
MSP

Tutorials and Topics
Version 4.6/20 June 2006

2

Copyright and Trademark Notices

This manual is copyright © 2000-2006 Cycling ’74.

MSP is copyright © 1997-2006 Cycling ’74—All rights reserved. Portions of MSP are
based on Pd by Miller Puckette, © 1997 The Regents of the University of California. MSP
and Pd are based on ideas in FTS, an advanced DSP platform © IRCAM.

Max is copyright © 1990-2006 Cycling ’74/IRCAM, l’Institut de Récherche et
Coordination Acoustique/Musique.

VST is a trademark of Steinberg Soft- und Hardware GmbH.

ReWire is a trademark of Propellerhead Software AS.

Credits

Original MSP Documentation: Chris Dobrian

Audio I/O: David Zicarelli, Andrew Pask, Darwin Grosse

MSP Reference: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno, Richard
Dudas, R. Luke DuBois, Andrew Pask

MSP Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua
Kit Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Table of Contents

3

Copyright and Trademark Notices... 2
Credits .. 2

Introduction ...9
Signal processing in Max.. 9
How To Use This Manual .. 11
Reading the manual online .. 11
Other Resources for MSP Users.. 11

How Digital Audio Works ... 13
Sound.. 13

Simple harmonic motion... 13
Complex tones ... 15
Harmonic tones ... 17
Inharmonic tones and noise ... 19
Amplitude envelope.. 19
Amplitude and loudness.. 20

Digital representation of sound .. 21
Sampling and quantizing a sound wave ... 21

Limitations of digital audio.. 23
Sampling rate and Nyquist rate.. 23
Precision of quantization... 25
Memory and storage... 27
Clipping... 27

Advantages of digital audio.. 28
Synthesizing digital audio.. 28
Manipulating digital signals.. 29

How MSP Works: Max Patches and the MSP Signal Network ... 30
Introduction.. 30
Audio rate and control rate.. 31
The link between Max and MSP ... 32
Limitations of MSP.. 33
Advantages of MSP.. 35

Audio I/O: Audio input and output with MSP... 36
The DSP Status Window .. 36
About Logical Input and Output Channels.. 43
Using Core Audio on Macintosh.. 46
Using MME Audio and DirectSound on Windows.. 48

Using MME and DirectSound Drivers on with MSP on Windows.......................... 49
Input and Output Devices... 51
Thread Priority and Latency Settings.. 51

Using ReWire with MSP... 51

Table of Contents

4

Inter-application Synchronization and MIDI in ReWire ... 52
Using ASIO on Windows... 53
Controlling ASIO Drivers with Messages to the dsp Object on Windows 54
Working in Non-Real Time with MSP.. 55

Tutorial 1: Fundamentals—Test tone.. 57
MSP objects are pretty much like Max objects .. 57
...but they’re a little different.. 57
...so they look a little different ... 58
Digital-to-analog converter: dac~ .. 58
Wavetable synthesis: cycle~... 59
Starting and stopping signal processing.. 60
Listening to the Test Tone.. 60
Troubleshooting... 60

Tutorial 2: Fundamentals—Adjustable oscillator ... 62
Amplifier: *~ ... 62
Line segment generator: line~... 63
Adjustable oscillator .. 65
Fade In and Fade Out.. 66

Tutorial 3: Fundamentals—Wavetable oscillator ... 68
Audio on/off switch: ezdac~.. 68
A stored sound: buffer~.. 68
Create a breakpoint line segment function with line~ ... 69
Other signal generators: phasor~ and noise~ .. 70
Add signals to produce a composite sound .. 71

Tutorial 4: Fundamentals—Routing signals... 74
Remote signal connections: send~ and receive~... 74
Routing a signal: gate~.. 75
Wave interference .. 75
Amplitude and relative amplitude.. 77
Constant signal value: sig~... 78
Changing the phase of a waveform .. 80
Receiving a different signal .. 82

Tutorial 5: Fundamentals—Turning signals on and off ... 84
Turning audio on and off selectively.. 84
Selecting one of several signals: selector~ ... 85
Turning off part of a signal network: begin~ ... 87
Disabling audio in a Patcher: mute~ and pcontrol ... 88

Tutorial 6: A Review of Fundamentals.. 93
Exercises in the fundamentals of MSP... 93

