial 30 Number groups

Colored
background area panel

400

The panel object lets you create rectangular background panels for use in creating user
interfaces. You can also create rectangles with rounded corners and shading which can
also be used as buttons when used in conjunction with ubutton object.

Input

border The word border, followed by a number, sets the size, in pixels of the panel
object’s border. The default is 1.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
RGB values for the color (Background) of the panel object. The default value
is gray (brgb 192 192 192).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the border of the panel object. The default value is black (frgb 0 0 0).

rounded The word rounded, followed by a number, sets the size, in pixels of the
rounding of the panel object’s corners. The default is 0 (no rounding).

shadow The word rounded, followed by a positive or negative number, sets the size,
in pixels for a “shadow” effect for the panel object. Positive numbers create
a “raised” shadow effect, and negative numbers created a “recessed” effect.
The default is 0 (no shadow).

size The word size, followed by two numbers, specifies the width and height, in
pixels, of the panel object. The default panel size has a width of 69 and a
height of 57.

Inspector

The behavior of a panel object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any panel object
displays the panel Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The Width and Height number boxes are used to set the size of the panel.
The default panel size has a width of 69 and a height of 57. Border Size
specifies the width, in pixels of the panel border. The default is 1. Entering
a value in the Shadow Size number box sets the size of the panel’s shadow.
The default is 0 (no shadow). The number, of pixels, worth of rounding for

Colored
background area panel

401

the panel is specified by entering a number into the Rounded Corners box.
The default is 0 (no rounding).

The Color option lets you use a swatch color picker or RGB values used to
set the border color and the frame color. Frame sets the color for the border
of the panel object (default 0 0 0), and Background sets the color for the
panel (default 192 192 192).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

None.

Examples

See Also

fpic Display a picture from a graphics file
lcd Draw graphics in a patcher window

Colored
background area panel

402

pict Draw picture in a graphic window
ubutton Transparent button, sends a bang

Report when input increases
beyond a certain number past

403

Input

list The numbers in the list are compared to the arguments. If all of the
numbers in the list are greater than or equal to the corresponding
arguments, a bang is sent out the outlet. Before a bang is sent again,
however, past must receive a clear message, or must receive another list in
which the number that equaled or exceeded its argument goes back below
(is less than) its argument.

int or float If there is only one argument, and the input is greater than or equal to it,
and the previous input was not†greater than or equal to it, past sends a bang
out the outlet.

clear Causes past to forget previously received input, readying it to send a bang
messageagain.

set The word set, followed by one or more numbers, sets the numbers which
must be equaled or exceeded by the numbers received in the past object’s
inlet.

Arguments

list Sets the numbers which must be equaled or exceeded by the numbers
received in the inlet.

int Sets a single number which must be equaled or exceeded by the number
received in the inlet.

Output

bang If all of the arguments are equaled or exceeded by the numbers received in
the inlet, past sends out a bang. Otherwise, past does nothing. A bang is sent
only as a number increases past its threshold. Once the threshold has been
passed, the number must go below the threshold again, then increase past
it, before another bang will be sent.

Report when input increases
beyond a certain number past

404

Examples

Send out bang only when the input goes past the threshold in an upward direction

See Also

maximum Output the greatest in a list of numbers
peak If a number is greater than previous numbers, output it
> Is greater than, comparison of two numbers

Create a subpatch
within a patch patcher / p

405

Input

anything The number of inlets in a patcher object is determined by the number of
inlet objects contained within its subpatch window.

Arguments

any symbol(s) Optional. The subpatch can be given a name by the argument, so that its
name appears in the title bar of the subpatch window. The name in the title
bar of the subpatch window is displayed in brackets to indicate that it is
part of another file. If there is no argument typed in, the subpatch window
is named [sub patch]. Different patcher objects that share the same name
are still distinct subpatches, and do not share the same contents.

Output

anything The number of outlets a patcher object has is determined by the number of
outlet objects contained within the subpatch window. Output can also be
sent via send and value objects contained in the subpatch. The actual
messages sent out of a patcher object depend on the contents of the
subpatch.

When a patcher object is first created, the subpatch window is
automatically opened for editing. To view or edit the contents of a patcher
object (or any subpatch object) later on, double-click on the object when
the patcher window is locked.

All the objects in a subpatch of a patcher object are saved as part of the
patcher which contains the object.

Examples

A patch can be contained (and saved) as part of another patch

Create a subpatch
within a patch patcher / p

406

See Also

bpatcher Embed a visible subpatch inside a box
inlet Receive messages from outside a patcher
outlet Send messages out of a patcher
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 26 The patcher object

Get parent
patcher arguments patcherargs

407

Input

bang Sends a list of the parent patcher's arguments out the left outlet.

If the parent patcher uses any attribute-style arguments (e.g. if any Jitter
objects are used in the patcher), they are sent out the right outlet as a series
of lists.

Arguments

int, float, symbol The patcherargs object permits access to more than 10 arguments for patchers
which are typed into an object box, but those contained within a bpatcher
object remain limited to 10 arguments.

Output

Int, float, symbol Out left outlet: A list of the parent patcher’s arguments are sent out the left
outlet when the patcher is loaded.

Out right outlet: A series of lists corresponding to the attribute-style
arguments (if any Jitter objects are contained in the patcher) are sent out
the right outlet when the patcher is loaded.

Get parent
patcher arguments patcherargs

408

Examples

See Also

bpatcher Embed a visible subpatch inside a box
thispatcher Send messages to a patcher

Patcher-specific, named
data wrapper pattr

409

Input

int An int is stored inside the pattr object and output from its left outlet.
Optionally, the value is passed along to a bound object. (See the bindto
attribute, below, for more information on bound objects).

float A float is stored inside the pattr object and output from its left outlet.
Optionally, the value is passed along to a bound object. (See the bindto
attribute, below, for more information on bound objects).

list A list is stored inside the pattr object and output from its left outlet.
Optionally, the value is passed along to a bound object. (See the bindto
attribute, below, for more information on bound objects).

anything Any message is stored inside the pattr object and output from its left outlet.
Optionally, the value is passed along to a bound object. (See the bindto
attribute, below, for more information on bound objects).

bang Outputs the data maintained by the pattr object from the left outlet.

Attributes

The pattr object uses attributes—another way to specify the behavior of Max objects found
and used widely in Jitter. As with arguments, you can type in attributes (by using the @
symbol followed immediately—i.e., there is no space after the @—by the name of the
typed-in attribute you want to set), or you can use any attribute name as you would any
Max message. For more information on attributes, see the Overview chapter of the Max
Getting Started manual.

autorestore The word autorestore, followed by a 1 or 0, enables or disables the autorestore
state of the pattr object. The default is 1 (enabled). When enabled, the pattr
object will automatically output its last-saved value when the patcher is
loaded (and, if bound to another object, send the value to that object. See
the bindto attribute, below for more information on bound objects).

bindto The word bindto, which may be followed by an optional symbol argument,
sets the pattr object’s binding state. The default state is unbound (no
arguments). By default, the pattr object maintains its own data. When
“bound” using the bindto feature, a pattr object maintains the data for the
other object and automatically gets and sets values for that object. bindto

Patcher-specific, named
data wrapper pattr

410

takes an optional symbol argument, which specifies the name of the object
to which pattr will bind. Binding targets need not be at the same patcher-
level as the pattr object. In this case, a double-colon syntax (‘::’) is used to
separate levels of patcher hierarchy for the purposes of describing a path
for name resolution (e.g. somepatcher::someobject). If the named object
contains attributes, and the user wishes to bind to a specific attribute, the
same double-colon syntax is used to specify the name of that attribute (e.g.
someobject::someattribute). A bindto message sent without an argument
unbinds the pattr object from any bound object, and causes it to resume the
maintenance its own internal state. See the pattr helpfile for more
information about this feature.

dirty The word dirty, followed by a 1 or 0, enables or disables the patcher-dirty
flag. The default is 0 (disabled). When enabled, the pattr object will dirty the
patch whenever its state changes.

name The word name, followed by a symbol, sets the patcher name of the pattr
object.

type The word type, followed by a symbol corresponding to a valid type, sets the
data type maintained internally by the pattr object, when the object is not
bound. The default is atom. Available types include char, long, float32, float64,
symbol, and atom.

Arguments

symbol Optional. A symbol argument may be optionally used to set the pattr
object’s name. In the absence of an argument (or the explicit setting of the
name attribute using the @name syntax), the pattr object is given an arbitrary,
semi-random name, such as u197000004.

Output

anything Out left outlet: When the pattr object receives new data, a bang, or registers
the change of the value of its bound object, this value is output.

Out right outlet: get queries to the pattr object’s attributes are output from
the right outlet, also known as the dumpout outlet.

(internal) A user interface object (or other object that responds to the internal
messaging system utilized by pattr) connected to the middle outlet of the

Patcher-specific, named
data wrapper pattr

411

pattr object will be automatically named (if necessary) and bound to. The
name is automatically generated from the object’s class name (e.g. a
connected number box might be named number[1].) Currently, the
following Max user interface objects can be bound in this fashion: dial,
function, gain~, ggate, gswitch, hslider, js (requires user support), jsui (see the
JavaScript in Max manual for more information on using the pattr system
with JavaScript), led, matrixctrl, multislider, number box (int and float), pattr,
pattrstorage, pictctrl, pictslider, radiogroup, rslider, slider, table, textedit, toggle, ubumenu,
umenu, and uslider..

Examples

See Also

autopattr Manage multiple objects at once, or expose them to pattrstorage
pattrhub Get and set multiple pattr values from a single location
pattrstorage Preset storage and general management for pattr objects
Tutorial 52 Patcher Storage
Tutorial 53 More Patcher Storage

Access all of the pattr
objects in a patcher pattrhub

412

Input

int An int is passed through the pattrhub object and output from its left outlet.

float A float is passed through the pattrhub object and output from its left outlet.

list A list is passed through the pattrhub object and output from its left outlet.

bang A bang is passed through the pattrhub object and output from its left outlet.

anything Incoming messages to the pattrhub object are analyzed. If the first element
of the message matches the name of a pattr- or autopattr-maintained object, the
subsequent arguments in the message set that object’s value. If the first
element of the message matches get(name), where (name) matches the
name of a pattr- or autopattr-maintained object, the value of that object is
sent from the pattrhub object’s right outlet, preceded by the object’s name.
Otherwise, the message is passed through the pattrhub object and output
from its left outlet.

getattributes The getattributes message causes a list of all pattr- or autopattr-maintained
object names to be output from the pattrhub object’s right outlet, preceded
by the symbol attributes.

getstate The getstate message causes a series of lists to be output from the pattrhub
object’s right outlet—one for every pattr- or autopattr-maintained object in
the patcher containing the pattrhub object. Each list begins with the name of
the object, and is followed by the object’s current value.

Attributes

The pattrhub object uses attributes—another way to specify the behavior of Max objects
found and used widely in Jitter. As with arguments, you can type in attributes (by using
the @ symbol followed immediately—i.e., there is no space after the @—by the name of
the typed-in attribute you want to set), or you can use any attribute name as you would
any Max message. For more information on attributes, see the Overview chapter of the
Max Getting Started manual.

patcher The word patcher, followed by a symbol describing a valid path to a patcher,
sets the patcher referenced by the pattrhub object. The default is the special
symbol this, which represents the patcher the pattrhub object resides within.
The pattrhub object can refer to patchers other than the one in which the
object resides. A double-colon syntax (‘::’) is used to separate levels of

Access all of the pattr
objects in a patcher pattrhub

413

patcher hierarchy. See the pattrhub help file for further information on this
feature.

Arguments

None.

Output

anything Out left outlet: Any message not matching a get or set request to a pattr- or
autopattr-maintained object in the pattrhub object’s patcher is passed through
the left outlet unchanged.

Out right outlet: get queries to the a pattr- or autopattr-maintained object in
the pattrhub object’s patcher are output from the right outlet, also known as
the dumpout outlet.

Examples

See Also

autopattr Manage multiple objects at once, or expose them to pattrstorage
pattr Patcher-specific, named data wrapper
pattrstorage Preset storage and general management for pattr objects
Tutorial 52 Patcher Storage
Tutorial 53 More Patcher Storage

Save and recall presets of
pattr data pattrstorage

414

Input

int Recalls the data from the preset specified by int.

float Recalls the data from the preset specified by float. If the number falls between
two whole numbers (e.g. 1.5), the pattrstorage object will interpolate between the
data stored in the preset corresponding to the integer portion of the float and
the data stored at the preset numbered one higher (e.g. 1.5 will cause pattrstorage
to interpolate 50% between presets 1 and 2). See the interp message for more
information about interpolation modes.

anything Incoming messages to the pattrstorage object are analyzed. If the first element of
the message matches the path name or alias of an object maintained by the
pattrstorage object (visible in the object’s client list), the subsequent arguments
in the message set that object’s value. If the first element of the message
matches get(name), where (name) matches the path name or alias of an object
maintained by the pattrstorage object, the value of that object is sent from the
pattrstorage object’s right outlet, preceded by the object’s path name or alias
(depending on which was sent). Otherwise, the message is ignored.

store The word store, followed by 1 or 2 arguments, stores data in a numbered preset.
If the word store is followed by a number, the data for every object maintained
by pattrstorage will be stored. If store is followed by 2 arguments—a symbol and a
number—and the symbol argument matches the path name or alias of a client
object, only the data for the specified object will be stored. The number
argument always specifies the index of the preset to be stored. If the preset
index specified by the number argument is already in use, the existing data
will be overwritten without a warning.

recall The word recall, followed by 1 to 4 arguments, recalls data from a preset. If recall
is followed by a number or a floating-point number, the data for every object
whose value is stored in the specified preset (or in the interpolated preset
represented by a floating-point number—see float message, above) will be
recalled. If recall is followed by 2 arguments—a symbol and a number—and the
symbol argument matches the path name or alias of a client object, only the
data for the specified object will be recalled. The number argument always
specifies the index (or interpolated index) of the preset to recall.

Followed by 3 or 4 arguments, the recall message recalls interpolated data from
2 presets at a specified weight between the two. If the word recall is followed by
two numbers that specify the indices of two presets and a a floating point

Save and recall presets of
pattr data pattrstorage

415

number between 0 and 1.0 that specifies an interpolation value, the data for
every object whose value is stored in the specified presets will be recalled.

If recall is followed by a symbol that specifies the path name or alias of a client
object, followed by two numbers that specify the indices of two presets, and a
floating point interpolation value (see above), only the data for the specified
object will be recalled.

In these latter cases, the floating point argument specifies the weight of the
interpolation, and should be between 0. and 1. A floating point argument of 0.
would simply recall the data for the preset matching the first index, and 1.
would recall the data for the preset matching the second index. See the interp
message for more information about interpolation modes.

storeagain The word storeagain simply executes a store operation, using the most recently-
use preset slot. If there is no previously-used preset slot (if the store message has
never been sent to the object), the message is ignored.

storenext The word storenext executes a store operation, using the next empty preset slot,
counting up from preset 1. For instance, if preset slots 1, 2 and 4 have data
stored in them, and the pattrstorage object receives the storenext message, the
current state of the client objects would be stored to preset slot 3. A second
storenext message would cause the data to be stored to preset slot 5.

slotname The word slotname, followed by a number and an optional symbol, sets the
name of the preset slot specified by the number. If the symbol argument is not
present, the name of the slot is removed.

getslotname The word getslotname, followed by a number, causes the name of the preset slot
specified by the number to be output from the pattrstorage object's outlet,
preceded by the symbol slotname.

getslotnamelist The word getslotnamelist reports the slot names of all used slots to be sent from
the pattrstorage object’s outlet as a series of messages, each preceded by the
symbol slotlist. The output of getslotlist is finished when the message slotname done
is output.

clear The word clear removes all presets from the pattrstorage object’s internal list.

delete The word delete, followed by a number, clears any data in the preset whose
index is specified by that number and removes the preset from the pattrstorage
object’s internal list. If delete is not followed by an argument, all presets are

Save and recall presets of
pattr data pattrstorage

416

cleared and removed. See the getslotlist message for further information on
viewing the object’s list of presets.

insert The word insert, followed by a number, stores the data for every object
maintained by pattrstorage in a numbered preset. The number argument
specifies the index of the preset to be stored. Any presets numbers at the
specified index or higher are automatically incremented to make room for the
inserted preset.

remove The word remove, followed by a number, deletes the data for every object
maintained by pattrstorage in a numbered preset. The number argument
specifies the index of the preset to be removed. Any presets numbers higher
than the specified index are automatically decremented.

renumber The word renumber renumbers stored presets into consecutive preset slots,
beginning with slot 1.

copy The word copy, followed by 2 or 3 arguments, copies the stored values from
one numbered preset to another. Followed by 2 numbers, the stored values
from the preset slot specified by the first number will be copied to the preset
slot specified by the second number. If that slot doesn't yet exist, it will be
automatically created. Followed by a symbol and 2 numbers, the stored values
from a preset slot, as specified by the first number, of the pattrstorage object
referred to by the symbol will be copied to a preset slot, as specified by the
second number, of the object receiving the copy message. For example, the
message copy parent::psto_parent 3 1 would cause preset 3 of the pattrstorage object
called psto_parent, located in the parent patch of the pattrstorage object
receiving the copy message, to be copied to preset 1 of the pattrstorage object
receiving the message. In order for this to function reliably, client path names
must match exactly. If they do not, the data for that client is ignored.

getslotlist The word getslotlist reports the numbers of any valid presets from the pattrstorage
object’s outlet, preceded by the symbol slotlist.

getclientlist The word getclientlist reports the path names of any client objects from the
pattrstorage object’s outlet as a series of messages, each preceded by the symbol
clientlist. The output of getclientlist is finished when the message clientlist done is
output.

getstoredvalue The word getstoredvalue, followed by a symbol that specifies the path name or
alias of a client object and a number which specifies a preset, reports that
object’s value, as stored in that preset slot, from the pattrstorage object’s outlet,
in the form [object pathname or alias] [data …].

Save and recall presets of
pattr data pattrstorage

417

setstoredvalue The word setstoredvalue, followed by a symbol that specifies the path name or
alias of a client object, a number which specifies a preset and a variable number
of additional arguments corresponding to the data expected by the client
object, sets the value of the specified client object within the specified preset
slot to the specified data.

getcurrent The word getcurrent reports the currently active preset from the pattrstorage
object’s outlet, preceded by the symbol current.

getedited The word getedited reports the edit state of the currently active preset from the
pattrstorage object’s outlet, preceded by the symbol edited. If the data in the
currently active preset has been edited, the state is reported as 1. Otherwise, the
edit state is reported as 0.

grab The word grab causes the current value of all client objects to be refreshed. This
is particularly useful when the pattrstorage object is managing client objects
whose data changes internally, without sending notifications to the pattr
system.

dump The word dump reports the current value of all client objects from the pattrstorage
object’s outlet as a series of messages, each in the form [object pathname] [data …].
The output of dump is finished when the message dump done is output.

lock The word lock, followed by 2 numbers, sets the lock status for a particular preset
number. The first argument specifies the preset number to be locked or
unlocked. The second argument specifies the lock state, and should be either 0
(unlocked) or 1 (locked). Locked presets cannot be deleted (using the delete or
remove messages) or overwritten (using the store message). Locked presets can be
moved (as a result of insert, remove or renumber messages, if performed on other
presets). Locks are saved in the preset data file.

lockall The word lockall, followed by a number, sets the lock status for all presets at
once. The argument specifies the lock state, and should be either 0 (unlocked)
or 1 (locked). Locked presets cannot be deleted (using the delete or remove
messages) or overwritten (using the store message). Locked presets can be
moved (as a result of insert, remove or renumber messages, if performed on other,
unlocked presets). Locks are saved in the preset data file.

getlockedslots The word getlockedslots reports the indices of any locked slots from the pattrstorage
object’s outlet as a list, preceded by the symbol lockedslots.

read The word read, followed by an optional symbol that specifies a filename, reads
an XML file representing preset data from disk into the pattrstorage object. If the

Save and recall presets of
pattr data pattrstorage

418

argument is given, and represents a valid file path, the file will be read from
that location—otherwise, a standard File Dialog will be presented for the user
to manually choose the file to be read.

readagain The word readagain re-reads an XML file previously specified by the read or write
messages. If no file has been previously specified, a standard File Dialog will be
presented for the user to manually choose the file to be read.

write The word write, followed by an optional symbol that specifies a filename, writes
any preset data to a file on disk. If the argument is given, and represents a
valid file path, the file will be saved at that location—otherwise, a standard File
Dialog will be presented for the user to manually choose a name and location
for the file to be saved.

writeagain The word writeagain writes any preset data to a file on disk previously specified
by the read or write messages. If no file has been previously specified, a standard
File Dialog will be presented for the user to manually choose a name and
location for the file to be saved.

alias The word alias, followed by two symbols, generates an alias for the client object
whose path name is given in the first argument. The alias permits the object to
be referred to by a name given in the second argument.

For example, alias a_patcher::a_pattr the_pattr would alias the object at the location
a_patcher::a_pattr to the name the_pattr.

Aliases can be used interchangably with path names within the pattrstorage
object, and are useful for referring to long paths by simpler, shorter names.

getalias The word getalias, followed by a symbol that specifies the path name of a client
object, returns that object’s alias (if any) from the pattrstorage object’s outlet,
preceded by the symbol alias.

resolvealias The word resolvealias, followed by a symbol that specifies the alias of a client
object, returns that object’s full path name (if any) from the pattrstorage object’s
outlet, preceded by the symbol resolvealias.

active The word active, followed by a symbol that specifies the path name or alias of a
client object and a 1 or 0, sets that object’s active status. When a client object
is active (default), its data will be recalled when presets are recalled—otherwise,
the object is ignored during recall. Setting the active state of a parent object
(such as a patcher–any client object containing other client objects),

Save and recall presets of
pattr data pattrstorage

419

automatically sets the active state of the child objects of the parent to the same
value.

getactive The word getactive, followed by a symbol that specifies the path name or alias of
a client object, reports the active status of the client object from the pattrstorage
object’s outlet, preceded by the symbol active.

interp The word interp, followed by at least 1 and up to 3 arguments (symbol, symbol,
float/symbol), sets the interpolation status and mode for a specific client object.
The first symbol specifies the path name or alias of a client object. The second
symbol argument determines the mode, and can be one of the following
values:

off No interpolation. Same as no additional argument.

linear Linear interpolation. Presets recalled using float or fade messages
will be interpolated using a standard linear algorithm.

thresh Threshhold. Takes optional 3rd argument, which sets the
threshold. Presets recalled using float or fade messages will recall
data from the first preset specified when the fade amount is
below the threshold, and will recall data from the second preset
specified when the fade amount is greater than or equal to the
threshhold.

Save and recall presets of
pattr data pattrstorage

420

ithresh Inverse threshhold. Takes optional 3rd argument (float), which
sets the threshold. Presets recalled using float or fade messages
will recall data from the first preset specified when the fade
amount is greater than or equal to the threshold, and will recall
data from the second preset specified when the fade amount is
less than the threshhold.

pow Power curve. Takes optional 3rd argument (float), which sets the
exponent to which the fade amount will be raised. Presets
recalled using float or fade messages will recall data between the
two specified presets, along the curve described. Power curves
can be used to create faster or slower “attacks” and “decays” for
the fade envelope.

table Table-specified curve. Takes optional 3rd argument (symbol),
which specifies the name of a table to use for curve lookup.
Presets recalled using float or fade messages will recall data
between the two specified presets, along the curve described in
the table. Tables are assumed to contain values between 0 and
100, representing the new fade amount * 100 (this is clipped
internal to the pattrstorage object, but is not normalized). The
length of the table is stretched to match the expected fade
values (between 0 and 1), so any number of table entries can be
used. If the lookup fade amount does not fall exactly onto a
table-specified value, linear interpolation is used to determine
the new fade amount. Please see the pattrstorage help file for
examples of table-specified interpolation.

getinterp The word getinterp, followed by a symbol that specifies the path name or alias of
a client object, reports that object’s interpolation mode from the pattrstorage
object’s outlet, preceded by the symbol interp.

priority The word priority, followed by a followed by a symbol that specifies the path
name or alias of a client object and a number, sets the recall and display
priority for that object. When presets are recalled, the data for client objects
will be restored in the order established by priority. Lower priorities are executed
first. Negative priorities are permitted. Priority is only respected within a
single level of the patcher hierarchy. Data in parent patchers will always be
restored before data in nested patchers.

Save and recall presets of
pattr data pattrstorage

421

getpriority The word getpriority, followed by a symbol that specifies the path name or alias
of a client object, reports that object’s priority from the pattrstorage object’s
outlet, preceded by the symbol priority.

clientwindow Opens the pattrstorage object’s client list window (the title bar reads
clientwindow (name), where (name) is the patcher name of the pattrstorage
object which created the window).

client_rect The word client_rect, followed by 4 numbers (left, top, right, bottom), sets a
new size and position for the client list window. The window position is
specified in global coordinates.

client_pos The word client_pos, followed by 2 numbers (left, top), sets a new position for
the client list window. The window position is specified in global coordinates.

client_size The word client_size, followed by 2 numbers (width, height), sets a new size for
the client list window. The window size is specified in pixels.

client_close Closes the client list window.

storagewindow Opens the pattrstorage object’s stored data window (the title bar reads
storagewindow (name), where (name) is the patcher name of the pattrstorage
object which created the window).

storage_rect The word storage_rect, followed by 4 numbers (left, top, right, bottom), sets a
new size and position for the stored data window. The window position is
specified in global coordinates.

storage_pos The word storage_pos, followed by 2 numbers (left, top), sets a new position for
the stored data window. The window position is specified in global
coordinates.

storage_size The word storage_size, followed by 2 numbers (width, height), the word
storage_size sets a new size for the stored data window. The window size is
specified in pixels.

storage_close Closes the stored data window.

Attributes

The pattrstorage object uses attributes—another way to specify the behavior of Max objects
found and used widely in Jitter. As with arguments, you can type in attributes (by using the @
symbol followed immediately—i.e., there is no space after the @—by the name of the typed-

Save and recall presets of
pattr data pattrstorage

422

in attribute you want to set), or you can use any attribute name as you would any Max
message. For more information on attributes, see the Overview chapter of the Max Getting
Started manual.

autorestore The word autorestore, followed by a 1 or 0, enables or disables the pattrstorage
object’s autorestore state. The default is 1 (on). When enabled, the pattrstorage
object will automatically try to locate and read an XML file representing preset
data when the patcher loads. The pattrstorage object will attempt to load the last-
saved file. If the pattrstorage object in question has never saved a file, the object
will attempt to load a file with the name (name).xml, where (name) is the
patcher name of the pattrstorage object (usually, its argument).

changemode The word changemode, followed by a 1 or 0, sets the pattrstorage object’s data-
filtration behavior. The default is 0 (disabled). When enabled, only changed
values are sent from the pattrstorage object to client objects, and repetitive data
is filtered.

flat The word flat, followed by a 1 or 0, enables or disables the pattrstorage object’s
client list display flag. The default is 0 (disabled). When enabled, the pattrstorage
object’s 2 windows will not display a hierarchical view of clients, instead
display only data-containing objects (no patchers), and their full path name or
alias.

greedy The word greedy, followed by a number between 0 and 2, sets the pattrstorage
object’s client search behavior flag. The default is 0 (disabled). greedy provides a
way to limit the amount of data a single pattrstorage object will manage.

When disabled, the pattrstorage object can see all pattr objects or objects bound to
autopattr objects in any child patches of the pattrstorage object (or child patches of
those child patches, tunnelling down through the patcher hierarchy), until
another pattrstorage object is found. Although the pattrstorage object found in a
child patch will be a client of the parent pattrstorage object, no other objects at
that level or below in the patcher hierarchy will be.

When the greedy attribute is set to 1, the pattrstorage object can see everything,
all the way down to the bottom of the patcher hierarchy (including any
pattrstorage objects it finds along the way).

When the greedy attribute is set to 2, the pattrstorage object can only see potential
client objects in its patch. No other patches are searched.

name The word name, followed by a symbol, sets the patcher name of the pattrstorage
object.

Save and recall presets of
pattr data pattrstorage

423

notifymode The word notifymode, followed by a 1 or 0, sets the pattrstorage object’s
add/remove-notification behavior. The default is 0 (disabled). When enabled,
the pattrstorage object will send a message from it’s outlet every time an object is
added or removed from its client list, in the form [add/remove] [object pathname].
Note that the pattrstorage object must occasionally purge and fully rebuild its
client list in response to certain events, resulting in significant output when
notifymode is enabled and objects are being added and removed regularly.

outputmode The word outputmode, followed by a 1 or 0, sets the pattrstorage object’s auto-
output behavior. The default is 0 (disabled). When enabled, the pattrstorage
object will send a message from it’s outlet every time the value of one of its
client objects changes, in the form [object pathname] [data …].

autowatch The word autowatch, followed by a 1 or 0, sets the pattrstorage object’s file
watching behavior. The default is 0 (disabled). When file watching is enabled,
the most recently read or written XML data file will be reloaded automatically
if it is modified. This allows you to use an external editor for your XML data
file. When you save the file, the pattrstorage object will notice. Note that when
the file is re-read, any currently unsaved data will be lost.

savemode The word savemode, followed by a number, sets the pattrstorage object’s save
behavior. The default is 1 (prompt on object free). In this mode, if the
pattrstorage object’s preset data has changed (presets have been stored, deleted or
modified since the last file read or write operation) at the time the object is freed,
the object will prompt the user to write a preset file. In mode 2, pattrstorage will
attempt to autosave a preset file (without user interaction), whenever the
patcher is saved. In mode 0, pattrstorage will neither prompt nor autosave.

The following values are possible:

0 = Neither prompt nor autosave
1 = Prompt the user to save a preset file when the object is freed (default)
2 = Attempt to autosave whenever the patcher is saved, or if unsuccessful,
prompt the user to save a preset file

backupmode The word backupmode, followed by a number, sets the number of backup XML
files to be maintained and rotated by the pattrstorage object when writing files.
The default is 0 (disabled). The argument specifies the number of backups the
pattrstorage object should make before the files start rotating (being
automatically deleted to make room for new backups). The most recent
backup is called pstoname.bak.xml. The next, pstoname_1.bak.xml, followed
by pstoname_2.bak.xml, etc.

Save and recall presets of
pattr data pattrstorage

424

autopattr_vis The word autopattr_vis, followed by a 1 or 0, sets the visibility of autopattr objects
in the clientwindow and storagewindow displays. The default is 0 (disabled).
Since autopattr objects are not used for forming path names, one can generally
ignore them for the purposes of display. When performing pattrstorage object
functions, such as setting the active state or priority for an entire set of objects
being exposed by a single autopattr object, the user needs to know the name of
the objects' actual container object. Enabling autopattr_vis may make this
process somewhat clearer visually and conceptually.

Arguments

symbol Optional. A symbol argument may be optionally used to set the pattrstorage
object’s name. In the absence of an argument, the pattrstorage object is given an
arbitrary, semi-random name, such as u197000004.

Output

anything Multiple messages, corresponding to the various input messages above.

Examples

See Also

autopattr Manage multiple objects at once, or expose them to pattrstorage
pattrhub Access all of the pattr objects in a patcher
pattrstorage Preset storage and general management for pattr objects
Tutorial 52 Patcher Storage
Tutorial 53 More Patcher Storage

Open and close subwindows
within a patcher pcontrol

425

Input

open Opens the patcher window of any subpatches or patcher objects connected
to the pcontrol object’s outlet.

close Closes the patcher window of any subpatches or patcher objects connected
to the pcontrol object’s outlet.

enable The word enable, followed by any number other than 0, enables the MIDI
objects contained in the subpatches or patcher objects connected to the
pcontrol object’s outlet. A message of enable 0 disables the MIDI objects in
those subpatches.

If a second non-zero numerical argument is added, the enable message will
disable/enable the patcher and its subpatchers. The enable message also
affects the enabling/disabling of MSP audio processing (in addition to
MIDI) within the selected patch.

load The word load, followed by the name of a patcher file, opens that file if it
can be found in Max’s search path. The file name may optionally be
followed by up to nine numbers and/or symbols, which will be substituted
for the appropriate changeable # arguments (#1 to #9) in the patch being
opened.

shroud The word shroud, followed by the name of a patcher file, opens that file but
does not show its window. (Use this message with care, since having
patchers open but invisible can potentially lead to some disconcerting
results.)

help The word help, followed by a symbol, opens a help file in Max’s max-help
folder with the name of the symbol followed by .help.

Arguments

None.

Output

Any subpatches or patcher objects connected to the pcontrol object’s outlet
can have their patcher window opened or closed, or MIDI

Open and close subwindows
within a patcher pcontrol

426

enabled/disabled, when the appropriate message is received in the inlet of
pcontrol.

Examples

Show/hide a subpatch window, or enable/disable its MIDI objects

See Also

bpatcher Embed a visible subpatch inside a box
inlet Receive messages from outside a patcher
patcher Create a subpatch within a patch
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

If a number is greater than
previous numbers, output it peak

427

Input

int or float In left inlet: If the input is greater than the value currently stored in peak, it
is stored as the new peak value and is sent out.

In right inlet: The number is stored in peak as the new peak value, and is
sent out.

list In left inlet: The second number is stored as the new peak value and is sent
out, then the first number is received in the left inlet.

bang In left inlet: Sends the currently stored peak value out the left outlet.

Arguments

None. The initial value stored in peak is 0. Providing a float argument will
cause peak to operate with floating point numbers instead of integers.

Output

int Out left outlet: New peak values are sent out. (A number received in the
right inlet is always the new peak value.)

Out middle outlet: If the number received is a new peak value, the output
is 1. If the number received in the left inlet is not a new peak value, the
output is 0.

Out right outlet: If the number received is a new peak value, the output is
0. If the number received in the left inlet is not a new peak value, the output
is 1.

If a number is greater than
previous numbers, output it peak

428

Examples

Find the greatest in a series of numbers A number in the right inlet always sets a
new peak

See Also

maximum Output the greatest in a list of numbers
past Report when input increases beyond a certain number
trough If a number is less than previous numbers, output it
> Is greater than, comparison of two numbers

Output received MIDI
program change values pgmin

429

Input

(MIDI) pgmin receives its input from a MIDI program change message received
from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming program
change messages. The word port is optional and may be omitted.

int The number is treated as if it were an incoming MIDI program change
value. If there is a right outlet, 0 is sent out in lieu of a MIDI channel
number. The program number plus 1 is sent out the left outlet, and is not
limited in the range 1 to 128.

(mouse) Double-clicking on a pgmin object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming program
change messages. If there is no argument, pgmin receives from all channels
on all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to receive program change
messages. Channel numbers greater than 16 will be wrapped around to stay
within the 1-16 range.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output received MIDI
program change values pgmin

430

Output

int If a specific channel number is included in the argument, there is only one
outlet. The output is the incoming program number on the specified
channel and port. Note: The pgmin object always adds 1 to the incoming
program number. Thus, an incoming program change value of 32 will
come out the outlet of pgmin as 33.

If there is no channel number specified by the argument, pgmin will have a
second outlet, on the right, which will output the channel number of the
incoming program change message.

Examples

Program changes can be received from everywhere,
a specific port, or a specific port and channel

See Also

midiin Output received raw MIDI data
pgmout Transmit MIDI program change messages
Tutorial 16 More MIDI ins and outs
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Transmit MIDI program
change messages pgmout

431

Input

int In left inlet: The number has 1 subtracted from it and then is transmitted
as a program change value on the specified channel and port. Numbers are
limited between 1 and 128, and are sent out as program changes 0 to 127.

In right inlet: The number is stored as the channel number on which to
transmit the program change messages.

float Converted to int.

list In left inlet: The first number is the program number +1, and the second
number is the channel, of a MIDI program change message, transmitted
on the specified channel and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI output port or
device, specifies the port used to transmit the MIDI messages. The word port
is optional and may be omitted.

(mouse) Double-clicking on a pgmout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI program change
messages. When a letter argument is present, channel numbers greater
than 16 received in the right inlet will be wrapped around to stay within
the 1-16 range. If there is no argument, pgmout initially transmits out port
a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to transmit program change
messages. Channel numbers greater than 16 will be wrapped around to stay
within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

Transmit MIDI program
change messages pgmout

432

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI program change message
transmitted directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one port. Otherwise, number specifies both port and
channel

See Also

midiout Transmit raw MIDI data
pgmin Output received MIDI program change values
Tutorial 16 More MIDI ins and outs
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Draw a picture in
a graphic window pict

433

Input

bang Draws the picture stored in the pict object if its associated graphics window
is visible.

clear Erases the picture drawn in the graphics window.

int In left inlet: A nonzero number draws the picture in its associated graphics
window if that window is visible. 0 erases the picture.

In middle inlet: Sets the left edge of the picture, in pixels, relative to the
left edge of the graphics window (effective the next time the picture is
drawn).

In right inlet: Sets the top edge of the picture, in pixels, relative to the top
edge of the graphics window’s drawing area (effective the next time the
picture is drawn).

priority The word priority, followed by a number greater than or equal to 0, sets the
object’s sprite priority to that number. Refer to the Graphics section of the
Tutorials and Topics manual for a discussion of sprite priorities.

Arguments

symbol Obligatory. The first argument to pict must be the name of a graphic object
whose window will be used to draw the picture. The second argument must
be the name of a Quicktime PICT file which will be loaded when the object
is created. PICT files have .pct filename extensions on Windows.

int Optional. Following the window name and file name, a number greater
than or equal to 0 sets the initial sprite priority. The default priority is 0,
which means the picture will be drawn behind all other objects. Following
the priority number, the next two arguments specify the left and top
offsets of the image, in pixels, relative to the top left corner of the graphics
window’s drawing area.

Output

(visual) When the pict object’s associated graphics window is visible, and a bang
message or a nonzero int is received in its inlet, the stored picture is drawn
in the window.

Draw a picture in
a graphic window pict

434

Examples

Picture can be displayed or moved around in the graphics window

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
Tutorial 42 Graphics

Picture-based
control pictctrl

435

The pictctrl object is a user interface object for creating buttons, switches, knobs, and other
controls. It can open PICT files and, if QuickTime Version 3.0 or later is installed, other
picture file formats that are listed in the QuickTime appendix.Since the pictctrl object uses
images from a picture file for its appearance, you can create controls with whatever
appearance you desire.

Note: The pictctrl object requires that QuickTime be installed on your system to open any
files other than PICT files. If you are using Max on Windows, we recommend that you
install QuickTime and choose a complete install of all optional components.

Input

int Sets the value of the button or knob set by the control, and sends the
current value out the outlet. In button and toggle mode, the value must be
either 0 or 1. In dial mode, the range of values is determined by pictctrl
object’s Range attribute.

set The word set, followed by a number, sets the value of the button or knob to
that number, without triggering output.

bang Sends the current value of the pictctrl to the outlet.

clickincrement The word clickincrement, followed by a nonzero value, sets the output value to
increment by 1 each time the object is clicked (Click to Increment mode).
Any movement of the mouse after clicking is ignored. When the
uppermost value is reached, the value returns to zero with the next click.
All other mouse tracking modes are disabled. clickincrement 0 disables Click to
Increment mode.

clickedimage The word clickedimage, followed by a nonzero value, tells the pictctrl object to
use an alternate set of image frames in your picture file to give the dial a
different appearance when the user clicks on it and drags the mouse
pointer. clickedimage 0 disables this feature.

picture The word picture, followed by a symbol that specifies a filename, designates
the picture file that the pictctrl object will use for the control’s button or dial
file. The symbol used as a filename must either be the name of a file in
Max’s current search path, or an absolute pathname for the file (e.g.
“MyDisk:/Documents/UI Pictures/CoolKnob.pct”). The word picture by itself puts up a
standard Open Document dialog box and displays the common graphics
files supported by QuickTime.

