What's New In Max/MSP 4.5.5

This short document highlights some of the new features in Max/MSP 4.5.5. We'll start
by discussing additions to the patcher editing environment that permit customization to
make your work with the software more productive. In addition, we’ve made the
clipboard much more useful, and made small changes to the way you edit text objects in
the patcher.

Object improvements continue to focus on the new objects added for version 4.5,
highlighted by the new mxj~ object, multi-threading support in js and jsui, and continued
enhancements to the pattr family of objects.

The documentation for version 4.5.5 has been thoroughly revised to take into account the
new features mentioned here. However, this document provides useful introductions to
the changes in one place.

New Editing Features: Templates, Shortcuts, Clippings, and Prototypes

The new editing features share a general motivation: the ability to identify and exploit
frequently used pieces of your work (or parts of other people’s work) to avoid tedium and
repetition in patching and configuring.

Templates

Templates are probably the easiest to understand of the new editing features. The patches
folder inside the Max application folder now contains a folder called templates. In this
folder you can place what some applications call “stationery.” In Max’s case, these are
patcher files you wish to use as a starting point for further work.

Here are the files you might see in a typical templates folder:

v [templates

audiostart.pat
big-dial-in-the-middle.pat
bigpatcher.pat

v [colors

kiwi.pat

lime.pat

pink.pat

taupe.pat

A

[| B

The New submenu of the File menu in Max reflects this organization as shown below.
Templates appear in the New menu below Patcher, Table, Text and Timeline.

l Patcher ¥N
. Table 3 |
Text [{:1]
Timeline e
f audiostart
big-dial-in-the-middle 05 Cyeling "7 /£ IR

b installed

bigpatcher |
colors _. kiwi

TS, 2005, 3 2¥AM lime

Jul 19, 2005, 3:21 AM pink

jul 19, 2005, 3:21 AM taupe

Jul 19, 2005, 3:00 .ﬂ.MJ T

When you choose one of these items in the New menu, the patcher file is opened, but the
window is untitled, unlocked, and not marked as modified. Here is the audiostart patcher
opened as a Template (we’ve made it smaller to fit on the page):

Sd0O6 Untitled -
N | o | o 0 O 9

Co—

- |

Ob ject Box P

The idea of the audiostart template file is that pretty much every audio patch you make

will have a dac~ object, some gain~ sliders, a toggle to start audio etc. Why put them in
your patch manually each time?

Other templates might save particular sizes and shapes of patcher windows or include a
particular color background (that’s what the user did above with the colors folder). We're
sure you'll think of other Templates that will be useful starting points. For example, if you
write plug-ins, you could create a template with the plugin~, plugout~, and plugconfig
objects as well as the testing mechanisms you commonly use.

If you want to modify a template file, choose Open from the File menu and navigate to
the templates folder inside the patches folder inside the application folder. Only when
opened via the New menu do Template files behave differently.

Shortcuts

Max power-user Jasch created an object called _ (underscore) that did exactly what the
prepend object did with “set” as an argument because he was tired of typing “prepend set”
all thetime. Inspired by his efforts to reduce RSI among Max users, we have added the
ability to set up text macros for things you type into object boxes. As you’ d expect,
version 4.5.5 comes with Jasch’ s underscore shortcut. To try it out, create a new object
box, then type the underscore character followed by the Escape key (ESC). The
underscore will be replaced by “prepend set” and the insertion point will be after the
word set (in the unlikely event you want to type something else).

Another example: let’s say you do alot of work with multichannel audio 1/0. Now you
cantypede6 <ESC>insteadof dac~ 1 2 3 4 5 6.

To add your own shortcuts, you place a message to the max object in atext filein the init
folder asfollows:

max shortcut <shortcut-text> <replacement-text>;

The shortcut text must be a single symbol, which meansif you want to include a spacein
the shortcut, you will need to put all of the text in double quotes. The replacement text
does not need quotes around spaces. For example, to replace underscore with prepend set,
you would add the following message to atext filein the init folder:

max shortcut prepend set;

Examine the files max-shortcuts.txt and audio-shortcuts.txt in the init folder for examples
and inspiration.

Clippings (Paste From...)

Many people end up patching the same little things every time they use Max. It doesn’t
help that much to use a subpatcher or abstraction for these “bits of code” because you
often want them in the same patcher that you're working on. Abstractions have the
disadvantage that they can’t be modified easily. And both subpatchers and abstractions
put the commonly used group of objects in a different window where it’s hard to get to
them.