Exercise 1 .. 93
Exercise 2 .. 93

Table of Contents

5

Exercise 3 .. 94
Solution to Exercise 1 ... 94

Solution to Exercise 2.. 97
Solution to Exercise 3.. 98

Tutorial 7: Synthesis—Additive synthesis.. 99
Combining tones.. 99
Envelope generator: function ..100
A variety of complex tones...101
Experiment with complex tones ...102

Tutorial 8: Synthesis—Tremolo and ring modulation.. 104
Multiplying signals ..104
Tremolo..105
Sidebands...106

Tutorial 9: Synthesis—Amplitude modulation ... 108
Ring modulation and amplitude modulation ..108
Implementing AM in MSP...110
Achieving different AM effects ...110

Tutorial 10: Synthesis—Vibrato and FM .. 112
Basic FM in MSP..112

Tutorial 11: Synthesis—Frequency modulation.. 114
Elements of FM synthesis...114
An FM subpatch: simpleFM~..115
Producing different FM tones ...116

Tutorial 12: Synthesis—Waveshaping... 119
Using a stored wavetable ..119
Table lookup: lookup~..119
Varying timbre with waveshaping..120

Tutorial 13: Sampling—Recording and playback .. 124
Sound input: adc~..124
Recording a sound: record~...125
Reading through a buffer~: index~..126
Variable speed playback: play~ ...127

Tutorial 14: Sampling—Playback with loops.. 130
Playing samples with groove~...130

Tutorial 15: Sampling—Variable-length wavetable.. 133
Use any part of a buffer~ as a wavetable: wave~ ...133
Synthesis with a segment of sampled sound...133
Using wave~ as a transfer function ..135
Play the segment as a note..136
Changing the wavetable dynamically...137

Table of Contents

6

Tutorial 16: Sampling—Record and play audio files.. 139
Playing from memory vs. playing from disk ..139
Record audio files: sfrecord~...139
Play audio files: sfplay~...140
Play excerpts on cue ..140
Try different file excerpts ...141
Trigger an event at the end of a file ..141

Tutorial 17: Sampling: Review .. 143
A sampling exercise ...143
Hints ...143
Solution..145

Tutorial 18: MIDI control—Mapping MIDI to MSP ... 148
MIDI range vs. MSP range...148
Controlling synthesis parameters with MIDI ..149
Linear mapping ..150
Mapping MIDI to amplitude...151
Mapping MIDI to frequency ...151
Mapping MIDI to modulation index...152
Mapping MIDI to vibrato...153

Tutorial 19: MIDI control—Synthesizer ... 154
Implementing standard MIDI messages ...154
Polyphony..154
Pitch bend..155
Mod wheel ...156
The FM synthesizer ...156
MIDI-to-frequency conversion...156
Velocity control of amplitude envelope ..157
MIDI control of timbre...159

Tutorial 20: MIDI control—Sampler .. 162
Basic sampler features ...162
Playing a sample: the samplervoice~ subpatch..165
MSP sample rate vs. audio file sample rate ...165
Playing samples with MIDI..167

Tutorial 21: MIDI control—Using the poly~ object.. 169
A different approach to polyphony..169
The poly~ object...170

Tutorial 22—MIDI control: Panning .. 178
Panning for localization and distance effects ...178
Patch for testing panning methods ..178
Linear crossfade..180
Equal distance crossfade...181

Table of Contents

7

Speaker-to-speaker crossfade ..183
Tutorial 23: Analysis—Viewing signal data.. 185

Display the value of a signal: number~..185
Interpolation with number~..188
Peak amplitude: meter~..189
Use a signal to generate Max messages: snapshot~...189
Amplitude modulation ...190
View a signal excerpt: capture~ ..190

Tutorial 24: Analysis—Oscilloscope ... 192
Graph of a signal over time..192
A patch to view different waveforms ...192

Tutorial 25: Analysis—Using the FFT ... 195
Fourier’s theorem...195
Spectrum of a signal: fft~..195
Practical problems of the FFT ...198
Overlapping FFTs ..198
Signal processing using the FFT..200

Tutorial 26: Frequency Domain Signal Processing with pfft~ ... 201
Working in the Frequency Domain ...201

Tutorial 27: Processing—Delay lines ... 220
Effects achieved with delayed signals...220
Creating a delay line: tapin~ and tapout~...220
A patch for mixing original and delayed signals ...221

Tutorial 28: Processing—Delay lines with feedback.. 223
Delay emulates reflection ...223
Delaying the delayed signal..224
Controlling amplitude: normalize~ ...225