Picture-based
control pictctrl

436

active The word active, followed by a 0 or 1, toggles mouse control of the pictctrl
object. The default is 1 (enabled). If a separate set of inactive images is
present in the pictctrl object’s picture file and if the inactive images attribute
is set, the active message will also change the appearance of the control.

inactiveimage The word inactiveimage, followed by a nonzero value, tells the pictctrl object
that your picture file has an additional row of images for its inactive state.
The default is 0 (no inactive state).

imagemask The word imagemask, followed by a nonzero value, tells the pictctrl object that
your picture file has an image mask. The default is 0 (no image mask).

tracking The word tracking, followed by a 0 or 1, toggles live tracking. If live tracking
is on, the pictctrl object will change its state if the mouse moves in and out
of the rectangular border of the object with the mouse button held down.
tracking 0 disables live tracking

range The word range, followed by a number, sets the range of the pictctrl object
when it is in dial mode. The default value is 128.

offset The word offset, followed by a number, sets an offset value. When pictctrl is
in dial mode, the offset value is added to the object's value before being
sent out the outlet. The default offset value is 0.

multiplier The word multiplier, followed by a number, specifies a multiplier value.
When pictctrl is in dial mode, the object's value is multiplied by this number
before being sent out the outlet. The multiplication happens before the
addition of the Offset value. The default multiplier value is 1.

frames The word frames, followed by a number, specifies the number of images
(columns) in the picture file. The number of frames does not have to be
the same as the range of the control; the pictctrl object will use the nearest
image for any given value.

trackhorizontal The word trackhorizontal, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse horizontally; moving the
mouse to the right increases the object’s value, and moving it to the left
decreases the value. Enabling this mode of operation disables the Circular
Tracking and Click to Increment modes (see the clickincrement and trackcircular
messages).

trackvertical The word trackvertical, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse vertically; moving the

Picture-based
control pictctrl

437

mouse up increases the object’s value, and moving it down decreases the
value. Enabling this mode of operation disables the Circular Tracking and
Click to Increment modes (see the clickincrement and trackcircular messages).

trackcircular The word trackcircular, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse in a circular arc relative
to the control's center (Circular Tracking mode). Moving the mouse
clockwise increases the control’s value, and moving it counterclockwise
decreases its value. Enabling circular tracking disables all other tracking
modes. trackcircular 0 disables circular tracking.

ratio The word ratio, followed by a number, specifies how many pixels the mouse
pointer must move before the value of the dial changes by one increment.
If the pictctrl object is using Circular Tracking, the ratio message specifies
how many degrees the cursor must move, relative to the center of the
object, to increase the value by one.

Inspector

The behavior of a pictctrl object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any pictctrl object
displays the pictctrl Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

Some of the pictctrl object’s attributes are associated with one of the three
modes of this object—Button Mode, Toggle Mode, and Dial Mode. The
pictctrl Inspector lets you set the following attributes:

Button mode imitates the behavior of simple buttons in graphical user
interfaces, such as the “OK” and “Cancel” buttons found in dialog boxes.
In this mode, the pictctrl object outputs a 1 when the user clicks on the
object, and a 0 when the user either moves the mouse off of the object or
releases the mouse button. Button mode is also useful for display objects,
such as simulated LEDs and status indicators.

Toggle mode is similar to button mode, except that the object changes
state from 0 to 1 (or 1 to 0) with every mouse click. Toggle mode imitates
the behavior of check boxes.

Picture-based
control pictctrl

438

Checking Live Tracking can only be done if you’re using the pictctrl object’s
button mode. If this checkbox is checked, pictctrl will change state if the
mouse moves in and out of the rectangular border of the object with the
mouse button held down.

Dial mode can be used to create controls that act like knobs, or any other
control that has more than two distinct values. (You could use dial mode to
create sliders, but the pictslider object is better suited to this task.) Dial mode
lets you set a range, offset, and multiplier for its values, just as with Max’s
hslider, uslider, and dial objects. When you click on the object and drag, its
value changes. pictctrl can track either horizontal and/or vertical cursor
motion, or circular motion. ignoring subsequent drag motions. When
using dial mode you must specify the number of image frames that are in
the picture file you’re using (see below). The number of images does not
have to be the same as the range of values. For example, a knob could have
a range of 128 but only 30 distinct images. There is little reason to create a
control with more image frames than its range, since manipulating the
control could change its appearance without causing any output.

When using dial mode you must specify the number of image frames that
are in the picture file you’re using (see below). The number of images does
not have to be the same as the range of values. For example, a knob could
have a range of 128 but only 30 distinct images. There is little reason to
create a control with more image frames than its range, since manipulating
the control could change its appearance without causing any output.

When the pictctrl object is in dial mode, you can specify a Range for the
object which will automatically limit numbers received in the inlet to
between 0 and the number 1 less than the specified range, a Multiplier—a
number by which all numbers will be multiplied before being sent
out—and an Offset—which will be added to the number, after
multiplication. The default object has a range of 128, a multiplier of 1, and
an offset of 0.

The Image Frames box lets you specify the number of distinct images
(columns) in the picture file. The number of frames does not have to be
the same as the range of the control; pictctrl will use the nearest image for
any given value.

If Horizontal Tracking or Vertical Tracking is checked, the pictctrl object
will respond when you click on it and drag the mouse in the corresponding
direction. Dragging the mouse to the right and/or up increases the pictctrl

Picture-based
control pictctrl

439

object’s value; dragging it left and/or down decreases its value. Enabling
either of these attributes disables the Circular Tracking and Click to
Increment modes (see below).

If Circular Tracking is checked, the control will respond when you click on
it and drag the mouse in a circular arc relative to the control’s center.
Dragging the mouse clockwise increases the control’s value; dragging it
counterclockwise decreases its value. Enabling Circular Tracking disables all
other tracking modes.

If Click to Increment is checked, the control’s value increases by one every
time it is clicked. Subsequent dragging motions are ignored. When the
uppermost value is reached, the value returns to zero with the next click.
Enabling Click to Increment disables all other tracking modes.

If Clicked Images is checked, pictctrl uses an alternate set of image frames in
your picture file to give the dial a different appearance when the user clicks
on it and drags the mouse pointer.

The Tracking Ratio attribute specifies how many pixels the mouse pointer
must move before the value of the dial changes by one increment. For the
circular tracking mode, the tracking ratio specifies how many degrees the
cursor must move, relative to the center of the object, to increase the value
by one.

The Has Inactive Images and Image Masks checkboxes specify that your
picture file has additional rows of images for its inactive state, and whether
it has image masks.

The Picture File option lets you choose a picture file for the pictctrl object’s
knob by clicking on the Open button. The current file’s name appears in
the text box to the left of the button. You can also choose a file by typing
its name in this box, or by dragging the file’s icon from the Finder into
this box.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Picture-based
control pictctrl

440

Picture File Format

When you create a new pictctrl object in a patcher window, it has no
associated picture file. Use the Open button in the inspector to choose a
picture file for the control. It can open PICT files and, if QuickTime
Version 3.0 or later is installed, other picture file formats that are listed in
the QuickTime appendix. The layout of the picture in the file varies
depending on which mode of operation the pictctrl uses. All three modes
require that the pictures be made up of a grid of images, in which all images
have the same width and height.

Button mode has the simplest layout:

The first row of images is mandatory: these two images are used for the idle
and clicked states (values zero and one, respectively) of the button. The
next row of images, if present, is used for the control when it is in its
inactive state. The next rows contain the masks for the top row of images,
and the inactive images if present.

Picture-based
control pictctrl

441

Toggle mode has a similar layout:

In this mode, the top two rows are mandatory. The first row of images are
used when the control’s value is zero, the next row when its value is one.
The third row is optional; it is used for the control when it is in its inactive
state. (Note that there are no “clicked” images for the inactive state, since
when inactive, the control ignores mouse clicks.) The next rows contain
masks for the images.

Picture-based
control pictctrl

442

The Dial mode layout varies in size depending on how many image frames
it has, which must be the same as the Image Frames parameter as set in the
inspector:

The first row of images is mandatory: one image for each visually distinct
state of the control. Dials need as many picts as you wish them to have
visible states. Note that dials can receive and send a larger range of values
than are represented by picts (e.g. your dial can have a range of 128 even if
you only use eight pict frames to represent the range of the dial). The next
row of images is optional, and is used when the user is clicking and
dragging on the object to change its value. The next row is also optional;
(Note that there are no “clicked” images for the inactive state, since when
inactive, the control ignores mouse clicks.) The following rows contain
masks for the images.

Output

int The current value of the pictctrl object. In toggle and button modes this will
be a 0 or a 1. In dial mode, this value is specified by the range, offset, and
multiplier that you set in the Inspector window.

Picture-based
control pictctrl

443

Examples

Create customized controls to create a more attractive user interface

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
matrixctrl Matrix-style switch control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Picture-based
slider control pictslider

444

The pictslider object is a slider control that uses pictures in external files for its appearance. It
uses two pictures—one for the “knob” (the part that you move with the mouse,
corresponding to the part of a physical slider that you move with your fingers) and one
for the background over which the knob moves. The pictslider object has default pictures
that are used if you do not want to supply pictures of your own, but its intended use is
creating controls with customized appearances.

You can use the pictslider object to create horizontal or vertical sliders, as well as two-
dimensional controllers (virtual trackpads or joysticks).

Note: The pictslider object requires that QuickTime be installed on your system to open any
files other than PICT files. If you are using Max on Windows, we recommend that you
install QuickTime and choose a complete install of all optional components.

Input

bang In left inlet: Sends the current values of the pictslider to its outlets. The
horizontal value is sent out the left outlet; the vertical value out its right
outlet.

int In left inlet: sets the pictslider object’s horizontal value. The value is also sent
out the left outlet, and the pictslider object’s current vertical value is sent out
the right outlet.

In right inlet: sets the pictslider object’s vertical value. The value is also sent
out the right outlet, and the control’s current horizontal value is sent out
the left outlet.

float Converted to int.

list In left inlet: A list of two numbers sent to the left inlet sets the pictslider
object’s horizontal value to the first number and its vertical value to the
second. The two values are sent out the left and right outlets.

active In left inlet: The word active, followed by a 0 or 1, toggles mouse control of
the pictslider object. The default is 1 (enabled). If a separate set of inactive
images is present in the pictslider object’s graphics file and if the inactive
images attribute is set, the active message will also change the appearance
of the control.

bkgnddrag In left inlet: The word bkgnddrag, followed by a 0 or 1, toggles background
drag mode for the pictslider object. When this mode is enabled, clicking and

Picture-based
slider control pictslider

445

dragging anywhere in the background area of the slider will move the
knob; the knob will move relative to the motion of the mouse, just as if
you had clicked in the knob itself. The message bkgnddrag 0 disables this
mode. You must also uncheck the KnobJumps to Click Location checkbox
in the pictslider object's inspector or send the object a jump 0 message to
enable this mode.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename,
designates the graphics file that the pictslider object will use for the control’s
background image. The symbol used as a filename must either be the name
of a file in Max’s current search path, or an absolute pathname for the file
(e.g. “MyDisk:/Documents/UI Pictures/CoolBkgnd.pct”).

bkgndsize In left inlet: The word bkgndsize, followed by a nonzero value, tells the
pictslider object to change the size of the object to match the size of the
background picture. After receiving this message, the object’s size cannot
be changed. bkgndsize 0 allows the control to be resized in the usual manner
by dragging its lower-right corner.

bottommargin In left inlet: The word bottommargin, Followed by an int greater than or
equal to zero, sets the bottom margin, in pixels, for the pictslider. The
margin reduces the area in which the knob moves; if a margin is zero, the
knob can move all the way to the bottom of the slider.

bottomvalue In left inlet: The word bottomvalue, followed by an int, sets the values
emitted by the pictslider object when the knob is moved as far as possible to
the bottom. The message bottomvalue 100 will cause the control to send 100
out of its left outlet when the knob is moved all the way to the bottom.

clickedimage In left inlet: The word clickedimage, followed by a nonzero value, specifies
that the graphics file used by the pictslider object contains an additional
image to be displayed when the control is clicked.

horizontaltracking In left inlet: The word horizontaltracking, followed by a float, sets the
horizontal tracking ratio for movements of the pictslider object’s knob. The
default value is 1.0. Values greater than one cause the knob to move more
quickly when dragged; values less than one cause it to move more slowly.

imagemask In left inlet: The word imagemask, followed by a nonzero value, specifies that
the graphics file used by the pictslider object contains image masks.

Picture-based
slider control pictslider

446

inactiveimage In left inlet: The word inactiveimage, followed by a nonzero value, specifies
that the graphics file used by the pictslider object contains additional images
for the object’s inactive state.

invisiblebkgnd In left inlet: The word invisiblebkgnd, followed by a nonzero value, tells the
pictslider object to not draw any background image. The knob will appear to
float above any objects underneath it.

jump In left inlet: The word jump, followed by a nonzero value, makes pictslider
move the knob to the position of the cursor if you click in the object
outside of the knob. jump 0 disables this behavior; you must click in the
knob itself to move it.

knobpicture In left inlet: The word knobpicture, followed by a symbol that specifies a
filename, designates the graphics file that the pictslider object will use for the
control’s knob file. The symbol used as a filename must either be the name
of a file in Max’s current search path, or an absolute pathname for the file
(e.g. “MyDisk:/Documents/UI Pictures/CoolKnob.pct”). The word knobpicture by itself
puts up a standard Open Document dialog box and displays the common
graphics files supported by QuickTime.

leftmargin In left inlet: The word leftmargin, followed by an int greater than or equal to
zero, sets the left margin, in pixels, for the pictslider. The margin reduces the
area in which the knob moves; if a margin is zero, the knob can move all
the way to the left of the slider.

leftvalue The word leftvalue, followed by an int, sets the values emitted by the pictslider
object when the knob is moved as far as possible to the left. The message
leftvalue 100 will cause the control to send 100 out of its left outlet when the
knob is moved all the way to the left.

 movehorizontal In left inlet: The word movehorizontal, followed by a nonzero value, allows
the knob to change when the mouse is moved horizontally. The message
movehorizontal 0 prevents the knob from moving when the mouse is moved
horizontally.

movevertical In left inlet: The word movevertical, followed by a nonzero value, allows the
knob to change when the mouse is moved vertically. The message
movevertical 0 prevents the knob from moving when the mouse is moved
vertically.

rightmargin In left inlet: The word rightmargin, followed by an int greater than or equal
to zero, sets the right margin, in pixels, for the pictslider. The margin reduces

Picture-based
slider control pictslider

447

the area in which the knob moves; if a margin is zero, the knob can move
all the way to the right of the slider.

rightvalue In left inlet: The word rightvalue, followed by an int, sets the values emitted
by the pictslider object when the knob is moved as far as possible to the right.
The message rightvalue 100 will cause the control to send 100 out of its left
outlet when the knob is moved all the way to the right.

scaleknob In left inlet: The word scaleknob, followed by a nonzero value, tells the
pictslider object to stretch or shrink the knob when you change the size of
the entire object. scaleknob 0 will result in the knob always being drawn at its
original size.

set In left inlet: The word set, followed by a number, sets the pictcslider
object’s horizontal value but does not send the value out its left outlet.The
word set, followed by two numbers, sets the pictslider object’s horizontal
value to the first number and its vertical value to the to the second
number, but does not send the values out its outlets.

In right inlet: The word set, followed by a number, sets the pictslider object’s
vertical value, but does not send the value out its right outlet.

topmargin In left inlet: The word topmargin, followed by an int greater than or equal to
zero, sets the top margin, in pixels, for the pictslider. The margin reduces the
area in which the knob moves; if a margin is zero, the knob can move all
the way to the top of the slider.

topvalue In left inlet: The word topvalue, followed by an int, sets the values emitted
by the pictslider object when the knob is moved as far as possible to the top.
The message topvalue 100 will cause the control to send 100 out of its left
outlet when the knob is moved all the way to the top.

track In left inlet: The word track, followed by a float, sets the tracking ratio for
horizontal movements of the pictslider object’s knob.

In right inlet: The word track, followed by a float, sets the tracking ratio for
vertical movements of the pictslider object’s knob.

verticaltracking In left inlet: The word verticaltracking, followed by a float, sets the vertical
tracking ratio for movements of the pictslider object’s knob. The default
value is 1.0. Values greater than one cause the knob to move more quickly
when dragged; values less than one cause it to move more slowly.

Picture-based
slider control pictslider

448

Inspector

The behavior of a pictslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any pictslider object
displays the pictslider Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The pictslider Inspector lets you set the following attributes:

The Margin number boxes set the corresponding margin for the pictslider, in
pixels. The margins reduce the area in which the knob moves. If a margin
is zero, the knob can move all the way to the corresponding edge of the
slider. If the left margin is five, for example, the knob can move no closer
than five pixels to the left edge of the slider.

The Value number boxes set the values emitted by the control when the
knob is moved as far as possible in the corresponding direction. For
example, setting the right-hand number box to 100 will cause the control
to send 100 out of its left outlet when the knob is moved all the way to the
right. (The value is sent out the left outlet because the left outlet emits
values for horizontal movements of the knob.) Values for intermediate
positions of the knob are calculated by interpolating between the left and
right or top and bottom values. Either one of each pair of numbers can be
larger, so for example if the top value is -100 and the bottom is 50, the
vertical value will decrease from 50 to -100 as the knob is moved from the
bottom to the top.

If the Move Horizontal or Move Vertical checkboxes are checked, the knob
can be moved in the corresponding direction by clicking and dragging it
with the mouse. If you’re creating a traditional slider that moves only
horizontally or vertically, check the appropriate checkbox and leave the
other unchecked.

Selecting the Knob Jumps to Click Location option lets you click anywhere
within the pictslider object’s bounding rectangle and have the knob jump to
this location. If unchecked, you must click and drag the knob itself to
move it.

The Has Inactive Images checkbox tells the pictslider object that your
graphics files have additional images for the control’s inactive state. Leave

Picture-based
slider control pictslider

449

this box unchecked if the picture files used by the control do not have these
images.

The Tracking Ratio values determine the responsiveness of the knob to
mouse movements. The default value is 1.0. Values greater than one cause
the knob to move more quickly when dragged; values less than one cause it
to move more slowly.

There are four attributes listed in the Inspector that let you change the
appearance of the slider’s knob. You can choose a graphics file for the
slider’s knob by clicking on the Open button. The current file’s name
appears in the text box to the left of the button. You can also choose a file
by typing its name in this box, or by dragging the file’s icon from the
Finder into this box.

Checking the Scale Knob When Control Size Changes option allows the
knob’s image to be stretched or compressed when you resize the pictslider, in
proportion to the relative sizes of the object’s bounding box and the
background picture. If unchecked, the knob’s image will be drawn at its
original size. Since stretched images tend to look blocky and uneven, you
will usually want to draw an image for your knob at the size that you want
the knob to be. This knob-scaling attribute is useful for experimenting
with the size and layout of the pictslider without having to redraw the knob’s
picture file.

Checking the Clicked Image option will use an alternate set of image
frames in your picture file to give the knob a different appearance when
the user clicks and drags it.

If you want to use image masks in your knob’s graphics file to draw the
knob, select the Image Mask option. Masks can be used to create knobs
with a non-rectangular shape. If your knob picture has separate images for
the clicked and/or inactive state, you must supply masks for those as well.

There are three attributes listed in the Inspector that let you change the
appearance of the slider’s background. You can choose a graphics file for
the slider’s background by clicking on the Open button. The current file’s
name appears in the text box to the left of the button. You can also choose
a file by typing its name in this box, or by dragging the file’s icon from the
Finder into this box.

If Size Control to Background Image is checked, the pictctrl object’s size is
adjusted to match the size of the image chosen for the background. When

Picture-based
slider control pictslider

450

this attribute is enabled, you cannot change the object’s size in the usual
manner by clicking and dragging its lower-right corner; its size is fixed. If
unchecked, the image is stretched or shrunk to fill the size of the slider.
Since stretched images tend to look blocky and uneven, you will usually
want to draw an image for your slider at the size that you want the slider to
be. Leaving this sizing attribute unchecked is useful for experimenting with
the size and layout of the pictslider without having to redraw the slider’s
picture file.

Checking the Invisible Background box tells the pictslider object not to draw
anything for the slider’s background. The knob will appear to “float” over
any underlying objects.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Picture File Format

The pictslider object uses the two picture files: one for the background, and
one for the knob that is moved over the background with the mouse.

Background picture files can be in PICT format, or if QuickTime Version
3.0 or later is installed, one of the other graphics file formats listed in the
QuickTime appendix. Background picture files must have the following
layout:

Only one image is required; if only one image is supplied, it will be used
for drawing all states of the background. Additional images are placed to
the right of the first image. You can add images for the inactive state of the
control. The inactive image will be used after the control has received an
active 0 message.

Picture-based
slider control pictslider

451

Knob files must be in PICT format with the following layout:

The picture is made up of a grid of one or more images. All images have
the same width and height.

Only one image is required; if only one image is supplied, it will be used
for drawing all states of the knob. Additional images are placed to the right
of the first image. You can add images for either or both the “clicked” or
inactive states of the control. The “clicked” image will be shown when the
user is dragging the control’s knob. The inactive image will be used after
the control has received an active 0 message.

Image masks can be used to create knobs with non-rectangular outlines.
These masks are directly below their corresponding images in the picture
file. If you wish to use masks for any of the knob images, you must provide
masks for all of them—each image will have a corresponding row of masks.
Black pixels in the mask image create areas of the corresponding image
that will be drawn, and white pixels create invisible areas.

Output

int Moving the slider’s knob by clicking and dragging it with the mouse, or
sending values to either of its inlets, causes its horizontal value to be
emitted from the left outlet and its vertical value to be emitted from the
right outlet. Incoming values are constrained to the ranges determined by
the top/bottom and left/right values set in the inspector.

Picture-based
slider control pictslider

452

Examples

pictslider lets you create both one- and two-dimensional UI elements

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
multislider Multiple slider and scrolling display
nslider Output numbers from a notation display onscreen
pictctrl Picture-based control
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Delay numbers
or lists pipe

453

Input

int In left inlet: The number is delayed a certain number of milliseconds
before it is sent out the left outlet. If there are middle inlets, the numbers
in those inlets are also delayed and sent out the corresponding outlets.

int or float In right inlets: Sets the time in milliseconds to delay numbers received in
the other inlets.

bang In left inlet: Retriggers the numbers currently stored in the pipe to be output
again in the specified number of milliseconds (in addition to any numbers
already being delayed).

float In left and middle inlets: Converted to int, unless the inlet was initialized
with a float argument.

list In left inlet: Numbers are distributed to the pipe object’s inlets to be delayed
together. If there is a number for the right inlet, it sets the delay time for
the other numbers.

clear In left inlet: Halts all numbers currently being delayed by pipe.

clock The word clock, followed by the name of an existing setclock object, sets pipe to
be controlled by that setclock rather than by Max’s internal millisecond clock.
The word clock by itself sets pipe back to using Max’s regular millisecond
clock.

flush In left inlet: Immediately sends out all numbers currently being delayed by
pipe, and clears the pipe object’s memory. Numbers are sent out each outlet in
reverse order from that in which they were received in the corresponding
inlet.

Arguments

int Optional. The last argument sets an initial value for the delay time, in
milliseconds. If there is no argument, the delay time is 0. If there are two
arguments, the first argument sets an initial value to be stored in pipe, and
the second arguments sets the delay time. If more than two arguments are
present, pipe creates additional inlets and outlets for delaying additional
numbers in parallel to the leftmost one.

Delay numbers
or lists pipe

454

float The last argument is converted to int. Other float arguments cause the
corresponding outlet to send a float.

Output

int When a number is received in the pipe object’s left inlet, it is delayed by the
time specified, then sent out the left outlet. If there are middle inlets, the
numbers in those inlets are also delayed and sent out their corresponding
outlet, in response to a number is received in the left inlet. Unlike delay,
more than one number at a time can be delayed in a pipe. When a new
delay time is received in the right inlet, it does not affect when the
numbers already being delayed by pipe will come out.

Examples

One or more numbers can be delayed with pipe

See Also

delay Delay a bang before passing it on
Tutorial 22 Delay lines

QuickTime movie
play controller playbar

455

Note: The playbar object requires that QuickTime be installed on your system. If you are
using Max on Windows, we recommend that you install QuickTime and choose a
complete install of all optional components.

Input

bang If the left outlet of a playbar object is connected to a movie or imovie object,
bang links the two objects together so the playbar can control the QuickTime
movie. After playbar and movie are linked, any messages sent to the movie
object which change its location or playing status are reflected in the playbar
object. (Linking will happen automatically when a patcher file containing
connected playbar and movie objects is loaded. Thus, sending the bang to
playbar is only necessary when you’re building a patch.)

Arguments

None.

Output

(internal) Out left outlet: Once the playbar and a movie object are linked, the playbar
controls the QuickTime movie. playbar only supports being connected to
one movie object at a time. The connection must be made with a patch cord;
it cannot take place via a send-receive pair.

int Out right outlet: Each command processed by playbar is sent by number out
its right outlet. A directory of command numbers and their meaning can
be found in the QuickTime Standard Movie Play Controller
documentation. By properly interpreting these commands, you can
potentially use playbar for other purposes besides movie control. However,
the “thumb” in the controller has no range until an associated QuickTime
movie with a non-zero duration is linked to the playbar.

QuickTime movie
play controller playbar

456

Examples

Using playbar with movie and imovie

See Also

movie Play a QuickTime movie in a window
imovie Play a QuickTime movie in a patcher window

Polar to Cartesian
coordinate conversion poltocar

457

Input

float In left inlet: The distance portion of a polar coordinate pair to be
converted into a Cartesian coordinate pair consisting of real and imaginary
values. When used in an audio context, the value represents magnitude
(amplitude) portion of a polar coordinate pair to be converted into a
cartesian (real/imaginary) coordinate pair.

 In right inlet: The angle portion of a polar coordinate pair to be converted
into a Cartesian coordinate pair consisting of real and imaginary values.
When used in an audio context, the value represents the phase portion of a
polar coordinate pair to be converted into a cartesian (real/imaginary)
coordinate pair.

int Converted to float.

Arguments

None.

Output

float Out left outlet: The real portion of a Cartesian coordinate pair.

 Out right outlet: The imaginary portion of a Cartesian coordinate pair.

Examples

Convert Polar to Cartesian coordinates

See Also

cos Cosine function
cartopol Cartesian to Polar coordinate conversion

Polar to Cartesian
coordinate conversion poltocar

458

lcd Draw graphics in a Patcher window
sin Sine function

Allocate notes to
different voices poly

459

Input

list In left inlet: The first number is treated as a pitch, and the second number
is treated as a velocity value, of a pitch-velocity pair. If the velocity is not
0, poly allocates that note-on to the first available voice number and sends
it out. If the velocity is 0, poly frees the voice that is holding that pitch and
sends out the note-off.

int In left inlet: The number is treated as the pitch value of pitch-velocity pair
and the note is sent out.

In right inlet: The number is stored as the velocity to be paired with
numbers received in the left inlet.

float Converted to int.

stop In left inlet: Immediately sends note-offs for all the notes currently being
held by poly, freeing all voices.

Arguments

int Optional. The first argument sets the number of voices to which poly can
allocate notes (thus limiting the number of notes poly can hold at one
time). If there is no argument present, poly can hold 16 notes.

If there is no second argument, or if the second argument is 0, poly sends
any notes it cannot hold out the rightmost outlet. If there is a second
argument not equal to 0, poly steals voices: when poly receives more notes
than it has voices, it turns off the note it has held the longest and puts the
new note in its place.

float Converted to int.

Output

int Out left outlet: The output is the voice number of the note-on or note-off
being sent out.

Out 2nd outlet: The output is the pitch of the note-on or note-off.

Out 3rd outlet: The number is the velocity of the note-on or note-off.

Allocate notes to
different voices poly

460

list Out 4th outlet: The first number is the pitch, and the second number is the
velocity, of any notes poly cannot hold. If there is a nonzero second
argument, poly steals voices rather than send out overflow, so the fourth
outlet is not created.

Examples

Send each voice to a different place Limit the number of notes held at a time

See Also

borax Report current information about note-ons and note-offs
flush Provide note-offs for held notes
makenote Generate a note-off message following each note-on

Output received MIDI
poly pressure values polyin

461

Input

(MIDI) polyin receives its input from MIDI polyphonic key pressure messages
received from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming polyphonic
key pressure messages. The word port is optional and may be omitted.

(mouse) Double-clicking on a polyin object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming MIDI
messages. If there is no argument, polyin receives from all channels on all
ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to receive polyphonic key pressure
messages. Channel numbers greater than 16 will be wrapped around to stay
within the 1-16 range.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output

int Out left outlet: The number is the pressure value of the incoming
polyphonic key pressure message.

Out 2nd outlet: The number is the pitch value (key number) of the
incoming message.

Output received MIDI
poly pressure values polyin

462

If a specific channel number is included in the argument, there are only
two outlets. If there is no channel number specified by the argument, polyin
will have a third outlet, on the right, which will output the channel number
of the incoming note-on message.

Examples

Messages can be received from everywhere, a specific port, or a specific port and channel

See Also

midiin Output received raw MIDI data
polyout Transmit MIDI poly pressure messages
Tutorial 16 More MIDI ins and outs
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Transmit MIDI
poly pressure messages polyout

463

Input

int In left inlet: The number is the pressure value of a MIDI polyphonic key
pressure message transmitted on the specified channel and port. Numbers
are limited between 0 and 127.

In middle inlet: The number is stored as the key number, to be used with
pressure values received in the left inlet. Numbers are limited between 0
and 127.

In right inlet: The number is stored as the channel number on which to
transmit the polyphonic key pressure messages.

float Converted to int.

list In left inlet: The first number is the pressure value, the second number is
the key number, and the third number is the channel, of a transmitted
MIDI polyphonic key pressure message.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or the name of a MIDI
output port or device, specifies the port used to transmit the polyphonic
key pressure messages. The word port is optional and may be omitted.

(mouse) Double-clicking on a polyout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI polyphonic key
pressure messages. Channel numbers greater than 16 received in the right
inlet will be wrapped around to stay within the 1-16 range. If there is no
argument, polyout initially transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to transmit polyphonic key pressure
messages. Channel numbers greater than 16 will be wrapped around to stay
within the 1-16 range.

Transmit MIDI
poly pressure messages polyout

464

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI polyphonic key pressure
message transmitted directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one port.
Otherwise, number specifies both port and channel

See Also

midiout Transmit raw MIDI data
polyin Output received MIDI poly pressure values
Tutorial 16 More MIDI ins and outs
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Computes x to
the power of y pow

465

pow raises the base value (set in the right inlet) to the power of the exponent (set in the
left inlet).

Input

float or int In left inlet: Sets the exponent.

In right inlet: Sets the base value.

Arguments

float or int Optional. Sets the base value. The default value is 0.

Output

float The base value (from the right inlet) raised to the exponent (from the left
inlet).

Examples

pow will give you a square deal (and other numbers, too)

See Also

expr Evaluate a mathematical expression
>> Shift all bits to the right
<< Shift all bits to the left

Put one message at the
beginning of another prepend

466

Input

set The word set, followed by any message, will replace the message stored in
prepend, without triggering output.

anything else The message stored in prepend is attached to the beginning of the message
received in the inlet, and the combined message is sent out its outlet.

Arguments

anything Obligatory. Sets the message to be prepended at the beginning of
incoming messages. The first argument must be a symbol.

Output

anything The message received in the inlet is combined with the message stored in
prepend, and then sent out the outlet. The maximum allowed length of any
constructed message is 256 items.

Examples

Symbols can be combined into meaningful messages with prepend

See Also

append Append arguments at the end of a message
message Send any message
route Selectively pass the input out a specific outlet
Tutorial 25 Managing messages

Store and recall the
settings of other objects preset

467

Input

int The number indicates a preset, and the settings stored in that preset are
sent out to the connected objects, or to all objects in the window if no
patch cords are connected to the preset object’s outlet. The settings in a
preset can also be sent out by clicking on the preset with the mouse.

float Converted to int.

bang Sends out the settings of the preset that was most recently recalled with an
int or a mouse click.

clear Erases the contents of the most recently sent preset. The word clear,
followed by a number, erases the contents of that numbered preset.

clearall Erases the contents of all presets.

list Same as bang.

name The word name, followed by a symbol, sets the ID Name for the preset. The
ID Name allows the preset to have a unique ID so that files created for it
will not read into other presets.

read The word read, followed by no arguments or a number, displays an Open
Document dialog box for choosing a file of preset data to read. If the preset
has been given a Preset Name Code, only files of the type specified by the
code will be displayed. The number argument specifies the preset number
into which the file data should be read. If the number is 0 or -1, the data in
the file will be read into the number of presets contained in the file starting
with the first one. If the word read is followed by a symbol or a number and
a symbol, no dialog box is displayed. Instead, the symbol is taken as a
filename from which to read presets. The number functions as already
described.

store The word store, followed by a number, it stores the current setting of all
user interface objects in the same window in the preset indicated by the
number. If objects are connected to the preset object’s left outlet with patch
cords, only those connected objects will be affected.

The presets (storage locations in the preset object) are numbered left-to-
right, top-to-bottom. When settings are stored in a preset, a dot appears on
it to indicate that it contains something. Settings can also be stored in a

Store and recall the
settings of other objects preset

468

preset by holding down the Shift key and clicking on the preset with the
mouse.

write The word read, followed by no arguments or a number, displays a Save As
dialog box for specifying a destination filename for writing the preset data.
If the preset has been given a Preset Name Code, the file is given this code
as its file type. The number argument specifies the preset number from
which the preset data should be written. If the number is 0 or -1, all presets
will be written. If the word write is followed by a symbol or a number and a
symbol, no dialog box is displayed. Instead, the symbol is taken as a
filename to use for writing the data; the file will be placed in the current
default folder The number functions as already described.

Inspector

The behavior of a preset object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any preset object
displays the preset Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The preset Inspector lets you specify an ID Name to the preset object, to
distinguish it from other preset objects. The first four characters of this
name, if you enter one, are used as the Macintosh “file type” for files of
presets saved by this object. When you send the read message to a preset
object that has an ID Name, only the files whose types match the first four
characters of this name are shown in the standard file dialog. This allows
you to create a “document type” for preset files so the user won’t open a
preset file designed for another preset object. A preset object can also be set to
save its contents as part of the patch that contains it by checking the Save
Presets with Patcher check box.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Store and recall the
settings of other objects preset

469

Output

int or float Out left outlet: When a preset is recalled, either by a mouse click or by a
number in the inlet, the settings stored in that preset are sent out the
outlet to all connected objects, or, if no objects are connected, to all user
interface objects in the window.

int Out middle outlet: When a preset is recalled, the number of the preset is
sent out.

(internal) Any user interface objects connected to the right outlet of preset will be
excluded from the effects of that preset. (This is particularly useful when
there are many objects you want to affect with preset, and only a few you
want to exclude.)

Objects whose data is stored in a preset include: dial, Ggate, Gswitch, hslider, led,
number box (both int and float), slider, toggle, and uslider. The contents of a table
can also be stored and recalled by preset, but the table must be connected to
the preset object’s outlet with a patch cord. The outlet of preset can also be
connected to a send object, to communicate with objects connected to a
receive object of the same name.

The number of visible presets can be adjusted by resizing the preset object’s
box. The maximum number of presets in a single preset object is 2048.

Examples

Remember many past settings and recall them later

See Also

grab Intercept the output of another object
Tutorial 37 Data structures
Data Structures Ways of storing data in Max

Print any message
in the Max window print

470

Input

anything Messages are not interpreted by the print object. They are simply printed
verbatim in the Max window.

(mouse) Double-clicking on any print object opens the Max window or brings it to the
front.

Arguments

anything Optional. The argument is an identifier for the print object. Each message
printed in the Max window is preceded by the name of the print object, and
a colon (:). The name must not contain spaces or special characters, but can
be either a number or a word. If there is no argument, the name of the print
object is print. Using an argument to print can help distinguish the output of
two or more print objects.

Output

anything There are no outlets. The message received in the inlet is printed in the
Max window.

Examples

Used for displaying output, or for notifying when an event takes place

See Also

Tutorial 1 Saying “Hello!”
Debugging Techniques for debugging patches

Make a weighted
random series of numbers prob

471

Input

list The numbers make an entry in a probability matrix of transitions from
one number to another (known as a first-order Markov chain). The list
should consist of three numbers: a current value, a next value, and a
probability that current will be followed by next. The first two numbers in
the list identify a possible succession of output values: a possibility that the
first number will be followed by the second. The third number sets the
relative likelihood that the sequence of numbers will occur. Once the first
number has been sent out, the next output is determined by the relative
likelihood(s) assigned to each possible subsequent number.

bang Makes a weighted random choice of a number to be sent out, based on the
immediately previous output and on the specified likelihoods of subsequent
numbers.

int Sets (but does not send out) out the current number value. The subsequent
output, in response to a bang message, will be determined by the stored
matrix of probable transitions from that number.

reset The word reset, followed by a number, tells prob what number to revert to in
the event that it gets “stuck” on a number that has no possible next
number.

dump Prints out a complete list of the stored transition probabilities (Markov
chain) in the Max window.

embed The word embed, followed by a nonzero number, causes the contents of prob
to be saved as part of the patch that contains it. The message embed 0 causes
prob to forget its contents when the patch is closed.

clear Erases the contents of prob.

Arguments

None.

Make a weighted
random series of numbers prob

472

Output

int Out left outlet: When bang is received in the inlet, prob sends out a number,
which it chooses based on its knowledge of the last number chosen and the
relative likelihood assigned to each possible subsequent number.

bang Out right outlet: If the current number (the last number chosen) has no
possible transitions listed in the transition probability matrix, bang is sent
out (and nothing is sent out the left outlet) in response to a bang in the
inlet.

Examples

Likelihood of a certain output depends on the previous output

See Also

anal Make a histogram of number pairs received
histo Make a histogram of the numbers received
mean Find the running average of a stream of numbers

Share variables specific to
a patch and its subpatches pv

473

pv operates identically to the value object, with two exceptions. First, pv objects that share
the same name only share the same value if they are in the same patcher, or one of its
subpatches. Second, the pv object cannot be the receiver of a message sent remotely by a
message box (the first symbol after a semicolon). So, pv means private value—a value that is
shared between objects, but only within a single patcher.

Input

any message The message is stored, to be shared by all other pv objects of the same name
that are inside the object’s patcher or its subpatches (or, if in a subpatch, its
parent patch). A message received in any other such pv object will change
the stored message.

bang Sends out the stored message.

Arguments

any symbol Obligatory. The first argument provides an identifying name. All pv
objects with that name within the patcher will share the same value.

any message Optional. Any message typed in after the first argument initializes the stored
contents of the pv object. Note that when two or more pv objects in a patcher
file that share the same name are initialized to different values, the one which
is initialized last determines the value. Since the order in which pv objects
will be initialized cannot be precisely determined, the best practice is to
initialize only one of the related pv objects.

Output

any message When bang is received in the inlet, the stored message is sent out.

Share variables specific to
a patch and its subpatches pv

474

Examples

See Also

float Store a decimal number
int Store an integer value
pvar Connect to a named object in a patcher
receive Receive messages without patch cords
send Send messages without patch cords
value Share a stored message with other objects

Connect to a named
object in a patcher pvar

475

The pvar object lets you build user interfaces in one part of your patcher that are associated
with the “process” part in another part of the patcher. Unlike the send and receive objects,
pvar does not work globally; the pvar object and its associated object must be in the same
patcher. You set an object's name by selecting the object and choosing Name Object from
the Object menu. The name cannot be a number, although it can contain numbers.

Input

any message The message is sent to the named object currently associated with pvar.

setname The word setname, followed by a symbol, specifies the name of the object to
which pvar will be associated with. The named object must be in the same
patcher as the pvar object.

Arguments

symbol Optional. The first argument specifies the name of the object to which pvar
will be associated with. If no name is supplied, the setname message can be
used to connect later.

int Optional. The second argument specifies the number of outlets pvar will
have. pvar connects to as many outlets as its associated object has, unless it
is more than the number you specify as an argument. The default number
of outlets is 1.

Output

any message The outlets of pvar correspond to the outlets of its associated named object.
When the named object sends anything out one of its outlets, the output
also comes out of the corresponding outlets of the pvar object.

Connect to a named
object in a patcher pvar

476

Examples

pvar can be used to build a user interface without any messy patch cords

See Also

receive Receive messages without patch cords
send Send messages without patch cords
thispatcher Send messages to a patcher
value Share a stored message with other objects

Queue-based message
passing control qlim

477

The qlim object is similar to a combination of the speedlim and the Jitter jit.qball object. In
Jitter, most execution take places in the low priority queue to prevent drawing to the
screen at interrupt. The speedlim object unfortunately places messages back in the scheduler
for execution, and thus may result in a crash when used to temporally downsample
streams of Jitter matrices if Overdrive is turned on. The qlim object is an interrupt safe
replacement for this and other tasks.