If you find yourself repeating the same patch over and over again, you might the new
clippings folder, located in the patches folder inside the Max application folder. The
contents of the clippings folder is added to submenus of a new Paste From... item in the
patcher contextual menu. Perhaps you've never even used the patcher contextual menu,

but we think you should consider checking it out, because Paste From... could save you a
lot of time. Paste From... pastes the contents of a patcher file right into the patcher you're
working on, with the top-left corner of the patcher window located at the current cursor
position (i.e., where you clicked to obtain the contextual menu).

To obtain the patcher contextual menu, control- (Mac) or right- (Windows) click in a
blank space in an unlocked patcher (i.e., not on an object or patch cord). Paste From... is
the last item and its submenu will list all of the patchers in the clippings folder.

Choose one of the items in the submenu. Its contents will be pasted at the location you
clicked to get the submenu. For example, consider the following patcher window:

R
M O O pasty O

1 N 3 O

We saved the above window as a file called pasty in the clippings folder inside the patches
folder in the Max/MSP application folder.

Now we can use Paste From... to put this into another patcher, which could really use
some random notes.

@ O O Untitled &

rmakenote 20 100

Control- or right-click to obtain the Patcher Contextual Menu. Then choose pasty from
the Paste From... submenu. The objects in pasty appear where you clicked.

@)) Untitled =

o | O Y

The Paste From... menu contents from the clippings folder contains some very basic
ideas to get you started. You can use the Other... item to open any patcher and paste its
contents into the patcher you’re working on.

Prototypes

Prototypes transform individual user interface objects with commonly used combinations
of settings.

Some of the newer Max user interface objects have a fair amount of tweaky
configurations you can set in an Inspector window. In particular, you can make beautiful
sliders and dials with objects such as pictslider and pictctrl, but once you’ve made them,
they’re probably sitting in a patcher somewhere. You have to remember where the
patcher is, copy the object out of the file, and then paste it into the patcher you're editing.
Or, often as not, recreate the object from scratch.

Prototypes turn retrieving pre-configured user interface objects into a one-step process.
Prototypes contain all of the settings for an object that you would otherwise set one at a
time in the object’s Inspector window.

Prototypes can be applied to all user interface objects except object boxes.

When you move the mouse over a user interface object’s icon in the patcher window
palette or scroll through the menu of icons to the right of the palette, you'll see that some
objects have a number of prototypes listed in parentheses after the object description in
the assistance area of the patcher window. For example, the text below will tell you that

the pictctrl object has one prototype:
Picture Control (1 Prototype)

When you create a new pictctrl object, you'll get a default object. It has a generic size, no
associated picture, and no behavioral settings. It’s pretty useless. But it can instantly be
made useful by selecting one of the object’s prototypes. Here’s how you do it:

When creating a new object, position the cursor where you want the object to go, then
click. But instead of releasing the button as you normally would do, hold it down for a
second or so. You'll see a menu listing all of the available prototypes. Choose one and the
prototype will be applied instantly to the object.

CCCOCCC
furnidial
Xtyz

o Atany time after creating an object, select the object and choose an item from the
Prototypes submenu of the Object menu. The prototype you choose will be applied to
the selected object.

Respond to Click

Include in Background
Remove from Background
Save Prototype...
Prototypes CCCCee
fundial
Xlyz

o Use the object contextual menu to obtain the Prototypes submenu when control- or
right-clicking on an object in a patcher. The prototype you choose is applied to the
object on which you clicked.

Applying a prototype is undo-able, but you can only apply a prototype to one object at a
time.

Saving Prototypes

Once you have a collection of object settings that you like, you can save it as a prototype

to use later. Select the object you want to save and choose Save Prototype... from the
Object menu.

s

® A6 Save Prototype

Prototype Name | fundiall Save
dial

[] Include Data

Name the prototype in the window that appears, then click the Save button. Your
prototype is saved in a subfolder of the object-prototypes folder.

If you use an object with a prototype in a patcher you save, you don’t need to worry about
keeping the prototype around for the next time you open the patcher. The prototype
feature is really an editing tool, it merely replaces the object you have with a new object
that is created according to the instructions in the prototype file. In other words, unlike
an “abstraction” a prototype is not a reference to an object. If you save over an existing
prototype, all of the objects that were created with that prototype will be unaffected.

Prototypes and Object Data

A prototype can contain preset data from an object—check Include Data before saving
the prototype. The data in the existing object is always replaced, either by the preset data
in the prototype, or by the default data. In some cases, the “data” of an object is not
necessarily its preset data. For example, the text of menu items for the umenu and ubumenu
objects is saved with an object in a patcher, not in a preset (the current menu item
selected is saved in a preset).

An object’s connections, patcher scripting name (if any), and imageburger are preserved
when a prototype is applied.