Tutorial 29: Processing—Flange... 227
Variable delay time ..227
Flanging: Modulating the delay time ...229
Stereo flange with feedback..229

Tutorial 30: Processing—Chorus... 232
The chorus effect..232
Low-frequency noise: rand~..232
Multiple delays for improved chorus effect ..234

Tutorial 31: Processing—Comb filter... 236
Comb filter: comb~ ...236
Trying out the comb filter ..237
Band-limited pulse...238
Velocity-to-amplitude conversion: gain~...239

Table of Contents

8

Varying parameters to the filter ..240
The dsp Object—Controlling and Automating MSP ... 242

9

Introduction

Signal processing in Max

MSP gives you over 170 Max objects with which to build your own synthesizers,
samplers, and effects processors as software instruments that perform audio signal
processing.

A filter and delay effect processor in MSP

As you know, Max enables you to design your own programs for controlling MIDI
synthesizers, samplers, and effects processors.

MIDI control with Max

Introduction

10

With the addition of the MSP objects, you can also create your own digital audio device
designs— your own computer music instruments—and incorporate them directly into
your Max programs. You can specify exactly how you want your instruments to respond
to MIDI control, and you can implement the entire system in a Max patch.

MIDI control of a parameter of an audio process

MSP objects are connected together by patch cords in the same way as Max objects. These
connected MSP objects form a signal network which describes a scheme for the
production and modification of digital audio signals. (This signal network is roughly
comparable to the instrument definition familiar to users of Music N sound synthesis
languages such as Csound.) The audio signals are played through the audio output jack of
your computer, or through an installed sound card, using CoreAudio on the Macintosh,
MME or DirectSound on Windows, or ASIO on either platform.

Signal network for an FM instrument

Introduction

11

How To Use This Manual

The MSP Documentation contains the following sections:

Digital Audio explains how computers represent sound. Reading this chapter may be
helpful if MSP is your first exposure to digital manipulation of audio. If you already have
experience in this area, you can probably skip this chapter.

How MSP Works provides an overview of the ideas behind MSP and how the software is
integrated into the Max environment. Almost everyone will want to read this brief
chapter.

Audio Input and Output describes MSP support for Core Audio on Macintosh systems,
support for DirectSound on Windows systems, and audio interface cards. It explains how
to use the DSP Status window to monitor and tweak MSP performance.

The MSP Tutorials are over 30 step-by-step lessons in the basics of using MSP to create
digital audio applications. Each chapter is accompanied by a patch found in the MSP
Tutorial folder. If you’re just getting set up with MSP, you should at least check out the
first tutorial, which covers setting up MSP to make sound come out of your computer.

The MSP Object Reference section describes the workings of each of the MSP objects. It’s
organized in alphabetical order.

Reading the manual online

The table of contents of the MSP documentation is bookmarked, so you can view the
bookmarks and jump to any topic listed by clicking on its names. To view the bookmarks,
choose Bookmarks from the Windows menu. Click on the triangle next to each section
to expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat
Reader’s Find command. Choose Find from the Tools menu, then type in a word you’re
looking for. Find will highlight the first instance of the word, and Find Again takes you to
subsequent instances. We’d like to take this opportunity to discourage you from printing
out the manual unless you find it absolutely necessary.

Other Resources for MSP Users

The help files found in the max- help folder provide interactive examples of the use of
each MSP object.

Introduction

12

The Max/MSP Examples folder contains a number of interesting and amusing
demonstrations of what can be done with MSP.

The Cycling ’74 web site provides the latest updates to our software as well as an extensive
list of frequently asked questions and other support information.

Cycling ’74 runs an on-line Max/MSP discussion where you can ask questions about
programming, exchange ideas, and find out about new objects and examples other users
are sharing. For information on joining the discussion, as well as a guide to third-party
Max/MSP resources, visit http://www.cycling74.com/community

Finally, if you’re having trouble with the operation of MSP, send e-mail to
support@cycling74.com, and we’ll try to help you. We’d like to encourage you to submit
questions of a more conceptual nature (“how do I...?”) to the Max/MSP mailing list, so
that the entire community can provide input and benefit from the discussion.

13

How Digital Audio Works

A thorough explanation of how digital audio works is well beyond the scope of this
manual. What follows is a very brief explanation that will give you the minimum
understanding necessary to use MSP successfully.