Input

anything In left inlet: The message is passed out the outlet, provided that a certain
minimum time has elapsed since the previous output. Otherwise, the
message is held until that amount of time has passed (or until it is
overwritten by another incoming message)..

int In right inlet: The number is stored as the minimum amount of time, in
milliseconds, between successive outputs..

clock The word clock, followed by the name of an existing setclock object, causes
the time interval of the qlim object to be controlled by that setclock object
rather than by Max's internal millisecond clock. The word clock with no
arguments itself sets the qlim object back to using Max's regular millisecond
clock.

Arguments

int Optional. Sets an initial minimum time, in milliseconds, between outputs.
If there is no argument, the minimum time is 0.

Output

anything A message received in the left inlet is sent out the outlet, provided the
specified minimum amount of time has elapsed since the previous output.
Otherwise, the qlim object waits until that amount of time has passed, then
sends out the last message it has received since the previous output.

Queue-based message
passing control qlim

478

Examples

See Also

qmetro Queue-based metronome

A collection of messages
to send remotely qlist

479

The qlist object lets you store a collection of timed or untimed “cues” in the form of
messages which can be sent either out its outlet or remotely to various receive objects in
your patch. If you double-click on the object it opens up a text editor where you can enter
or edit the qlist object’s cue-list. Each line of the cue-list is a message ending in a
semicolon. Lines do not need to be numbered or indexed (as with the coll object), but
there are a few idiosyncracies which need to be discussed here.

There are three different message formats for lines in a cue-list: lines which contain only
numerical values (i.e an int, float or list), lines which begin with a symbol (i.e. message name
and arguments), and lines beginning with a numerical value (or list of numerical values)
and subsequently having a symbol (message name) with arguments. These three types of
lines are treated differently by qlist. Lines containing only numerical values are sent out
the qlist object’s left outlet, and lines beginning with a symbol are sent remotely to a receive
object named with that symbol. (Note that this is similar to remotely sending messages
from a message box – contents before the first semicolon are sent out the outlet, and
messages after each semicolon are sent remotely to named receive objects.) Lines which
begin with a numerical value (or values) but have a message and arguments after the
number(s), are treated as two separate lines – the first part (all numerical) is sent out the
left outlet, and the second (message) part is remotely sent to a receive receive object.

When qlist receives a command (such as the next message) to output data, it will send all
lines beginning with symbols to the corresponding receive objects, and stop after it has
output the numerical contents of a line beginning with a number. The qlist object also has
an internal timer which it uses for automatic sequencing. Sending a bang message to a qlist
will cause it to play the entire contents of the cue-list. When a line begins with a number,
qlist will use that number as a delay time in milliseconds before it continues outputting or
sending the remining cues.

The qlist objects saves its cue-list with the patcher.

Input

append The word append followed by any arguments will append those arguments
to the qlist object’s cue-list. To append a semicolon, it must be preceded by
a backslash character.

bang Sending a bang to qlist triggers automatic-playback of the entire cue list. It
begins sending messages from the first line, until a line begins with a
number, at which point qlist will use that number as a delay time in
milliseconds before continuing to send the remining messages. A qlist that
is playing automatically can be stopped using the stop message.

A collection of messages
to send remotely qlist

480

clear The word clear will clear the contents of the cue-list. This is the same as
sending a set message with no arguments.

fwd The word fwd, followed by a number, is used to “fast farward” through a
given number of lines, without remotely sending messages to named
receive objects. For example, fwd 2 will output the next two lines in the cue-
list which bengin with numerical values. Lines beginning with symbols will
be ignored.

next The word next is used to output the next line in the cue-list. It will remotely
send all lines beginning with a symbol, and stop after it encounters and
outputs a line beginning with a numerical value. If the word next is
followed by a non-zero argument, it will ignore lines beginning with
symbols and only output the next line beginning with a numerical value.

open The word open will cause the qlist object’s text editing window to be opened.

read The word read will allow you to read a file from disk via a standard Max file
opening dialog. If followed by a symbol argument, Max will use the
symbol as a filename (or filepath and filename) and try to read a text file
with the given name from the disk.

rewind The word stop can be used to stop a qlist which is in the middle of playback
as a result of a bang message.

set The word set can be used to set the contents of a qlist object. It completely
clears any previous cue-list contents. Sending a set message with no
arguments is the same as sending a clear message.

stop The word stop can be used to stop a qlist which is in the middle of playback
as a result of a bang message.

tempo The word tempo, followed by a floating-point numerical value, can be used
to allow a qlist to automatically play itself at a faster or slower speed than
indicated by the millisecond values stored internally in the cue list. By
default the tempo is 1.0, which means the playback tempo is not scaled. A
tempo of 0.5 plays back the cue list at half speed, whereas a tempo of 2.
plays it back twice as fast.

wclose The word wclose will cause the qlist object’s text editing window to be closed.

write The word write will allow you to save a file via a standard Max file saving
dialog. If followed by a symbol argument, Max will use the symbol as a

A collection of messages
to send remotely qlist

481

filename (or filepath and filename) and write a text file with the given
name to disk.

Arguments

None.

Output

int or list Out left outlet. The qlist object outputs a numerical value or list of
numerical values when a line in the cue list begins with a number. Output
is usually in response to a next or fwd message, but can also be a result of the
object’s internal timer, when the entire list of cues is being played as the
result of a bang message.

bang Out middle outlet. A bang is sent when a cue list has reached the end, adn
there are no more lines to send or output.

Out right outlet. A bang is sent when a file has been read successfully from
disk.

Examples

qlist is flexible and can be interfaced with a patcher of your own design

See Also

coll Store and Edit a collection of different messages
text Format numbers as a text file

Queue-based
metronome qmetro

482

The qmetro object is similar to a combination of the metro object and the Jitter jit.qball object.
In Jitter, most execution take places in the low priority queue to prevent drawing to the
screen at interrupt. Most objects also support automatic "dropframing" in order to keep up
with realtime if the requested operation cannot be calculated in realtime. Certain things
like OpenGL drawing commands are not suitable for this kind of "dropframing" and
instead, the metronome driving such events must be "dropframed" using the jit.qball object
in order to ensure that they will not backlog the queue. The qmetro object is a single object
replacement for this functionality.

Input

bang In left inlet: Starts the qmetro object.

int In left inlet: Any number other than 0 starts the qmetro object. When
started, the qmetro object sends a bang out the outlet at regular intervals.
Sending a 0 stops the object.

In right inlet: Converted to float.

float In right inlet: Sets the time interval, in milliseconds, at which the qmetro
object sends out a bang. A new number in the right inlet does not take
effect until the next output is sent.

clock The word clock, followed by the name of an existing setclock object, causes
the time interval of the qmetro object to be controlled by that setclock object
rather than by Max's internal millisecond clock. The word clock with no
arguments itself sets the qmetro object back to using Max's regular
millisecond clock.

stop Stops the qmetro object.

Arguments

float Optional. An optional argument sets the time interval, in milliseconds, at
which the qmetro object sends out a bang..

Output

bang A bang is sent immediately when qmetro is started, and at regular intervals
thereafter.

Queue-based
metronome qmetro

483

Examples

See Also

qlim queue-based message passing control
metro Output a bang message at regular intervals

Fast chord detection quickthresh

484

Input

int or float In left inlet: The incoming values which appear within a certain time
threshold are stored and output as a list. See the arguments’ descriptions
(below) to learn how the time thresholding works.

In second inlet: Sets the millisecond value for the base thresh time. All values
received in the left inlet within this time period are collected into a list.

In third inlet: Sets the “fudge” time in milliseconds. If there are any incoming
values within this amount of time at the end of the base thresh time, the
threshold is extended to allow more values to be added to the list.

In fourth inlet: Sets the threshold extension in milliseconds. This is an
extension of the base thresh time, which is used if values arrive in the object’s
inlet in the “fudge” time zone.

set The word set, followed by three millisecond values, can be used to set the three
threshold parameter values (base thresh time, “fudge” time and thresh
extension).

Arguments

int or float Optional. Three numerical arguments can be given to “fine tune” the timing
thresholds to suit your musical needs. The first argument is the base thresh
time in milliseconds; all notes received within this time period are collected
into a list. The second argument is the “fudge” time in milliseconds – if any
notes are played within this amount of time at the end of the base thresh time,
the threshold is extended. The third argument is the thresh extension time in
milliseconds. This is an additional time frame added to the first argument, if
necessary, in order to capture additional notes (due to sloppy playing) into
the list. By default the three arguments are set to 40, 10 and 20, respectively.

Output

float When quickthresh has used up its threshold time, any incoming values that were
played within the time threshold are output as a list.

Fast chord detection quickthresh

485

Examples

A comparison of quickthresh and thresh shows that quickthresh detects chords with lower, more
constant, latency

See Also

bondo Synchronize a group of messages
buddy Synchronize arriving data, output them together
iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
thresh Combine numbers into a list when received close together

Radio button/check box
user interface object radiogroup

486

The radiogroup object has two modes of operation: radio button and check box. In radio
button mode, the radiogroup object provides a user-definable number of buttons in a group,
only one of which may be selected at a time. In check box mode, the indicators in the
radiogroup object function as a set of on/off indicators. Check box mode also supports a
way to have the checkboxes act as indicators for the bit pattern of a binary representation
of an integer (see the flagmode message below).

Note: radiogroup can be re-sized horizontally so it will extend under comment boxes placed
to the right of the buttons or boxes. this way, clicking on the text to the right of the
button will also set the button selection or box state.

Input

(mouse) In radio button mode, clicking on a radio button will set the radio button
selection and output the corresponding button number (numbering starts
from 0).

In check box mode, clicking on a check box will change its state (from 1 to
0 or from 0 to 1) and output a list of zeros and ones corresponding to the
on/off state of the boxes. if the entire group of buttons/boxes is inactive
(greyed out) it will not respond to clicks. if an individual item is disabled
(greyed out) it will not respond to clicks, although active items in the
group will still respond to clicks as usual. The Flag Mode variation on the
check box mode has check boxes that correspond to bit positions for a
binary value (i.e. the first checkbox corresponds to the 1s, the second to 2s,
the third to 4s, etc.) Clicking on a check box will select or deselect the
check box and output the integer value which corresponds to the bit
pattern.

bang In radio button mode: A bang outputs the currently selected radio button
number.

In check box mode: A bang outputs a list of zeros and ones representing the
on/off state of the check boxes.

In flag mode: A bang send the integer that corresponds to the bit pattern of
the currently checked boxes (i.e., if boxes one, two, and three are checked,
a bang will output a value of 7)out the radiogroup object’s output.

int In radio button mode: An integer sets the radio button selection and
outputs the input value. Numbering starts with 0, and a negative number
indicates that no buttons will be selected.

Radio button/check box
user interface object radiogroup

487

In flag mode: An integer value received in the radiogroup object’s inlet will
set the buttons or checkboxes to reflect the bit pattern of the integer value
(i.e., a value of 19 will select boxes one, two, and five, corresponding to the
binary value 10011) and send the integer value out the radiogroup object’s
output.

float In radio button and check box modes: Converted to int.

list In check box mode: list of zeros and ones sets the check box states and
causes output of the input list. If you have specified check box mode and
have the flag mode set using the flagmode 1 message, a list of zeros and ones
sets the check box states and causes output of the input list.

disableitem In radio button and check box modes: disable the items whose numbers are
indicated (they will be drawn in grey and will not respond to clicks,
although they will still respond to set messages, ints or lists).

enableitem In radio button and check box modes: The word enableitem, followed by
followed by a number or list of numbers, will enable the items whose
numbers are indicated if they have been disabled with the disableitem
message.

flagmode In check box mode: The word flagmode, followed by a nonzero value, sets
the flag mode of operation for the radiogroup object. In this mode, each
check box corresponds to one bit in an integer value (i.e., the first radio
button or checkbox corresponds to the ones bit, the second button or
checkbox to the twos bit, the third button or checkbox to the fours bit,
etc.). The message flagmode 0 disables this mode (default).

itemtype In radio button and check box modes: The word itemtype, followed by a zero
or one, selects the mode of the radiogroup object. The message itemtype 0
selects radio button mode, and itemtype 1 selects check box mode.

inactive In radio button and check box modes: The word inactive, followed by a zero
or one, toggles the active or inactive state of the entire group of radio
buttons or check boxes. inactive 0 (default) means that the boxes are not
inactive, and will respond to mouse clicks. The message inactive 1 will gray
out the radio buttons or check box displays, and they will not respond to
mouse clicks (although their state can still be set using set messages, ints or
lists).

Radio button/check box
user interface object radiogroup

488

offset In radio button and check box modes: The word offset, followed by a
number, changes the pixel offset between the tops of the buttons/boxes.
the minimum offset is 14 pixels, the default offset is 16 pixels.

set In radio button mode: The word set, followed by a number, sets the
currently selected radio button without triggering any output.

In check box mode: The word set, followed by a list of zeros and ones, sets
the check box states without triggering any output.

If you are using check box mode and are also using Flag Mode, a number
will set the state of the first 32 checkboxes in a pattern which corresponds
to the bit pattern of the number without triggering output (see the flagmode
section for more information).

size In radio button and check box modes: The word size, followed by a
number, changes the number of buttons or boxes. The default is 2, and the
maximum is 64. Note: If you care using the radiogroup object in check box
mode and have enabled Flag Mode, you will only be able to set 32
checkboxes.

Inspector

The behavior of a radiogroup object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any radiogroup object
displays the radiogroup Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The radiogroup Inspector lets you specify the Number of Buttons (default 2)
and their Offset (default 16 pixels). The Button Type option lets you
choose between radio buttons (the default). If you choose the Check Boxes
option, you can also specify the Flag Mode option (default is unchecked).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Radio button/check box
user interface object radiogroup

489

Arguments

None.

Output

int In radio button mode: Clicking on a radio button outputs an int
corresponding to the radio button selected. Numbering begins with 0.

In flag mode: Clicking on a check box outputs an int corresponding to the
bit pattern represented by the checked boxes (i.e., if boxes one, two, and
three are checked, a bang will output a value of 7).

list In check box mode: A bang will output a list of zeros and one which
indicate the on/off state of the group of check boxes.

Examples

Radio buttons allow a single selection, and multiple selection check boxes can control
several gates

See Also

button Flash on any message, send a bang
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
toggle Switch between on and off (1 and 0)

Radio button/check box
user interface object radiogroup

490

ubutton Transparent button, sends a bang

Generate a
random number random

491

Input

bang In left inlet: Sends out a randomly generated number between 0 and one
less than its maximum limit.

int In right inlet: The number is stored as the maximum limit for the random
output. The output will always be between 0 and one less than this
maximum limit.

seed In left inlet: The word seed, followed by a number, provides a “seed” value
for the random generator, which causes a specific (reproducible) sequence of
pseudo-random numbers to occur. The number 0 uses the time elapsed since
system startup (an unpredictable value) as the seed, ensuring an
unpredictable sequence of numbers. This unpredictable seed is used by
default when the random object is created.

Arguments

int Optional. Sets an initial limit to the random output. The output will always
be between 0 and one less than this maximum limit. If there is no
argument, the limit is initially set to 1, which causes random to output 0
whenever it receives a bang.

int Optional. A second argument is used to set a “seed” value for the random
generator. If no argument is specified, the time value will be used to initialize
the seed.

Output

int When a bang is received in the left inlet, random generates a random number
between 0 and one less than its maximum limit.

Generate a
random number random

492

Examples

Generate random events, or make decisions based on probability

See Also

decide Choose randomly between on and off (1 and 0)
drunk Output random numbers in a moving range
urn Generate random numbers without duplicates
Tutorial 22 Delay lines

Receive messages
without patch cords receive / r

493

Input

anything Input is received from send or forward objects that have the same name, even
if the sending object is in another loaded patch. The order in which
multiple receive objects with the same name will sendout the message
received is undefined, so the order in which their output will be sent out is
unpredictable.

Messages can also be sent remotely to a receive object from an int or float
object (with the word send followed by the name of the receive object), from a
grab object (with a symbol argument), or from a message box (with a
semicolon followed by the name of the receive object.

(mouse) Double-clicking on a receive object looks for and opens a loaded patcher
window containing a send object with the same name. Repeatedly double-
clicking on the receive object looks for and opens more such windows.

set If there is no typed-in argument, receive has one inlet. The word set, followed
by a symbol, provides a name for receive, as if that name had been typed in as
an argument.

Arguments

any symbol Optional. Gives a name to receive. If there is no argument, receive has one
inlet, and a name must be provided by a set message before anything can
be received.

Output

anything Any message received in the inlet of any send or forward object with the
same name, or sent explicitly from an int, float, grab, or message box, is passed
out the outlet of receive, even if the sending object is in a different loaded
patch.

Examples

Virtual connections exist between all send and receive objects that share the same name

Receive messages
without patch cords receive / r

494

See Also

float Store a decimal number
forward Send remote messages to a variety of objects
int Store an integer value
message Send any message
pvar Connect to a named object in a patcher
route Selectively pass the input out a specific outlet
send Send messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive

Draw a solid rectangle
in a graphic window rect

495

Input

bang In left inlet: Draws the rectangle using the current screen coordinates,
drawing mode, and color.

int In left inlet: Sets the left screen coordinate of the rectangle—relative to the
upper left corner of the graphics window—and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the rectangle.

In 3rd inlet: Sets the right screen coordinate of the rectangle.

In 4th inlet: Sets the bottom screen coordinate of the rectangle.

In 5th inlet: Sets the drawing mode of the rectangle. The following are
drawing mode constants; not all modes will be available on all operating
systems.

Copy 0 blend 32
Or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the rectangle according
to the graphics window’s current palette. This setting has no effect when
the monitor is in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the RGB values for the color of the rectangle the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a rect
object’s sprite priority in its graphics window. Objects with lower priority
will draw behind those with a higher priority.

Arguments

any symbol Obligatory. The first argument to rect must be the name of a graphics
window into which the rectangle will be drawn. The window need not

Draw a solid rectangle
in a graphic window rect

496

necessarily exist at the time the rect object is created, but the rectangle will
not be drawn unless the name matches that of a visible window.

int Optional. Sets the initial sprite priority of the rect. If no priority is specified,
the default is 3.

Output

(visual) When the rect object’s associated graphics window is visible, and a bang
message or number is received in its left inlet, a shape is drawn in the
window, and the object’s previously drawn rectangle (if any) is erased.

Examples

A rectangle can move in time with MIDI data or any other source of changing numbers

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects

Use PERL-style regular
expressions to process input regexp

497

Input

re The word re, followed by a PERL-compatible regular expression, sets the
regular expression rules to be used when parsing or making substitutions
within any symbol or list input.

If a regular expression contains spaces, it must be enclosed within double
quotes when specified using the re message or as a typed-in argument to
the regexp object.

Regular expressions use the following form and syntax:

[…] defines a 'class' of characters. any of the characters within it
may be matched. several special symbols may also appear
within it:

...-... specifies a range (within ASCII codes)

\\d specifies a decimal digit (\\D specifies a non-decimal digit).
Note that double backslashes must be used—Max erases
single backslashes.

\\s apecifies white space (\\S specifies non-white space). Note
that double backslashes must be used—Max erases single
backslashes.

\\w specifies an alphanumeric (\\W specifies a non-
alphanumeric). Note that double backslashes must be
used—Max erases single backslashes.

.̂.. specifies a complement of

...* appears zero times

...+ appears at least once

...? appears once or not at all

(...) specifies a backreference that may be referred to in a
substitution string as %n, where n is the position of the
parenthesis in left-to-right order.

Use PERL-style regular
expressions to process input regexp

498

substitute The word substitute, followed a symbol, passes a symbol to be used in
substitutions. If the word substitute is not followed by a symbol, the previous
substutition symbol is removed.

Note: If you need to output a % followed by a number in any substitution
string, you should use %%, so that the % is not read as a backreference.

symbol or list Any other symbol or list received in the regexp object’s inlet is treated as the
subject string to be processed according to the regular expression and
symbol substitutions provided.

Arguments

symbol or list Optional. A regular expression may be used as an argument to set the
regular expression (see above for regular expression formatting and
metacharacter information).

Output

symbol or list Out left outlet: If a substitute string has been set using the substitute message,
the input list or symbol is sent out the left outlet with any required
substitutions (n.b. substitute strings may contain back references, of the
form %n).

Out middle outlet: If the regular expressions contains parentheses, they are
treated as backreferences. The middle outlet reports the backreferences
upon every match within the subject string, and outputs them in the form
of a list.

Out right outlet: The rightmost outlet reports a list of the instances where
the regular expression matched portions of the subject string.

Use PERL-style regular
expressions to process input regexp

499

Examples

See Also

fromsymbol Transform a symbol into individual numbers or messages
key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
message Send any message
spell Convert input to ASCII codes
tosymbol Convert messages, numbers, or lists to a single symbol

Convert an absolute
to a relative path relativepath

500

Input

symbol An absolute pathname of a folder or file as a symbol. An absolute
pathname looks like this:

’MyDisk:/Max Folder/extras/filename’

Arguments

None.

Output

symbol The pathname of the folder or file relative to the Max application folder as
a symbol. If the input pathname is within the Max application folder, the
path is changed to start with a dot-slash (./) followed by the folder names
of the path. Otherwise, the input is repeated to the output.

Examples

See Also

absolutepath Convert a file name to an absolute path
conformpath Convert paths of one pathtype and/or pathstyle to another
opendialog Open a dialog to ask for a file or folder
strippath Get a filename from an absolute pathname

Draw a framed oval
in a graphic window ring

501

Input

bang In left inlet: Draws a framed oval using the current screen coordinates,
drawing mode, and color.

int In left inlet: Sets the left screen coordinate of the oval—relative to the
upper left corner of the graphics window—and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the oval.

In 3rd inlet: Sets the right screen coordinate of the oval.

In 4th inlet: Sets the bottom screen coordinate of the oval.

In 5th inlet: Sets the drawing mode of the oval. The following are drawing
mode constants; not all modes will be available on all operating systems.

Copy 0 blend 32
Or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the oval according to
the graphics window’s current palette. This setting has no effect when the
monitor is in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255,
sets the RGB values for the color of the ring the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a ring
object’s sprite priority in its graphics window. Objects with lower priority
will draw behind those with a higher priority.

Arguments

any symbol Obligatory. The first argument to ring must be the name of a graphics
window into which the oval will be drawn. The window need not

Draw a framed oval
in a graphic window ring

502

necessarily exist at the time the ring object is created, but the oval will not
be drawn unless the name matches that of a visible window.

int Optional. Sets the initial sprite priority of the ring. If no priority is specified,
the default is 3.

Output

(visual) When the ring object’s associated graphics window is visible, and a bang
message or number is received in its left inlet, a shape is drawn in the
window, and the object’s previously drawn oval (if any) is erased.

Examples

See examples under oval or rect. ring can be directly substituted for oval, rect,
or frame.

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
rect Draw solid rectangle in a graphic window
Graphics Overview of Max graphics windows and objects

Selectively pass the input
out a specific outlet route

503

Input

anything If the first item of the message is the same as one of the arguments of route,
the rest of the message is sent out the outlet that corresponds to that
argument. If the first item does not match any of the arguments, the
entire message is passed out the rightmost outlet.

Arguments

anything Optional. Arguments can be a mix of ints, floats, or symbols. The number
of arguments determines the number of outlets, in addition to the
rightmost outlet. Each argument assigns a name or a number to an outlet.
If there is no argument, there is one other outlet, which is assigned the
number 0.

Output

anything The first item of any message received in the inlet is compared with the
arguments. If it matches one of the arguments, the rest of the message is
sent out the specified outlet. Otherwise, the entire message is passed out the
rightmost outlet.

bang If the first item of a message matches one of the arguments, but the message
has no additional items, bang is sent out the specified outlet.

Examples

Arguments assign names or numbers to the outlets, and route the input to the correct
outlet

See Also

bucket Pass a number from outlet to outlet, out each one in turn

Selectively pass the input
out a specific outlet route

504

forward Send remote messages to a variety of objects
gate Pass the input out a specific outlet
pack Combine numbers and symbols into a list
receive Receive messages without patch cords
select Select certain inputs, pass the rest on
send Send messages without patch cords
sprintf Format a message of words and numbers
zl Multi-purpose list processor
Tutorial 17 Gates and switches

matrixctrl-compatible
Max message router router

505

router is a Max object which lets you patch multiple sources of Max data to multiple
destinations dynamically (sort of like a series of nested switches and gates). It is designed
to work best with the matrixctrl user interface object, and uses a syntax equivalent to the
MSP matrix~ object.

Input

 list A list of three numbers received in the left inlet is interpreted as specifying
an inlet number, an outlet number, and a 0 or 1 specifying the state of a
connection. A list in this form changes the inlet and outlet connections of
the router object.

A list received in any other inlet will be sent to all outlets that are
connected to that inlet.

bang A bang received in any but the leftmost inlet will be sent to all outlets that
are connected to that inlet.

int An integer received in any but the leftmost inlet will be sent to all outlets
that are connected to that inlet.

float floating-point number received in any but the leftmost inlet will be sent to
all outlets that are connected to that inlet.

anything Any Max message received in any but the leftmost inlet will be sent to all
outlets that are connected to that inlet.

clear Clears the state of the switching matrix, All inlets are disconnected from all
outlets.

connect The word connect, followed by two numbers that specify inlet and outlet
numbers, connects an inlet to an outlet. Multiple inlets can be connected
to multiple outlets, and vice versa.

disconnect The word disconnect, followed by two numbers that specify inlet and outlet
numbers, disconnects an inlet from an outlet.

dump Sends the state of the object's switching matrix out the right outlet as a
series of single line lists in the form inlet-number outlet-number state.

matrixctrl-compatible
Max message router router

506

patch The word patch, followed by two numbers that specify inlet and outlet
numbers, connects an inlet to an outlet and disconnects all other inlets
that are currently connected to that outlet

print Prints the state of the switching matrix in the Max window.

Arguments

int Obligatory. Two numbers are used to specify the number of inlets and
outlets for the router object.

Output

anything Any message received in any but the leftmost inlet will be routed to the
outlet to which the inlet is currently connected. The router objects passes
messages only; it will not pass signals or Jitter matrices.

list Out right outlet: a series of single-line lists (one for each inlet) in the form
inlet-number outlet-number state is sent out the right outlet of the router object in
response to a dump message.

Examples

See Also

matrixctrl Matrix-style switch control

Display or change
a range of numbers rslider

507

Input

int In left inlet: The number sets the minimum limit of a range displayed as a
colored region on the rslider, and causes the minimum and maximum values of
that range to be sent out. A number that exceeds the limits of the rslider itself
will be limited to stay within the rslider.

In right inlet: The number is stored as the maximum limit of the range
displayed in color on the rslider. A number that exceeds the limits of the rslider
itself will be limited to stay within the rslider.

The minimum and maximum values can also be set (and sent out) by
dragging with the mouse across a range in the rslider.

list In left inlet: The first two numbers in the list are used to set the minimum and
maximum values of the displayed range, and are sent out.

bang In left inlet: Sends out the minimum and maximum values of the currently
displayed range.

color The word color, followed by a number from 0 to 15, specifies a color for the
range being displayed in the rslider—one of the object colors which are also
available via the Color command in the Object menu.

float Converted to int.

listmode In left inlet: The word listmode followed by a one or zero, toggles the list output
mode. When it is on, the rslider object will output the min and max values as a
list out the left outlet. Otherwise, the values are sent out the right and left
outlets. The default value is 0 (off).

mult In left inlet: The word mult followed by a number, specifies a multiplier value.
The rslider object’s value will be multiplied by this number before it is sent out
the outlet. The default value is 1.

set In left inlet: The word set, followed by two numbers, sets the minimum and
maximum values of the currently displayed range, without sending them out
the outlets.

size In left inlet: The word size, followed by a positive number, determines the total
range of the rslider. The rslider will range from 0 to one less than the specified size.

Display or change
a range of numbers rslider

508

A size message smaller than 1 will be automatically set to 2. By default, the size
of an rslider is 128.

Display or change
a range of numbers rslider

509

Inspector

The behavior of an rslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any rslider object
displays the rslider Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The rslider Inspector lets you enter a Maximum value. Numbers received in the
inlet are automatically limited between 0 and the number 1 less than the
specified maximum value. The default range value is 128. The rslider Inspector
also lets you specify a Multiplier. The rslider object’s value will be multiplied by
this number before it is sent out the outlet. The default multiplier value is 1.

 The Output List out Left Outlet checkbox lets you enable the List Mode,
whereby the minimum and maximum range values of the slider are putput as a
list out the left outlet instead of individually out the right and left outlets.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an object
before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

int The maximum value of the displayed range is sent out the right outlet, and the
minimum value is sent out the left outlet. Output is triggered by a new
minimum value (or a bang) received in the left inlet, or by clicking or dragging
the mouse in the rslider.

Display or change
a range of numbers rslider

510

Examples

Output minimum and maximum values, to set the range of another object

See Also

hslider Output numbers by moving a slider onscreen
multislider Multiple slider and scrolling display
nslider Output numbers from a notation display onscreen
pictctrl Picture-based control
pictslider Picture-based slider
slider Output numbers by moving a slider onscreen
split Look for a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Output received MIDI
real time messages rtin

511

Input

(MIDI) rtin receives MIDI real time messages received from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number enables
the object once again, even if the entire patcher window has had its MIDI
disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming MIDI messages.
The word port is optional and may be omitted.

(mouse) Double-clicking on an rtin object shows a pop-up menu for choosing a MIDI
port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming MIDI real time
messages. If there is no argument, rtin receives from port a (or the first input
port listed in the MIDI Setup dialog.)

Output

int MIDI real time messages (MIDI clock, start, stop, and continue) received
from the specified port are sent out the outlet.

Examples

MIDI real time messages can be used to synchronize Max with external events

See Also

clocker Report elapsed time, at regular intervals

Output received MIDI
real time messages rtin

512

metro Output a bang message at regular intervals
midiin Output received raw MIDI data
seq Sequencer for recording and playing MIDI
MIDI MIDI overview and specification
Using MIDI Using Max with MIDI
Tutorial 16 More MIDI ins and outs

Open a dialog to ask for
a filename for saving savedialog

513

Input

bang Causes a standard Save As dialog box to appear, allowing the user to type
in a filename and choose a folder location. The resulting location and
filename are output as a symbol.

set The word set, followed by a four-letter symbol (e.g., TEXT, MAXB) which
specifies a file type, sets the savedialog object to display the desired file type
without opening the dialog box. The chosen file type is sent out the middle
outlet when the user chooses Save in the dialog box.

name The word name, followed by a symbol, specifies a default file name.

anything One or more four-letter type codes sets the list of types displayed in the
dialog box. Example type codes for files are TEXT for text files, maxb for Max
binary format patcher files, and AIFF for AIFF format audio files. The symbol
fold specifies that the dialog box should let the user choose only folders.

Arguments

anything Optional. Sets one or more file types that will be displayed as choices for
the user. The symbol fold specifies that the dialog box should let the user
choose only folders.

Output

symbol Out left outlet: The absolute pathname of the file as a symbol. The output
pathnames contain slash separators.

Absolute pathnames look like this:

“C:/Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

symbol Out middle outlet: The four-letter symbol which specifies the filetype
currently selected.

bang Out right outlet: If the user chooses Cancel in the dialog box, a bang is sent
out.

Open a dialog to ask for
a filename for saving savedialog

514

Examples

Select a folder or a specific file type for file saving

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
dialog Open a dialog box for text entry
filedate Report the modification date of a file
filein Read in a file of binary data
filepath Report information about the current search path
opendialog Open a dialog to ask for a file or folder

Map an input range of
values to an output range scale

515

Input

int Converted to float.

float In left inlet: The incoming value is scaled according to the mapping
provided by the arguments, or values received in the other inlets.

In second inlet: Sets the low input value.

In third inlet: Sets the high input value.

In fourth inlet: Sets the low output value.

In fifth inlet: Sets the high output value. Note: the scale object does not clip
its output to the output range as the zmap object does.

In right inlet: Sets the base value for exponential scaling. The minimum
value is 1.0 which implies linear scaling. An appropriate value is 1.06.

bang In left inlet: Performs the scaling operation on the previous input value. If
the scaling ranges have changed since the previous input in the left inlet,
the new ranges will be used for the scaling.

Arguments

int or float Optional. The first argument is the minimum input value, the second
argument is the maximum input value. The third and fourth arguments are
the minimum and maximum output values, respectively. An optional fifth
argument specifies the nature of the scaling curve. The number is
converted according to the following expression

y = b e-a log c ex log c

where x is the input, y is the output, a, b, and c are the three typed-in
arguments, and e is the base of the natural logarithm (approximately
2.718282). The third argument must be a floating-point number greater
than 1. The larger the value, the more steeply exponential the curve is. An
appropriate value for this argument is 1.06.

All five values can be changed via the object’s five inlets. If only four
arguments are provided and all four are of type int, scale will output integer
values.

Map an input range of
values to an output range scale

516

Output

int If only four arguments are provided and all four are of type int, scale will
output scaled values as integers. Otherwise output is floating-point.

float When scale receives a value in its leftmost inlet, that value is scaled to the
indicated output range of values.

Examples

An example of how to scale an integer slider into a useful range of floating-point values

See Also

expr Evaluate a mathematical expression
linedrive Scale numbers exponentially
zmap Maps input to output range

Output the
monitor size screensize

517

Input

bang Triggers the output of the main screen size and total multi-monitor screen
bounding rectangle out the outlets.

Arguments

None.

Output

list Out left outlet: The bounding coordinates of the main screen: left is first,
followed by top, right, and bottom.

Out right outlet: The bounding coordinates of all monitors. If there is only
one monitor, the output will be the same as with the left outlet.

Examples

screensize reports the coordinates of the main and total screen areas

Output the
monitor size screensize

518

See Also

gestalt Inquire about current system
menubar Put up a custom menu bar
thispatcher Send messages to a patcher
zmap Map input range of values to output range

Select certain inputs,
pass the rest on select / sel

519

Input

any message In left inlet: If the input matches one of the arguments, a bang is sent out
the outlet that corresponds to that argument. Otherwise, the input is passed
out the rightmost outlet.

Note: select never considers an int to be a match for a float argument, or
vice versa, even if their values are equal. For example, 4.0 is not considered
a match for the argument 4, and 4 is not a match for 4.0.

int In right inlet: Replaces the value of the argument. The right inlet exists
only if there is a single int argument.

bang In left inlet: Converted to symbol bang and treated as any other symbol.

Arguments

anything Optional. The arguments can be a mix of ints, floats, or symbols. The
number of arguments determines the number of outlets in addition to the
rightmost outlet. If there is no argument, there is only one other outlet,
which is assigned the integer number 0.

int If there is a single int argument (or if there are no arguments) a second
inlet is created on the right. Numbers received in that inlet are stored in
place of the argument. If there is more than one argument, or if the only
argument is not an int, the right inlet is not created.

Output

bang If the number or symbol received in the left inlet is the same as one of the
arguments, a bang is sent out the outlet that corresponds to that argument.

anything If the number or symbol received in the left inlet does not match any of
the arguments, it is passed out the rightmost outlet.

Select certain inputs,
pass the rest on select / sel

520

Examples

Arguments assign names or numbers to the outlets, and a bang is sent when the input
matches them

See Also

if Conditional statement in if/then/else form
match Look for a series of numbers, output it as a list
route Selectively pass the input out a specific outlet
== Compare two numbers, output 1 if they are equal
Tutorial 17 Gates and switches

Send messages
without patch cords send / s

521

Input

anything A message received in the inlet is sent out the outlet of any receive object
that has the same name, even if the receive is in another loaded patch.

(mouse) Double-clicking on a send object opens all windows containing receive
objects with the same name.

Arguments

any symbol Obligatory. Gives a name to the send object.

Output

anything There are no outlets. A message received in the inlet of send is sent out the
outlet of any receive with the same name, even if the receive is in another
loaded patch.

Examples

Virtual connections exist between all send and receive objects that share the same name

See Also

forward Send remote messages to a variety of objects
message Send any message
pv Share variables specific to a patch and its subpatches
pvar Connect to a named object in a patcher
receive Receive messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive

Sequencer for recording
and playing MIDI data seq

522

Input

bang Starts playing the sequence stored in seq.

start The word start by itself has the same effect as bang. The word start, followed
by a number, plays the stored sequence at a tempo determined by the
number. The message start 1024 indicates normal tempo. If the number is
512, seq plays the sequence at half the original recorded speed, start 2048 plays
it back at twice the original speed, and so on.

The message start -1 starts the sequencer, but rather than follow Max’s
millisecond clock, seq waits for a tick message to advance its clock. See the
tick message, below.

record Starts recording MIDI messages received in the inlet.

stop Stops the sequencer if it is recording or playing. A stop message need not be
received when switching directly from playing to recording, or vice-versa.

append Starts recording at the end of the stored sequence, without erasing the
existing sequence.

int When seq is recording, numbers received in its inlet are interpreted as bytes
of MIDI messages (usually from midiformat or midiin). MIDI channel
messages and system exclusive messages can be recorded by seq, but seq
does not respond directly to MIDI real time messages such as start, stop,
MIDI clock, etc.

float Converted to int.

tick After seq has received a start -1 message, it waits for tick messages to advance
its clock. In order to play the sequence at its original recorded tempo, seq
must receive 48 tick messages per second. This is equivalent to 24 ticks per
quarter note (the standard for a MIDI Clock message) at a tempo of
120MM. By using tick messages to advance the sequencer, you can vary the
tempo of playback or synchronize seq with another timing source (such as
incoming MIDI Clock messages).

delay The word delay, followed by a number, sets the onset time, in milliseconds,
of the first event in the recorded sequence. All events in the sequence are
shifted so that the first event occurs at the specified onset time.

Sequencer for recording
and playing MIDI data seq

523

hook The word hook, followed by a float, multiplies all the event times in the
stored sequence by that number. For example, if the number is 2.0, all
event times will be doubled, and the sequence will play back twice as
slowly. Multiplications can even be performed while the sequence is
playing.

write Calls up the standard Save As dialog box, so that a recorded sequence can
be saved as a separate file. If you want to edit the sequence with the text
editor, check the Save As Text option in the dialog box.

read With no arguments, read calls up the standard Open Document dialog box,
so that a previously recorded sequence can be read into seq, replacing the
current sequence. With a symbol as an argument, read searches for a file
with the specified name to read into the seq object.

Note: The seq object reads and writes single track (format 0) standard MIDI
files. It can also read and write text files in which each line consists of a
start time in milliseconds (the time elapsed since the beginning of the
sequence) followed by the (space-separated) bytes of a MIDI message
recorded at that start time. For example,

0 144 60 112
1000 144 60 0
1500 192 31
1500 144 60 112
2500 144 60 0

plays the note middle C on channel 1 for one second, then half a second
later changes to program number 31 and plays middle C again for one
second.

print Prints the first sixteen events of the recorded sequence in the Max
window.

dump Opens a standard Open Document dialog box, to select a saved sequence
or standard MIDI file. The selected file is opened as text in a new Untitled
text window, which can be edited and saved.

Arguments

any symbol Optional. Specifies the name of a file to be read into seq automatically
when the patch is loaded.

Sequencer for recording
and playing MIDI data seq

524

Output

int Out left outlet: When bang or start is received in the inlet, the sequence
stored in seq is sent out the outlet in the form of individual MIDI bytes,
usually to be sent to midiparse or midiout.

bang Out right outlet: Indicates that seq has finished playing the current
sequence. (The bang is sent out immediately before the final event of the
sequence is played.)

Examples

Record and play back live performance, or play a pre-recorded sequence

See Also

coll Store and edit a collection of different messages
follow Compare a live performance to a recorded performance
mtr Multi-track sequencer
Tutorial 35 seq and follow
Detonate Graphic editing of a MIDI sequence
Sequencing Recording and playing performances with MIDI

Send and receive
characters
from serial ports and cards

serial

525

The serial object works only with ports and devices supported by the standard serial driver.
It does not work with USB ports and devices, unless a USB to Serial adaptor is connected.