10

Prototypes for the bpatcher Object

One of the most powerful uses of the Prototype feature is its ability to create a collection
of commonly used patcher elements using bpatcher objects. The prototype will save the
current settings of the bpatcher (for example, the visible area of its client patcher). This
could be useful if you are trying to create a catalog of visual “components” that you want
to patch together.

Confused About All the New Editing Features?

This handy comparison chart might be helpful.

Feature Location Applies To... How to Use Useful For...
Templates :patches:templates Entire patcher Choose from File- | Creating
windows >New menu common starting
points
Shortcuts Init folder in Cycling Text in object Type shortcut Reducing
’74 folder boxes then press the Esc | excessive typing
key of object names
and arguments
Clippings :patches:clippings Inserts a patcher’s | In an unlocked Adding
contents in patcher, control- commonly used
another patcher or Right-clickon | groups of objects
blank space to get | to patches
a menu, then
choose an item in
the Paste From...
submenu
Prototypes :patches:object- Individual user Select an object, Creating pre-
prototypes interface objects then choose configured user
Prototypes from interface
the Object menu elements

Encapsulation and De-Encapsulation

Have you ever wanted to clean up a patch you are making by putting a group of objects in

a subpatcher? Now you can do it in two steps.

11

« Simply choose the objects you wish to place in the subpatcher.

o Then, choose Encapsulate from the Edit menu.

® O O [sub patch] o

CCO OB ARy
||:Irunk a0 3

K

counter 1 40

T ———————
The objects are swept into a newly created subpatcher, inlet and outlet objects are added

as appropriate. Don’t like what happened? You can undo it.

The inverse operation is also possible. Sometimes objects stuck in a subpatcher are
bothersome when trying to manage two windows to keep track of everything. You can
now bring objects in a subpatcher “home” to their parent patcher with the De-encapsulate
feature.

12

o Select a subpatcher

o Choose De-encapsulate from the Edit menu.

po]

trigger b b

|drunk 303

counter 1 40

po | RO |

The subpatcher disappears and its contents are placed in the parent patcher, preserving
any existing connections. De-encapsulation can be undone too.

New from Clipboard and the Text Clipboard
Has someone ever sent you (or posted) a patch as text you wanted to try? Previously you
had to copy the text, paste it into a file, save the file, switch to Max, locate the file, and

open it. Now the procedure is simpler:

« Copy the text in your e-mail program

13

o Switch to (or launch) Max
o Choose New from Clipboard from the File menu

Voila, there’s your patch in an untitled window. A window created via New from

Clipboard is set as modified, so you will be reminded to save it when you close it or quit
Max.

More generally, we’ve changed the way patch data is stored on the Clipboard. It is now
always saved as text. This means you can do fun things like copy an object, paste it into a
Text window in Max, modify the saved data (assuming you know what you’re doing),
Copy the modified text, and paste it back into a patcher. Perhaps you want to make a
change to a large group of objects (for example, change every instance of jit.qt.movie to
242 film). A text editor is an ideal way to do this, and now such an operation is relatively
painless (however, you shouldn’t do this kind of editing unless you know what you're
doing—or can make a reasonable guess).

New from Clipboard is enabled if there is any text on the Clipboard, whether it is patch
data or not. An analysis is performed on the data.

o Ifitisa patcher, it is treated as a file and a new patcher is created (assuming there are
no problems with the text).

o Ifitis part of a patcher (for example, if you've just copied a couple of objects from a
patcher, New from Clipboard creates a new patcher window and pastes them into it.

« Ifthe clipboard just contains some random text, a new Text window is created.

Changes to Patcher Selection of Text Objects

Storing data from objects in a patcher that you copy as text exposed an ambiguity about
selection in a patcher. When you click on an object box to select it, have you selected the
box or the text inside the box? Previously, Max copied both the box and the text inside it,
and pasted the thing that was appropriate depending on whether text was selected in a
box when you chose Paste from the Edit menu.

However, this strategy doesn’t work in a world where all the data is text and data can
arrive from anywhere. Therefore, we've tightened the rules about selecting text in an
object box and the new regime may take some getting used to. We think you’ll eventually
prefer the more standardized approach we’ve adopted. In addition, we’ve provided a
couple of options you can play with to make the patcher selection behavior more or less
standard.

14

Text objects in a patcher are the object box, message box, and comment. The remarks
below about “text objects” apply to all three of these objects.

For Mac OS X users, the difference between selecting a text object as a whole and having
its text selected for editing is the same as the difference between selecting a file in the
Finder for performing some kind of operation (Open, Move to Trash etc.) versus
selecting the file’s name to change it.

The Way It Used to Work

To select a text object for editing, you used to be able to drag around the object or click
directly on it. Visually, the object would show the text selected transparently as shown
below.

counter

However, when multiple objects were selected, the selection changed to a dark gray
transparent overlay, as shown below.

counter

There was a bug where you could get a single text object into this “selected as a whole”
state by selecting two objects, then shift-selecting one of them to unselect it. The
remaining object could not be edited by typing or clicking until you unselected it and
clicked on it again.