For a more complete explanation of how digital audio works, we recommend The
Computer Music Tutorial by Curtis Roads, published in 1996 by the MIT Press. It also
includes an extensive bibliography on the subject.

Sound
Simple harmonic motion

The sounds we hear are fluctuations in air pressure—tiny variations from normal
atmospheric pressure—caused by vibrating objects. (Well, technically it could be water
pressure if you’re listening underwater, but please keep your computer out of the
swimming pool.)

As an object moves, it displaces air molecules next to it, which in turn displace air
molecules next to them, and so on, resulting in a momentary “high pressure front” that
travels away from the moving object (toward your ears). So, if we cause an object to
vibrate—we strike a tuning fork, for example—and then measure the air pressure at some
nearby point with a microphone, the microphone will detect a slight rise in air pressure as
the “high pressure front” moves by. Since the tine of the tuning fork is fairly rigid and is
fixed at one end, there is a restoring force pulling it back to its normal position, and
because this restoring force gives it momentum it overshoots its normal position, moves
to the opposite extreme position, and continues vibrating back and forth in this manner
until it eventually loses momentum and comes to rest in its normal position. As a result,
our microphone detects a rise in pressure, followed by a drop in pressure, followed by a
rise in pressure, and so on, corresponding to the back and forth vibrations of the tine of
the tuning fork.

How Digital Audio Works

14

If we were to draw a graph of the change in air pressure detected by the microphone over
time, we would see a sinusoidal shape (a sine wave) rising and falling, corresponding to
the back and forth vibrations of the tuning fork.

Sinusoidal change in air pressure caused by a simple vibration back and forth

This continuous rise and fall in pressure creates a wave of sound. The amount of change
in air pressure, with respect to normal atmospheric pressure, is called the wave’s
amplitude (literally, its “bigness”). We most commonly use the term “amplitude” to refer
to the peak amplitude, the greatest change in pressure achieved by the wave.

This type of simple back and forth motion (seen also in the swing of a pendulum) is called
simple harmonic motion. It’s considered the simplest form of vibration because the object
completes one full back-and-forth cycle at a constant rate. Even though its velocity
changes when it slows down to change direction and then gains speed in the other
direction—as shown by the curve of the sine wave—its average velocity from one cycle to
the next is the same. Each complete vibratory cycle therefore occurs in an equal interval
of time (in a given period of time), so the wave is said to be periodic. The number of cycles
that occur in one second is referred to as the frequency of the vibration. For example, if
the tine of the tuning fork goes back and forth 440 times per second, its frequency is 440
cycles per second, and its period is 1/440 second per cycle.

In order for us to hear such fluctuations of pressure:

• The fluctuations must be substantial enough to affect our tympanic membrane
(eardrum), yet not so substantial as to hurt us. In practice, the intensity of the changes
in air pressure must be greater than about 10-9 times atmospheric pressure, but not
greater than about 10-3 times atmospheric pressure. You’ll never actually need that
information, but there it is. It means that the softest sound we can hear has about one
millionth the intensity of the loudest sound we can bear. That’s quite a wide range of
possibilities.

How Digital Audio Works

15

• The fluctuations must repeat at a regular rate fast enough for us to perceive them as a
sound (rather than as individual events), yet not so fast that it exceeds our ability to
hear it. Textbooks usually present this range of audible frequencies as 20 to 20,000
cycles per second (cps, also known as hertz, abbreviated Hz). Your own mileage may
vary. If you are approaching middle age or have listened to too much loud music, you
may top out at about 17,000 Hz or even lower.

Complex tones

An object that vibrates in simple harmonic motion is said to have a resonant mode of
vibration— a frequency at which it will naturally tend to vibrate when set in motion.
However, most real- world objects have several resonant modes of vibration, and thus
vibrate at many frequencies at once. Any sound that contains more than a single
frequency (that is, any sound that is not a simple sine wave) is called a complex tone. Let’s
take a stretched guitar string as an example.

A guitar string has a uniform mass across its entire length, has a known length since it is
fixed at both ends (at the “nut” and at the “bridge”), and has a given tension depending
on how tightly it is tuned with the tuning peg. Because the string is fixed at both ends, it
must always be stationary at those points, so it naturally vibrates most widely at its center.