Input

int Sends the number out the serial port accessed by the serial object. Numbers
outside the range 0-255 are wrapped to that range using a modulo
operator. After the data is sent, the message write, followed by a number
specifying the number of bytes sent is sent out the right outlet of the serial
object.

list Sends each number in the list out the serial port, in order. Numbers outside
the range 0-255 are wrapped to that range using a modulo operator. After
the data is sent, the message write, followed by a number specifying the
number of bytes sent is sent out the right outlet of the serial object.

bang Sends each character received on the serial port since the last bang message
out the serial object's left outlet as an integer in the order that the characters
were received. Before output data is sent, the message read, followed by a
number specifying the number of bytes received is sent out the right outlet
of the serial object.

bufsize Sets the input buffer size used by the serial object to the value following the
word bufsize. The message bufsize 0 restores the serial port's default buffer
size (2048 bytes).

print Sends a list of available serial ports to the Max window, along with their
alphabetic shortcuts. The message port [portname] [portname]... is also sent from
the object's right outlet, with a list of available ports.

port The word port, followed by a symbol, specifies the serial port to be used by
the object. If alphabetic shortcuts are used, a specifies the first logical serial
port in the computer. b - z specify additional ports. If actual portnames are
used, the symbol is the name given by the operating system to your port.
See the print message, above, for a way to list available portnames and
alphabetic shortcuts. If the port chosen is currently in use or unavailable
when the port message is sent, an error message will be displayed and the
object will revert to its previously chosen port, or won't function if there
was none.

Send and receive
characters
from serial ports and cards

serial

526

chunk The word chunk, followed by a number that specifies list length, will cause
the serial object to attempt to collect data into lists of that length for output.
Data chunking only works if the amount of data received is greater than
the chunk size—otherwise, the object will output a list as long as the
available data. While chunking, the last list output may be shorter than the
others if there isn't enough available data to complete the full list length.

break Sends a break command to the serial port used by the serial object. After the
break has completed, the message break is sent out the object's right outlet.

baud The word baud, followed by a number that specifies a baud rate, causes the
serial object to try to change the serial port baud rate. Although any integer
rate is valid, the common baud rates are Some common rates are 300, 600,
1200, 1800, 2400, 3600, 4800, 7200, 9600, 19200, 38400 and 57600.The
default is 4800 baud.

getbaud The word getbaud will cause the serial object to send the message baud
followed by a number that specifies the current baud rate out the serial
object's right outlet

parity The word parity, followed by the numbers 0, 1, or 2, or the symbols no, odd or
even, causes the serial object to change the parity setting of the serial port
used by the serial object. If integers are used to specify parity, 0 corresponds
to no parity, 1 to odd parity, and 2 to even parity. The default is no parity
(0).

getparity The word getparity will cause the serial object to send the message parity,
followed by a symbol that indicates the current parity (no, even, or odd) out
the object’s right outlet,

databits The word databits, followed by an integer in the range 5-8, causes the serial
object to change the number of valid data bits used while communicating
with the serial port. The default value is 8.

getdatabits The word getdatabits will cause the serial object to send the message databits,
followed by a number in the range 5-8 that indicates the current number
of databits used out the object’s right outlet,

stopbits The word stopbits, followed by the numbers 1 or 2 (or 1.5 on Windows only),
causes the serial object to change the number of stop bits used when
communicating with the serial port. The default value is 1.

Send and receive
characters
from serial ports and cards

serial

527

getstopbits The word getstopbits will cause the serial object to send the message stopbits fol-
lowed by a number that specifies the current stopbits setting of the serial
port (0, 1, or 1.5 on Windows only) out the object’s right outlet.

dtr The word dtr, followed by an integer, enables or disables the DTR (data
terminal ready) function of the serial port used by the serial object. Non-zero
integers enable the function, and 0 disables it.

getdtr The word getdtr will cause the serial object to send the message dtr, followed
by a number that specifies the current DTR setting of the serial port
(0=disabled, 1=enabled) out the object’s right outlet.

Arguments

symbol a-z or Optional. Specifies the serial port to be used by the serial object. If alphabetic
symbol portname shortcuts are used, a specifies the first logical serial port in the computer,

and b - z are used to specify additional ports. If actual portnames are used,
the symbol is the name given by the Operating System to your port. The
print to the serial object (see above) can be used to create a list of available
portnames and alphabetic shortcuts. If the port chosen is currently in use
or unavailable when the serial object is instantiated, an error message will be
displayed and the object will not function. If no port is specified, the
default port is a.

int Optional. An optional argument may be used after the port name or
alphabetic shortcut to specify the baud rate of the serial port (the default
rate is 4800 baud). Any value is allowable (although not all ports can be set
to all baud rates). Some common rates are 300, 600, 1200, 1800, 2400,
3600, 7200, 9600, 19200, 38400 and 57600.

int Optional. After the baud rate, the next arguments specifies the number of
data bits for the serial port (the default is 8 data bits). Other possible values
are 5, 6 and 7.

int Optional. The next argument specifies the number of stop bits for the serial
port. The default is 1. Other possible values are 1.5 (Windows only) and 2.

int or symbol Optional. The next argument specifies the parity for the serial port (the
default is no parity, specified by 0 or no).Other possible values are odd, 1
(odd), even, and 2 (odd).

Send and receive
characters
from serial ports and cards

serial

528

Output

(serial output) When a number or list is received in its inlet, serial sends the data out the
specified serial port at the current baud rate.

int When serial receives a bang message and characters have been received in the
serial port, the received characters are sent as numbers in the order they
were received.

list When serial receives a bang message, characters have been received in the
serial port, and chunking is enabled, the received characters are sent as a list
in the order the characters were received. The length of the list is
determined by the argument to the chunk message (see the message listing
for chunk for more information).

Out right outlet: Reports error and status messages.

Examples

When the button is clicked, this patch resets the modem, begins
polling for a response, and stops polling when a response has been received

See Also

match Look for a series of numbers, output it as a list
spell Convert input to ASCII codes
vdp Control a videodisc player through the serial port

Control the clock speed of
timing objects remotely setclock

529

Input

bang In left inlet: Sends out the current time value, according to the setclock
object’s own clock. Timing objects such as clocker, line, metro, pipe, tempo, and
timeline can use setclock as their clock source instead of Max’s regular
millisecond clock.

int or float In left inlet: The meaning of the number depends on the second typed-in
argument, which identifies the setclock object’s mode of operation. If the
mode is pass[ive] (the default mode), the number sets an absolute clock
time which timing objects may use by comparing it to their initial time
value. If the mode is add[itive], the number is added to the setclock object’s
current clock time. If the mode is interp[olate], setclock will change its clock
time incrementally by that amount, over a time period determined by the
time elapsed since the previous number was received. (However, negative
numbers cause an immediate decrease in the clock time.) If the mode is
ext[ernal] or mul[tiplicative], the number is simply ignored. If the mode is
mul[tiplicative], the number is used as a multiplier for associated timing
objects. For instance the number 0.5 halves the rate of increase (speed) of
the associated timing objects. If the mode is ext[ernal], the number is
ignored.

In right inlet: Sets the time interval, in milliseconds, at which the setclock will
report its clock information to associated timing objects. The default is 5
milliseconds.

set If the setclock is in pass[ive] or add[itive] mode, the word set followed by a
number sets its clock time to that number. If setclock is in any other mode,
the set message is ignored.

reset If setclock is in interp[olate] mode, the word reset followed by a number sets its
clock time to that number, then repeats the last interpolation it performed.

Arguments

any symbol Obligatory. The first argument is the name of the setclock object, by which
timing objects such as clocker, line, metro, pipe, tempo, and timeline can refer to
the setclock. Those timing objects—once they have received the message clock
followed by the name of a setclock object—use that setclock as their timing
source instead of Max’s regular millisecond clock. The setclock object need
not be in the same patcher as the timing objects that refer to it. More than

Control the clock speed of
timing objects remotely setclock

530

one setclock object may exist with the same name; setclock objects with the
same name share the same clock time information. (Note: Different setclock
objects that share the same name argument can have different mode
arguments typed in, but they will in fact operate with the mode of
whichever setclock was first loaded with that name. Thus, setclock objects with
the same name but different modes may behave unpredictably, since the
order in which they are loaded by Max is often unknown.)

The second (optional) argument describes the mode of clock operation this
setclock object will have. The possible modes for the second argument are:

pass Specifies passive mode. In this mode, the setclock object’s current clock time
is set by a number received in the left inlet, and associated timing objects
will follow that clock time just as if it were a regularly progressing
millisecond clock. If no second argument is present, the mode is pass by
default.

add Specifies additive mode. A number received in the left inlet is added to the
current clock time to determine the new clock time.

mul Specifies multiplicative mode. The number received in the left inlet is used
as a factor by which all associated timing objects will modify their time
settings. For example, a factor of 2.0 will cause all timing objects that are
using the setclock as their clock source to double their time values (that is, to
halve their speed). An alternative (and perhaps more truthful) way to
conceptualize the behavior of mul mode is to think of the incoming float as
a divisor by which setclock divides the speed at which its own clock time
progresses. Thus, when it receives the number 2.0 it divides its own clock
speed by 2.0, causing the objects which are following that clock to progress
twice as slowly.

interp Specifies interpolate mode. The number received in the left inlet is
gradually added to the current time of setclock, over a time period
determined by the amount of time elapsed since the previous number was
received. During that time period, setclock linearly interpolates to set its clock
to the intermediate values.

float If the second argument is mul, an optional third argument specifies a
multiplier for the time of all associated timing objects. If no third
argument is present, the multiplier is 1.0 by default.

Additional possible modes for the second argument are:

Control the clock speed of
timing objects remotely setclock

531

Output

int When bang is received in the left inlet, setclock sends its current time reading
out the outlet.

Examples

setclock becomes the clock for metro setclock modifies the time for clocker

See Also

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals
timeline Time-based score of Max messages
timer Report elapsed time between two events
Timeline Creating a graphic score of Max messages

Sine function sin

532

Input

float or int Input to a sine function in radians.

Arguments

float or int Optional. Sets the initial value for the sine function.

Output

float or int The sine of the input in radians.

Examples

See Also

asin Arc-sine function
asinh Hyperbolic Arc-sine function
sinh Hyperbolic sine function

Hyperbolic sine function sinh

533

Input

float or int Input to a hyperbolic sine function.

bang In left inlet: Calculates the hyperbolic sine of the number currently stored. If
there is no argument, sinh initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic sine function.

Output

float or int The hyperbolic sine of the input.

Examples

See Also

asin Arc-sine function
asinh Hyperbolic Arc-sine function
sin Sine function

Filter an input value
logarithmically slide

534

Input

float In left inlet: An input value to be filtered. The a new value is received, slide
object filters an input value logarithmically between changes. using the
formula

y(n) = y(n-1) + ((x(n) - y(n-1))/slide).

A given sample output from slide is equal to the last value plus the dif-
ference between the last value and the input divided by the slide value.
Given a slide value of 1, the output will therefore always equal the input.
Given a slide value of 10, the output will only change 1/10th as quickly as
the input. This can be particularly useful for lowpass filtering or envelope
following.

float In middle inlet: Specifies the slide up value to be used when an incoming
value is greater than the current value.

In right inlet: Specifies the slide down value to be used when an incoming
value is less than the current value.

Arguments

float Optional. Specifies the slide up value. The default is 1.

float Optional. A second argument specifies the slide down value. The default is
1.

Output

float The filtered input value.

Filter an input value
logarithmically slide

535

Examples

 slide performs logarithmic smoothing of an input

See Also

expr Evaluate a mathematical expression

Output numbers by
moving a slider onscreen slider

536

Input

int The number received in the inlet is displayed graphically by slider, and is
passed out the outlet. Optionally, slider can multiply the number by some
amount and add an offset to it, before sending it out the outlet.

(mouse) The slider will also send out numbers in response to dragging on it directly
with the mouse.

float Converted to int.

bang Sends out the number currently stored in the slider.

min The word min, followed by a number, sets a value that will be added to the
slider object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The slider
object’s value will be multiplied by this number before it is sent out the
outlet. The multiplication happens before the addition of the Offset value.
The default value is 1.

set The word set, followed by a number, resets the value displayed by the slider,
without triggering output.

size The word size, followed by a number, sets the range of the slider object. The
default value is 128.

Inspector

The behavior of a slider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any slider object
displays the slider Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

The slider Inspector lets you enter a Slider Range value. Numbers received in
the inlet are automatically limited between 0 and the number 1 less than
the specified range value. The default range value is 128. You can specify
an Offset value which will be added to the number, after multiplication.
The default offset value is 0. The slider Inspector also lets you specify a
Multiplier. The slider object’s value will be multiplied by this number before

Output numbers by
moving a slider onscreen slider

537

it is sent out the outlet. The multiplication happens before the addition of
the Offset value. The default multiplier value is 1.

Arguments

The range of slider is set by selecting it (when the patcher window is
unlocked) and choosing Get Info… from the Object menu. The slider
automatically resizes itself to accommodate the new range.

The Inspector also provides a Multiplier—by which all numbers will be
multiplied before being sent out, and an Offset—which will be added to the
number, after multiplication. A newly created slider has a range of 128, a
multiplier of 1, and an offset of 0.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Output

int Numbers received in the inlet, or produced by dragging on slider with the
mouse, are first multiplied by the multiplier, then have the offset added to
them, then are sent out the outlet.

Although the numbers that can be output by dragging are limited by the
range of the slider, numbers received in the inlet are not limited before they
are sent out the outlet.

Examples

Produce output by dragging onscreen... or display numbers passing through

Output numbers by
moving a slider onscreen slider

538

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
multislider Multiple slider and scrolling display
nslider Output numbers from a notation display onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 9 Using the slider
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Limit the speed at which
messages can pass through speedlim

539

Input

anything In left inlet: The message is passed out the outlet, provided that a certain
minimum time has elapsed since the previous output. Otherwise, the
message is held until that amount of time has passed (or until it is
overwritten by another incoming message).

int In right inlet: The number is stored as the minimum amount of time, in
milliseconds, between successive outputs.

clock In left inlet: The word clock, followed by the name of an existing setclock
object, causes the time interval of speedlim to be controlled by that setclock
rather than by Max’s internal millisecond clock. The word clock by itself
sets speedlim back to using Max’s regular millisecond clock.

Arguments

int Optional. Sets an initial minimum time between outputs, in milliseconds.
If there is no argument, the minimum time is 0.

Output

anything A message received in the left inlet is sent out the outlet, provided the
specified minimum amount of time has elapsed since the previous output.
Otherwise, speedlim waits until that amount of time has passed, then sends
out the last message it has received since the previous output.

Examples

Used to reduce a heavy flow of numbers, or to turn a continuous flow into discrete steps

Limit the speed at which
messages can pass through speedlim

540

See Also

delay Delay a bang before passing it on
mousefilter Pass numbers only when the mouse button is up
thresh Combine numbers into a list, when received close together
timer Report elapsed time between two events
Tutorial 16 More MIDI ins and outs

Convert input
to ASCII codes spell

541

Input

any symbol The ASCII value of each letter, digit, or other character in the symbol is
sent out the outlet, one character at a time.

int The ASCII value of each of the digits of the number is sent out the outlet,
one digit at a time.

list Each int in the list is converted to ASCII as described above, and a space
character (32) is sent out between items in the list. Any float or symbol
items in the list are ignored.

any message If the message begins with a symbol, all int and symbol items in the
message are converted to ASCII one character at a time, and a space
character (32) is placed between them. Any float items in the list are
ignored. If the message begins with a float, both floats and symbols are
ignored.

Arguments

int Optional. The first argument sets the minimum output size. Any input
that doesn’t “spell” to the minimum length is followed by enough fill
characters (the default is the space character, 32 in ASCII) to satisfy the
minimum requirement. A second optional argument specifies the fill
character to use instead of 32. If you want to use ‘0’ as a fill character, use
any negative number as a second argument to spell.

Outputs

int The ASCII representation of the input is sent out one character at a time.

Convert input
to ASCII codes spell

542

Examples

Using the spell object, a modem command string or a synthesizer patch name can be
translated from human terms into computer terms, and sent out the serial port in ASCII

representation

See Also

atoi Convert ASCII characters to integers
itoa Convert integers to ASCII characters
key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
message Send any message
sprintf Format a message of words and numbers

Look for a
range of numbers split

543

Input

int or float In left inlet: If the number is within a specified range, it is sent out the left
outlet. Otherwise, it is sent out the right outlet.

In middle inlet: The number is stored as the minimum value in the range
of numbers looked for by split. If the number is an int, then the split object
will convert all float values to ints.

In right inlet: The number is stored as the maximum value in the range of
numbers looked for by split.

list In left inlet: The second number is stored as the minimum value of the
range, and the third number is stored as the maximum value of the range.
The first number is then compared to the range, and is sent out one of the
two outlets.

Arguments

int or float Optional. The first argument sets the minimum value to be sent out the
left outlet. If the first argument is an int, then the split object will convert
all float values to ints. The second argument sets the maximum value to be
sent out the left outlet. If the first argument to split is an int, the output is
int. If it is float, the output is float. This is true regardless of the type of the
input.

Output

int If the number received in the left inlet is greater than or equal to the
specified minimum, and it is less than or equal to the specified maximum,
it is sent out the left outlet. Otherwise, it is sent out the right outlet.

Examples

Used to divert a certain range of numbers to a different destination

Look for a
range of numbers split

544

See Also

route Selectively pass the input out a specific outlet
select Select certain inputs, pass the rest on
<= Is less than or equal to, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 20 Using the computer keyboard

Distribute a value
to a numbered outlet spray

545

Input

list The first number in the list is a number that specifies the outlet number;
the second is an int or float value to send out that outlet. If there are
additional elements in the list, they are sent out the subsequent outlets to
the right of the one specified by the first number in the list. The list may
contain only ints or floats; symbols will be ignored.

Arguments

int Optional. The first argument sets the number of outlets. If there is no
argument present, the object has two outlets. The second argument sets an
offset for the numbering of the outlets. If the second argument is not
present, the outlets are numbered beginning with 0.

Output

int When a list of is received by spray, the first number is used to specify an
outlet, and the second int or float is sent out that outlet. Any additional
numbers in the list are sent out subsequent outlets to the right. You can
connect the outlet of an env or envi object to the inlet of a spray object to
distribute the envelope’s values to separate outlets.

Examples

Used to break up a list and send the items out specific outlets

See Also

cycle Send a stream of data to individual outlets
env Script-configurable envelope editor
envi Script-configurable envelope in a patcher window

Distribute a value
to a numbered outlet spray

546

funnel Map a number to a list which identifies its inlet
gate Pass the input out a specific outlet
listfunnel Index elements of a list and output them individually
route Selectively pass the input out a specific outlet
unpack Break a list up into individual messages

Format a message of
words and numbers sprintf

547

Input

int May be received in any inlet that corresponds to a %ld or %c argument. The
number will be stored in place of that argument. A %c argument will
convert the int to its ASCII character equivalent.

float May be received in any inlet that corresponds to a %f argument. The
number will be stored in place of that argument.

symbol May be received in any inlet that corresponds to a %s argument. The
number will be stored in place of that argument.

list In left inlet: Each item in the list is treated as if it had been received in a
separate inlet, up to the number of inlets.

bang In left inlet: Formats the message using the values currently stored.

Any of the above messages in the left inlet will format the message and
send it out. If no value has been received for a changeable number
argument (%ld or %f), 0 will be substituted for that argument. If no value
has been received for a %s or %c argument, that argument will be left
blank.

Arguments

symout Optional. If the first argument is the word symout, the sprintf object outputs
the string it generates as a single symbol. Otherwise the output is a list of
symbols and/or numbers. The word symout itself is not included in the
output of sprintf.

Obligatory. The arguments form a message to be sent out, in a format
resembling the C programming language. The arguments may be words,
numbers, or changeable arguments for incoming symbols (%s), ints (%ld),
floats (%f), and ints that are to be formatted as ASCII characters (%c). The
number of inlets is determined by the number of changeable arguments,
with each inlet corresponding to a changeable argument, in order.

Output

anything The message specified by the typed-in argument(s) is formatted and sent
out with substitutions made for the changeable arguments.

Format a message of
words and numbers sprintf

548

Examples

Changeable arguments are replaced by values received in the inlets.

See Also

atoi Convert ASCII characters to integers
fromsymbol Transform a symbol into individual numbers or messages
itoa Convert integers to ASCII characters
key Report key presses on the computer keyboard
keyup Report key releases on the computer keyboard
message Send any message
spell Convert input to ASCII codes
tosymbol Convert messages, numbers, or lists to a single symbol

Square root function sqrt

549

Input

int or float sqrt outputs the square root of the input value. A negative input has no real
solution, so it causes an output of NaN (Not a Number).

bang Outputs the currently stored square root value.

Arguments

int or float Optional. An optional argument specifies the value whose square root is to
be output.

Output

float The square root of the input.

Examples

See Also

expr Evaluate a mathematical expression

Configure parameters for
standalone applications standalone

550

The standalone object lets you set options for creating a standalone application from a
Max/MSP patch, and is used in conjunction with the Build Application/Collective... item
found in the Edit menu. You should only have one standalone object in your top-level
patch.

Input

All parameters for standalone applications are set using the standalone
object’s Inspector.

Inspector

The behavior of a standalone object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting the standalone object
displays the standalone Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The standalone Inspector lets you set the following attributes:

The Application Creator Code is a four-letter file type code that will endow
your standalone application with a personal identity in the computer’s file
system (does nothing on Windows XP).

(Mac Only) Checking the Use Own Property List (plist) Resource option
lets your application have its own “plist” resource and makes it possible for
you to customize your standalone application's icons (analogous to the
BNDL resource on OS9).

If some of the supporting files used by Max/MSP objects in your patch will
not be included in the collective itself, check the Search for Files Not in the
Application's Collective option.

Checking the Utilize Search Path in Preferences File option lets you use the
search path stored in the Preferences file instead of using the default search
path.

If you want to use your own preferences file to save default settings for
your standalone application instead of the default Max Preferences file,
you can specify the file name in the Preference File Name box.

Configure parameters for
standalone applications standalone

551

The Behavior section lets you set the behavior and appearance of the
standalone application.

Checking the Status Window Visible at Startup option will display a Status
window (similar to the Max window) when you launch the Standalone
application.

To assure that users of your standalone application can’t abort the loadbang
message sent to all objects when the top-level patch is loaded, check the
Prevent Loadbang Defeating option.

You can enable the standard Max/MSP Overdrive and All Windows
Active behavior in your standalone application by checking the Overdrive
Enabled and All Windows Active Enabled options.

You can keep users from being able to close the top-level patcher in your
standalone application by checking the User Can't Close top-level Patcher
Windows option.

The Include section lets you tell max which optional features to include in
your standalone.

Checking the Audio Support option will cause Max to copy all audio
drivers and other supporting files over to your standalone. If your
standalone uses MSP features then check this option.

Checking the MIDI Support option will cause Max to copy all MIDI
drivers and other supporting files over to your standalone. If your
standalone uses MIDI then check this option.

Arguments

None.

Output

 None.

See Also

Collectives Grouping files to create a single application.

Filter out note-on messages,
pass only note-on messages stripnote

552

Input

list In left inlet: The second number is stored as a velocity, and the first
number is treated as the pitch, of a MIDI note-on message. If the second
number is not 0, it is sent out the right outlet, and the first number is sent
out the left outlet. If the second number is 0, nothing is sent out.

int In left inlet: The number is treated as a pitch value. If the velocity value
currently held by stripnote is not 0, then the velocity is sent out the right
outlet and the pitch is sent out the left outlet.

In right inlet: The number is stored as a velocity to be paired with pitch
numbers received in the left inlet.

float Converted to int.

Arguments

None.

Output

int Out left outlet: The pitch value received in the left inlet is sent out,
provided the velocity is not 0.

Out right outlet: The velocity value of a note-on pair is sent out, provided
it is not 0.

Examples

Repeated pitch values and 0 velocities caused by note-off messages can be filtered out

Filter out note-on messages,
pass only note-on messages stripnote

553

See Also

makenote Generate a note-off message, following each note-on
sustain Hold note-off messages, output them on command
Tutorial 13 Managing note data

Get a filename from
a full pathname strippath

554

Input

symbol An absolute pathname as a symbol. An absolute pathname looks like this:

 “MyDisk:/Max Folder/extras/filename”

Arguments

None.

Output

 symbol Out left outlet: The file name, with all path information preceding it
removed.

int Out right outlet: If the file was found within the current Max search path a
1 is sent out the right outlet. A 0 is sent otherwise.

Examples

strippath removes path information from a file pathname, and leaves the name of the file

See Also

absolutepath Convert a file name to an absolute path
conformpath Convert paths of one pathtype and/or pathstyle to another
dropfile Define a region for dragging and dropping a file
opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving

Substitute a symbol for
another symbol in a message substitute

555

Input

anything In left inlet: The input is echoed to the output, but if the message received
contains an element matching the match symbol or number, the element
is replaced by the replacement symbol or number when the message is
repeated to the output.

anything In right inlet: The substitute object accepts a message of two numbers or
symbols in its right inlet. The first number or symbol specifies the match,
which identifies what should be replaced in an incoming message.

set In right inlet: Same as anything, except that the word set is ignored.

Arguments

anything Optional. The first number or symbol specifies the match, which identifies
what should be replaced in an incoming message. The default match value
is 0.

anything Optional. The second number or symbol specifies the replacement for the
match. The default replacement value is 0.

anything Optional. The second number or symbol specifies the replacement for the
match. The default replacement value is 0.

anything Optional. Any third number or symbol sets the “replace message only”
mode of the substitute object. Only the first instance of the specified match
will be replaced.

Output

anything Out left outlet: The input message is echoed to the output with elements
matching the match symbol or number replaced by the replacement
number or symbol.

bang Out right outlet: If no substitution occurred when sending out the
incoming message, a bang is sent.

Substitute a symbol for
another symbol in a message substitute

556

Examples

substitute can translate messages output by one object to what’s expected by another object

See Also

route Selectively pass the input out a specific outlet
sprintf Format a message of words and numbers
zl Multi-purpose list processor

Get pixel color at
display coordinates suckah

557

Input

list A list of two integers specifying x and y offset values ffrom the upper left
corner of the screen will cause the suckah object to report the color at the
specified screen location in RGB format.

(mouse) Clicking on the suckah object causes it to report the color of the pixel at the
current mouse position to be reported in RGB format (i.e., as a list of three
ints).

Arguments

None.

Output

list A list of three ints corresponding to the RGB value of the pixel selected by
using the mouse or in response to a list of x and y offsets will be sent out
the suckah object’s outlet.

Get pixel color at
display coordinates suckah

558

Examples

See Also

route Selectively pass the input out a specific outlet
sprintf Format a message of words and numbers
zl Multi-purpose list processor

Reports when application
is suspended or resumed suspend

559

Input

None.

Arguments

None.

Output

int Out left outlet When the application is suspended (made to go into the
background), a 1 is output. When the application is resumed (restored to
being in the foreground), a 0 is output.

Examples

 suspend lets you activate/deactivate processes if Max is the foreground application

See Also

active Send 1 when patcher window is active, 0 when inactive
gestalt Inquire about current system

Hold note-off messages,
output them on command sustain

560

Input

list In left inlet: The second number is stored as the velocity, and the first
number is treated as the pitch, of a MIDI note-on message. If the pair is a
note-on (the velocity is not 0), the velocity is sent out the right outlet and
the pitch is sent out the left outlet. Note-offs (note-ons with a velocity of 0)
are either passed on immediately or held by sustain.

int In left inlet: The number is the pitch value of a pitch-velocity pair. If the
velocity value currently held by sustain is not 0, then the pair is sent out
immediately. If the velocity is 0, the note-off is either sent out or held,
depending on whether sustain is turned on.

In middle inlet: The number is stored as a velocity to be paired with pitch
numbers received in the left inlet.

In right inlet: If the number is not 0, sustain is turned on, and all note-offs
are held. If the number is 0, sustain is turned off, and all note-offs are sent
out immediately.

float Converted to int.

Arguments

None.

Output

int Out left outlet: The pitch value of a pitch-velocity pair.

Out right outlet: The velocity value of a pitch-velocity pair.

Note-on pairs are always sent out immediately. If sustain is turned on, note-
offs are held until it is turned off. Otherwise, note-offs are sent out
immediately.

Hold note-off messages,
output them on command sustain

561

Examples

Like the sustain pedal of a piano, sustain releases all held notes at one time

See Also

flush Provide note-offs for held notes
makenote Generate a note-off message, following each note-on
stripnote Filter out note-off messages, pass only note-on messages

Reverse the sequential
order of two integers swap

562

Input

int In left inlet: The number is sent out the right outlet, then the number in
the right inlet is sent out the left outlet.

In right inlet: The number is stored to be sent out the left outlet when a
number is received in the left inlet.

float The numbers are converted to int, unless there is a float argument, in
which case the number received in the right inlet is stored as a float.

list In left inlet: The numbers are stored in swap. The first number is sent out
the right outlet, then the second number is sent out the left outlet.

bang In left inlet: Swaps and sends out the numbers currently stored in swap.

Arguments

int or float Optional. Sets an initial value for the number that is to be sent out the left
outlet. Float argument will cause a float to be sent out the left outlet. (The
number sent out the right outlet is always an int.) If there is no argument,
the initial value is 0.

Output

int When a number is received in the left inlet, the number in each inlet is
sent out the opposite outlet.

float If there is a float argument, the number sent out the left outlet is a float.

Examples

Numbers are sent out in reverse order from that in which they were received

Reverse the sequential
order of two integers swap

563

See Also

buddy Synchronize arriving data, output them together
fswap Reverse the sequential order of two floating point numbers
pack Combine numbers and symbols into a list
unpack Break a list up into individual numbers
Tutorial 30 Number groups

Color swatch for RGB
color
selection and display

swatch

564

The 2-dimensional colorspace of the swatch object represents hue along the horizontal axis,
and luminance along the vertical axis. a third color dimension, saturation, may be set by
means of the saturation message.

 Input

int In left inlet: A number between 0 and 255 sets the red color component
and causes output.

In middle inlet: A number between 0 and 255 sets the green color
component and causes output.

In right inlet: A number between 0 and 255 sets the blue color component
and causes output.

Note: Unlike most Max objects, input to any one of the three inlets will
re-calculate the current color location on the swatch, and trigger output).

float Converted to int.

(mouse) Clicking and dragging on the swatch object will calculate and output the
RGB color at the selected (x, y) position on the 2-dimensional (hue-
luminance) colorspace, taking into account the current saturation value.

bang A bang message causes output of the RGB values of the current color at the
selected (x, y) position on the 2-dimensional colorspace, taking into
account the current saturation value.

hsl The word hsl, followed by a list of three numbers between 0 and 255, sets
the color based on the given hue (x-axis), saturation, and luminance (y-
axis) values, The swatch object converts these values to RGB color values,
refreshes the display and causes output of the RGB values.

list A list of three numbers between 0 and 255 sets the three RGB color
components (red, green, blue), refreshes the display and causes output.

saturation The word saturation, followed by a number between 0 and 255 will change
the color saturation of the displayed 2-dimensional (hue, lightness)
colorspace It will also re-calculate the new RGB color at the selected (x, y)
position and cause output.

Color swatch for RGB
color
selection and display

swatch

565

set The word set, followed by a list of three numbers between 0 and 255 sets
the three RGB color components (red, green, blue) and refreshes the
display without causing output.

sethsl The word sethsl, followed by a list of three numbers between 0 and 255, sets
the color based on the given hue (x-axis), saturation, and luminance (y-
axis) values and the refreshes the display. Unlike the hsl message the sethsl
message does not output the corresponding RGB values.

(preset) You can save and restore the swatch object’s RGB color using a preset object.

Arguments

None.

Output

list Out left outlet: a list of three RGB (red, green, blue) color values

int Out right outlet: the current saturation value (calculated from an RGB list
input, or output directly after a saturation message)

Color swatch for RGB
color
selection and display

swatch

566

Examples

See Also

colorpicker Select a color using a modal dialog
panel Colored background area

Output messages
from a specific inlet switch

567

Input

int In left inlet: The number specifies an open inlet for receiving subsequent
messages to be sent out the outlet. All inlets other than the designated
open one are closed. If the number is 0, all inlets are closed.

anything In any other inlet: Any message received in an open inlet is passed out the
outlet. Messages received in closed inlets are ignored.

float In left inlet: Converted to int.

bang In left inlet: Sends out the number of the open inlet, or 0 if all inlets are
closed.

Arguments

int Optional. Specifies the number of inlets, up to 10, in addition to the
leftmost inlet. If there is no argument, there are two additional inlets.

Output

anything If the number in the left inlet is less than 0, its absolute value is used to
determine which inlet to open. (-1 opens inlet 1, -2 opens inlet 2, etc.) If the
absolute value of the number is greater than the number of existing inlets,
messages are received in the rightmost inlet.

Examples

“Listen” to only one inlet at a time, or ignore all inlets

See Also

forward Send remote messages to a variety of objects
funnel Tag data with a number that identifies its inlet
gate Pass the input out a specific outlet

Output messages
from a specific inlet switch

568

Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 17 Gates and switches

Prepare MIDI system
exclusive messages sxformat

569

Input

int In left inlet: The number replaces any $i1 arguments in the object box, and
the entire list of arguments is evaluated and sent out the outlet, one-by-
one.

In other inlets: The number is stored in place of the $i argument that
corresponds to that inlet, until a number is received in the left inlet.

list In left inlet: The numbers in the list are used to replace the corresponding
$i arguments in the object box, then the list of arguments is evaluated and
the numbers are sent out one-by-one.

bang In left inlet: Sends out the bytes of the formatted message, using the most
recently received numbers.

Arguments

list Obligatory. The arguments are a list of numbers which represent the values
of individual bytes of a MIDI system exclusive message. The first number
should be 240 (or 0xF0), the system exclusive status byte and the last
number should be 247 (or 0xF7), the end byte. There can be any number of
values for data bytes in between.

Arguments for data bytes can also be in the form of a mathematical
expression (like the expressions in expr and if objects) to be evaluated before
numbers are sent out the outlet. The expressions can contain changeable
arguments in the form $i, followed immediately by an inlet number (for
example, $i2). The changeable arguments are replaced by numbers received
in the specified inlet. Expressions used in place of numbers should be
preceded by the word is, and should be separated from other arguments
with a slash (/) on either side of the expression (see example).

If the value of an evaluated expression is less than 0, no number is sent out
in place of that expression. This allows you to send variable-length system
exclusive messages.

Output

int When a number is received in the left inlet, any expressions in the
argument are evaluated and the numbers in the list are sent out one at a

Prepare MIDI system
exclusive messages sxformat

570

time, as bytes of a MIDI system exclusive message, for transmission by
midiout.

Examples

sxformat can send a complete MIDI system exclusive message, byte-by-byte, to midiout

See Also

expr Evaluate a mathematical expression
midiout Transmit raw MIDI data
sysexin Output received MIDI system exclusive messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Output received MIDI
system exclusive messages sysexin

571

Input

(MIDI) The sysexin object receives MIDI system exclusive messages from a MIDI input
device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming MIDI messages.
The word port is optional and may be omitted.

(mouse) Double-clicking on a sysexin object shows a pop-up menu for choosing a MIDI
port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming MIDI system
exclusive messages. If there is no argument, sysexin receives from port a (or the
first input port listed in the MIDI Setup dialog.)

Output

int MIDI system exclusive messages received from the specified port are sent out
the outlet, byte-by-byte.

Examples

Examine incoming System Exclusive messages

Output received MIDI
system exclusive messages sysexin

572

See Also

midiin Output received raw MIDI data
sxformat Prepare MIDI system exclusive messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

Store and graphically edit
an array of numbers table

573

Input

list In left inlet: The second number is stored in table, at the address (index)
specified by the first number.

int In left inlet: The number specifies an address in the table. The value stored
at that address is sent out the left outlet. However, if a value has been
received in the right inlet, table stores that value in the specified address,
rather than sending out a number.

In right inlet: The number specifies a value to be stored in table. The next
address number received in the left inlet causes the value to be stored at
that address.

float Converted to int.

bang In left inlet: Same as a quantile message with a random number between 0
and 32,768 as an argument.

cancel In left inlet: Causes table to forget a number received in the right inlet, so
that the next number received in the left inlet will send out a number,
rather than storing a number at that address.

clear In left inlet: Sets all values in the table to 0.

const In left inlet: The word const, followed by a number, stores that number at
all addresses in the table.

dump In left inlet: Sends all the numbers stored in the table out the left outlet in
immediate succession, beginning with address 0.

flags In left inlet: Changes the table object’s saving options, which can be found
in the Inspector (see above). The word flags is followed by two number
arguments. The first argument affects the Save with patcher option, and
the second argument affects the Don’t Save option. If the argument is
non-zero the option is checked; if the argument is 0 the option is
unchecked. For example, the message flags 1 1 will cause the table object’s
contents to be saved as part of the patch that contains it, and Max will not
ask to save any changes that are made to the table.

fquantile In left inlet: The word fquantile, followed by a number between 0 and 1,
multiplies the number by the sum of all the numbers in the table. Then, table

Store and graphically edit
an array of numbers table

574

sends out the address at which the sum of the all values up to that address is
greater than or equal to the result.

getbits In left inlet: Gets the value of one or more specific bits of a number stored
in the table, and sends that value out the left outlet. The word getbits is
followed by three number arguments. The first argument is the address
being referred to; the second argument is the starting bit location in the
number stored at that address (the bit locations are numbered 0 to 31,
from the least significant bit to the most significant bit); and the third
argument specifies how many bits to the right of the starting bit location
should be sent out. The specified bits are sent out the outlet as a single
decimal integer.

For example, the message getbits 61 4 3 will look at address 61 in the table,
start at bit location 4 (the fifth bit from the right), and send out the
decimal number that corresponds to the 3 bits starting at that location. So,
suppose that address 61 of the table stores the number 87. The binary form
of 87 is 10 101 11. The 3 bits starting at bit location 4 are 101, which is
the binary form of the decimal integer 5, so 5 is the number that is sent out
the outlet.

goto In left inlet: The word goto, followed by a number, sets a pointer to the
address specified by the number. The pointer is set at the beginning of the
table initially.

inv In left inlet: The word inv, followed by a number, finds the first value which
is greater than or equal to that number, and sends the address of that value
out the left outlet.

length In left inlet: Sends the length (size) of the table out the left outlet.

load In left inlet: Puts the table in load mode. In load mode, every number
received in the left inlet gets stored in the table, beginning at address 0 and
continuing until the table is filled (or until the table is taken out of load mode
by a normal message). If more numbers are received than will fit in the size
of the table, excess numbers are ignored.

max Sends the maximum value stored in the table out the left outlet.

min Sends the minimum value stored in the table out the left outlet.

next In left inlet: Sends the value stored in the address pointed at by the goto
pointer out the left outlet, then sets the pointer to the next address. If the

Store and graphically edit
an array of numbers table

575

pointer is currently at the last address in the table, it wraps around to the
first address.

normal In left inlet: Undoes a prior load message; takes the table out of load mode
and reverts it to normal operation.

open In left inlet: Opens the table object’s graphic editor window and brings it to
the foreground. Double-clicking on the table object in a locked patcher has
the same effect.

prev In left inlet: Causes the same output as the word next, but the pointer is
then decremented rather than incremented. If the pointer is currently at the
first address in the table, it wraps around to the last address.

quantile In left inlet: The word quantile, followed by a number, multiplies the
number by the sum of all the numbers in the table. This result is then
divided by 215 (32,768). Then, table sends out the address at which the sum
of all values up to that address is greater than or equal to the result.

read In left inlet: The word read, followed by a name, opens and reads data
values from a file in Text or Max binary format. Without an argument, read
opens a standard Open Document dialog for choosing a file to read values
from. If the file contains valid data, the entire contents of the existing
table are replaced with the data.

refer In left inlet: The word refer, followed by the name of another table, sets the
receiving table object to read its data values from the named table.

send The word send, followed by the name of a receive object, followed by an
address number, sends the value stored at that address to all receive objects
with that name, without sending the value out the table object’s outlet.

set In left inlet: The word set, followed by a list of numbers, stores values in
certain addresses. The first number after the word set specifies an address.
The next number is the value to be stored in that address, and each number
after that is stored in a successive address.

setbits In left inlet: Changes the value of one or more specific bits of a number
stored in the table. The word setbits is followed by four number arguments.
The first argument is the address being referred to; the second argument is
the starting bit location in the number stored at that address (the bit
locations are numbered 0 to 31, from the least significant bit to the most
significant bit); the third argument specifies how many bits to the right of

Store and graphically edit
an array of numbers table

576

the starting bit location should be modified, and the fourth argument is the
value (stated in decimal or hexadecimal form) to which those bits should be
set.