The Way It Works Now (With Options)

When a box appears selected for text editing, and you copy or cut it, you copy the text
inside of the box to the clipboard, not the data for recreating the box.

When the box is selected “as a whole” the box itself is copied to the clipboard (i.e., the
data for recreating the box) so you could paste a copy of the object somewhere else.

Previous versions of Max did both types of copying when an object was selected for text
editing. Sort of. Now, Max explicitly copies both the text inside the box and the box as a
whole. When you have clicked inside an text object to select the text for editing, the text
from an object you copied will be pasted. Otherwise the object as a whole will be pasted.

15

Clicking on a text object selects the text inside of it for editing. If you click and drag the
box somewhere before releasing the button, it will not be enabled for text editing (at least
visually).

Dragging around a box to select it does not select the text inside for editing (at least
visually).

When the Typing Automatically Edits Selected Box option is on (which it is by default),
typing in an unlocked patch will route key presses to the selected text object and enable it
for editing even if it is selected as-a-whole. When it is off, the text must be visually selected
(as shown below) or there must be an insertion point in the text before you can edit it by

typing.

|cnunter J |cnunter J

When the Select Text on Click option is on (which it is by default), clicking on a box
without moving it immediately selects the text for text editing. When it is off, clicking on
a box always selects it as-a-whole. Clicking on it again, selects all of the text, and clicking
on it yet again moves the insertion point to the place you clicked. This behavior is
consistent with the Mac OS X Finder.

A nice addition to all of this is the change to the role of the Enter key (on both Mac and
Windows). The Enter key now enters and exits text editing mode for a text object. Let’s
say you have an object selected as a whole...

counter

Press Enter and the box’s contents are now ready to be edited as text.

counter

Press Enter again and your changes (if any) are updated. The object is selected as a whole
again. Pressing Enter moves between the two selection modes.

Note that Windows XP machines only have an Enter key while Mac OS X machines have
separate Return and Enter keys. On Windows XP the Enter key functions as the Mac OS
X Return key and Shift+Enter functions as the Mac OS X Enter key. So, on Windows XP
pressing Enter adds a new line while editing the text of a text object, and pressing
Shift+Enter toggles between text selection and box selection modes.

16

An Editing Options patcher has been added to the Options menu, for changing the
settings of Select Text on Click and Typing Automatically Edits Selected Box.

New Max/MSP Objects

jstrigger

mx;j~

slide

The jstrigger object combines the trigger and expr objects using
Javascript. Unlike either of these objects, you can create and output
lists in response to input. The jstrigger object is less efficient than
the trigger object, but if you are trying to express a complex
sequence of operations, you may be able to express a solution
without resorting to real Javascript, Java, or C code.

The new mxj~ object allows you to write signal processing code in
Java. There are two Java classes you subclass in order to write your
code, as well as an innovative dynamic patching system built into
the implementation. Another thing that mere mortal programmers
will appreciate is that if your code crashes, the mxj~ object stops
working, but Max continues to run—and even continues to process
audio. For details on both mxj and mxj~ refer to the new
WritingExternalsInJava documentation found in the java-doc
folder inside the Max/MSP application folder. In addition, you’ll
see illustrations of how to write DSP code in Java in the mxj~
examples folder inside the java-doc folder.

The slide object acts as a filter for numbers. For details, see the Max
Reference Manual entry for the object.

Highlights of Changes to Max/MSP Objects

js and jsui

mxj

pattrstorage

The Javascript objects js and jsui can now execute in the high
priority thread using the new immediate property of functions. In
addition, new capabilities have been added for saving object state,
defining attributes, and sending messages to named objects. For
complete details, refer to the revised JavascriptinMax
documentation.

Java classes can now be loaded from the same directory as your
patcher or any subdirectory.

Numerous improvements including support for attributes, support

for ISO-Latinl character sets, preset data editing, and a new
message grab that sucks the data out of all the object’s clients.

17

18

	New Editing Features: Templates, Shortcuts, Clippings, and Prototypes
	Templates
	Shortcuts
	Clippings (Paste From…)
	Prototypes
	Saving Prototypes
	Prototypes and Object Data
	Prototypes for the bpatcher Object

	Confused About All the New Editing Features?
	Encapsulation and De-Encapsulation
	New from Clipboard and the Text Clipboard
	Changes to Patcher Selection of Text Objects
	The Way It Used to Work
	The Way It Works Now (With Options)

	New Max/MSP Objects
	Highlights of Changes to Max/MSP Objects