A plucked string vibrating in its fundamental resonant mode

The frequency at which it vibrates depends on its mass, its tension, and its length. These
traits stay fairly constant over the course of a note, so it has one fundamental frequency at
which it vibrates.

How Digital Audio Works

16

However, other modes of vibration are still possible.

Some other resonant modes of a stretched string

The possible modes of vibration are constrained by the fact that the string must remain
stationary at each end. This limits its modes of resonance to integer divisions of its length.

This mode of resonance would be impossible because the string is fixed at each end

How Digital Audio Works

17

Because the tension and mass are set, integer divisions of the string’s length result in
integer multiples of the fundamental frequency.

Each resonant mode results in a different frequency

In fact, a plucked string will vibrate in all of these possible resonant modes
simultaneously, creating energy at all of the corresponding frequencies. Of course, each
mode of vibration (and thus each frequency) will have a different amplitude. (In the
example of the guitar string, the longer segments of string have more freedom to vibrate.)
The resulting tone will be the sum of all of these frequencies, each with its own amplitude.

As the string’s vibrations die away due to the damping force of the fixture at each end,
each frequency may die away at a different rate. In fact, in many sounds the amplitudes of
the different component frequencies may vary quite separately and differently from each
other. This variety seems to be one of the fundamental factors in our perception of
sounds as having different tone color (i.e., timbre), and the timbre of even a single note
may change drastically over the course of the note.

Harmonic tones

The combination of frequencies—and their amplitudes—that are present in a sound is
called its spectrum (just as different frequencies and intensities of light constitute a color
spectrum). Each individual frequency that goes into the makeup of a complex tone is
called a partial. (It’s one part of the whole tone.)

How Digital Audio Works

18

When the partials (component frequencies) in a complex tone are all integer multiples of
the same fundamental frequency, as in our example of a guitar string, the sound is said to
have a harmonic spectrum. Each component of a harmonic spectrum is called a harmonic
partial, or simply a harmonic. The sum of all those harmonically related frequencies still
results in a periodic wave having the fundamental frequency. The integer multiple
frequencies thus fuse “harmoniously” into a single tone.

The sum of harmonically related frequencies still repeats at the fundamental frequency

This fusion is supported by the famous mathematical theorem of Jean-Baptiste Joseph
Fourier, which states that any periodic wave, no matter how complex, can be
demonstrated to be the sum of different harmonically related frequencies (sinusoidal
waves), each having its own amplitude and phase. (Phase is an offset in time by some
fraction of a cycle.)

Harmonically related frequencies outline a particular set of related pitches in our musical
perception.

Harmonic partials of a fundamental frequency ƒ, where ƒ = 65.4 Hz = the pitch low C

Each time the fundamental frequency is multiplied by a power of 2—2, 4, 8, 16, etc.—the
perceived musical pitch increases by one octave. All cultures seem to share the perception
that there is a certain “sameness” of pitch class between such octave-related frequencies.
The other integer multiples of the fundamental yield new musical pitches. Whenever
you’re hearing a harmonic complex tone, you’re actually hearing a chord! As we’ve seen,

How Digital Audio Works

19

though, the combined result repeats at the fundamental frequency, so we tend to fuse
these frequencies together such that we perceive a single pitch.

Inharmonic tones and noise

Some objects—such as a bell, for instance—vibrate in even more complex ways, with
many different modes of vibrations which may not produce a harmonically related set of
partials. If the frequencies present in a tone are not integer multiples of a single
fundamental frequency, the wave does not repeat periodically. Therefore, an inharmonic
set of partials does not fuse together so easily in our perception. We may be able to pick
out the individual partials more readily, and—especially when the partials are many and
are completely inharmonic—we may not perceive the tone as having a single discernible
fundamental pitch.

When a tone is so complex that it contains very many different frequencies with no
apparent mathematical relationship, we perceive the sound as noise. A sound with many
completely random frequencies and amplitudes—essentially all frequencies present in
equal proportion—is the static-like sound known as white noise (analogous to white light
which contains all frequencies of light).

So, it may be useful to think of sounds as existing on a continuum from total purity and
predictability (a sine wave) to total randomness (white noise). Most sounds are between
these two extremes. An harmonic tone—a trumpet or a guitar note, for example—is on
the purer end of the continuum, while a cymbal crash is closer to the noisy end of the
continuum. Timpani and bells may be just sufficiently suggestive of a harmonic spectrum
that we can identify a fundamental pitch, yet they contain other inharmonic partials.
Other drums produce more of a band-limited noise—randomly related frequencies, but
restricted within a certain frequency range—giving a sense of pitch range, or non-specific
pitch, rather than an identifiable fundamental. It is important to keep this continuum in
mind when synthesizing sounds.