For example, the message setbits 47 5 3 6 will look at address 47 in the table,
start at bit location 5 (the sixth bit from the right), and replace the 3 bits
starting at that location with the bits 110 (the binary equivalent of the
decimal integer 6). Suppose that address 47 of the table stores the number
87. The binary form of 87 is 1 010 111, so replacing the 3 bits starting at
bit location 5 with 110 would change the number to 1 110 111, which is
the binary form of the decimal integer 119. The new number stored at
address 47 in the table will therefore be 119.

size In left inlet: The word size, followed by a number, sets the size of the table to
that number.

sum In left inlet: Sends the sum of all the values in the table out the left outlet.

wclose In left inlet: Closes the graphic editing window associated with the table
object.

write In left inlet: Opens a standard save file dialog for choosing a name to write
data values from the table. The file can be saved in Text or Max binary
format.

(mouse) The values stored in table can be entered and edited graphically with the
mouse. When a table object is first created in a patcher window, the table
object’s graphic editing window is opened, in which values can be entered
by drawing with the mouse. The editing window provides a palette of
graphic editing tools.

Store and graphically edit
an array of numbers table

577

When the patcher window is locked, the graphic editing window can be
opened by double-clicking with the mouse on the table object.

A table can be created in a separate file by opening a new Table window and
choosing the Save command from the File menu. A table can also be
created in a separate file by opening a new Text file, and simply beginning
the file with the word table. The word table should be followed by a list of
space-separated numbers, specifying values to be stored in the table.

A table which has been saved as a file can be viewed and edited as text by
choosing Open as Text… from the File menu. Numbers in the form of text
can be pasted in from other sources such as the editing window of a capture
object, or even from another program such as a word processor. Text from
a capture object can also be pasted directly into a table object’s graphic
editing window.

Inspector

The behavior of a table object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any table object
displays the table Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

Table Size determines the number of values stored in the table. A newly
created table has 128 values, indexed with numbers from 0 to 127.

Table Range determines the range of values which can be displayed on the
y axis of the editing window. A newly created table has a range of 128, from
0 to 127.

Store and graphically edit
an array of numbers table

578

If Save Table with Patcher is checked, the values in the table are saved as
part of the patch that contains it. Otherwise, the table has to be saved in a
separate file to retain its values.

If Don’t Save is checked, Max will not ask if you want to save changes
made to the table, when the patch containing that table is closed.

If Use Note Name Legend is checked, values are shown on the y axis as
MIDI note names, rather than numbers.

If Signed Values is checked, table displays negative numbers as well as
positive. In effect, the range of displayed values specified by Range is
doubled when the Signed option is checked, since the range goes in both
directions from 0.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

any symbol Optional. The argument gives a name to the table. Max looks for a table of
the same name which has been saved as a separate file. If two or more table
objects share the same names, they also share the same values, even if Max
couldn’t find a file with the name.

Output

int All numbers sent out by table are sent out the left outlet.

bang When the contents of a table have been changed by an edit in the graphic
editing window, bang is sent out the right outlet.

Store and graphically edit
an array of numbers table

579

Examples

An array of any size and range can be stored, recalled, and modified

See Also

capture Store numbers to view or edit
coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
histo Make a histogram of the numbers received
multislider Multiple slider and scrolling display
text Format numbers as a text file
Tutorial 32 The table object
Timeline Creating a graphic score of Max messages
Data Structures Ways of storing data in Max
Quantile Using table for probability distribution
Tables Using the table graphic editing window

Tangent function tan

580

Input

float or int Input to a tangent function.

bang In left inlet: Calculates the tangent of the number currently stored. If there
is no argument, tan initially holds 0.

Arguments

float or int Optional. Sets the initial value for the tangent function.

Output

float or int The tangent of the input.

Examples

See Also

atan Arc-tangent function
atan2 Arc-tangent function (two variables)
atanh Hyperbolic arc-tangent function
tanh Hyperbolic tangent function

Hyperbolic tangent
function tanh

581

Input

float or int Input to a hyperbolic tangent function.

bang In left inlet: Calculates the hyperbolic tangent of the number currently
stored. If there is no argument, tanh initially holds 0.

Arguments

float or int Optional. Sets the initial value for the hyperbolic tangent function.

Output

float or int The hyperbolic tangent of the input.

Examples

See Also

atan Arc-tangent function
atan2 Arc-tangent function (two variables)
atanh Hyperbolic arc-tangent function
tan Tangent function

Output numbers at a
metronomic tempo tempo

582

Input

bang In left inlet: Starts the tempo object’s metronome process, or restarts it if
tempo is already on.

stop In left inlet: Stops tempo.

int In left inlet: If the number is not 0, it has the same effect as bang. If the
number is 0, it has the same effect as stop.

int or float In 2nd inlet: The number is stored as the tempo, in beats per minute
(quarter notes per minute). The tempo is limited between 5 and 300 beats
per minute.

In 3rd inlet: The number is a beat multiplier, which can lengthen the
amount of time taken for one beat. It slows the tempo down by a factor.
For example, a multiplier of 2 will make tempo send out its output half as
fast.

In right inlet: The number is the rhythmic value sent out by tempo, specified
as a fraction of a whole note. For example, the number 8 causes tempo to
output eighth notes, relative to the specified (quarter note) tempo. The
numbers sent out the outlet cycle continuously between 0 and the number
1 less than the rhythmic value. The divisions of a whole note must be
between 1 and 96.

tempo In left inlet: The word tempo, followed by a float, sets the current tempo to
the number.

clock The word clock, followed by the name of an existing setclock object, sets tempo
to be controlled by that setclock rather than by Max’s internal millisecond
clock. The word clock by itself sets tempo back to using Max’s regular
millisecond clock.

Arguments

int or float Optional. The first argument sets an initial tempo, from 5 to 300 beats per
minute. If there is no argument, the initial tempo is 120 beats per minute.
The second argument is the beat multiplier and is set to 1 by default. The
third argument sets an initial rhythmic value of the output, from a whole
note (1) to a 64th note triplet (96). If the argument is not present, the
initial value is 16.

Output numbers at a
metronomic tempo tempo

583

Output

int When tempo is started it outputs numbers in a continuous cycle from 0 to
the number 1 less than the specified rhythmic value. The speed at which the
numbers are sent out is determined by the tempo (quarter note beats per
minute) and the rhythmic value of the output (fraction of a whole note).

Examples

The tempo (60) defines the speed of a quarter note, division defines the pulse to be sent
out

See Also

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals
setclock Control the clock speed of timing objects remotely
Tutorial 31 Using timers

Format numbers
as a text file text

584

Input

clear Erases the contents of text.

cr Puts a carriage return at the end of the contents of text, to start a new line.
If the last character in text is a space, the carriage return replaces that space.

dump The word dump causes text to send its contents out of the object’s left outlet.

line The word line, followed by a number, causes text to send out the contents of
that line number (up to 256 characters) with the word set prepended (for
setting the contents of a message box). Lines are numbered beginning with
1; any line number message less than 1 is converted to line 1. If a
nonexistent line number is requested, nothing is sent out.

open Opens the object’s text window for editing. Double-clicking on the text
object in a locked patcher has the same effect. The text object ignores
messages to change its text while the editing window is open. Unlike the
capture object, changes made in the editing window of text actually alter the
contents of the object.

query The word query sends a number that specifies the number of lines stored in
the text object out the object’s right outlet.

read The word read, followed by a symbol that specifies a filename, will read the
contents of a text file. If no filename or pathname is specified, the read
message will call up the standard Open Document dialog box, so that a
text file can be specified. Use the filetype message to use a custom filetype
with this object.

settitle The word settitle, followed by any word, sets the title of the text window. If
you want more than one word to appear as the default text, you must
enclose the words in double quotes or precede the spaces with a backslash
(\).

symbol The word symbol, followed by any word, stores that word at the end of the
contents of text. This is useful if you want to store a word that would
otherwise be understood as a specific message by text. For example, symbol
clear stores the word clear, followed by a space, at the end of the contents of
text, rather than erasing the contents.

Format numbers
as a text file text

585

tab Puts a tab stop at the end of the contents of text. If the last character in text
is a space, the tab stop replaces that space.

wclose Closes the window associated with the text object.

write The word write, followed by a symbol that specifies a filename, will save the
contents of text as a text file in the current default folder unless the file is
specified with an absolute pathname. If no filename or pathname is
specified, the write message will open up a standard Save As dialog box, so
that the contents of text can be saved in a separate text file. Use the filetype
message to use a custom filetype with this object.

filetype The word filetype, followed by a symbol, sets the file types which can be read
and written into the text object. File types are specified using the standard
four-letter type code combination (e.g. filetype ffoo). The message filetype with
no arguments restores the default file behavior—either Max binary or text
file formats. File types are mapped to filename extensions on Windows
based on the messages to max contained in the file max-fileformats.txt in
the init folder, which is loaded on startup. If you are defining your own
filetype, you may want to include your own text file in the init folder in
order to specify a mapping between an extension and your four-letter type
code.

anything else The message is stored in the text object, placed after any previously stored
messages, and is followed by a space.

(mouse) Double-clicking with the mouse on the text object (when the patcher
window is locked) opens an editing window in which the contents of text
can be viewed and edited. The text object ignores messages to change its
text while the editing window is open. Unlike the capture object, changes
made in the editing window of text actually alter the contents of the object.

Arguments

symbol Names a text file to be read in when the object is loaded.

Output

symbol Out left outlet: When a line message is received, the text of the specified
line number is sent out preceded by the word set. The message can be used
to set the contents of a message box (or can be sent to any other object for
which that particular set message is appropriate).

Format numbers
as a text file text

586

bang Out middle outlet: When a file has finished loading in response to a read
message, a bang is sent out the middle outlet.

int Out right outlet: In response to a query message, a number corresponding
to the number of lines of text stored in the text object is sent out the right
outlet.

Examples

Collect messages as text, to paste elsewhere or to save as a separate file

See Also

capture Store numbers to view or edit
filein Read in a file of binary data
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
table Store and graphically edit an array of numbers
textedit Object for user-entered text in a patcher

User-entered text
in a patcher textedit

587

Input

(typing) When the textedit object is highlighted, typing enters text into the text
display area and modifies its buffer, unless the object is set to read-only
mode (see the readonly message). The ASCII value of the character typed is
sent out the middle outlet.

(mouse) Clicking with the mouse on the textedit object (when the patcher window is
locked) will cause the textedit object to send either the letter or word selected
out its right outlet depending on the setting of the click mode (see the
clickmode message).

bang Outputs the typed or stored contents of the textedit object’s buffer.

append The word append, followed by a message, will append the message to the
textedit object’s buffer without causing any output.

autoscroll The word autoscroll, followed by a 0 or 1, toggles autoscrolling in the text
display area. The message autoscroll 1 lets you scroll past the amount of text
displayed in the textedit window when the number of lines is set to 1 and the
word wrapping is disabled (see the wordwrap message) using either the cursor
or by clicking and dragging in the textedit window. The default is 0
(autoscroll disabled).

brgb The word brgb, followed by three numbers between 0 and 255, sets the
RGB values for the background color of the textedit object. The default value
is white (brgb 255 255 255).

clear Erases the contents of the textedit object’s buffer.

clickmode The word clickmode, followed by a 0 or 1, sets the way that the textedit object
responds to mouse clicks in the text display area. The message clickmode 0
will send an individual character clicked on out the right outlet of the
textedit object. Setting the object with the message clickmode 1 will send the
word the user clicks on. The default is 0 (select characters).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB
values for the text displayed by the textedit object. The default value is black
(frgb 0 0 0).

keymode The word keymode, followed by a 0 or 1, sets the way that the textedit object
responds to carriage returns while typing characters into its text display

User-entered text
in a patcher textedit

588

area. The message keymode 0 allows for text input, and displays carriage
returns normally. Setting the object with the message keymode 1 causes the
carriage return to output the entire contents of the current buffer. The
default is 0.

lines The word lines, followed by a number, sets the maximum number of lines
of text that textedit will display. lines 0 removes any limit on the number of
text lines. You'd want to use lines 1 on a textedit object that is being used to
enter a number or word in a “dialog box” context. The default is that there
is no line limit.

outputmode The word outputmode, followed by a 0 or 1, sets whether the textedit object
outputs its contents as a message or as a single symbol. The message
outputmode 0 causes the output of the object to be sent out as messages.
Setting the object with the message outputmode 1 will output the buffer
contents as a single symbol. The default is 0 (output as messages).

readonly The word readonly, followed by a 0 or 1, toggles the read only mode of the
textedit object. The message readonly 1 disables any user entry into the text
box. Messages which operate on the current contents of the textedit buffer
such as clear, append, or separator are not affected by the readonly message. The
default is 0 (readonly mode off).

set The word set, followed by any message, sets the contents of the textedit
object’s buffer while causing no output.

select Causes the text (if any) to be highlighted, and if the object is not in read-
only mode, sets the object to be the target of keyboard events.

separator The word separator, followed by any symbol, sets that symbol as a line
separator. and treats it as a carriage return when the contents of the buffer
are output. If the buffer contains the text “red green blue” and the object
receives the message separator green, the next bang received by textedit will
output red (carriage return) blue.

wordwrap The word wordwrap, followed by a 0 or 1, sets the way that the textedit object
displays messages which are longer than the textedit display area. The
message wordwrap 0 (default) will enable text wrapping on word boundaries
in the display area. The message clickmode 1 disables word-wrap.

(Font menu) The size and font used in the textedit object can be altered by choosing a
different font or size from the Font menu.

User-entered text
in a patcher textedit

589

Inspector

The behavior of a textedit object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any textedit object
displays the textedit Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the Inspector.

Typing numbers into the Maximum Lines number box sets the maximum
lines displayed in the text area. The default is 0. Options contains three
checkboxes which set the behavior and output of the textedit object. By
default, none of these options are selected. Checking Read-only sets the
object to display text only. Checking the Return Enters Text checkbox
causes the carriage return to output the entire contents of the current
buffer on a carriage return. If Output as One Symbol is checked, the textedit
object will output its contents as a single symbol rather than as a message.
Text wrapping on word boundaries can be enabled by checking the Word
Wraparound option, and the Automatic Scrolling option (default on)
allows the scrolling of selected text. The output behavior of the textedit
object is also set using the When Clicked.... checkboxes. You can choose to
output characters (the default) or words when you click on the text.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Arguments

None.

Output

symbol Out left outlet: The currently stored contents of the textedit object’s buffer
are output when the object receives a bang message. If the textedit message
has been set to enter text on a carriage return using the keymode 1 message, a
carriage return will also output the typed text and the buffer contents.

symbol Out middle outlet: The ASCII value of the typed key.

symbol Out right outlet: The word or letter in the textedit object’s text box that the
user has clicked on.

User-entered text
in a patcher textedit

590

Examples

Collect text to store in a coll object

See Also

dialog Open a dialog box for text entry
jit.cellblock Two-dimensional storage and viewing
text Format messages as a text file

Send messages
to a patcher thispatcher

591

The thispatcher object is placed inside the patcher you want to control. It sends messages to
the patcher that contains it.ß

Input

loadbang Sending the loadbang message to thispatcher causes any loadbang objects in the
same patcher to send out a bang. Any other objects which use a loadbang
message internally for initialization (such as the preset object) will receive
this message, too.

front Brings the patcher window to the front, or opens the window and brings it
to the front if it’s loaded as a subpatch but is not visible.

wclose Closes the patcher window. If the patcher has been edited, you will be asked
if you want to save the changes.

clean Resets the patcher window’s “dirty” flag, so the user won’t be asked to
save changes when the window is closed.

dirty Sets the patcher window's “dirty” flag, so the user will be asked to save
changes when the window is closed.

dispose Permanently closes the patcher window and frees its memory. You can use
this in conjunction with the load message to the pcontrol object to open and
close patchers automatically. If the patcher has been edited, you will be
asked if you want to save the changes.

offset For patchers contained inside boxes (using the bpatcher object), the offset
message sets the upper left corner of the visible portion of the patcher in
the box. The word offset should be followed by two numbers; the first
number specifies the left offset (in pixels) and the second specifies the top
offset. By default, patchers in bpatcher boxes are displayed with an offset of
0,0. When you hold down the Command and Shift keys on Macintosh or
the Control and Shift keys on Windows and drag in a bpatcher object’s box,
the offset changes as you move, and the current offset is displayed in the
Assistance area of the window that contains the bpatcher. You can use these
numbers to help you determine appropriate arguments to the offset mes-
sage.

path If the patcher window is saved as a file, the word path sends the full
pathname of folder containing the patcher's file out the thispatcher object's
right outlet.

Send messages
to a patcher thispatcher

592

write Saves the patcher’s file if it has a name; otherwise, brings up a Save As
dialog.

(others) thispatcher will respond to messages to create new objects. The format of
these messages is cryptic and subject to change, but you can get some idea
of what might be worth trying by examining a patcher file as text, and
trying any of the messages that begin with #P. Leave the #P out of the
message you send to thispatcher. Use of thispatcher to create new objects is not
supported.

patcher The word patcher, followed by any text, replaces the window name shown
in the title bar. The new window name is shown enclosed in brackets, to
indicate that it is not the actual file name, which is left unaltered.

window window notitle hides the title bar of the patcher window. window title shows the
title bar. window flags noclose hides the close box that normally appears in the
title bar of the patcher window. window flags close shows the close box. window
flags nozoom hides the zoom box that normally appears in the right corner of
the title bar. window flags zoom shows the zoom box. window flags nogrow hides
the scroll bars and the grow box that normally appears in the lower right
portion of the window. window flags grow shows the scroll bars and the grow
box. window size, followed by four numbers, sets the precise screen
coordinates (in pixels from the top left corner of the screen) of the left,
top, right, and bottom limits of the window, respectively. The left and top
coordinates refer to the upper left corner of the content portion of the
window, not the title bar.

window fullscreen 1 hides the menu bar and resizes the patcher window to fill
the entire screen, with no title bar and no scroll bars. window fullscreen 0
shows the menu bar and restores the previous size and appearance of the
patcher window.

window zoom 1 causes the patcher window to be maximized (or zoomed).
window zoom 0 causes the patcher window to be restored to its normal size.

The above window messages do not take effect until you send the message
window exec.

The messages window getsize, window getflags, and window gettitle, cause thispatcher
to send a window message out the left outlet reporting the current
characteristics of the window.

Send messages
to a patcher thispatcher

593

savewindow The word savewindow, followed by a non-zero number, means that any
unusual window settings caused by window flags messages to thispatcher will be
saved as part of the patch the next time the patch is saved. The message
savewindow 0 means that changes to the window caused by window flags
messages to thispatcher will not be retained when the patch is saved; the prior
patcher window settings are saved. If no savewindow message has been
received, the patcher will be saved with a normal window appearance.

Scripting Messages

The script message to thispatcher permits dynamic control over object creation, deletion,
sizing and positioning, and patching. The word script is followed by a keyword that
indicates a function. Following the keyword are arguments that specify what objects are to
be affected by the message.

In the discussion of each script message that follows, the syntax indicates required
arguments for the message after the keyword in angle brackets. An example of each
message is also provided.

A variable-name is a symbol that names either a new or existing object. You can set
variable names by choosing Name... from the Object menu, or with certain scripting
messages such as new and select.

Instantiating and Deleting Objects

newdefault Creates a new named object with default properties in a patcher window.

Syntax: script newdefault <variable-name> <creation message>

Example: script newdefault thatgraph 10 10 filtergraph~

Creates a new filtergraph~ object at its default size at 10 10 and assign it to
the variable thatgraph.

Example: script newdefault buffy 200 100 pack foo bar bap

Creates a new pack object instantiated with the arguments foo bar bap at
200 100 and assign it to the variable buffy.

new Creates a new object in a patcher window and gives it a name.

Syntax: script new <variable-name> <creation message>

Send messages
to a patcher thispatcher

594

Example: script new footog toggle 101 93 15 0

Creates a new toggle object 15 pixels square at 101 93 and assign it to the
variable footog.

Since the save formats of Max objects are not documented, in order to
determine the appropriate creation message for the desired object, you'll
have to examine Max patchers as text. Most objects are saved with one of
the following basic styles:

#P classname arguments; (internal UI object)

#P newex classname arguments; (normal internal or external object)

#P user classname arguments; (external UI object)

Remove the #P and the semicolon and put the rest of the message after the
variable name that will be assigned to the new object.

delete Deletes an object in a patcher window.

Syntax: script delete <variable-name>

Example: script delete footog

Deletes the object associated with the variable name footog.

hidden Specifies that an object (or connection) will be hidden when created.

Example: script hidden new footog toggle 101 93 15 0

Creates a hidden object associated with the variable name footog. The hidden
keyword can also be used when specifying connections between objects.

Assigning Variable Names to Objects

class Assigns a variable name to the first instance of a specified class with
matching arguments

Syntax: script class <variable-name> <class-name> <arguments (optional)>

Example: script class rubadub + 4

Send messages
to a patcher thispatcher

595

Assigns the name rubadub to the first instance found of + with argument 4
in the patcher.

nth Assigns a variable name to the nth instance of a specified class

Syntax: script nth <variable-name> <class-name> <index>

Example: script nth yoyo toggle 1

Assigns the name yoyo to the first toggle found in the patcher.

The order of objects in a patcher is determined by the front-to-back
ordering. Objects in back of the patcher that draw behind other objects are
first in the search order.

selected Assigns a variable name to the first object found that is selected

Syntax: script selected <variable-name>

Example: script selected impo

Assigns the name impo to the first object found that is selected. Obviously
this script message only works when the patcher is unlocked, since no object
can be selected in a locked patcher.

Connecting and Disconnecting Objects

For all three connection messages described below, inlets and outlets are specified by index,
with 0 denoting the leftmost inlet or outlet. The first variable specified is the object whose
outlet you are connecting or disconnecting and the second variable is the one whose inlet
you are connecting. Messages can then flow from outlet to inlet.

connect Connects two objects together with a patch cord

Syntax: script connect <outlet-variable-name> <outlet-index> <inlet-variable-
name> <inlet-index>

Example: script connect fooboo 0 bobo 0

Connects the left outlet of the object with the variable name fooboo to the
left inlet of the object with the variable name bobo.

Note: Adding the keyword hidden (e.g., script hidden connect fooboo 0 bobo 0)
creates hidden connections.

Send messages
to a patcher thispatcher

596

disconnect Disconnect two objects connected by a patch cord

Syntax: script disconnect <outlet-variable-name> <outlet-index> <inlet-variable-
name> <inlet-index>

Example: script disconnect fooboo 0 bobo 0

This message undoes the connection between the left outlet of fooboo and
the left inlet of bobo.

Send messages
to a patcher thispatcher

597

connectcolor Modify the color of an existing patch cord, setting it to one of Max's 16
standard colors.

Syntax: script connectcolor <outlet-variable-name> <outlet-index> <inlet-variable-
name> <inlet-index> <color>

Example: script connectcolor rover 0 dover 2 12

Changes the color of the connection between the left outlet of the rover
object with the 3rd inlet of the dover object to the color stored at index 12.

Changing Object Properties

hide Hide a visible object.

Syntax: script hide <variable-name>

Example: script hide visigoth

Hides the object named visigoth

show Show a hidden object.

Syntax: script show <variable-name>

Example: script show visigoth

Makes the object named visigoth visible.

ignoreclick Set an object not to respond to mouse clicks.

Syntax: script ignoreclick <variable-name>

Example: script ignoreclick visigoth

Makes the object named visigoth ignore mouse clicks.

respondtoclick Set an object to respond to mouse clicks.

Syntax: script respondtoclick <variable-name>

Example: script respondtoclick visigoth

Makes the object named visigoth respond to mouse clicks.

Send messages
to a patcher thispatcher

598

bringtofront Bring an object to the front of the layer it's currently in.

Syntax: script bringtofront <variable-name>

Example: script bringtofront visigoth

If visigoth is in the foreground layer, this message moves it to the front of
the foreground layer. Otherwise it moves it to the front of the background
layer.

sendtoback Move an object to the back of the layer it's currently in.

Syntax: script sendtoback <variable-name>

Example: script sendtoback visigoth

If visigoth is in the foreground layer, this message moves it to the back of the
foreground layer. Otherwise it moves it to the back of the background
layer. Note that objects that are “in the back” are the first objects to be
found by the variable assignment messages nth and class.

size Change an object's size. There are some objects that have restrictions on
their size, but they generally do not protect themselves against sizes they
don't expect, so use this message with some caution. For instance the toggle
object expects to be a square. It may not draw properly if it's made into a
rectangle.

Syntax: script size <variable-name> <width> <height>

Example: script size togipoo 30 30

Changes the object named togipoo to be 30 by 30 pixels.

Send messages
to a patcher thispatcher

599

Sending Messages to Objects

send Send a message to an object. This message is the same as using a message box
with a semicolon or a send object, but you use the object variable name
feature of scripting to specify the object that will receive the
message—using script send to communicate with a named receive object does
not work. The message can only be sent to an object within the patcher as
the thispatcher object receiving the script send message.

Syntax: script send <variable-name> <message>

Example: script send foobert 666

The object with the variable name foobert receives an int 666 message. If
foobert were a number box, its displayed value would change to 666.

sendbox Send a message to an object box. This message is identical to send except
that it sends the message to an object's box rather than the object referred
to by the box. There is currently only one object, bpatcher, in which the
object and box are different objects. The box is a bpatcher, and the object is a
patcher. What can you tell a bpatcher to do? One example is the boxborder
message, which is equivalent to sending the border message to a thispatcher
object in a patcher inside a bpatcher. Peek inside the Inspector patch for
bpatcher for other ideas.

Syntax: script sendbox <variable-name> <message>

Example: script sendbox bpbp boxborder 0

If bpbp names a bpatcher object, this script message would tell it not to draw
its border.

Moving Objects

move Move an object to an absolute position relative to the current top-left
corner of a patcher window. Note that the 0,0 point is underneath the icon
bar.

Syntax: script move <variable-name> <top> <left>

Example: script move molly 0 100

Send messages
to a patcher thispatcher

600

Moves the object named molly to the left edge of the window, 100 pixels
down from the top.

offset Move an object a distance from its current position. Positive distances
move the object down and to the right, negative distances move it up and
to the left.

Syntax: script offset <variable-name> <delta-x> <delta-y>

Example: script offset molly 30 -40

Moves the object named molly 30 pixels to the right and 40 pixels up.

offsetfrom Move an object a set distance from another object.

Syntax: script offsetfrom <variable-name-to-move> <target-variable-name>
<top-left-flag> <delta-x> <delta-y>

The top-left-flag is 1 if the distance is relative to the top-left corner of the
object, and 0 if it is relative to the bottom-right corner.

Example: script offsetfrom molly panther 1 -100 -120

Moves the object named molly 100 pixels to the left of the left side of the
object named panther, and 120 pixels above the top of the object named
panther.

Arguments

None.

Output

window Out left outlet: When the message window getsize is received, thispatcher sends
out the words window size followed by the screen coordinates (in pixels from
the top left corner of the screen) of the left, top, right, and bottom limits
of the window. When the message window gettitle is received, the message
window title or window notitle is sent out, depending on whether the window
has a title bar. When the message window getflags is received, thispatcher sends
out the words window flags followed by the visibility of the scroll bars and
grow box (grow or nogrow), the close box (close or noclose), and the zoom box
(zoom or nozoom).

Send messages
to a patcher thispatcher

601

symbol Out right outlet: The full pathname of the folder or volume containing the
patcher's file in response to the path message. If the patcher has not been
saved, there is no output.

Examples

Automatic window control, file saving, or patcher reset are possible with thispatcher

Windows can have any size, location, and appearance, set within the patch itself

See Also

bpatcher Embed a visible subpatch inside a box
bgcolor Set background color
pack Combine numbers and symbols into a list
patcher Create a subpatch within a patch
pcontrol Open and close subwindows within a patcher
pvar Connect to a named object in a patcher
sprintf Format a message of words and numbers
Tutorial 46 Basic Scripting
Tutorial 47 Advanced Scripting
Tutorial 49 Scripting and Custom Methods in JavaScript

Send messages
to a timeline thistimeline

602

Input

any message If thistimeline is in an action patch, and the action is currently being used in a
timeline, then any message that would normally be acceptable to a timeline
object can be received by thistimeline, and will be transmitted to the timeline
that contains the action.

bang Sends out the current time of the timeline that contains the thistimeline
object in an action.

Arguments

None.

Output

(to timeline) The messages received in the inlet are conveyed to the timeline that
contains the action in which the thistimeline object is located.

int When bang is received in the inlet, thistimeline sends out its outlet the current
time, in milliseconds, of the timeline that contains it in an action.

Examples

A timeline can actually control itself via a thistimeline object in an action

See Also

thistrack Send messages to a timeline track
ticmd Receive messages from a timeline
timeline Time-based score of Max messages
Tutorial 41 Timeline of Max messages

Send messages
to a timeline thistimeline

603

Timeline Creating a graphic score of Max messages

Send messages
to a timeline track thistrack

604

Input

any message If thistrack is in an action patch, and the action is currently being used in a
timeline, then a message received by thistrack will be transmitted to the
timeline track that is calling the action.

mute The word mute, followed by a nonzero number, mutes the timeline track of
the action that contains thistrack. The message mute 0 unmutes the track.

name The word name, followed by any other symbol, sets the name of the action’s
timeline track (in the graphic timeline editor window) to that symbol.

height The word height, followed by a number greater than 0, sets the height, in
pixels, of the timeline track’s visual display in the graphic timeline editor
window.

Arguments

None.

Output

(to timeline) The messages received in the inlet are applied to the timeline track that is
using the action containing the thistrack object.

Examples

A timeline action can mute its own track with a thistrack object

See Also

thistimeline Send messages to a timeline
ticmd Receive messages from a timeline

Send messages
to a timeline track thistrack

605

timeline Time-based score of Max messages
Timeline Creating a graphic score of Max messages
Tutorial 41 Timeline of Max messages

Combine numbers into a
list
when received close
together

thresh

606

Input

int or float a time In left inlet: Numbers are combined into a list if received within a
certain time of each other. When the time between incoming numbers is
greater than the specified threshold, the list is sent out the outlet, and a new
list is started.

In right inlet: The number is stored as the time, in milliseconds, to wait
before sending out the compiled list of numbers. If no new number is
received in the left inlet within that time, the list is sent out and a new list
is started.

list In left inlet: The entire list is appended to the list stored in thresh.

Arguments

int Optional. Sets an initial value for the threshold time. If no argument is
present, the initial value is 10 milliseconds.

float Converted to int.

Output

list Each number received in the left inlet is appended to a list stored by thresh.
If a certain time passes without a new number being received, thresh sends
out the list and starts a new list.

Combine numbers into a
list
when received close
together

thresh

607

Examples

If threshold time is exceeded without a new number being received, thresh sends out what
it holds

See Also

bondo Synchronize a group of messages
buddy Synchronize arriving data, output them together
iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
quickthresh Fast chord detection
zl Multi-purpose list processor
Tutorial 37 Data structures

Receive messages
from a timeline object ticmd

608

Input

The ticmd object is intended to be placed in an action patch, which is loaded
as a track in a timeline. ticmd gets its input from an event editor of the
same name in the timeline track. The type(s) of message(s) it can receive
depends on the typed-in argument(s) i, f, l, b, s, or a.

int If the second (and last) typed-in argument is i, then ticmd receives an int
value from a timeline event editor, and passes the number out its middle
outlet. There are three types of event editor that can be placed in a track of
a timeline for sending int values: int, etable, and efunc.

The int event editor in a timeline looks like, and functions much like, a
number box object in a patcher. When the timeline is being played and
reaches the int event editor, it sends the value in the number box to the
appropriate ticmd object, to be passed out the ticmd object’s middle outlet.

The etable event editor is similar to the table object. It is an array of ints
which can be edited graphically. When the timeline is being played and it
reaches an etable event editor, it sends out all the numbers in the etable one-
by-one at a rate proportional to the space that the etable occupies on the
timeline. For example if an etable containing 128 values occupies the space
from time 1000 to time 9000 (in milliseconds) on a timeline track, then
ticmd will receive ints at the rate of 16 per second as the timeline progresses
through those eight seconds.

The efunc event editor is a two-dimensional array containing pairs of x,y
values which can be edited graphically. When the timeline is being played
and it reaches an efunc event editor, it sends the y values in the efunc to ticmd
at a time determined by the x value (relative to the maximum range of x
values), proportional to the space that the etable occupies on the timeline.
For example, if the maximum range of x values in an efunc is 1000, and the
efunc covers a time period from 1000 to 9000 (in milliseconds), then the
x,y pair 500, 127 would cause the number 127 (the y value) to be sent to
ticmd at time 5000 (500/1000 of the way from 1000 to 9000).

float If the second (and last) typed-in argument is f, then ticmd receives a float
value from a timeline event editor, and passes the number out its middle
outlet. The float event editor looks and functions like a float number box in a
patcher window.

Receive messages
from a timeline object ticmd

609

list If the second argument is l, or if there are more than two arguments, then
ticmd receives a list from a messenger event editor in the timeline. A messenger
looks just like a message box object except that the name of the event (the
name of the ticmd object it will send to) is printed at the beginning of the
box. (The name will not be sent out as part of the message, however. It’s
just there to remind you where the message will be sent.)

bang If the second (and last) argument is b, then ticmd receives a bang message
from a messenger in the timeline, regardless of what message is typed into
the messenger.

symbol If the second (and last) argument is s, then ticmd receives a symbol from a
messenger in the timeline. If more than one word is typed into the messenger,
only the first word gets sent to ticmd. To include more than one word in a
messenger, and have them all sent out as a single symbol to ticmd, precede
the space character(s) with a backslash (\).

any message If the second (and last) argument is a, then ticmd can receive any message
from a messenger in the timeline, and will send it out the middle outlet
unchanged.

Arguments

symbol Obligatory. The first argument is the name of the ticmd object, which will
appear as a possible event in a timeline track that uses the action
containing the ticmd. More than one ticmd in an action may have the same
name, and each one will receive the same message from the timeline event,
although the order in which they will receive the message is undefined. ticmd
objects in the same action with the same name can even have different
type arguments (can expect different types of message), but the event
editor that appears in the timeline will depend on the type argument of the
ticmd object that is loaded first (which cannot always be reliably predicted).

i, f, s, l, b, or a Optional. After the first argument, each additional argument creates a new
outlet (in addition to the left and right outlets, which always exist) and
specifies the type of message to be sent out of that outlet: i for int, f for
float, l for list, b for bang, s for symbol, and a for any message. If there is
no type argument present, no middle outlet will be created; the event can
still be placed in the timeline track, however, as a messenger, and ticmd will
still send a bang message out its left and right outlets.

Receive messages
from a timeline object ticmd

610

If the only type argument is f, the event editor in the timeline track will be
a float number box. If the only type argument is i, the event editor in the
timeline track can be a number box, an etable, or an efunc. (See input message
int, above.) If the type argument is anything else, or if there is more than
one type argument, the event editor in the timeline track will be a
messenger. (See input message list, above.)

Output

bang Out left outlet: When an event with the same name as the ticmd is reached
in a timeline, a bang is sent out ticmd object’s left outlet.

Out middle outlet(s): If the outlet has been specified as a b outlet, bang is
sent out when the event is reached in the timeline (immediately after the
left outlet sends its bang). The word bang sent out of an s outlet has the same
effect.

Out right outlet: When the timeline reaches the end of a messenger event
with the same name as the ticmd, a bang is sent out ticmd object’s right outlet.

int Out middle outlet(s): If the outlet has been specified as an i outlet, an int is
sent out when the event is reached in the timeline (immediately after the
left outlet sends its bang). A symbol that is actually an integer number (sent
out of an s outlet) has the same effect.

float Out middle outlet(s): If the outlet has been specified as an f outlet, a float is
sent out when the event is reached in the timeline (immediately after the
left outlet sends its bang). A symbol that is actually a decimal number (sent
out of an s outlet) has the same effect.

list Out middle outlet(s): If the outlet has been specified as an l outlet, a list is
sent out when the messenger event is reached in the timeline (immediately
after the left outlet sends its bang).

If there are more than two arguments (two or more in addition to the
name argument) then a list received from the timeline will be broken up
and each item in the list will be sent out a different middle outlet, in order
from left to right.

symbol Out middle outlet(s): If the outlet has been specified as an s outlet, a
symbol is sent out when the messenger event is reached in the timeline
(immediately after the left outlet sends its bang). However, if the symbol to

Receive messages
from a timeline object ticmd

611

be sent out the outlet is a number or is bang, then it is sent out as an int, a
float, or a bang.

any message Out middle outlet: If the outlet has been specified as an a outlet, the
message is sent out when the messenger event is reached in the timeline
(immediately after the left outlet sends its bang).

Examples

A timeline communicates with an action patch via the ticmd object

See Also

thistimeline Send messages to a timeline
timeline Time-based score of Max messages
Tutorial 41 Timeline of Max messages
Timeline Creating a graphic score of Max messages

Time-based score
of Max messages timeline

612

Input

clock The word clock, followed by the name of an existing setclock object, sets the
timeline to be controlled by that setclock rather than by Max’s internal
millisecond clock. The word clock by itself sets the timeline object back to
using Max’s regular millisecond clock.

locate The word locate, followed by a number, specifies a time on the timeline—in
milliseconds—and moves the timeline object’s current time pointer to that
time. If the timeline is already playing when a locate message is received, it
will continue playing after relocating its current time pointer.

markers The word markers, followed by an outlet number, causes the first word of
each marker event in the timeline to be sent out the specified outlet, as the
argument to an append message to be sent to a umenu object. (If the specified
outlet does not exist, an error message is printed in the Max window and
nothing is sent out of the timeline object.) Because the markers message is
intended for storing the beginning of each marker in a umenu object, it first
causes the message clear to be sent out the outlet to clear the umenu object’s
previous contents. Immediately after that, a series of append messages is
sent out, to add the first word of each marker to the umenu. (The text
output of the umenu object can then be attached to a prepend search object,
which is in turn umenu back to the inlet of the timeline object, to locate the
current time pointer at a marker location. See the example.)

mute The word mute, followed by the number of a timeline track, mutes that
track, preventing its events from being sent to the action patch.

open Causes the window associated with the timeline object to become visible. The
window is also brought to the front. Double-clicking on the timeline object in
a locked patcher has the same effect.

play Plays the timeline contained in the timeline object.

read The word read, followed by the name of a timeline file, loads that file into
the timeline object. The word read by itself calls up a standard Open
Document dialog box, so that a timeline file can be read in.

search The word search, followed by a symbol, searches in the timeline for a marker
event in which the first word is an exact match of that symbol. If an exact
match is found, the current time pointer of the timeline moves to the
location of the matching marker.

Time-based score
of Max messages timeline

613

stop Stops the timeline.

timeFormat The word timeFormat, followed by an integer from 0 to 4, sets the way in
which time is displayed in the graphic timeline editor window. The number
0 means milliseconds, 1 means MIDI Clock, 2 means 24 fps (frames per
second), 3 means 25 fps, and 4 means 30 fps. Any other number will be
limited to within the 0 to 4 range.

unmute The word unmute, followed by the number of a timeline track, unmutes the
track, allowing its events once again to be sent to the action patch.

wclose Closes the window associated with the timeline object.

write Calls up the standard Save As dialog box, so that the contents of timeline can
be saved in a separate file.

zoomLevel The word zoomLevel, followed by an integer from 0 to 10, will set the
magnification of the view of the timeline displayed in the graphic editor
window. 0 means maximum zoom out (1 inch = 40 seconds) and 10 means
maximum zoom in (1 inch =.04 seconds). The default zoom level of the
timeline window is 4 (1 inch = 4 seconds). Any number that exceeds the 0
to 10 range will be limited to stay within the range.

When a timeline object is created, it opens a timeline editor window, a time-
based graphical score of Max messages. Other patches can be loaded into
this timeline as individual tracks (analogous to tracks of a multi-track
sequencer, or staves of a musical score), and messages can be placed in the
tracks to be sent to those patches at specific times. A patch that is loaded
into a timeline track should generally contain at least one ticmd object, to
receive messages from the timeline. Such a patch is known as an action.
The messages in the timeline tracks are known as events, and are entered
by placing special event editor objects in the tracks.

Time-based score
of Max messages timeline

614

When the timeline is played, the events in the tracks are sent to specific
ticmd objects in the action patch, and the event’s message goes out the ticmd
object’s outlet.

Arguments

symbol Optional. The first argument specifies the name of a timeline file to read
into the timeline object. If no file of that name is found, the name will still
appear in the title bar of the empty timeline editing window that is opened
when the timeline object is created.

int The second argument (or the only argument, if no name argument is
present) sets the number of outlets the timeline object will have. Any
number less than 1 will be set to 0.

Output

any message If the timeline has a positive integer argument, it will have that number of
outlets. If any of its action patches (or the patch that contains the timeline
object itself) contains a tiout object, then any message received in the inlet
of the tiout is sent out the specified outlet of the timeline object. If the timeline
object has no outlets, an error message will be printed in the Max window
when the tiout object is loaded, because no message can be sent out of the
timeline object.

(to actions) When timeline receives a play message, it progresses along the timeline of
events placed in its graphic editing window. When it encounters an event

Time-based score
of Max messages timeline

615

on the timeline, it sends that event to a specific ticmd object (in another
patch, which has been loaded into the timeline as an action), which in turn
passes the message out its own outlet.

Inspector

The behavior of a timeline object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any timeline object
displays the timeline Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The timeline Inspector lets you enter a Display Duration value. The
Display Duration sets the length, in seconds, of visible “time” in the
timeline. The default value is 20 seconds.

The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

Examples

Control a timeline’s speed with setclock Use markers to go to specific spots on the timeline

See Also

mtr Multi-track sequencer
setcloc Control the clock speed of timing objects remotely
thistimeline Send messages to a timeline
thistrack Send messages to a timeline track

Time-based score
of Max messages timeline

616

ticmd Receive messages from a timeline
tiout Send messages out of a timeline object
Tutorial 41 Timeline of Max messages
Timeline Creating a graphic score of Max messages

Report elapsed time
between two events timer

617

Input

bang In left inlet: Starts—or restarts—the timer.

In right inlet: Sends out the time elapsed since the timer was started.

clock In left inlet: The word clock, followed by the name of an existing setclock
object, causes the timer object’s clock to be controlled by that setclock rather
than by Max’s internal millisecond clock. The word clock by itself sets timer
back to using Max’s regular millisecond clock.

Arguments

None.

Output

 float When a bang is received in the right inlet, the time elapsed—in
milliseconds— since the timer was started, is sent out the outlet.

Examples

Report time between bang messages A single event can report time, then restart timer

See Also

clocker Report elapsed time, at regular intervals
cpuclock Precise “real-world” time measurements
delay Delay a bang before passing it on
setclock Control the clock speed of timing objects remotely
Tutorial 20 Using the computer keyboard

Report elapsed time
between two events tiout

618

Input

any message The tiout object is designed to be used in an action patch. Any message
received by tiout in an action patch is sent out an outlet of the timeline object
that is using that action.

Arguments

Optional. Specifies the outlet of the timeline object, out of which to send
messages. If no argument is present, the tiout object’s messages are sent out
outlet 1 of the timeline (the left outlet).

Output

(to timeline) Any message received in the inlet is sent out the specified outlet of the
timeline object that contains the tiout in one of its actions. If the timeline object
has no outlets, an error message will be printed in the Max window when
the tiout object is loaded, and no message will be sent from tiout to the
timeline object.

Examples

Messages going into tiout come out the specified outlet of the timeline that contains it

See Also

ticmd Receive messages from a timeline
timeline Time-based score of Max messages
Timeline Creating a graphic score of Max messages
Tutorial 41 Timeline of Max messages

Report zero/non-zero
transitions togedge

619

Input

int The number is stored in togedge. If it is not 0, and the previously stored
number was 0, togedge sends a bang out the left outlet. If the number is 0,
and the previously stored number was not 0, togedge sends a bang out the
right outlet. Otherwise, togedge sends no output.

float Ignored by togedge.

bang Switches the value stored in togedge from 0 to non-zero, or vice versa, and
reports the change by sending a bang out one of the outlets.

Arguments

None.

Output

bang Out left outlet: If the stored value is changed from 0 to not 0.

Out right outlet: If the stored value is changed from not 0 to 0.

Examples

Used as a detector of on/off status, or to switch back and forth between two triggers

See Also

change Filter out repetitions of a number
led Display on/off status in color
toggle Switch between on and off (1 and 0)

Switch between
on and off (0 and 1) toggle

620

Input

int The number is sent out the outlet. If the number is not 0, toggle displays an
X, showing it is on. If it is 0, toggle is blank, showing it is off.

float Converted to int.

bang Switches toggle on if it is off; switches it off if it is on.

A mouse click on toggle has the same effect as a bang in its inlet.

set Switches the toggle on or off without sending anything out the outlet. The
word set, followed by any non-zero number, sets toggle to on; set 0 sets it to
off.

(mouse) Clicking on a toggle is the same as sending it a bang message.

Arguments

None.

Output

int A number received in the inlet is sent out the outlet. A bang or a mouse
click sends 1 or 0 out the outlet, depending on whether toggle is being
turned on or off.

Examples

Used as an onscreen controller, or to display the on/off status of numbers passing through

See Also

led Display on/off status in color
matrixcrtrl Matrix-style switch control

Switch between
on and off (0 and 1) toggle

621

pictctrl Picture-based control
radiogroup Radio button/check box user interface object
togedge Report zero/non-zero transitions
Tutorial 5 toggle and comment

Convert messages, numbers,
 or lists to a single symbol tosymbol

622

Input

any message The tosymbol object accepts any message, number, or list for an input, and
sends a single symbol out its output. The symbol can have a maximum
length of 2048 characters.

separator The word separator specifies the separator character to be used when
concatenating. The message separator with no arguments removes all spaces
when creating a symbol (e.g., 1 2 3 4 becomes 1234). When used with slash
or colon separators, the separator message can be used to construct
pathnames (e.g., ./patches myjunk myfile becomes ./patches/myjunk/myfile). The
default separator is a space.

Arguments

None.

Output

symbol A single symbol consisting of the concatenated messages, numbers, or lists.
If the output symbol contains any spaces or special characters, it will be
surrounded by double quotes.

Examples

Convert any input into a symbol

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
fromsymbol Transform a symbol into individual numbers or messages
zl Multi-purpose list processor

Receive MIDI
aftertouch values touchin

623

Input

(MIDI) touchin receives its input from MIDI aftertouch (channel pressure) messages
received from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent
incoming MIDI data. The word enable followed by any non-zero number
enables the object once again, even if the entire patcher window has had its
MIDI disabled by an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming pitch bend
messages. The word port is optional and may be omitted.

int The number is treated as if it were an incoming MIDI aftertouch value. If
there is a right outlet, 0 is sent out in lieu of a MIDI channel number. The
received number is sent out the left outlet, and is not limited in the range
0 to 127.

(mouse) Double-clicking on a touchin object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming aftertouch
messages. If there is no argument, touchin receives on all channels from all
ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first
argument to specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to receive aftertouch messages.
Channel numbers greater than 16 will be wrapped around to stay within
the 1-16 range.

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the
channel offset specified for each port in the MIDI Setup dialog.

Receive MIDI
aftertouch values touchin

624

Output

int If a specific channel number is included in the argument, there is only one
outlet. The output is the incoming aftertouch value, from 0-127, on the
specified channel and port.

If there is no channel number specified by the argument, touchin will have a
second outlet, on the right, which will output the channel number of the
incoming aftertouch message.

Examples

Aftertouch messages can be received from everywhere, a specific port, or a specific port
and channel

See Also

touchout Transmit MIDI aftertouch messages
midiin Output received raw MIDI data
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Transmit MIDI
aftertouch messages touchout

625

Input

int In left inlet: The number is transmitted as an aftertouch value on the
specified channel and port. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to
transmit the aftertouch messages.

float Converted to int.

list In left inlet: The first number is the aftertouch value, and the second
number is the channel, of a MIDI aftertouch message, transmitted on the
specified channel and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI
data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by
an enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input port or
device, sets the port from which the object receives incoming pitch bend
messages. The word port is optional and may be omitted.

(mouse) Double-clicking on a touchout object shows a pop-up menu for choosing a
MIDI port or device.

Arguments

a-z Optional. Specifies the port for transmitting MIDI aftertouch messages.
Channel numbers greater than 16 received in the right inlet will be
wrapped around to stay within the 1-16 range. If there is no argument,
touchout initially transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port
and a specific MIDI channel on which to transmit aftertouch messages.
Channel numbers greater than 16 will be wrapped around to stay within
the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first
argument to specify the port.

Transmit MIDI
aftertouch messages touchout

626

int A number alone can be used in place of a letter and number combination.
The exact meaning of the channel number argument depends on the channel
offset specified for each port in the MIDI Setup dialog.

Output

(MIDI) There are no outlets. The output is a MIDI aftertouch message transmitted
directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one
port

Otherwise, number specifies both port and
channel

See Also

touchin Output received MIDI aftertouch values
midiout Transmit raw MIDI data
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Send input to
many places, in order trigger / t

627

Input

int or float The number is sent out each outlet in the form designated by the typed-in
arguments: either an int, a float, a list, a symbol (although empty), or a bang.

bang Causes either a bang, an integer 0, a float 0., a list 0, or an empty symbol to
be sent out of each outlet.

list The list is sent out any outlet with the letter l assigned to it. Out other
outlets, the list is converted and sent out as integer 0, float 0., the empty
symbol “”, or bang.

symbol The word will be sent out any outlet with the letter s assigned to it. Out
other outlets, the symbol is converted and sent out as integer 0, float 0., list
0, or bang.

Arguments

i, f, b, l, or s Optional. The number of arguments determines the number of outlets.
Each outlet sends out either int, float, bang, list, or symbol, depending on
the arguments. If there are no arguments, there are two outlets, both of
which send an int.

any message Optional. When an int, float, or symbol is specified, the value is output as
a constant.

Output

int or float A number received in the inlet is sent out each outlet, in order from right
to left. The number will be converted to int, float, list, symbol, or bang before
being sent out, depending on the argument that corresponds to each
outlet. A symbol, list, or bang received in the inlet will be converted to
integer 0 by an i outlet, and to float 0. by an f argument.

bang Anything received in the inlet will be converted to bang before being sent
out a b outlet.

list A list received in the inlet will be sent out unchanged by an l outlet.
Anything else will be converted to the single-item list 0 before being sent
out.

Send input to
many places, in order trigger / t

628

symbol A symbol received in the inlet will be sent out unchanged by an s outlet.
Anything else will be converted to the null symbol “” before being sent
out. Note: The only object that recognizes this null symbol is print, which
valiantly prints the empty message in the Max window. Other objects will
either ignore this null symbol or print an error message in the Max
window.

Examples

Order is normally right-to-left Any other order can be specified by trigger

See Also

bangbang Send a bang to many places, in order
jstrigger Evaluate Javascript expressions sequentially
message Send any message
Tutorial 7 Right-to-left order

If a number if less than
previous numbers, output it trough

629

Input

int or float In left inlet: If the input is less than the value currently stored in trough, it is
stored as the new minimum value and is sent out.

In right inlet: The input is stored in trough as the new minimum value, and is
sent out.

list In left inlet: The second int or float value is stored as the new minimum value
and is sent out, then the first value is received in the left inlet.

bang In left inlet: Sends the currently stored minimum value out the left outlet.

Arguments

None. The initial value stored in trough is 128. Providing a float argument will
cause trough to operate on floating-point values instead of integers.

Output

int Out left outlet: New minimum values are sent out. (Numbers received in the
right inlet are always the new minimum value.)

Out middle outlet: If the number received is a new minimum value, the
output is 1. If the number received in the left inlet is not a new minimum
value, the output is 0.

Out right outlet: If the number received is a new minimum value, the output
is 0. If the number received in the left inlet is not a new minimum value, the
output is 1.

Examples

Find the smallest in a series of numbers Number in right inlet always sets a new trough

If a number if less than
previous numbers, output it trough

630

See Also

minimum Output the smallest in a list of numbers
peak If a number is greater than previous numbers, output it
< Is less than, comparison of two numbers

Non-interrupting
pop-up menu ubumenu

631

The ubumenu object is similar to the umenu object. It operates in much the same way as the
umenu object, but it does not interrupt low-priority events (such as movie playback) while
it is in operation.

Input

int The number specifies a menu item to be sent out, and causes the ubumenu
object to display that item. The items are numbered starting at 0.

A menu item can also be chosen from a ubumenu with the mouse, as with
any pop-up menu.

align The word align, followed by a numbers 0, 1, or 2, sets the text alignment
mode. align 0 sets left alignment (the default), align 1 sets center alignment,
and align 2 sets right alignment.

append The word append, followed by any message, appends that message as the
new last item in the menu.

autopopulate The word autopopulate, followed by a 1 or 0, toggles the automatic
population of an ubumenu with folder contents (default = 0). The automatic
population will occur when it receives a valid folder path as the argument
to a prefix message, or at patcher load, if a valid prefix is stored with the
object. See the prefix, populate, and types message descriptions for more
information.

autosize The word autosize, followed by a 1 or 0, turns sizing the pop-up menu to the
width of the longest item on or off. If autosize is off, the width of the
menu is the width of the object's rectangle.

bang Sends out the currently displayed menu item.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
color of the ubumenu object in RGB format. The default is 187 187 187.

checkitem The word checkitem, followed by an item number and 1 or 0, places (1) or
removes (0) a check mark next to the item number.

clearchecks The word clearchecks removes check marks for all items.

clear Removes all items from the ubumenu.

count Sends the number of items in the ubumenu out the right outlet.

Non-interrupting
pop-up menu ubumenu

632

delete Followed by a number of an item, deletes that item from the ubumenu.

depth The word depth, followed by a number, sets the folder recursion depth used
by the ubumenu when populating from a valid file path.

enableitem The word enableitem, followed by a number that specifies a menu item and a 1
or 0, enables or disables the specified item number. Disabled menu items
cannot be selected, but their text and item number are sent from the
rightmost outlet if the mouse is released while above them, prefixed by the
symbols disabled_eval and disabled_item, respectively.

focusfree The word focusfree, followed by a 1 or 0, enables or disables the ubumenu
object's parent patcher window focus mode. focusfree 0 (the default) causes
the parent patcher window to automatically focus itself (which may cause a
slight flicker). If enabled, the parent patcher window will be in the
background while the ubumenu object's menu is open.

frgb The word rgb, followed by three numbers between 0 and 255, sets the text
color of the ubumenu object in RGB format. The default is 31 31 31.

mode The word mode, followed by the number 0, 1, or 2, sets the appearance and
behavior of the ubumenu, in the same way as the Mode setting in the ubumenu
object’s Inspector (see Inspector, below). mode 0 is the normal pop-up menu
style, mode 1 sets a toggle button style.

Clicking on the object in mode 1 causes it to alternate between an active
and inactive state. When changing from inactive to active, the object
sends the message toggle 1 from its rightmost outlet, and changes to the
color specified by the rgb3 message. When changing from active to
inactive, the object sends the message toggle 0 from its rightmost outlet, and
changes to the color specified by the brgb message. Whether activating or
deactivating, the object also sends its current message from the middle
outlet and its current item number from the left outlet.

pattrmode The word pattrmode, followed by a 0 or 1, sets the method used by the
ubumenu object to report its internal state to the pattr object. When the
argument is 0 (default), the ubumenu reports its internal state by number
(e.g. item 3 of the list of items). When the argument is 1, the ubumenu
reports its internal state by symbol (e.g. item 'carrots' of the list of items).

prefix The word prefix, followed by a message, sets a menu-wide prefix, which can
be concatenated or prepended to all menu item text before output. If the
prefix is a valid folder path, the populate and types messages can be used to

Non-interrupting
pop-up menu ubumenu

633

automatically fill the ubumenu with a list of files in the folder. See the entries
for those messages for more information. Sending a prefix message without
any argument clears the currently stored prefix.

prefix_mode The word prefix_mode, followed by the number 0, 1, or 2, sets the output
behavior of the prefix. mode 0 (default) specifies concatenate mode; the
prefix is added to the front of the outgoing message without a space. mode 1
specifies prepend mode; the prefix is added to the front of the outgoing
message list as a discrete symbol. mode 2 specifies ignore mode; the prefix is
not used for output.

rgb1 The word rgb1, followed by three numbers between 0 and 255, sets the high
light color of the ubumenu object’s menu item in RGB format. The default is
234 234 234.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the
frame color (i.e., the “lit” part of a 3D menu item) of the ubumenu object’s
menu item in RGB format. The default is 4 4 4.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the
toggle color of the ubumenu object’s menu item in RGB format. The default
is 141 141 141.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the
disabled text color of the ubumenu object’s menu item in RGB format. The
default is 112 112 112.

set The word set, followed by a number or symbol, specifies a menu item to be
displayed by ubumenu, but does not send it out the outlet. If the set argument
is a symbol, set searches for a menu item which begins with the symbol.

setcheck The word setcheck, followed by a number between 0 and 255 that specifies
an ASCII value, sets the character used to be the check mark. setcheck 0 uses
the default character.

setitem The word setitem, followed by an item number and any message, sets the
specified menu item to that message.

setrgb The word setrgb, followed by six numbers between 0 and 255 that specify
RGB values, uses the first three numbers to set the foreground (text) color
and the second three numbers to set the background (fill) color.

Non-interrupting
pop-up menu ubumenu

634

setsymbol The word setsymbol, followed by a message, specifies a menu item to be
displayed by name without triggering any output.

settoggle The word settoggle, followed by a 1 or 0, sets the ubumenu object to the
specified state if it is in toggle mode and performs output as if the object
were clicked on (the symbol toggle, followed by a 0 or 1, indicating the
toggle state). Without an argument, the message simply toggles the
object's state and triggers output.

symbol The word symbol, followed by a message, specifies a menu item to be
displayed by name and triggers output.

types The word types, followed by a list of file types, sets a file type filter for use
by the populate message. Up to 64 file types may be entered as a list. By
default, no file types are filtered.

Inspector

The behavior of a ubumenu object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any ubumenu object
displays the ubumenu Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

Enter the items which you want to appear on the menu in the Menu Text
box, separated by commas. The pop-up Mode menu lets you specify the
appearance and behavior of the ubumenu object’s user interface. Normal (the
default) is the standard pop-up menu, allowing you to see all the menu
items at once by clicking and holding the mouse button. Selecting Toggle
sets the ubumenu object to operate as a toggle button. Clicking on the object
causes it to alternate between an active and inactive state. When changing
from inactive to active, the object sends the message toggle 1 from its
rightmost outlet, and changes to the color specified by the Setting
described below. Whether activating or deactivating, the object also sends
its current message from the middle outlet and its current item number
from the left outlet. If Auto Size is checked, the width of the ubumenu
object’s pop-up menu will be adjusted to fit the width of the longest item.
If the Show arrow box is checked, the ubumenu object will display an arrow
to indicate that the object functions as a pop-up menu.

Non-interrupting
pop-up menu ubumenu

635

The Color options let you use a swatch color picker or RGB values to select
the colors used to display the ubumenu text and its background. Text sets
the color for the message displayed (default = 31 31 31), and Background
sets the color for the message area in which the text appears (default = 187
187 187). The Hilite menu item is used to set the color of highlighted text
(default = 234 234 234), and the Toggle item sets the color used when the
ubumenu is toggled (default = 141 141 141). The Frame menu item is used
to set the color of the ubumenu object's border (default = 4 4 4). The
Disabled Item menu item is used to set the color of any disabled items in
the ubumenu object. (default = 112 112 112).

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo
Inspector Changes from the Edit menu while the Inspector is open.

The typeface and size of the ubumenu font can be changed with the Font
menu

Arguments

None.

Output

int Out left outlet: The number of the selected menu item is sent out. Menu
items are numbered beginning with 0.

anything Out right outlet: If Evaluate Item Text has been checked in the Inspector,
the text of the selected menu item is sent out as a message.

Non-interrupting
pop-up menu ubumenu

636

Examples

See Also

coll Store and edit a collection of different messages
fontlist List system fonts
umenu Pop-up menu to display and send commands
Tutorial 37 Data structures

Transparent button,
sends a bang ubutton

637

Input

bang The ubutton object can operate in one of two modes. When the ubutton is in
button mode (the default mode), it responds to a bang in its inlet by
becoming highlighted briefly and sending a bang out its left outlet. When
ubutton is in toggle mode, a bang in its inlet causes it to become (and stay)
highlighted and send a bang out its right outlet; or, if it is already
highlighted, it becomes unhighlighted and sends a bang out its left outlet.

any symbol Converted to bang.

(mouse) In button mode, a mouse click on ubutton highlights it for as long as the
mouse is held down, sending a bang out the right outlet when the mouse
button is pressed down, and another bang out the left outlet when the
mouse button is released. In toggle mode, a mouse click behaves the same
as a bang. When the mouse is clicked, ubutton will send a 1 out the right
outlet if the cursor is inside of the ubutton object's rectangle, and 0 if it is
not. It will also send these messages when the mouse button is released.
When the object is in “Track Mouse While Dragging” mode, these
messages are sent continuously while the mouse button is held down after
a click.

stay The word stay, followed by a nonzero number, puts ubutton into button
mode and sets it to wait for that particular number. When that number is
received in the inlet, no output is sent, but ubutton stays highlighted until
some other message (or a mouse click) is received. A message of stay 0 puts
the ubutton into normal button mode; it no longer looks for any particular
number.

int If ubutton is waiting for a particular number (its Stay-on Value) and the
incoming number matches it, the button is highlighted but nothing is sent
out. If the incoming number does not match the number that ubutton is
waiting for, the button is unhighlighted (or remains that way). If ubutton
has a Stay-on Value of 0, int is the same as bang.

float Converted to int.

dragtrack The word dragtrack, followed by a nonzero number, enables “Track Mouse
While Dragging” mode. In this mode, positional and inside/outside
messages (described above for mouse clicks) are sent continuously while
the mouse button is held down after a click. dragtrack 0 disables this behavior,

Transparent button,
sends a bang ubutton

638

which is off by default. Dragging the mouse will continue to generate these
message pairs until the mouse button is released. Drag tracking is off by
default. It can also be enabled in the ubutton object’s Inspector.

set If ubutton is in toggle mode, set 1 sets the ubutton object’s toggle (highlights
it) and set 0 clears the ubutton object’s toggle (unhighlights it). Other integer
arguments for set will send the number to ubutton, for comparison to its
Stay-on Value, without causing any output.

toggle The word toggle, followed by a non-zero number, puts the ubutton in toggle
mode. The message toggle 0 puts the ubutton in button mode.

Inspector

The behavior of a ubutton object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any ubutton object
displays the ubutton Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The ubutton Inspector lets you specify the Button Mode (the default) or
Toggle Mode. The Highlight When Clicked check box sets the mouse
behavior of the ubutton object. The Track Mouse While Dragging”
checkbox enables cursor position reporting (see the dragtrack message).
Typing a nonzero number into the Stay-on Value box specifies the
number the ubutton will wait for in Button Mode. To choose Toggle Mode,
you must set the Stay-on Value to 0.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

Arguments

None.

Transparent button,
sends a bang ubutton

639

Output

bang Out 1st outlet: In button mode (with a Stay-on Value of 0), any input
causes ubutton to flash and send a bang out the left outlet. A bang is also sent
out the left outlet when the mouse button is released.

If the ubutton object is in toggle mode and is already highlighted, any input
causes ubutton to become unhighlighted and send a bang out its left outlet.

bang Out 2nd outlet: In button mode (with a Stay-on Value of 0), a mouse click
sends a bang when the mouse button is pressed.

If the object is in toggle mode, any input causes ubutton to become
highlighted and send a bang out the outlet. If it is already highlighted, it
becomes unhighlighted and no bang is sent.

list Out 3rd outlet: When the mouse button is clicked and released, the ubutton
object sends out a list composed of two numbers which specify the
coordinates for the cursor position expressed as an offset, in pixels, from
the upper left-hand corner of the ubutton object rectangle. If the “Track
Mouse While Dragging” option is enabled using the Inspector or the
dragtrack message, new coordinates will be reported as the mouse is moved
until the mouse button is released.

int Out right outlet: When the mouse button is clicked and released, a 1 is sent
out this outlet if the cursor is inside of the ubutton object’s rectangular area.
If the “Track Mouse While Dragging” option is enabled using the
Inspector or the dragtrack message, a 0 will be output if the cursor moves
outside of the ubutton object’s rectangular area while the mouse button is
pressed.

Examples

 When ubutton is placed on comments or pictures, they can “respond” to a mouse click

Transparent button,
sends a bang ubutton

640

See Also

button Flash on any message, send a bang
fpic Display a picture from a graphics file
led Display on/off status in color
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
radiogroup Radio button/check box user interface object
Tutorial 19 Screen aesthetics

Pop-up menu, to display
and send commands umenu

641

Input

int The number specifies a menu item to be sent out, and causes umenu to
display that item. The items are numbered starting at 0.

A menu item can also be chosen from a umenu with the mouse, as with any
pop-up menu.

append The word append, followed by any message, appends that message as the
new last item in the menu.

autosize The word autosize, followed by a 1 or 0, turns sizing the pop-up menu to the
width of the longest item on or off. If autosize is off, the width of the
menu is the width of the object's rectangle.

bang Sends out the currently displayed menu item.

brgb The word brgb, followed by three numbers between 0 and 255, sets the
color of the umenu object in RGB format. The default is 221 221 221.

checkitem The word checkitem, followed by an item number and 1 or 0, places (1) or
removes (0) a check mark next to the item number.

clearchecks The word clearchecks removes check marks for all items.

clear Removes all items from the umenu.

color The word color, followed by a number between 0 and 15, sets the
foreground (text) color to the standard preset color specified by the
number.

delete Followed by a number of an item, deletes that item from the umenu.

evalitemtext The word evalitemtext, followed by a 1 or 0, turns Evaluate Item Text mode
on or off. When on, the message represented by the current item's text is
sent out the right outlet when the menu's value is changed either by
message or the user clicking on it.

frgb The word rgb, followed by three numbers between 0 and 255, sets the text
color of the umenu object in RGB format. The default is 0 0 0.

labelclick The word labelclick, followed by a 1 or 0, turns Label Click mode on or off. In
this mode, when the object is in Label mode, you can click in the object's

Pop-up menu, to display
and send commands umenu

642

rectangle and the current value of the menu is sent out the left outlet. In
addition, the text of the current item is shown underlined.

maxitems The word maxitems, followed by the number, sets the maximum number of
menu items of the umenu, in the same way as the Maximum number of
items setting in the umenu object’s Inspector (see Inspector, below). The
default is 64, and the maximum is 2000.

mode The word mode, followed by the number 1, 2, or 3, sets the appearance and
behavior of the umenu, in the same way as the Mode setting in the umenu
object’s Inspector (see Inspector, below). mode 1 is the normal pop-up menu
style, mode 2 is a scrolling menu style, and mode 3 is a label instead of a
menu.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the
upper frame light color (i.e., the “lit” part of a 3D menu item) of the umenu
object’s menu item in RGB format. The default is 255 255 255.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the
upper frame dark color (i.e., the “shaded” part of a 3D menu item) of the
umenu object’s menu item in RGB format. The default is 221 221 221.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the
lower frame light color (i.e., the “lit” part of a 3D menu item) of the
rectangle that outlines the umenu object’s menu item in RGB format. The
default is 170 170 170.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the
lower frame dark color (i.e., the “shaded” part of a 3D menu item) of the
umenu object’s menu item in RGB format. The default is 119 119 119.

rgb6 The word rgb6, followed by three numbers between 0 and 255, sets the
color of the “corner dots” of the umenu display area in RGB format. If you
are using a umenu object on a colored background or in front of a panel,
you should set this color to match the background object color. The default
is 187 187 187.

set The word set, followed by a number or symbol, specifies a menu item to be
displayed by umenu, but does not send it out the outlet. If the set argument is
a symbol, set searches for a menu item which begins with the symbol.

Pop-up menu, to display
and send commands umenu

643

setcheck (Macintosh only) The word setcheck, followed by a number between 0 and
255, sets the character used to be the check mark. setcheck 0 uses the
default character.

setitem The word setitem, followed by an item number and any message, sets the
specified menu item to that message.

setrgb The word setrgb, followed by six numbers between 0 and 255 that specify
RGB values, uses the first three numbers to set the foreground (text) color
and the second three numbers to set the background (fill) color.

showchecked This message operates as follows. If the currently displayed item is checked,
do nothing. Otherwise, starting at the first item in the menu, find one that
is checked and set the menu to display that item. If there isn't one, do
nothing.

symbol Identical to the set message with a symbol argument, except that the found
item number is sent out (and the text of the item is sent out the right outlet,
if the Evaluate Item Text feature is enabled).

Inspector

The behavior of a umenu object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any umenu object
displays the umenu Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

Enter the items which you want to appear on the menu in the Menu Text
box, separated by commas. The the Maximum Items box lets you specify
the maximum number of menu items. You nay have any number of menu
items from 32 to 2000 (the default is 64). The pop-up Mode menu lets you
specify the appearance and behavior of the umenu object’s user interface.
Normal (the default) is the standard pop-up menu, allowing you to see all
the menu items at once by clicking and holding the mouse button.
Scrolling mode lets you scroll through the individual menu items by
dragging the mouse up or down, displaying one item at a time; “Label”
shows the text of the selected menu item with no border around it, and does
not respond to the mouse. If Auto Size is checked, the width of the umenu
object’s pop-up menu will be adjusted to fit the width of the longest item.
If Evaluate Item Text is checked, the text of the menu item will be sent as
a message out the right outlet when the item is selected.

Pop-up menu, to display
and send commands umenu

644

The Color option lets you use a swatch color picker or RGB values used to
display the umenu text and its background. Text sets the color for the
message displayed (default 0 0 0), and Background sets the color for the
message area in which the hint appears (default 221 221 221). The Upper
Frame Light, Upper Frame Dark, Lower Frame light, and Lower Frame
Dark attributes are used to set the “lit” and “shaded” edges of the menu
item. The default settings are 255 255 255 for upper frame light, 221 221
221 for upper frame dark, 170 170 170 for lower frame light, and 119 119
119 for lower frame dark. Corner Dots is used to set the color of the corner
area of the umenu item’s display area. The default is 187 187 187.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

The typeface and size of the umenu font can be changed with the Font
menu

Arguments

None.

Output

int Out left outlet: The number of the selected menu item is sent out. Menu
items are numbered beginning with 0.

anything Out right outlet: If Evaluate Item Text has been checked in the Inspector,
the text of the selected menu item is sent out as a message.

Examples

 Used to send commands …or to display text associated with numbers
received

Pop-up menu, to display
and send commands umenu

645

See Also

coll Store and edit a collection of different messages
fontlist List system fonts
ubumenu Non-interrupting pop-up menu
Tutorial 37 Data structures

Send messages to all instances
of the same class in a patcher universal

646

Input

class symbol The universal objects expects as input a symbol that names an object class
(for example, table or dspstate~), followed by a message selector and any
number of arguments for that message. The message and its arguments (if
any) are sent to all instances of the class within the same patcher (and
possibly its subpatchers).

sendmessage To send messages to certain objects whose class names are also reserved
Max message names (such as int and float), you need to start the message
with the sendmessage message. sendmessage can be used with any class.

Arguments

int Optional. If a 1 is present as an argument, universal will send messages it
receives to objects of the specified class in subpatchers of its patcher as well
as in the patcher containing the universal object.

Output

None. The object has no outlets, but objects receiving the message(s) it
sends may have some form of output from their outlets. However, the
order in which the message is sent to various objects is not guaranteed. This
is also true when using the send and receive objects.

Examples

Send a message to all objects of the same class at once

See Also

forward Send remote messages to a variety of objects
receive Receive messages without patch cords

Send messages to all instances
of the same class in a patcher universal

647

send Send messages without patch cords
value Share a stored message with other objects

Break a list into
individual messages unpack

648

Input

list Each item in the list (up to the number of outlets) is sent out the outlet
corresponding to its position in the list.

int The number is sent out the left outlet.

float Converted to int, unless the left outlet was initialized with a float argument.
The number is sent out the left outlet.

symbol The symbol is sent out the left outlet. If the left outlet was not initialized
with a symbol argument, 0 is sent out the outlet. Symbol arguments allow
symbols to pass through, and change numbers to the empty symbol (““).

bang Causes each stored item of a list received in the inlet to sent out the
corresponding outlet.

Arguments

anything Optional. The number of outlets is determined by the number of
arguments. The arguments can be any combination of ints, floats, and
symbols. The argument specifies the output of the unpack object's outlet; the
input type is forced to the outlet type (e.g., outlets that correspond to int
or float arguments will always output that type of number, converting the
input items as necessary). If no argument is typed in, unpack will have two
int outlets. Symbol arguments allow symbols to pass through, and change
numbers to the empty symbol (““).

Output

int Each item of the list received in the inlet is sent out the corresponding outlet.
The first item in the list is sent out the leftmost outlet, and so on. If an
outlet has been initialized with an int argument, then a float or a symbol
will be converted to int before being sent out that outlet. (A symbol is
converted to 0.)

float If the outlet has been initialized with a float argument, then an int or a
symbol from the input list will be converted to float before being sent out
that outlet. (A symbol is converted to 0.0.)

Break a list into
individual messages unpack

649

symbol A symbol in the input list will be sent out the corresponding outlet if that
outlet has been initialized with a symbol argument. If the outlet has been
initialized with an int or a float, the symbol will be converted to 0 or 0.0.

Examples

Each item in a list can be sent to a different place

See Also

iter Break a list up into a series of numbers
listfunnel Index elements of a list and output them individually
pack Combine numbers into a list
spray Distribute a value to a numbered outlet
zl Multi-purpose list processor
Tutorial 30 Number groups

Generate random numbers
without duplicates urn

650

Input

bang In left inlet: Sends out a previously unchosen random number from 0 to
one less than the specified maximum limit.

clear In left inlet: Clears the list of already chosen numbers.

int In right inlet: Clears the list of already chosen numbers, and specifies the
number of possible values for the random number generator. The random
numbers will range from 0 to one less than this maximum limit.

seed In left inlet: The word seed, followed by a number, provides a “seed” value
for the random generator, which causes a specific (reproducible) sequence
of pseudo-random numbers to occur. The number 0 uses the time elapsed
since system startup (an unpredictable value) as the seed, ensuring an
unpredictable sequence of numbers. This unpredictable seed is used by
default when the urn object is created. However, once all numbers have
been chosen, the sequence will repeat. Therefore, in order to achieve a non-
repeating sequence of numbers, you will need to send the urn object the seed
0 message each time you send it the clear message.

Arguments

int Optional. The number of possible values for the random number
generator. If no argument is typed in, there will be only 1 possible number.

Output

int Out left outlet: If there are numbers within the current range that have not
been sent out since the last clear message was received, urn generates a
random number between 0 and one less than the maximum.

bang Out right outlet: When all numbers in the current range have been
generated, urn sends a bang out the right outlet instead of a number out the
left outlet.

Generate random numbers
without duplicates urn

651

Examples

Choose random numbers without repeating a choice

See Also

decide Choose randomly between on and off (1 and 0)
deferlow Defer the execution of a message (always)
drunk Output random numbers in a moving range
random Generate a random number

Output numbers by
moving a slider onscreen uslider

652

Input

int The number received in the inlet is displayed graphically by uslider, and is
passed out the outlet. Optionally, uslider can multiply the number by some
amount and add an offset to it, before sending it out the outlet.

(mouse) The uslider will also send out numbers in response to mouse clicking or
dragging.

float Converted to int.

bang Sends out the number currently stored in uslider.

color The word color, followed by a number from 0 to 15, sets the color of the
center portion of the uslider to one of the object colors which are also
available via the Color command in the Object menu.

local The word local, followed by a non-zero number, enables object response to
mouse clicks (the default). The message local 0 disables the object’s response
to the mouse; the uslider object will respond only to input in its inlet and
ignore all mouse clicks.

min The word min, followed by a number, sets value that will be added to the
uslider object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The uslider
object’s value will be multiplied by this number before it is sent out the
outlet. The multiplication happens before the addition of the Offset value.
The default value is 1.

resolution The word resolution, followed by a number, sets the sampling interval in
milliseconds. This controls the rate at which the display is updated as well as
the rate that numbers are sent out the uslider object’s outlet.

set The word set, followed by a number, resets the value displayed by uslider,
without triggering output.

size The word size, followed by a number, sets the range of the uslider object. The
default value is 128. Setting the size to 1 disables the uslider visually (since it
can only display one value). Any specified size less than 1 will be set to 2.

Output numbers by
moving a slider onscreen uslider

653

Inspector

The behavior of a uslider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any uslider object
displays the uslider Inspector in the floating window. Selecting an object
and choosing Get Info… from the Object menu also displays the
Inspector.

The uslider Inspector lets you enter a Slider Range value. Numbers received
in the inlet are automatically limited between 0 and the number 1 less than
the specified range value. The default range value is 128. You can specify
an Offset value which will be added to the number, after multiplication.
The default offset value is 0. The uslider Inspector also lets you specify a
Multiplier. The uslider object’s value will be multiplied by this number
before it is sent out the outlet. The multiplication happens before the
addition of the Offset value. The default multiplier value is 1.

 The Revert button undoes all changes you’ve made to an object’s settings
since you opened the Inspector. You can also revert to the state of an
object before you opened the Inspector window by choosing Undo Inspector
Changes from the Edit menu while the Inspector is open.

Arguments

The range of uslider is set by selecting it (when the patcher window is
unlocked) and choosing Get Info… from the Object menu. Numbers
received in the inlet are automatically limited between 0 and the number 1
less than the specified range.

The Inspector also provides a Multiplier—by which all numbers will be
multiplied before being sent out, and an Offset—which will be added to
the number, after multiplication. A newly created uslider has a range of 128,
a multiplier of 1, and an offset of 0.

Output

int Numbers received in the inlet, or produced by clicking or dragging on
uslider with the mouse, are first multiplied by the multiplier, then have the
offset added to them, then are sent out the outlet.

Output numbers by
moving a slider onscreen uslider

654

Examples

Produce output by dragging onscreen... or use to display numbers passing
through

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 51 Designing User Interfaces in JavaScript

Send a specific number
of bang messages uzi

655

Input

bang In left inlet: Begins sending out bang messages as fast as possible, one after
another. The number of bang messages to send is determined by the last
number received in either inlet.

int In left inlet: Sets the number of bang messages to send, then begins sending
them out as fast as possible, one after another.

In right inlet: Sets the number of bang messages to send, without causing
output.

pause In left inlet: Causes uzi to stop in the midst of sending its output. (Since uzi
sends its output as fast as possible, this message must be triggered in some way
by the output of uzi itself.) uzi keeps track of how many bang messages it has
sent, and if it receives the pause message before sending out all its bang
messages, it can then be caused to send out the rest of its bang messages with a
resume or continue message.

break Same as pause.

resume In left inlet: If uzi has been stopped by a pause message in the midst of sending
its output, resume causes it to send out the rest of its output.

continue Same as resume.

Arguments

int Optional. Sets an initial number of bang messages to be sent out in response to
a bang in the left inlet. If no argument is present, uzi is initially set to send out
one bang.

Output

bang Out left outlet: When uzi receives a bang or int in its left inlet, a certain
number of bang messages are sent out as fast as possible, one after another. The
number of bang messages is determined by the most recent number received in
either inlet.

Out middle outlet: After the last bang is sent out its left outlet, uzi sends one
bang out its middle outlet. This can be used as a signal that all the bang messages
have been sent, much like the “carry” outlet on the counter object.

Send a specific number
of bang messages uzi

656

int Out right outlet: The number of each bang is sent out. Numbering begins from
1 each time an int or bang is received in the left inlet. If uzi is being restarted
with a resume or continue message, numbering begins wherever it left off.