Amplitude envelope

Another important factor in the nearly infinite variety of sounds is the change in over-all
amplitude of a sound over the course of its duration. The shape of this macroscopic over-
all change in amplitude is termed the amplitude envelope. The initial portion of the
sound, as the amplitude envelope increases from silence to audibility, rising to its peak
amplitude, is known as the attack of the sound. The envelope, and especially the attack, of
a sound are important factors in our ability to distinguish, recognize, and compare
sounds. We have very little knowledge of how to read a graphic representation of a sound
wave and hear the sound in our head the way a good sightreader can do with musical
notation.

How Digital Audio Works

20

However, the amplitude envelope can at least tell us about the general evolution of the
loudness of the sound over time.

The amplitude envelope is the evolution of a sound’s amplitude over time

Amplitude and loudness

The relationship between the objectively measured amplitude of a sound and our
subjective impression of its loudness is very complicated and depends on many factors.
Without trying to explain all of those factors, we can at least point out that our sense of
the relative loudness of two sounds is related to the ratio of their intensities, rather than
the mathematical difference in their intensities. For example, on an arbitrary scale of
measurement, the relationship between a sound of amplitude 1 and a sound of amplitude
0.5 is the same to us as the relationship between a sound of amplitude 0.25 and a sound of
amplitude 0.125. The subtractive difference between amplitudes is 0.5 in the first case and
0.125 in the second case, but what concerns us perceptually is the ratio, which is 2:1 in
both cases.

Does a sound with twice as great an amplitude sound twice as loud to us? In general, the
answer is “no”. First of all, our subjective sense of “loudness” is not directly proportional
to amplitude. Experiments find that for most listeners, the (extremely subjective)
sensation of a sound being “twice as loud” requires a much greater than twofold increase
in amplitude. Furthermore, our sense of loudness varies considerably depending on the
frequency of the sounds being considered. We’re much more sensitive to frequencies in
the range from about 300 Hz to 7,000 Hz than we are to frequencies outside that range.
(This might possibly be due evolutionarily to the importance of hearing speech and many
other important sounds which lie mostly in that frequency range.)

Nevertheless, there is a correlation—even if not perfectly linear—between amplitude and
loudness, so it’s certainly informative to know the relative amplitude of two sounds. As
mentioned earlier, the softest sound we can hear has about one millionth the amplitude of
the loudest sound we can bear. Rather than discuss amplitude using such a wide range of

How Digital Audio Works

21

numbers from 0 to 1,000,000, it is more common to compare amplitudes on a logarithmic
scale.

The ratio between two amplitudes is commonly discussed in terms of decibels
(abbreviated dB). A level expressed in terms of decibels is a statement of a ratio
relationship between two values—not an absolute measurement. If we consider one
amplitude as a reference which we call A0, then the relative amplitude of another sound
in decibels can be calculated with the equation:

level in decibels = 20 log10 (A/A0)

If we consider the maximum possible amplitude as a reference with a numerical value of
1, then a sound with amplitude 0.5 has 1/2 the amplitude (equal to 10-0.3) so its level is

20 log10 (0.5/1) _ 20 (-0.3) = -6 dB

Each halving of amplitude is a difference of about -6 dB; each doubling of amplitude is an
increase of about 6 dB. So, if one amplitude is 48 dB greater than another, one can
estimate that it’s about 28 (256) times as great.

Summary

A theoretical understanding of sine waves, harmonic tones, inharmonic complex tones,
and noise, as discussed here, is useful to understanding the nature of sound. However,
most sounds are actually complicated combinations of these theoretical descriptions,
changing from one instant to another. For example, a bowed string might include noise
from the bow scraping against the string, variations in amplitude due to variations in bow
pressure and speed, changes in the prominence of different frequencies due to bow
position, changes in amplitude and in the fundamental frequency (and all its harmonics)
due to vibrato movements in the left hand, etc. A drum note may be noisy but might
evolve so as to have emphases in certain regions of its spectrum that imply a harmonic
tone, thus giving an impression of fundamental pitch. Examination of existing sounds,
and experimentation in synthesizing new sounds, can give insight into how sounds are
composed. The computer provides that opportunity.