Examples

Count as fast as possible using
uzi

Count at a specific rate, not
using uzi

Use uzi to perform many
calculations quickly

See Also

bline Event-driven, multi-segment line object
counter Count the bang messages received, output the count
line Output numbers in a ramp from one value to another
metro Output a bang message at regular intervals

Share a stored number
with other objects value / v

657

Input

any message The message is stored, to be shared by all other value objects with the same
name, even if they are in another patch. A message received in any other
value object that has the same name will change the stored value.

bang Sends out the stored message.

(mouse) Double-clicking on a value object opens all windows containing value objects
with the same name.

send The word send, followed by the name of a receive object, sets the value object
to send its stored message to all receive objects with that name in response to
a bang message.

Arguments

symbol Obligatory. Gives a name to value.

any message Optional. Additional arguments after the naming symbol initialize the
contents of value. If no additional arguments are present, value contains
nothing.

Output

any message A bang in the inlet causes the stored message to be sent out.

Examples

One value (or any type of message) is shared between all value objects that share the same
name

Share a stored number
with other objects value / v

658

See Also

float Store a decimal number
int Store an integer value
pv Share variables specific to a patch and its subpatches
pvar Connect to a named object in a patcher
send Send messages without patch cords
receive Receive messages without patch cords
Tutorial 24 send and receive

Control a videodisk player
through a serial port vdp

659

The vdp object works with serially-controlled videodisk players (remember them?) that are
compatible with the Pioneer 4200 or 8000 standard. Each command received by the vdp
object sends a stream of numbers out the object’s left outlet, intended to be connected to
the serial object. The description of each command below discusses what effect the
command has on the player, not the exact character stream sent by vdp.

Because videodisc players have relatively buffer-less serial interfaces, vdp places each
command it receives in a queue, and sends it out only when the player has finished
executing its most recent command. This “feature” may cause a delay between the time a
command is sent to the vdp object and the time it is actually sent out the serial port.

Any message received in the right inlet will behave exactly as if it had been received in the
left inlet, except that it will be put at the front of the queue, to be the very next command
sent out to the player.

Input

clear In left inlet: Removes any pending commands from the queue and resets
the object.

control In left inlet: The word control, followed by a number, tells the videodisc
player to perform one of the following operations:

Number Operation
0 Initialize and reset player
1 Eject disk
2 Audio off
3 Audio 1 on
4 Audio 2 on
5 Stereo on
6 Picture on
7 Picture off
8 Display frame numbers on
9 Display frame numbers off
11 Frame access mode
12 Time access mode
13 Chapter access mode

Control a videodisk player
through a serial port vdp

660

fps In left inlet: Sets the playing speed. The fps message is followed by a
number (frames per second) or an adjective. The following adjectives and
numbers are equivalent (at least for the Pioneer 4200):

slowest 1
slower 10
slow 15
normal 30
fast 60
faster 90
fastest 120

frame In left inlet: Asks the player what its current frame number is and sends
the response (received in the middle inlet) out the middle-right outlet.

play In left inlet: With no arguments, play starts playing at the current speed
from the current location to the end of the disk (or until the player receives
another command). With one argument (a frame number), play searches to
the specified frame number and begins playing to the end of the disk.
With two arguments, play searches to the location specified by the first
number and plays until the disc reaches the second frame number.

int In left inlet: Same as play from a specified frame number to the end of the
disc.

In middle inlet: vdp expects responses from the player to be fed from the
serial object into its middle inlet. When vdp sees “received” (the letter R
followed by the return character) from the player, it sends the next
command from its queue of pending commands. The example shows how
to connect the vdp and serial objects together.

scan In left inlet: Initiates a “fast forward” or “rewind” operation. scan forward
moves forward, scan backward moves backward.

search In left inlet: The first argument indicates a frame number to search to. The
second, optional argument, if non-zero, instructs the player to keep the
picture on while searching. If searching a great distance from the current
location, the player may not be able to keep from blanking the screen.
Once the player arrives at the desired frame, it will display the (still) image
from that frame.

Control a videodisk player
through a serial port vdp

661

step In left inlet: Followed by -1, step pauses the player (if playing) and displays
the previous frame. Followed by 1, step pauses the player (if playing) and
displays the next frame.

stop In left inlet: Pauses the player.

cmd In left inlet: The cmd message can be used to send “primitive” commands
consisting of ASCII codes to the video disk player. Commands usually
consist of two-letter codes preceded by numeric arguments. For example,
searching to frame 5000 could be accomplished with the message cmd 5000
SE. Refer to the owner’s manual of your player for details. The cmd message
is particularly useful with the Pioneer 8000 player, since it has a number of
special features not supported by the regular messages of the vdp object.

setskip In left inlet: Followed by a number, sets the number of frames to jump
(forward or backward) from the current frame location when using the skip
message.

skip In left inlet: Followed by -1, skips backward by a number of frames
specified in the setskip message. Followed by 1, skips forward by a number of
frames specified in the setskip message.

Arguments

None.

Output

int Out left outlet: A stream of characters, coded instructions to the videodisc
player, for each command. These numbers are intended to be sent to the
left inlet of a serial object.

bang Out middle-left outlet: After sending a command out its left outlet, vdp
begins “polling” the serial object for a response from the player by sending
bang messages out this outlet approximately every 20 milliseconds, until vdp
receives a “received” signal from the player in its right inlet. (A bang sent to
a serial object causes any characters received in that serial port to be sent out
the serial object’s outlet.)

int Out middle-right outlet: Current frame number, received from the player
in response to a frame message.

int Out right outlet: Not implemented.

Control a videodisk player
through a serial port vdp

662

Examples

Basic configuration of vdp and serial objects “Scrubbing” with a slider or MIDI controller

See Also

serial Send and receive characters from serial ports and cards
Pioneer 4200 operation manual
HyperCard Interactive Video Toolkit documentation

Evaluate a math expression
for a list of different inputs vexpr

663

The vexpr object behaves exactly like the expr object, except for the way in which it handles
lists. See expr for a full description.

Input

list vexpr is designed to receive a list in each inlet. The items of each list are used
individually, in order from left to right, to replace the changeable argument in a
series of evaluations of the expression. When a list is received in the left inlet,
the expression is first evaluated using the first item of each list, then using the
second item of each list, etc. The series of results of these evaluations is then
sent out as a list.

int, or float An int or float received in any inlet is treated as a single-item list.

bang In left inlet: Evaluates the expression and sends out the results, using the most
recently received lists of numbers.

scalarmode In left inlet: The word scalarmode, followed by a non-zero number, sets the
scalar mode of operation. In scalar mode, sending a list of length 1 (i.e., a
single value) will cause that value to be applied to each element of the other
list. The message scalarmode 0 disables scalar mode.

Arguments

Obligatory. See expr.

Output

list When a list is received in the left inlet, vexpr uses the first item of the lists it has
received in each of its different inlets, puts those items in place of the
changeable arguments in the expression, and evaluates the expression. It then
does the same with the second item in each list, and so on until it has used the
last item of the shortest list. It then sends out all of the different results as a
single list.

int If the input in one of the inlets was a single number rather than a list, and the
expression is evaluated as an integer value, then a single result is sent out as an
int rather than a list.

Evaluate a math expression
for a list of different inputs vexpr

664

float If the input in one of the inlets was a single number rather than a list, and the
expression is evaluated as a float value, then a single result is sent out as a float
rather than a list.

Examples

Perform the same calculation on a whole list of input values

See Also

expr Evaluate a mathematical expression
Tutorial 38 expr and if

Interpret extra precision
MIDI pitch bend values xbendin

665

Input

int The numbers are individual bytes of a MIDI message stream, received from
an object such as midiin or seq. MIDI pitch bend messages are recognized by
xbendin, and the pitch bend data is sent out in full precision.

Arguments

int Optional. The number specifies a MIDI channel on which to recognize
pitch bend messages. If there is no argument, xbendin recognizes pitch bend
messages on all channels, and the channel number is sent out the extra
outlet on the right.

xbendin2 Optional. Normally, xbendin sends pitch bend values out the left outlet as
14-bit values. If the object is called xbendin2, however, there will be an
additional outlet. The most significant data byte of the message is sent out
the leftmost outlet, and the least significant data byte is sent out the
second outlet.

Output

int The pitch bend value is sent out the left outlet of xbendin as a single 14-bit
value. If the object is called xbendin2, there is an additional outlet. The most
significant 7 bits are sent out the leftmost outlet, and the least significant
(extra precision) 7 bits are sent out the second outlet. If there is no channel
number specified as an argument (omni on), xbendin will have an extra
outlet on the right, which will output the channel number of the incoming
pitch bend message.

Examples

Pitch bend values are sent out as a single number or as two separate bytes

Interpret extra precision
MIDI pitch bend values xbendin

666

See Also

bendin Output received MIDI pitch bend messages
midiin Output received raw MIDI data
xbendout Format extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Format extra precision
MIDI pitch bend messages xbendout

667

Input

int In left inlet: The number is a 14-bit pitch bend value to be formatted into
a complete MIDI pitch bend message by xbendout.

In right inlet: The number is stored as the MIDI channel for the pitch bend
message sent out by xbendout. Channel numbers greater than 16 will be
wrapped around to stay within the 1-16 range.

list The first number is a 14-bit pitch bend value, and the second number is the
channel. Both numbers are stored and are formatted into a MIDI pitch
bend message which is sent out the outlet.

bang Sends out a MIDI pitch bend message using the numbers currently stored
in xbendout.

Arguments

xbendout2 If the object is called xbendout2, there will be three inlets. The most
significant byte of the pitch bend message is received in the left inlet, and
the least significant (extra precision) byte is received in the middle inlet.

int Optional. The number sets an initial value for the MIDI channel of the
pitch bend messages. If there is no argument, the initial channel number is
1.

Output

int When a pitch bend value is received in the left inlet, the complete MIDI
pitch bend message is sent out the outlet, byte-by-byte.

Examples

14-bit pitch bend value is formatted into a MIDI message, which is sent out byte-by-byte

Format extra precision
MIDI pitch bend messages xbendout

668

See Also

bendout Transmit MIDI pitch bend messages
midiout Transmit raw MIDI data
xbendin Interpret extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Interpret MIDI note messages
with release velocity xnotein

669

Input

int The numbers are individual bytes of a MIDI stream from midiin. Whereas a
note-on with a velocity of 0 is most commonly used to indicate a note-off,
xnotein also recognizes the MIDI note-off command, and outputs its release
velocity.

Arguments

int Optional. Specifies a channel number on which to look for incoming
MIDI note-on and note-off messages. Channel numbers greater than 16
will be wrapped around to stay within the 1-16 range. If there is no
argument, xnotein recognizes note-on and note-off messages on all MIDI
channels, and the channel number of the message is sent out the rightmost
outlet.

Output

int Out left outlet: The pitch value of the incoming note-on or note-off
message.

Out 2nd outlet: The key-down or key-up velocity of a note-on or a note-
off message.

Out 3rd outlet: The number is the indicator of whether the incoming
MIDI message is a note-on or a note-off. If the incoming message is a
note-on, the output is 1. If the incoming message is a note-off—or a note-
on with a velocity of 0—the output is 0.

If no channel number is specified as an argument, xnotein has a 4th outlet
on the right. The channel number of incoming messages is sent out the
rightmost outlet.

Interpret MIDI note messages
with release velocity xnotein

670

Examples

Both note-on and note-off messages are interpreted, with a key-down or key-up velocity

See Also

notein Output received MIDI note messages
midiin Output received raw MIDI data
xnoteout Format MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Format MIDI note messages
with release velocity xnoteout

671

Input

int In left inlet: The number is used as the pitch value for a note-on or note-off
message, and the message is sent out the outlet byte-by-byte.

In left-middle inlet: The number is stored as the velocity for either a note-on or
a note-off message. If no number has been received yet, the velocity for note-
ons is 64, and the velocity for note-offs is 0.

In right-middle inlet: The number is stored as the indicator of whether
outgoing messages should be note-ons or note-offs. If the number is not 0,
xnoteout will send out a note-on message. If the number is 0, xnoteout will send
out a note-off message with a release velocity. If no number has been received
yet, it is initially 1 (note-on).

In right inlet: The number is stored as the channel for the MIDI message sent
out by xnoteout. Channel numbers greater than 16 will be wrapped around to
stay within the 1-16 range.

float In left inlet: Is not understood by xnoteout.

In other inlets: Converted to int.

list The first number is the pitch value, the second number is the velocity, the
third number is the note-on/note-off indicator (non-zero for note-on, 0 for
note-off), and the fourth number is the channel. The numbers are stored by
xnoteout, and a MIDI note-on or note-off message is sent out.

bang Sends out a MIDI message using the numbers currently stored in xnoteout.

Arguments

int Optional. Sets an initial value for the MIDI channel of the outgoing messages.
Channel numbers greater than 16 will be wrapped around†to stay within the
1-16 range. If there is no argument, the initial channel number is 1.

Output

int When a pitch value is received, a complete MIDI note-on or note-off message
is sent out the outlet, byte-by-byte. Whereas a note-on with a velocity of 0 is
most commonly used to indicate a note-off, xnoteout sends out the MIDI note-
off command and uses the specified velocity as a release velocity.

Format MIDI note messages
with release velocity xnoteout

672

Examples

The numbers are formatted into a MIDI note-on or note-off message, which is sent out byte-
by-byte

See Also

noteout Transmit MIDI note messages
midiout Transmit raw MIDI data
xnotein Interpret MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification

Multi-purpose
list processing zl

673

The zl object performs several kinds of list processing functions. You set the function with
a keyword argument, and can change the function performed with the mode message.
The behavior of the zl object’s inlets and outlets and the types of messages they expect or
process varies according to the mode of the zl object. For brevity in the discussion that
follows, we refer to any Max message as a list including single elements such as int,
symbol, and float and messages that begin with a symbol (a Max list is a message that
begins with a number).

Input

mode The word mode, followed by one of the symbols group, iter, join, len, reg, rev, rot,
sect, sort, slice, or union, sets the current mode of the zl object. For some
modes of operation, A list received in the left inlet may be used as an
argument to specify the functionality of a given mode. The items of
messages that are not long enough to send out are added to the length of
the stored list. Once the stored list is long enough, it is sent out the left
outlet.

mode ecils is used to divide a list into two lists. This mode takes an additional
number argument which specifies the size, in elements, of a list. This value
can also be specified as an input in the right inlet in this mode. A list
received in the left inlet will be split into two lists—the first list contains
the number of items specified by the argument beginning from the end of
the list and counting backward toward the first list element, and is sent out
the right outlet. Any remaining list elements are sent out the left outlet of
the object. Note: Lists are sent out the right outlet first.

mode group takes an additional number argument which specifies the size, in
elements, of a list. A list received in the left inlet will be stored and the
length of the list is compared to a number received in the right inlet or an
argument to the zl object. If the list of items is longer than the number
specified by the right inlet or argument, a list of items of the length
specified by the number is sent out the left outlet. Any remaining symbols
or list elements are stored.

mode iter takes an additional number argument which specifies the size, in
elements, of a list. A symbol list of items received in the left inlet will be
stored and sent out the left outlet as a series of lists consisting of the
number of items specified by argument or by a number received in the
right inlet. The final list output may be shorter than the specified number
of items, depending on the stored contents of the zl object

Multi-purpose
list processing zl

674

mode join accepts a list in both inlets and sends a list out the left outlet which
is the combination of both input lists.

 mode len accepts a list in the left inlet and outputs number of elements in
the list out the left outlet.

 mode nth accepts a list in the left inlet and outputs the nth element of the
list out the left outlet.

mode reg functions as a register that holds a list. A list received in the left
inlet is sent out the left outlet immediately. A list received in the right inlet
is stored. A bang sends the stored list out the left outlet.

mode rev accepts a list in its left inlet and sends the list out the left outlet in
reverse order.

mode rot is used to rotate the contents of a list. An additional argument is
used to specify the number of places a list item is to be rotated—positive
numbers rotate the list to the right, and negative numbers rotate left. This
value can also be specified as an input in the right inlet in this mode.

mode sect accepts a list in both inlets and sends a list out the left outlet that
contains the elements common to both lists.

mode slice is used to divide a list into two lists. This mode takes an additional
number argument which specifies the size, in elements, of a list. This value
can also be specified as an input in the right inlet in this mode. A list
received in the left inlet will be split into two lists—the first list contains
the number of items specified by the argument, and is sent out the left
outlet. Any remaining list elements are sent out the right outlet of the
object. Note: Lists are sent out the right outlet first.

mode sort is used to sort the contents of a list. An additional argument is
used to specify the sorting order. sort –1 sorts the input list in descending
order, and the sort message with any other value sorts the input list in
ascending order. This value can also be specified as an input in the right
inlet in this mode.

mode sub accepts a list in both inlets and sends the output position for each
occurrence of right list in the left list out the left outlet.

Multi-purpose
list processing zl

675

mode union accepts a list in both inlets and sends a list out the left outlet that
contains the contents of both input lists. If the left and right inlets contain
any items in common, only one symbol will be output.

list In left inlet: The behavior of the zl object to lists received in the left inlet
varies according to the mode of the object, as described above under the
mode message.

list In right inlet: Some modes of zl accept a list in the right inlet and behave as
follows:

Mode Behavior

join The list is joined with the list received in the left inlet, and
output when a bang or list is sent to the left inlet.

reg The list is stored, and sent out the left outlet when a bang is
received by the left inlet.

sect The list is stored; when a bang or list is sent to the left inlet,
items common to both lists are sent out the left outlet.

sort The list is stored; when a bang or list is sent to the left inlet a
sorted copy of the the currently stored list is sent out the
left outlet.

sub The list is stored; when a bang or list is sent to the left inlet,
the output position for each occurrence of right list in the
left list is sent out the left outlet.

union The list is stored; when a bang or list is sent to the left inlet, a
combination of both lists without repeating items common
to both lists is sent out the left outlet.

bang In left inlet: Sends a list out the left or left and right outlets as follows:

Mode Behavior

slice Divides the currently stored list into two, outputs the last N
items out the right outlet and any remaining items out the
left outlet, where N is set by argument or a number received
in the right inlet.

Multi-purpose
list processing zl

676

group Outputs the most recently stored N items out the left
outlet, where N is specified by argument or a number
received in the right inlet.

iter Outputs the most recently stored items out the left outlet in
groups of a size specified by the argument or a number
received in the right inlet.

join Outputs the combination of the lists received in the left and
right inlets out the left outlet.

mth Outputs the mth element of the list designated by index.
List numbering begins with 0.

nth Outputs the nth element of the list designated by index.List
numbering begins with 1.

reg Outputs the currently stored list out the left outlet.

rev Outputs the reverse of the currently stored list out the left
outlet.

rot Outputs the currently stored list with the contents rotated
N places out the left outlet, where N is set by argument or a
number received in the right inlet.

sect Output the items in common to the lists received in the left
and right inlets out the left outlet.

slice Divides the currently stored list into two, outputs the first N
items out the left outlet and any remaining items out the
right outlet, where N is set by argument or a number
received in the right inlet.

sort Output a sorted copy of the the currently stored list out the
left outlet.

sub Outputs the position for each occurrence of the list received
in the right inlet in the list received in the left inlet. If an
additional argument is used to specify a value which will be
replace the number specified by the input value, the
resulting list is sent out the right outlet of the zl object.

Multi-purpose
list processing zl

677

union Output a list consisting of the items from both lists without
repeating the items comment to both lists received in the
left and right inlets out the left outlet.

int In right inlet: Some modes of zl accept an int in the right inlet and behave
as follows:

Mode Behavior

ecils Specifies the number of list items beginning at the end of
the input list to be sent out the right outlet of the zl object.
Any remaining list elements beyond the number specified
by this inlet are sent out the left outlet of the object.

group Specifies a number of the most recently stored list items to
be output.

iter The currently stored contents of the zl object will be output
as a series of lists consisting of the number of items
specified by this value. The final list output may be shorter
than the number, depending on the stored contents of the
object.

mth Specifies the order an element in the input list (using 0 as
the index of the first element of the list) and outputs that
element of the list.

nth Specifies the order an element in the input list in numerical
form (i.e., 1=the index of the first element of the list) and
outputs that element of the list.

rot Specifies the number of places to rotate the currently stored
list. Positive values for rotate the list right, and negative
values rotate left.

slice Specifies the number of list items to be sent out the left
outlet of the zl object. Any remaining list elements beyond
the number specified by this inlet are sent out the right
outlet of the object.

sort Specifies the sorting order. sort –1 sorts the input list in
descending order, and the sort message with any other value
sorts the input list in ascending order.

Multi-purpose
list processing zl

678

Arguments

symbol Optional. The words ecils, group, iter, join, len, mth, nth, reg, rev, rot, sect, slice, sub,
or union are used as optional arguments to set the mode of the zl object. See
the mode message above for descriptions of the different modes.

int Optional. For some modes of operation, an additional number may be
used as an argument to specify the functionality of a given mode.

Mode Behavior

ecils Specifies the number of list items beginning at the end of
the input list to be sent out the right outlet of the zl object.
Any remaining list elements beyond the number specified
by this inlet are sent out the left outlet of the object.

group Specifies a number of the most recently stored list items to
be output.

iter The currently stored contents of the zl object will be output
as a series of lists consisting of the number of items
specified by this value. The final list output may be shorter
than the number, depending on the stored contents of the
object.

mth Specifies the order of an element in the input list (using 0 as
the index of the first element of the list) and outputs that
element of the list.

nth Specifies the order of an element in the input list in
numerical form (i.e., 1=the index of the first element of the
list) and outputs that element of the list.

rotate Specifies the number of places to rotate the currently stored
list. Positive values for rotate the list right, and negative
values rotate left.

slice Specifies the number of list items to be sent out the left
outlet of the zl object. Any remaining list elements beyond
the number specified by this value are sent out the right
outlet of the object.

Multi-purpose
list processing zl

679

sort Specifies the sorting order. sort –1 sorts the input list in
descending order, and the sort message with any other value
sorts the input list in ascending order.

sub The output position for the occurrence of the number
specified by this value in the input list is sent out the left
outlet of the object. An additional argument may be used to
specify a value which will be replace the number specified by
the input value. The resulting list is sent out the right outlet
of the zl object.

Output

list Out left outlet:

In ecils mode, a list containing the number of elements specified by the
number argument starting at the end of the list and counting toward the
b.eginning.

In group mode, a list containing the number of elements specified by the
number argument.

In iter mode, a number of lists having the number of elements specified by
the number argument. The final list output may be shorter than the
specified number of items, depending on the stored contents of the zl
object

In join mode, a list containing all the elements of the lists received in both
inlets.

 In len mode, a number which corresponds to the number of list items.

 In mth mode, the mth element of the list (where 0 is the index of the first
element of the list).

 In nth mode, the nth element of the list.

In reg mode, the input or the most recently stored input value received in
the right inlet.

In rev mode, the input list in reverse order.

Multi-purpose
list processing zl

680

In rotate mode, the input list rotated to the right or left according to the
positive or negative specified by the number argument.

In sect mode, a list containing all the elements common to the lists received
in both inlets.

In slice mode, a list containing the number of elements specified by the
number argument.

In slice mode, a list of the elements in the currently stored list in sorted
form.

In union mode, a list containing the items from both lists without repeating
items common to both lists. If the left and right inlets contain any items
in common, only one symbol will be output.

list Out the right outlet:

In ecils mode, a list containing any list elements before the numbered
element specified by the number argument.

In mth mode, a list containing all list elements except for the list element
specified by the number argument (where 0 is the index of the first
element in the list).

In nth mode, a list containing all list elements except for the list element
specified by the number argument (where 1 is the index of the first
element in the list).

In slice mode, a list containing any list elements beyond the numbered
element specified by the number argument.

In sub mode, the number of list elements specified by the number
argument in the left input list is sent out the right outlet of the object. If
an optional second argument is used to specify a value which will replace
the number specified by the input value, the resulting list is sent out the
right outlet of the zl object.

Multi-purpose
list processing zl

681

Examples

zl is the Swiss Army Knife for lists

See Also

fromsymbol Transform a symbol into individual numbers or messages
maximum Output the greatest in a list of numbers
minimum Output the smallest in a list of numbers
pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
tosymbol Convert messages, numbers, or lists to a single symbol

Maps input range of values
to output range zmap

682

Input

int Converted to float.

float In left inlet: The incoming value is scaled according to the mapping
provided by the arguments, or values received in the other inlets.

In second inlet: Sets the low input value. If the value is higher than the
high input value, the two values are reversed to preserve the high-low
relationship.

In third inlet: Sets the high input value. If the value is lower than the low
input value, the two values are reversed to preserve the high-low
relationship.

In fourth inlet: Sets the low output value. If the value is higher than the
high output value, the two values are reversed to preserve the high-low
relationship.

In right inlet: Sets the high output value. If the value is higher than the
high output value, the two values are reversed to preserve the high-low
relationship.

Note: The preservation of the high-low relationship is different from the
behavior of the scale object, which lets you do reverse scaling. Also, note that
the zmap object will clip to the boundaries of the output range.

Arguments

int or float Optional. The first argument is the minimum input value, the second
argument is the maximum input value. The third and fourth arguments are
the minimum and maximum output values, respectively. If either of the low
values is higher than the corresponding high value (or vice versa), the two
values are reversed to preserve the high-low relationship. Note that this is
different from the behavior of the scale object, which lets you do reverse
scaling. Also, note that the zmap object will clip to the boundaries of the
output range.

Output

float When zmap receives a value in its leftmost inlet, that value is scaled to the
indicated output range of values.

Maps input range of values
to output range zmap

683

Examples

An example of how to map an integer slider into a useful range of floating-point values
and back again

See Also

scale Maps input to output range
expr Evaluate a mathematical expression

QuickTime and
graphic file formats Appendix

684

Some Max objects (such as fpic, matrixctrl, and pictctrl) will let you open and use an extended set
of graphics files if you have QuickTime installed on your system. The following graphics file
formats are currently supported:

MOV, MooV, JPG, GIF, TIFF (TIF), PCT, ooV, sooV, TVex, MPG , MPEG, VfW , dvc!,
FLI', GIFf, BINA, qmed, Cach, SWFL, RTSP, SDP , SwaT, SMI, JPEG, 3DMF, MPGv,
MPGx, BMP , 8BPS, PNGf, PNG , qdgx, qtif, SGI , TPIC, TIFF, FLI

For an up-to-date list of graphics file formats supported by QuickTime, see

http://www.apple.com/quicktime/products/qt/

See Also

fpic Display a picture from a graphics file
lcd Draw graphics in a patcher window
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
pictslider Picture-based slide

Max Object Thesaurus

685

A collection of messages to send remotely qlist
Absolute to relative path conversion relativepath
Absolute value of an integer abs, expr
Accelerate, control clock speed of Max timing objects setclock
Access all of the pattr objects in a patcher pattrhub
Action patch, receive events (messages) from a timeline ticmd
Active sensing, MIDI system message midiin, midiout, rtin
Add and/or multiply a series of numbers accum, expr, table
Add two numbers together accum, expr, +
Address elements in an array by index number counter, funbuff, offer,

table
ADSR envelope generator env, envi
Afterpressure, polyphonic polyin, polyout
Aftertouch (monophonic) MIDI message touchin, touchout
Alert, display a text message dialog, lcd, umenu,

message, pcontrol, print
Alert, flash when an event occurs button, led, ubutton
All notes off (MIDI Mode message) ctlin, ctlout
And, true if both statements are true (logical intersection) expr, &&
Animation of shapes or pictures frame, graphic, lcd, oval,

pict, rect, ring
Animation, control a laser videodisc player serial, vdp
Animation, play a QuickTime movie imovie, movie, playbar,

timeline
Append items at the end or beginning of a message append, prepend
Arc-cosine function acos
Arc-sine function asin
Arc-tangent function atan
Arc-tangent function (two variables) atan2
Arithmetic expression solving expr, +, -, *, /,%
Arithmetic operators acos, acosh, asin, asinh,

atan, atan2, atanh, cosh,
sin, sinh, sqrt, tan, tanh

Array of arbitrary messages coll, umenu
Array of numbers funbuff, histo, offer, table
ASCII number for each character in a string spell
ASCII number, convert to text character sprintf

Max Object Thesaurus

686

ASCII numbers, convert symbol to spell
Ask for a file or folder opendialog
Ask the user to enter information dialog, message
Assistance, attach an assistance message to an inlet or outlet in
a subpatch

inlet, outlet

Atoms of a list, break up into individual messages cycle, iter, message, spray,
unpack

Average a running stream of numbers mean
Background panel panel
Background, notify objects when patcher window is moved to
background

active

bang a certain number of times as fast as possible uzi
bang automatically when a patch is loaded loadbang
bang message traffic control onebang
bang messages, count counter
bang repeatedly at a certain rate metro
bang when a message is received or the mouse is clicked button, ubutton
bang when a patcher window is closed closebang
bang, cause all loadbang objects in a patcher window to resend thispatcher
bang, send a single bang to different places in immediate
succession

bangbang, trigger

bang, time elapsed between two bang messages timer
Bend, report incoming MIDI pitchbend data bendin, midiin xbendin,

xbendin2
Bend, transmit MIDI pitchbend messages bendout, midiout,

xbendout, xbendout2
Binary numbers, compare with bitwise “and” (intersection) and
bitwise “or” (union)

expr, &, |

Binary numbers, shift the bits of a number’s binary
representation to the left or right

<<, >>

Binary, display numbers as number box
Bit-shift, shift the bits of the number’s binary representation to
the left or right

<<, >>

Bitwise one’s complement operation expr
Bitwise operators, bitwise “and” (intersection) and bitwise “or”
(union)

expr, &, |

Boolean logic operations if, <, <=, ==, !=, >=,
>, &&, ||

Breakpoint line segment function generation and storage env, envi, funbuff, line

Max Object Thesaurus

687

Breath control ctlin, ctlout
Broadcast a message to all instances of the same class in a
patcher

universal

Brownian motion simulator drunk
Button for user interface, sends a 1 or a 0 to start or stop
processes

led, toggle

Button for user interface, sends a bang button, ubutton
Button pasted over a picture or a comment ubutton
Button, picture-based pictctrl
C language expression solving expr, if
Capture and display a series of numbers capture, print, table, text
Cartesian to Polar coordinate conversion cartopol
Chance operations using pseudo-random numbers drunk, expr, random, urn
Characters in a string of text, convert to ASCII numbers spell
Check box user interface object radiogroup
Circle or oval, drawing in a graphic window oval, ring
Clock for reporting time elapsed clocker, timer
Clock speed of Max timing objects, control setclock
Clock, MIDI system message midiin, midiout, rtin
Close a patcher window automatically pcontrol, thispatcher
Closing a patcher window, send a bang when window is closed closebang
Collection of messages, store and recall coll, umenu
Color selection using a modal dialog colorpicker
Color swatch for RGB color selection and display swatch
Colored button area panel
Combinatorics, produce random orderings of a set urn
Commands, place your own commands in the menu bar menubar
Commands, send to a timeline from one of its own action
patches

thistimeline, thistrack,
tiout

Commenting a patch comment
Compare a performance to a pre-recorded sequence in real time follow
Comparison of two numbers, less than, greater than, or equal
to

if, <, <=, ==, !=, >=,
>

Complement, bitwise one’s complement operation expr
Compute x to the power of y pow
Computer keyboard events, detect key, keyup, numkey
Concatenate two messages append, prepend
Conditional statements if, match, select, split,

==, !=, <, >, <=, >=

Max Object Thesaurus

688

Connect patch cords to an inlet or outlet of a subpatch inlet, outlet
Constrained random movement drunk
Construct a list out of individual items append, pack, prepend
Construct MIDI messages for transmission or recording midiformat, sxformat
Continue, MIDI system message midiin, midiout, rtin
Continuous controllers ctlin, ctlout
Control a patcher window automatically from within itself thispatcher
Control a timeline from one of its own action patches thistimeline, thistrack,

tiout
Control a videodisc player through the serial port vdp
Control change messages ctlin, ctlout
Control clock speed of Max timing objects setclock
Control external (non-MIDI) device serial, vdp
Control points in a function env, envi
Control strip for a QuickTime movie playbar
Control, picture-based pictctrl
Convert a deciBel value to linear amplitude dbtoa
Convert a number, list, or symbol to bang button, bangbang, trigger
Convert an absolute to a relative path relativepath
Convert ASCII characters to integers atoi
Convert ASCII numbers to text sprintf
Convert integers to ASCII characters itoa
Convert linear amplitude to a deciBel value atodb
Convert numbers between decimal, hexadecimal, and binary
forms

number box

Convert text to ASCII numbers spell
Cosine function cos
Count how many bang messages or numbers have been
received

counter

Count the occurrences of numbers histo
Count, send a series of numbers as fast as possible uzi
Cumulative total of a series of numbers accum, expr, table
Data structures, arbitrarily ordered array of arbitrary messages coll, umenu
Date and time of day date
Decimal numbers, store numbers with a fractional part float, number box
Decrement the value of a user interface object IncDec
Defer the execution of a message (always) deferlow
Define a region for dragging and dropping a file dropfile
Delay a bang for a specific amount of time delay

Max Object Thesaurus

689

Delay note-off messages until a specific event occurs sustain
Delay one or more numbers for a specific amount of time pipe, thresh
Delay, measure the time elapsed between two events borax, clocker, date, timer
Delta time, report time interval between onsets of MIDI notes borax, timer
Devices, drive external devices serial, vdp
Devices, get a list of MIDI devices and ports currently available midiinfo
Dial for sending numbers dial
Difference between two numbers, obtain by subtracting expr, -
Discrete values from a continuous stream of data speedlim
Display numbers in decimal, hexadecimal, or binary form number box
Display numerical data graphically dial, envi, hslider, kslider,

multislider, number box,
slider, table, uslider

Display the zero/non-zero status of a number led, number box, toggle
Distribute incoming numbers out individual outlets cycle
Divide one number by another expr, /
Divide two numbers, output the remainder %
Division object (inlets reversed) !/
Drag and drop dropfile
Draw a picture in a graphic window graphic, pict
Draw shapes in a graphic window frame, graphic, oval, rect,

ring
Draw shapes in a patcher window lcd
Draw with the mouse lcd, mousestate
Duration, report length of MIDI notes borax
Duration, specify for transmitted MIDI notes flush, makenote,

midiflush, pipe
Enable or disable MIDI objects in a patcher automatically pcontrol
End of a message, add items to append
Enter numerical data into a patcher from the computer
keyboard

number box, numkey

Enter text typed in by the user dialog, message
Envelope generator env, envi
Error messages, display text in a patcher window dialog, lcd, umenu,

message, pcontrol
Error messages, print in the Max window print
Event number, assign to each MIDI note borax
Event-driven, multi-segment line object bline
Exclusive or, bitwise XOR operation expr

Max Object Thesaurus

690

Execute Javascript js
Execute Javascript commands sequentially jstrigger
Export MIDI file seq
Expose multiple objects in a patcher to the pattr system autopattr
Expressions, solve mathematical expr, +, -, *, /, %
External clock source, synchronize Max to setclock
Extra precision MIDI pitchbend messages xbendin, xbendin2,

xbendout, xbendout2
Fader for displaying or generating numerical data hslider, multislider, rslider,

slider, uslider
Fast chord detection quickthresh
File menu, add your own items to menubar
File modification date filedate
File, import and export MIDI files seq
File, open any type of filein
Files, list the files in a specific folder folder
Film or video, synchronize Max to setclock
Filter a continuous stream of messages speedlim
Floating-point numbers, store numbers with a fractional part float, number box
Folder content listings folder
Follow a performance, comparing it to a pre-recorded sequence follow
Foreground, move a patcher window automatically to the front thispatcher
Foreground, notify objects when patcher window is brought to
foreground

active

Format MIDI messages for transmission or recording midiformat, sxformat
Format numbers, ASCII bytes, and symbols into a single
message

sprintf

Fourteen-bit precision MIDI pitchbend messages xbendin, xbendout,
xbendin2

Fraction, obtain by dividing one number by another expr, /
Fractions, store numbers with a fractional part float, number box, pv,

value
Frequency, keep track of how many times a number has
occurred

histo

Full pathname to filename conversion strippath
Function generator env, envi, funbuff, line
Gate the flow of messages gate, Ggate
Generate numbers with the mouse dial, envi, hslider, imovie,

kslider, lcd, mousestate,
multislider, number box,
rslider, slider, table, uslider

Max Object Thesaurus

691

multislider, number box,
rslider, slider, table, uslider

Get filename from an absolute pathname strippath
Get parent patcher arguments patcherargs
Get pixel color at display coordinates suckah
Global message-sending float, forward, grab, int,

message, receive, send,
value

Global variables pv, value
Graphic display of an array of numbers, editable with the
mouse

multislider, table

Graphic editor for arranging Max messages to be sent to
specific objects at specific times

timeline

Graphics, draw a picture in a graphic window pict
Graphics, draw shapes in a graphic window frame, graphic, oval, rect,

ring
Graphics, draw shapes in a patcher window lcd
Graphics, put a picture in a patcher window fpic
Greater than and less than comparisons, redirect numbers based
on

split

Greater than, find the greater of two numbers expr, maximum, number
box, peak, >, >=

Greater than, report when all numbers in a list surpass specific
thresholds

past

Held MIDI notes, provide note-off messages for borax, flush, makenote,
midiflush

Hexadecimal, display numbers as number box
Hierarchical on/off switch decode
Hint, pop-up menu hint
Histogram of how many times a number has occurred histo
Hold one or more numbers float, funbuff, int,

number box, offer, pv,
table, value

Hold the smallest in a series of numbers trough
Human interface (gaming) device input hi
Hyperbolic arc-cosine function acosh
Hyperbolic Arc-sine function asinh
Hyperbolic arc-tangent function atanh
Hyperbolic cosine function cosh

Max Object Thesaurus

692

Hyperbolic sine function sinh
Hyperbolic tangent function tanh
If-then-else control structure if
Ignore certain messages gate, Ggate, Gswitch,

mousefilter, select, switch
Import MIDI file seq
Incoming MIDI messages, parse midiparse, xbendin,

xnotein also bendin, ctlin,
notein, pgmin, polyin,
rtin, sysexin, touchin

Increment the value of a user interface object IncDec
Index elements of a list and output them individually listfunnel
Index number, prepend to a number or a list funnel, prepend
Indexed list of numerical values funbuff, offer, table
Indicate the zero/non-zero status of a number if, led, number box,

togedge, toggle, ==,!=
Indicator flashes when a message is received button, led, ubutton
Information about current operating system and hardware gestalt
Initialize values automatically when a patch is loaded loadbang, preset
Inlet for a subpatch object bpatcher, inlet, patcher
Inlet, ignore messages in all inlets but one at a time switch
Input from the user, ask for dialog, message
Input received from MIDI devices, unaltered midiin
Integer number, store funbuff, int, number box,

offer, pv, table, value
Intercept and redirect the output of an object grab
Inter-onset interval, measure the time elapsed between two
events

borax, clocker, date, timer

Interpolate between two numerical values line
Invert the color of a rectangular area of a patcher window over
a picture or a comment

ubutton

Invisible button ubutton
Invisible patcher, close thispatcher
Invisible patcher, load pcontrol
Items of a list, break up into individual messages cycle, iter, message, spray,

unpack
Java in Max mxj
Javascript event execution in sequence jstrigger
Javascript user interface and OpenGL graphics jsui

Max Object Thesaurus

693

Keyboard style slider for displaying and generating numbers kslider
Keyboard, detect computer keyboard events key, keyup, numkey
Keydown event on computer keyboard, detect key
Keyup event on computer keyboard, detect keyup
Knob, picture-based pictctrl
Label objects in a patcher window comment, umenu
Laser disc player, control via the serial port serial, vdp
Last (few) of a series of numbers are retained and sent out
separate outlets

bucket

Less than and greater than comparisons, redirect numbers based
on

split

Less than, find the lesser of two numbers expr, minimum, number
box, trough, <, <=

Limit the rate at which messages are sent speedlim
List of indexed messages in a pop-up menu umenu
List of numbers, detect a specific ordered set within match
List processing zl
List system fonts fontlist
List the files in a specific folder folder
List, break up items into individual messages cycle, iter, message, spray,

unpack
List, combine separate items into append, pack, prepend,

thresh
List, evaluate a mathematical expression multiple times using
lists of numbers as input

vexpr

List, graphically display and send out a list of number values multislider
Lists, array of coll, umenu
Load a patcher automatically pcontrol
Local variable for any message, known only to a single patcher
and its subpatches

pv

Local variable for storing a floating-point number (with a
fractional part)

float, number box, pv

Local variable for storing an integer value int, number box, pv
Logarithm of a number, solve for expr
Loops, count repeated events counter
Loops, repeated series of actions counter, metro, uzi
Markov chain prob
Masking, bitwise “and” (intersection) and bitwise “or” (union)
operations

expr, &, |

Max Object Thesaurus

694

Match incoming message to arguments, send a bang out a
specific outlet if there is a match

select

Match the first item in a message, route the message
accordingly

route

Mathematical expression solving expr, +, -, *, /, %
Matrixctrl-compatible Max message router router
Matrix-style switch control matrixcrtrl
Max search path information filepath
Maximum and minimum limit for a range of numerical values,
specify and display

rslider, split

Maximum, find the greater of two numbers expr, maximum, number
box, peak, >, >=

Maximum, find the maximum value of a group of numbers maximum, table
Menu bar, customize or alter menus or menu items menubar
Menu, pop-up menu in a patcher umenu
Message symbol substitution substitute
Messages, construct MIDI messages for transmission or
recording

midiformat, sxformat

Messages, construct append, message, pack,
prepend

Messages, send and display umenu, message
Messages, send remotely without patch cords float, forward, grab, int,

message, pv, receive, send,
value

Messages, send with the menu bar menubar
Messages, type in and send in a locked patcher dialog, message
Metronome of timed events clocker, metro, setclock,

tempo
MIDI data, receive unaltered midiin
MIDI data, transmit byte by byte midiout
MIDI file, record, play, import, export, and save as text seq
MIDI Manager, synchronize Max to an external clock source setclock
MIDI messages, construct midiformat, sxformat,

midiout
MIDI messages, parse midiparse, xbendin,

xnotein
MIDI Mode messages ctlin, ctlout
MIDI note messages, receive incoming midiin, notein, xnotein
MIDI note messages, transmit midiout, noteout,

xnoteout

Max Object Thesaurus

695

xnoteout
MIDI note names, display numbers as number box
MIDI Real Time system messages midiin, midiout, rtin
MIDI Sample Dump, receive and transmit midiin, midiout, sysexin
MIDI, enable or disable MIDI objects in a patcher
automatically

pcontrol

MIDI, get a list of currently available devices and ports midiinfo
Minimum and maximum limit for a range of numerical values,
specify and display

rslider, split

Minimum, find the lesser of two numbers expr, minimum, number
box, trough, <, <=

Minimum, find the minimum value of a group of numbers minimum, table
Minus, subtract one number from another expr, -
Modem communication, transmit and receive non-MIDI data serial
Modification date of a file filedate
Modulation wheel ctlin, ctlout
Modulus operation expr, %
Monitor size screensize
Monophonic aftertouch MIDI message touchin, touchout
Mouse button, pass numbers through only when the mouse
button is up

mousefilter

Mouse button, report status of mousestate
Mouse events, detect imovie, lcd, mousefilter,

mousestate
Mouse location, report imovie, lcd, mousestate
Mouse, generate numbers with the mouse dial, envi, hslider, imovie,

kslider, lcd, mousestate,
multislider, number box,
rslider, slider, table, uslider

Movie, play QuickTime imovie, movie, playbar,
timeline

Multi-media programming ,graphic, lcd, imovie,
movie, timeline, vdp

Multiply and/or add a series of numbers accum, expr, table
Multiply two numbers accum, expr, *
Multi-purpose list processor zl
Multi-track sequencer of MIDI messages or numbers mtr
Name user interface objects in a patcher window comment, umenu
Negative number, convert to positive number abs, expr

Max Object Thesaurus

696

Nibble, examine selected bits of a number’s binary
representation

&, /, |, <<, >>

Noise, filtered noise generator drunk
Noise, white noise generator expr, random
Non-interrupting pop-up menu ubumenu
Non-zero and zero numbers, notify when input changes from
one to the other

change, togedge

Non-zero, test if a number or expression is change, if, led, select,
split, togedge, toggle,
==, !=, &&, ||

Not, bitwise one’s complement operation expr
Not, convert a non-zero number to 0 and vice versa expr, ==
Note data, receive incoming MIDI midiin, notein, xnotein
Note information (duration, delta time, etc.) derived from
MIDI note messages

borax

Note messages, transmit MIDI midiout, noteout,
xnoteout

Note-off messages with release velocity, detecting and
formatting

xnotein, xnoteout

Note-off messages, hold until a specific event occurs sustain
Note-off messages, supply for held or stuck MIDI note-ons bag, borax, flush,

makenote, midiflush
Note-off messages, suppress gate, stripnote
Notes to yourself—or another user—in a patcher window comment
Notify objects when patcher window is moved to foreground or
background

active

Notify user when an event has occurred button, led, message,
print, ubutton

Number sequences, generate automatically counter, line, clocker,
tempo

Number, store float, funbuff, int,
number box, offer, pv,
table, value

Numbers, convert between decimal, hexadecimal, and binary number box
Numbers, generate with the mouse dial, envi, hslider, imovie,

kslider, lcd, mousestate,
multislider, number box,
rslider, slider, table, uslider

Nybble, examine selected bits of a number’s binary
representation

&, |, <<, >>

Max Object Thesaurus

697

Object within an object bpatcher, patcher
Occurrences, keep track of how many bang messages have
occurred

counter

Occurrences, keep track of how many times a number has
occurred

histo

Octal, display numbers in Roland octal format number box
OMNI Mode On/Off (MIDI Mode message) ctlin, ctlout
On/Off switch decode, toggle
Open a dialog to ask for a file or folder opendialog
Open a dialog to ask for a filename for saving savedialog
Open a patcher automatically pcontrol
Open patcher files automatically folder, pcontrol
Operating system and hardware information gestalt
Or, bitwise exclusive or (XOR) operation expr
Or, true if one statement or the other is true (logical union) expr, ||
Order, send a number, bang, list, or symbol to different places
in a specific order

trigger

Order, switch order of number messages fswap, message, swap
Ordered set of numbers, detect match
Outlet for a subpatch object bpatcher, outlet, patcher
Outlet, send items of an incoming list out individual outlets spray, unpack
Outlet, send messages out one of the outlets of a timeline
object

tiout

Output a combined list when any element changes pak
Output MIDI data byte by byte midiout
Output numbers from a notation display onscreen nslider
Output the monitor size screensize
Oval or circle, drawing in a graphic window oval, ring
Panel panel
Panic, turn off held MIDI notes borax, ctlout, flush,

makenote, midiflush
Panning ctlin, ctlout
Parameter change to a MIDI device ctlout, midiout, sxformat
Parse incoming MIDI messages midiparse, xbendin,

xnotein, also bendin, ctlin,
notein, pgmin, polyin,
rtin, sysexin, touchin

Pass numbers through only when the mouse button is up mousefilter
Patch change MIDI message pgmin, pgmout

Max Object Thesaurus

698

Patch cords, connect to an inlet or outlet of a subpatch inlet, outlet
patcher within a patcher, the contents of which are visible bpatcher
Patcher-specific named data wrapper pattr
Peak hold, keep track of the greatest in a series of numbers peak
Peek at values in other objects grab
Permute a set in random order urn
Picture, display a graphics file in a patcher window fpic
Picture, display PICT file in a graphic window pict
Picture-based control pictctrl
Picture-based slider pictslider
Pitchbend, report incoming MIDI pitchbend data bendin, midiin, xbendin,

xbendin2
Pitchbend, transmit MIDI pitchbend messages bendout, midiout,

xbendout, xbendout2
Play a QuickTime movie imovie, movie, playbar,

timeline
Play a sequence of Max messages to be sent to specific objects
at specific times

timeline

Play sequences of past messages or numbers follow, mtr, seq
Plus, add two numbers together accum, expr, +
Polar to Cartesian coordinate conversion poltocar
Poly mode, assign a unique voice number to each note being
played

borax, poly

Polyphonic afterpressure polyin
Pop-up menu in a patcher umenu
Pop-up style hint text hint
Portamento bendin, bendout, ctlin,

ctlout
Ports, get a list of MIDI devices and ports currently available midiinfo
Positive version of a negative number abs, expr
Postpone a bang delay
Postpone a number or list pipe, thresh
Postpone note-off messages until a specific event occurs sustain
Potentiometer-like dial for sending numbers dial
Power, one number to the power of another expr
Precise “real-world” time measurements cpuclock
Prepend one message at the beginning of another prepend
Preset, store and recall values for all user interface objects preset
Print any message in the Max window print

Max Object Thesaurus

699

Probabilistic (stochastic) decision making drunk, prob, random,
table, urn

Probability, keep track of how many times a number has
occurred

histo

Product of multiplying two numbers accum, expr, *
Program change MIDI message pgmin, pgmout
Progress bar, graphic display hslider, slider, uslider

Pseudo-random number generator drunk, expr, random, urn
Queue-based message passing control qlim
Queue-based metronome qmetro
QuickDraw graphic commands, draw with lcd
QuickTime movie, play imovie, movie, playbar,

timeline
Radio button user interface object radiogroup
Ramp function, generate line, timeline
Random number generator drunk, expr, random, urn
Random walk drunk
Range of numerical values, specify and display minimum and
maximum limits

rslider, split

Rate at which messages are sent, limit speedlim
Rate, combine numbers into a single list if received faster than
a certain speed

thresh

Rate, control clock speed of Max timing objects setclock
Rate, send out beat numbers at a metronomic tempo tempo
Raw data from a file, read byte by byte filein
Raw MIDI data, receive and transmit midiin, midiout, sysexin
Read in a file of binary data filein
Real Time MIDI system messages midiin, midiout, rtin
Recall sequences of past messages or numbers follow, mtr, seq
Receive any message from any window receive
Receive MIDI data unaltered midiin
Receive only specific MIDI messages bendin, ctlin, notein,

pgmin, polyin, rtin,
sysexin, touchin

Recently received values are stored and recalled bucket
Record sequences of MIDI data or numbers follow, mtr, seq
Rectangle or square, drawing in a graphic window frame, rect
Redirect messages to a specific destination gate, Ggate, grab, route,

split, spray, unpack

Max Object Thesaurus

700

split, spray, unpack
Release velocity, detecting and formatting note-off messages
with

xnotein, xnoteout

Remainder from dividing one number by another, modulus
operation

expr, %

Remote connection of objects, without patch cords float, forward, grab, int,
message, pv, receive, send,
value

Repeatedly send bang messages as fast as possible uzi
Repeatedly send output at a certain rate clocker, metro, tempo
Repetitions, count counter
Repetitions, suppress repeated numbers change
Report information about the current Max search path filepath
Report the modification date of a file filedate
Reports when application is suspended and resumed suspend
Reproduce a single bang to different places in immediate
succession

bangbang, trigger

Reverse the order of two number messages fswap, message, swap
RGB color selection and display swatch swatch
Ritardando, control clock speed of Max timing objects setclock
Rotate elements of a set of numbers, out successive outlets bucket, cycle
Route messages to a specific destination gate, Ggate, route, split,

spray, unpack
Sampler, receive and transmit sound data via MIDI Sample
Dump

midiin, midiout, sysexin

Save and recall presets of pattr data pattrstorage
Save As file dialog savedialog
Save, move to the foreground, or close a patcher window
automatically

thispatcher

Schedule a number or list to be sent at a future time pipe, thresh
Schedule an event for a future time delay
Score of Max messages to be sent to specific objects at specific
times

timeline

Score-following follow
Screen size screensize
Scroll through a list of messages umenu
Search path information filepath
Select a color using a modal dialog colorpicker
Select specific values or symbols from incoming messages select

Max Object Thesaurus

701

Selector, route messages depending on the first item of each
message

route

Send a message to all instances of the same class in a patcher universal
Send a message to receive objects in any other window float, forward, grab, int,

message, send
Send a message when a patch is loaded loadmess
Separate a list into its constituent elements cycle, iter, spray, unpack
Sequence of numbers, detect a specific ordered set of numbers match
Sequence of numbers, generate automatically counter, line, clocker,

tempo
Sequencer of Max messages to be sent to specific objects at
specific times

timeline

Sequencer follow, mtr, seq
Serial port, transmit and receive non-MIDI data serial, spell
Series of numbers, break a list up into individual messages cycle, iter, message, spray,

unpack
Series of numbers, combine into a single list thresh
Set (of fixed order and size) of integers; output all whenever
one is modified

bondo

Set background color bgcolor
Set values automatically when a patch is loaded loadbang, preset
Set, produce a random ordering of a set urn
Set, store an unordered set of numbers bag
Shift sequential input from one outlet to another bucket, cycle
Simultaneity, send a series of bang messages or numbers in a
single tick of Max’s clock

uzi

Sine function sin
Sine, cosine, tangent, and other trigonometric functions expr
Slider to display or generate numerical data hslider, kslider, multislider,

rslider, slider, uslider
Slider, picture-based pictslider
SMPTE time code, synchronize to an external source via MIDI
Manager

setclock

Snapshot, store and recall instantaneous values of all user
interface objects

preset

Sound sample data, receive and transmit via MIDI Sample
Dump

midiin, midiout, sysexin

Sound, play in a QuickTime movie imovie, movie, playbar,
timeline

Max Object Thesaurus

702

Sparse array of numbers funbuff, offer
Speed, combine numbers into a single list if received faster
than a certain rate

thresh

Speed, limit the rate at which messages are sent speedlim
Sprites, pictures and geometric shapes frame, graphic, lcd, oval,

pict, rect, ring
Square or rectangle, drawing in a graphic window frame, rect
Square root of a number sqrt
Start a process by sending the bang message button, loadbang,

ubutton
Start activity automatically when a patch is loaded loadbang
Start, MIDI system message midiin, midiout, rtin
Steal voices, turn off old notes if too many new ones arrive poly
Stochastic (probabilistic) decision making drunk, prob, random,

table, urn
Stop or alter the flow of messages gate, Ggate, Gswitch,

speedlim, switch
Stop, MIDI system message midiin, midiout, rtin
Store a fixed-size set of integers; output all whenever one
element is modified

bondo

Store a series of numbers in order in an editable window capture, table, text
Store an unordered set of numbers bag
Store and recall recently received values bucket, table, text
Store and recall values of all user interface objects at a certain
moment

preset

Store one or more numbers float, funbuff, int,
number box, offer, pv,
table, value

Store, recall, and automatically delete x,y pairs of numbers offer
String of text combining numbers, ASCII bytes, and symbols
into a single message

sprintf

Stuck MIDI notes, avoid or turn off borax, flush, makenote,
midiflush

Subpatch in a box, visible from the patcher that contains it bpatcher
Subpatch object (subroutine) bpatcher, patcher
Subpatch object, create an inlet or outlet in inlet, outlet
Substitute a symbol for another symbol in a message substitute
Subtract one number from another expr, -
Subtraction object (inlets reversed) !-

Max Object Thesaurus

703

Sum of a set of numbers accum, expr, table
Sum of two numbers accum, expr, +
Suppress note-off messages stripnote
Suppress the flow of certain messages gate, Ggate, Gswitch,

mousefilter, select, switch
Sustain notes by holding note-off messages until a specific
event occurs

sustain

Sustain pedal ctlin, ctlout, sustain
Switch a process on and off led, togedge, toggle,

ubutton
Switch control matrix matrixcrtrl
Switch the flow of messages on or off gate, Ggate, Gswitch,

switch, toggle
Symbol to message conversion fromsymbol
Synchronize asynchronously arriving inputs, send them out
together

buddy

Synchronize Max to an external clock source setclock
System exclusive messages, construct and transmit midiout, sxformat
System exclusive messages, receive midiin, sysexin
System Reset, MIDI system message midiin, midiout, rtin
Tag messages with a unique index number borax, funnel, poly
Tangent function tan
Tempo, control clock speed of Max timing objects setclock
Tempo, send out beat numbers at a metronomic tempo tempo
Test the equality of two numbers change, if, match, select,

==, !=
Test the zero/non-zero status of a number or expression change, if, led, match,

select, split, togedge,
toggle, ==, !=, &&, ||

Test whether one number is greater than another maximum, number box,
peak, >, >=

Test whether one number is less than another minimum, number box,
trough, <, <=

Text file, load, play, and save a MIDI file as plain text seq
Text file, open and save text
Text input by the user, obtain dialog, message
Text, convert to ASCII numbers spell
Text, display automatically in a patcher dialog, lcd, umenu,

message, pcontrol, sprintf

Max Object Thesaurus

704

Text, display in a patcher comment, fpic, message
Text, format numbers, ASCII bytes, and symbols into a single
message

sprintf

Text, print any message in the Max window print
Threshold, report when numbers surpass past
Timbre change on a MIDI synthesizer pgmout
Time code, receive from an external source setclock
Time elapsed between events, check clocker, date, timer
Time of day and date date
Timeline of Max messages to be sent to specific objects at
specific times

timeline

Timeline, control a timeline track from its own action patch thistrack
Timeline, control from one of its own action patches thistimeline, thistrack,

tiout
Timeline, receive events (messages) from ticmd
Timeline, report the current time of thistimeline
Timeline, send messages out one of the outlets of a timeline
object

tiout

Times, multiply two numbers accum, expr, *
Toggle a process on and off led, togedge, toggle,

ubutton
Track, control a timeline track from its own action patch thistrack
Track, record and play back a multi-track sequence of messages
or numbers

mtr

Traffic control for bang messages onebang
Transform a symbol into individual numbers or messages fromsymbol
Transition probabilities, Markov chain prob
Transmit a specific type of MIDI message bendout, ctlout, noteout,

pgmout, polyout,
touchout

Transmit MIDI data byte by byte midiout
Trap and redirect the output of an object grab
Trap computer keyboard events key, keyup, numkey
Trap mouse events imovie, lcd, mousestate
Trap occurrences of a specific ordered set of numbers match
Trap occurrences of specific numbers follow, match, route,

select, ==
Trap occurrences of specific symbols route, select
Trigger a process by sending the bang message button, loadbang,

ubutton

Max Object Thesaurus

705

ubutton
Trigger events automatically when a patch is loaded loadbang
Trigger events based on notes played by the user follow, match, route,

select, ==
Trigonometric functions expr
True/false testing if, led, match, select, split,

togedge, toggle, ==, !=,
<, >, <=, >=

Two-dimensional storage and viewing jit.cellblock
Type numerical data into a patcher number box, numkey
Type text into a locked patcher dialog, message
User PERL-style regular expressions to process input regexp
Variable for storing a floating-point number (with a fractional
part)

float, number box, pv,
value

Variable for storing an integer value int, number box, pv, value
Variable for storing any message pv, value
Variable that is private to a single patcher and its subpatches pv
Vector math, evaluate an expression multiple times using lists
of numbers as input

vexpr

Velocity of incoming MIDI note-on messages, obtain midiparse, notein
Velocity, detecting and formatting note-off messages with
release velocity

xnotein, xnoteout

Video or film, synchronize Max to setclock
Videodisc player vdp
Videodisc player, control via the serial port serial, vdp
Virtual connection of objects, without patch cords float, forward, grab, int,

message, pv, receive, send,
value

Voice number, assign a unique number to each note being
played

borax, poly

Voice stealing, turn off old notes if too many new ones arrive poly
Volume control MIDI message ctlin, ctlout
Volume control of a QuickTime movie playbar
Wait before allowing a number to pass pipe, speedlim, thresh
Wait before doing something delay
Wait for input in both inlets, then send out both numbers buddy
Weighted probabilities drunk, expr, random,

table, urn
Window being closed sends a bang closebang

Max Object Thesaurus

706

Window for displaying graphic shapes and pictures graphic
Window moving to foreground or background sends 1 or 0 active
Window on a subpatch seen within the patcher that contains
that subpatch

bpatcher

Window, enable or disable MIDI automatically pcontrol
Window, open and close automatically pcontrol, thispatcher
Windows, communicate between float, forward, grab, inlet,

int, message, outlet,
receive, send, value

XOR, bitwise “exclusive or” operation expr
Zero and non-zero numbers, notify when input changes from
one to the other

change, togedge

Zero, test if a number or expression is equal to change, if, led, select,
split, togedge, toggle,
==, !=, &&, ||

Index

707

-, 10, 12
!-, 4, 10
!/, 6, 10
!=, 8, 10
$

in a message box, 324
in an object box, 167, 237

%, 10, 17
&, 10, 28
&&, 10, 30
*, 10, 13
/, 10, 15
\, 325
|, 10, 32
||, 10, 34
+, 10
<, 10, 18
<<, 10, 36
<=, 10, 20
==, 10, 22
>, 10, 24, 53
>=, 10, 24, 26
>>, 10, 38
abs, 40
absolute value, 40
absolutepath, 41
accum, 42
acos, 44
acosh, 45
action, timeline, 600, 602, 613, 616
active, 46
active window, 46
add, +, 10
address

of a table, 571
aftertouch

touchin, 621
touchout, 623

aftertouch, polyphonic
polyin, 461
polyout, 463

amplitude-to-deciBel conversion, 55
anal, 47
and, 10, 30
append, 49

received in a message object, 324
application status reporting, 557

argument
as a receiver of a message, 325
changeable argument, 325

argument, changeable, 425
arithmetic operators

!-, 4
!/, 6
%, 17
*, 13
/, 15
+, 10

array, 571
funbuff, 203
offer, 385

ASCII, 56, 271, 273, 383, 539, 545
asin, 50
asinh, 51
Assistance

assigned to an inlet object, 244
assigned to an outlet object, 391

associating a symbol with a number, 95
atan, 52
atan2, 53
atanh, 54
atodb, 55
atoi, 56, 249
backslash, 325
bag, 61
bang, 83, 327

produced by clicking on a picture, 635
received in a table, 571
send to many places, in order, 63
time elapsed between, 615
when a window is closed, 94

bang message
traffic control, 387

bangbang, 63
beats per minute, 580
bendin, 64
bendout, 66, 68
bitwise and, 10, 28
bitwise operators

&, 28
|, 32
<<, 36
>>, 38

bitwise or, 10, 32

Index

708

bold type, displaying numbers in, 381
bondo, 71
borax, 73
bpatcher, 76
broadcast a message everywhere, 644
bucket, 80
buddy, 82
button, 83

transparent, 635
buttons, user-created, 435
C function, 167
C programming language, 167, 545
capture, 84
cartopol, 86
change, 88
changeable argument, 325
channel mode message

ctlin, 119
ctlout, 122

channel pressure
touchin, 621
touchout, 623

check boxes, 486
clip, 90
clocker, 92
closebang, 94
coll, 95

data format, 98
Color Picker dialog, 103
color selection

colorpicker, 103
swatch, 562

colored indicator, led, 292
colorpicker, 103
comma, 325
comment, 105

changing font and size, 105
clicking on, 637

comparison
both numbers are not zero, 30
equal to, 22
greater than, 24
greater than or equal to, 26
if/then/else, 237
less than, 18
less than or equal to, 20
look for a number or symbol, 503, 506,
519, 553, 555
look for a range of numbers, 541
look for a series of numbers, 305
not equal to, 8
one or both numbers are not zero, 34

report when numbers pass a threshold,
403
the greater of two numbers, 314
the greatest in a list of numbers, 314
the lesser of two numbers, 340
the smallest in a list of numbers, 340

conformpath, 107
constant value, 168
control change

ctlin, 119
ctlout, 122

conversion of message type, 625
coordinate conversion

Cartesian to Polar, 86
Polar to Cartesian, 457

cos, 111
cosh, 112
cosine wave, 111
counter, 113
cpuclock, 118
ctlin, 119
ctlout, 122
cycle, 125
data byte

system exclusive, 567
data structure

coll, 95
date, 127
dbtoa, 128
deciBel-to-amplitude conversion, 128
decide, 129
decode, 131
decrementing, 69, 113, 294
default scaling, 144
defer, 133, 134
delay, 136
delaying

a bang, 136
before sending a note-off, 303
numbers, 453, 484, 604

delta count, 73
delta time, 73, 138, 355, 615
detonate, 138
dial, 145
dialog, 148
discrete values from a continuous stream,
537
displaying messages, 324
displaying numbers, 379
divide, /, 6, 10, 15
division of a beat, 580
division, inlets reversed, 6

Index

709

dollar sign, 325
drag-and-drop interfaces, 150
dropfile, 150
drunk, 152
duration

reported by borax, 74
editing a sequence, 356, 523
entering numbers from the keyboard, 383
entering numbers in a Number box, 379
env, 154
envelope generator, 154, 208
envi, 154
equal to, 10, 22
error, 166
evaluate item text of a pop-up menu, 633,
642
exponential curve, 296, 465, 515
expr, 167
extra precision pitch bend data, 663, 665
file management

filewatch, 176
opendialog, 389
report modification date, 170
savedialog, 513

file modification date, 170
file/pathname management

absolutepath, 41
conformpath, 107
filepath, 174
relativepath, 500
stripppath, 552

filedate, 170
filein, 171
filepath, 174
filewatch, 176
filtering a stream of numbers, 344, 537
filtering MIDI messages, 338
filtering out note-off messages, 550
filtering out repetitions

of numbers, 88
of zero/non-zero status, 617

first-order Markov chain, 471
float, 178
floating point variable, 178
flush, 180
folder, 182
follow, 184
following a score, 140
fontlist, 187
format

of an mtr file, 356
formatting

MIDI messages, 330
forward, 189
fpic, 191
fquantile, 571
fraction, 6, 15, 383
frame, 197
frequency-to-MIDI conversion, 202
fromsymbol, 199
fswap, 200
ftom, 202
funbuff, 203
function, 208
function, mathematical, 167
funnel, 214
gate, 216
gestalt, 218
Gestalt selector, 218
getting system information

gestalt, 218
screensize, 517
suspend, 557

Ggate, 220
global variable, 655
grab, 222
graph interval, 144
graphic, 224
graphics, 224

in a Patcher window, 279
graphics file format, 191
graphics window, 224
greater than, 24, 53
greater than or equal to, 10, 24, 26, 53
greater than, >, 10
grid-based interface controls, 306
Gswitch, 226
hexadecimal number

displaying, 84
hi, 228
highlighting, 635
hint, 230
histo, 232
hslider, 234
imovie, 240
IncDec, 242
incrementing, 69, 113, 232, 294
inlet object, 244, 405
inlet, Assistance description, 244
Inspector

bpatcher, 77
coll, 100
comment, 105
counter, 115

Index

710

detonate, 143
dial, 146
fpic, 194
hint, 230
hslider, 235
inlet, 244
kslider, 276
lcd, 287
led, 292
matrixctrl, 309
message, 325
multiSlider, 364
nslider, 377
number box, 380
outlet, 391
panel, 400
pictctrl, 437
pictslider, 448
preset, 468
radiogroup, 488
rslider, 509
slider, 534, 613
table, 575
textedit, 587
ubutton, 636
umenu, 632, 641
uslider, 651

int, 246
integer variable, 246
inter-onset interval, 138
interpolate between points, 69, 294
interpolation, 212
iter, 248
jit.cellblock, 251
js, 262
jstrigger, 265
jsui, 268
key, 271, 342
key code, 271, 273
keyboard commands, 271, 273

entering numbers, 379, 383
keyboard modifier commands, 342
keyboard-like slider, 275
keyup, 273
knobs, user-created, 435, 444
kslider, 275
labeling, 105
lcd, 279
least significant byte, pitch bend, 663, 665
led, 292
left shift operator, 10, 36
less than or equal to, 10, 20

less than, <, 10, 18
limiting numbers to a specific range, 17, 91,
541, 651
limiting the speed of a stream of numbers,
537
line, 69, 294
linedrive, 296
list

combining numbers into, 395, 398, 484,
604
convert to a series of numbers, 248
separate numbers, 646

list and symbol handling
fromsymbol, 199
substitute, 553
tosymbol, 620
zl, 671

list processing, 671
list to symbol conversion, 620
listfunnel, 298
loadbang, 299
loading a patch

send a bang when patch is loaded, 299
send a message when patch is loaded,
301

loadmess, 301
logarithmic curve, 296, 515
logical and, 30
logical or, 34
loop, 17
magnifying glass tool, 142
makenote, 303
Markov chain, 47, 471
masking, 28, 32
match, 305
mathematical operators

arc-cosine, 44, 45
arc-sine, 50, 51
arc-tangent, 52, 54
arc-tangent (2 variables), 53
cosine, 111
hyperbolic cosine, 112
hyperbolic sine, 532
sine, 532
tangent, 578

matrix switch control, 306
matrixctrl, 306
Max search path, 174
Max Window

printing in, 470
maximum in a series of numbers, 427

Index

711

maximum number of presets, 469
maximum object, 314
mean, 316
menu bar, changing, 318
menu object, 639
menubar object, 318
message

append arguments at the end of, 49, 324
displaying, 324
maximum length of, 325
prepend arguments to the beginning of,
324
prepend one before another, 466
reversing order of two numbers, 200
routing to different destinations, 216,
220, 503, 553, 555

message object, 324
$ argument, 324

metro, 327
MIDI

receiving and transmitting, 332, 336
MIDI Enable/Disable, 425
MIDI file, 141, 185, 523
MIDI file format, 141
MIDI note value, 202
midiflush, 329
midiformat, 330
midiin, 332
midiout, 336
midiparse, 338
MIDI-to-frequency conversion, 353
minimum in a series of numbers, 627
minimum object, 340
minus, -, 4, 10, 12
modulo, 17
modulo, %, 10
monitor bounding coordinates, 517
mouse status and location, 344, 345
mousefilter, 344
MouseState, 345
movie, 347
mtof, 353
mtr, 354
multiply, *, 10, 13
multiSlider, 359, 368
multi-track MIDI file, 141
multi-track sequencer, 354, 611
muting notes in a MIDI file, 140
next, 370
not equal to, 8, 10
note event recording, 140
note slider, 376

notein, 372
note-off message

filtering out, 550
holding, then outputting, 558
supplying, 73, 180, 303, 459

note-off with release velocity
xnotein, 667
xnoteout, 669

note-on/note-off indicator to xnoteout, 669
noteout, 374
nslider, 376
number

displaying, 379
send to many places, in order, 625
typing on the keyboard, 383

number box, 379
numkey, 383
objects

storing settings of, 467
that evaluate expressions, 167

offer, 385
OMS, 334
omsinfo, 334
onebang, 387
onecopy, 388
open a dialog box, 148, 389, 513
open a subpatch window, 405
open and close a subpatch window, 425,
589
Open Document dialog, 389
opendialog, 389
or, 10, 34
outlet object, 391, 405
outlet, Assistance description, 391
oval, 393
Overdrive, defer, 133
p, 405
pack, 395
pairing numbers, 82, 395, 398, 545
pairing numbers, pairing lists, pairing floats,
pairing symbols, 82
pak, 398
palette in detonate window, 141
palette of graphic editing tools, 574
panel, 400
parsing MIDI messages, 338
past, 403
patch cord

send messages without, 521
patcher object, 405
Patcher window

Index

712

of a patcher object, 405, 425
of a subpatch, 425

patcherargs, 407
pathname conversion

absolute to relative, 500
cross-platform, 109
relative to absolute, 41
strippath, 552

pcontrol, 425
peak, 427
pgmin, 429, 431
pict, 433
pictctrl, 435
pictslider, 444
picture

clicking on, 637
in a patch, 191

picture controls, 444
pipe, 453
pitch bend

14-bit, xbendin, 663
14-bit, xbendout, 665
bendin, 64, 119
bendout, 66

pitch-to-frequency conversion, 353
play a recorded sequence

mtr, 354
seq, 522
with MIDI start message, 511

play audio sample, 150, 170, 174, 370, 500,
552
playbar, 455
plus, +, 10
Polar to Cartesian coordinate conversion,
86, 457
polling mouse status and location, 345
poltocar, 457
poly, 459
polyin, 461
polyout, 463
polyphonic key pressure

polyin, 461
polyout, 463

pop-up hint text, 228, 230, 262
pop-up menu, 629, 639
port

getting OMS device names, 334
pow, 465
Preferences file, setting search path, 174
prepend, 466

received in a message object, 324
preset, 467

print, 470
prob, 471
probability, 47, 232, 492
program change

pgmin, 429
pvar, 475
qlist, 477, 479
qmetro, 482
quantile, 233, 573
quickthresh, 484
QuickTime, 191, 347, 435, 444, 455
QuickTime movie, 240, 350
QuickTime movie play controller, 455
r, 493
radio buttons, 486
radiogroup, 486
ramp of number values, 69, 294
random number

decide, 129
drunk, 152, 166
unique choice of, 648

real time
rtin, 511

receive, 493
used with grab, 222

receiving MIDI, 332
recording a sequence of messages, 354
recording a sequence of MIDI messages,
522
recording note events, 140
regexp, 497
relational operators

!=, 8
<, 18
<=, 20
==, 22
>, 24
>=, 26

relativepath, 500
remainder, 17
repeat actions, 327, 653
right shift operator, 10, 38
right-to-left

switching the order, 63, 200, 625
ring, 501
route, 503, 505, 553, 555
routing

a range of numbers, 541
messages to different destinations, 216,
220, 503, 553, 555

rslider, 507
rtin, 511

Index

713

s, 521
sample, read single, 150, 170, 174, 370, 500,
552
save a file as text, 84
Save As dialog box

savedialog object, 513
savedialog, 513
scale, 515
score of MIDI notes, 140
score-following, 140
score-reading object, 184
screen bounding coordinates, 517
screensize, 517
script of a menubar object, 319

example script, 322
script of an env object, 155

example script, 161
scripting

changing object properties, 595
connecting objects, 593
creating objects, 591
deleting objects, 591
disconnecting objects, 593
moving objects, 597
naming objects, 592
sending messages to object, 597

scripting messages, 591
scrolling display of number values, 361
seed for random generator, 129, 152, 491,
648
sel, 519
select, 515, 519, 548, 680
selecting colors

HSV, 103
RGB, 103
web-safe, 103

semicolon, 325
send, 521
seq, 522

stopping output, 329
sequencing

editing a sequence, 356, 523
multi-track, 354
note events, 140
saving a sequence, 355, 523
single track, 522

serial, 525
serial port, 525
set

received in a message object, 324
setclock, 529
setting search path for files, 174

settings of objects, storing, 467
shift operator, 36, 38
sin, 532
sinh, 532
slider, 534
sliders, user-created, 444
special character, 193, 325, 350
speedlim, 537
spell, 539
split, 541
spray, 543
sprintf, 545
sqrt~, 547
square root of a value, 547
standalone, 548
standard MIDI file, 141
status byte

system exclusive, 567
stealing voices, 459
storing

messages, 95
settings of objects, 467

storing messages, 479
stripnote, 550
strippath, 552
stuck notes, avoiding, 73, 180, 303, 329, 459
subpatch, 76, 405

opening the window of, 405, 425, 589
subtract, 4, 12
subtraction, inlets reversed, 4
sustain, 208, 558
swatch, 562
switch, 560, 565
switches, user created, 435
sxformat, 567
symbol

received in a message object, 324
symbol and list handling

fromsymbol, 199
substitute, 553, 555
tosymbol, 620
zl, 251, 671

symbol to list conversion, 199
synchronizing, 511
synchronous messages, 82
sysexin, 569
system exclusive

end byte, 567
status byte, 567
sysexin, 569

system exclusive programming, 567

Index

714

table, 571
Don’ t Save, 576
entering values as text, 575
Save with Patcher, 576
size of, 574

tan, 578
tanh, 579
temperament, equal, 353
tempo, 580
text, 582
textedit, 585
thispatcher, 589
thistimeline, 600
thistrack, 602
thresh, 604
threshold

numbers received within, 484, 604
when numbers go beyond, 403

ticmd, 606
time elapsed between events, 73, 92, 127,
615
time of day, 127
timed repetition, 327
timeline editor window, 611
timeline object, 610
timer, 615
times, *, 13
tiout, 616
title bar hidden, 590
togedge, 617
toggle, 618
toggling, 131, 226, 292, 617, 618
tosymbol, 620
touchin, 621
touchout, 623
track in a timeline, 602
transmitting MIDI, 336

transparent button, 635
trap a number or symbol, 503, 506, 519,
553
trigger, 625
trough, 627
tuning, equal temperament, 353
type of message

conversion, 625
ubumenu, 629
ubutton, 635
universal, 557, 644
unpack, 646
urn, 648
USB ports and the serial object, 525
uslider, 650
uzi, 653
v, 655
value, 655
variable, global, 655
vdp, 657
vexpr, 661
voice allocation

borax, 73
poly, 459

voice stealing, 459
wild card, 305
window

opening and closing automatically, 425,
589

window size, 590
wrench tool, 142
xbendin, 663
xnotein, 667
xnoteout, 669
zl, 671
zmap, 680

	Introduction
	!-
	!/
	!=
	+
	-
	*
	/
	%
	<
	<=
	==
	>
	>=
	&
	&&
	|
	||
	<<
	>>
	abs
	absolutepath
	accum
	acos
	acosh
	active
	anal
	append
	asin
	asinh
	atan
	atan2
	atanh
	atodb
	atoi
	autopattr
	bag
	bangbang / b
	bendin
	bendout
	bgcolor
	bline
	bondo
	borax
	bpatcher
	bucket
	buddy
	button
	capture
	cartopol
	change
	clip
	clocker
	closebang
	coll
	colorpicker
	comment
	conformpath
	cos
	cosh
	counter
	cpuclock
	ctlin
	ctlout
	cycle
	date
	dbtoa
	decide
	decode
	defer
	deferlow
	delay / del
	detonate
	dial
	dialog
	dropfile
	drunk
	env/envi
	error
	expr
	filedate
	filein
	filepath
	filewatch
	float / f
	flush
	folder
	follow
	fontlist
	forward
	fpic
	frame
	fromsymbol
	fswap
	ftom
	funbuff
	function
	funnel
	gate
	gestalt
	Ggate
	grab
	graphic
	Gswitch
	hi
	hint
	histo
	hslider
	if
	imovie
	IncDec
	inlet
	int / i
	iter
	itoa
	jit.cellblock
	js
	jstrigger
	jsui
	key
	keyup
	kslider
	lcd
	led
	line
	linedrive
	listfunnel
	loadbang
	loadmess
	makenote
	match
	matrixctrl
	maximum
	mean
	menubar
	message
	metro
	midiflush
	midiformat
	midiin
	midiinfo
	midiout
	midiparse
	minimum
	modifiers
	mousefilter
	mousestate
	movie
	mtof
	mtr
	multislider
	mxj
	next
	notein
	noteout
	nslider
	number box
	numkey
	offer
	onebang
	onecopy
	opendialog
	outlet
	oval
	pack
	pak
	panel
	past
	patcher / p
	patcherargs
	pattr
	pattrhub
	pattrstorage
	pcontrol
	peak
	pgmin
	pgmout
	pict
	pictctrl
	pictslider
	pipe
	playbar
	poltocar
	poly
	polyin
	polyout
	pow
	prepend
	preset
	print
	prob
	pv
	pvar
	qlim
	qlist
	qmetro
	quickthresh
	radiogroup
	random
	receive / r
	rect
	regexp
	relativepath
	ring
	route
	router
	rslider
	rtin
	savedialog
	scale
	screensize
	select / sel
	send / s
	seq
	serial
	setclock
	sin
	sinh
	slide
	slider
	speedlim
	spell
	split
	spray
	sprintf
	sqrt
	standalone
	stripnote
	strippath
	substitute
	suckah
	suspend
	sustain
	swap
	swatch
	switch
	sxformat
	sysexin
	table
	tan
	tanh
	tempo
	text
	textedit
	thispatcher
	thistimeline
	thistrack
	thresh
	ticmd
	timeline
	timer
	tiout
	togedge
	toggle
	tosymbol
	touchin
	touchout
	trigger / t
	trough
	ubumenu
	ubutton
	umenu
	universal
	unpack
	urn
	uslider
	uzi
	value / v
	vdp
	vexpr
	xbendin
	xbendout
	xnotein
	xnoteout
	zl
	zmap
	Appendix: QuickTime and graphic file formats
	Max Object Thesaurus
	Index