Digital representation of sound
Sampling and quantizing a sound wave

To understand how a computer represents sound, consider how a film represents motion.
A movie is made by taking still photos in rapid sequence at a constant rate, usually
twenty-four frames per second. When the photos are displayed in sequence at that same
rate, it fools us into thinking we are seeing continuous motion, even though we are
actually seeing twenty-four discrete images per second. Digital recording of sound works

How Digital Audio Works

22

on the same principle. We take many discrete samples of the sound wave’s instantaneous
amplitude, store that information, then later reproduce those amplitudes at the same rate
to create the illusion of a continuous wave.

The job of a microphone is to transduce (convert one form of energy into another) the
change in air pressure into an analogous change in electrical voltage. This continuously
changing voltage can then be sampled periodically by a process known as sample and
hold. At regularly spaced moments in time, the voltage at that instant is sampled and held
constant until the next sample is taken. This reduces the total amount of information to a
certain number of discrete voltages.

Time-varying voltage sampled periodically

A device known as an analog-to-digital converter (ADC) receives the discrete voltages
from the sample and hold device, and ascribes a numerical value to each amplitude. This
process of converting voltages to numbers is known as quantization. Those numbers are
expressed in the computer as a string of binary digits (1 or 0). The resulting binary
numbers are stored in memory — usually on a digital audio tape, a hard disk, or a laser
disc. To play the sound back, we read the numbers from memory, and deliver those
numbers to a digital-to-analog converter (DAC) at the same rate at which they were
recorded. The DAC converts each number to a voltage, and communicates those voltages
to an amplifier to increase the amplitude of the voltage.

 In order for a computer to represent sound accurately, many samples must be taken per
second— many more than are necessary for filming a visual image. In fact, we need to
take more than twice as many samples as the highest frequency we wish to record. (For an
explanation of why this is so, see Limitations of Digital Audio on the next page.) If we
want to record frequencies as high as 20,000 Hz, we need to sample the sound at least
40,000 times per second. The standard for compact disc recordings (and for “CD-quality”
computer audio) is to take 44,100 samples per second for each channel of audio. The
number of samples taken per second is known as the sampling rate.

This means the computer can only accurately represent frequencies up to half the
sampling rate. Any frequencies in the sound that exceed half the sampling rate must be
filtered out before the sampling process takes place. This is accomplished by sending the
electrical signal through a low-pass filter which removes any frequencies above a certain

How Digital Audio Works

23

threshold. Also, when the digital signal (the stream of binary digits representing the
quantized samples) is sent to the DAC to be re-converted into a continuous electrical
signal, the sound coming out of the DAC will contain spurious high frequencies that were
created by the sample and hold process itself. (These are due to the “sharp edges” created
by the discrete samples, as seen in the above example.) Therefore, we need to send the
output signal through a low-pass filter, as well.

The digital recording and playback process, then, is a chain of operations, as represented
in the following diagram.

Digital recording and playback process

Limitations of digital audio
Sampling rate and Nyquist rate

We’ve noted that it’s necessary to take at least twice as many samples as the highest
frequency we wish to record. This was proven by Harold Nyquist, and is known as the
Nyquist theorem. Stated another way, the computer can only accurately represent
frequencies up to half the sampling rate. One half the sampling rate is often referred to as
the Nyquist frequency or the Nyquist rate.

If we take, for example, 16,000 samples of an audio signal per second, we can only capture
frequencies up to 8,000 Hz. Any frequencies higher than the Nyquist rate are perceptually
“folded” back down into the range below the Nyquist frequency. So, if the sound we were
trying to sample contained energy at 9,000 Hz, the sampling process would misrepresent
that frequency as 7,000 Hz—a frequency that might not have been present at all in the
original sound. This effect is known as foldover or aliasing. The main problem with

How Digital Audio Works

24

aliasing is that it can add frequencies to the digitized sound that were not present in the
original sound, and unless we know the exact spectrum of the original sound there is no
way to know which frequencies truly belong in the digitized sound and which are the
result of aliasing. That’s why it’s essential to use the low-pass filter before the sample and
hold process, to remove any frequencies above the Nyquist frequency.

To understand why this aliasing phenomenon occurs, think back to the example of a film
camera, which shoots 24 frames per second. If we’re shooting a movie of a car, and the car
wheel spins at a rate greater than 12 revolutions per second, it’s exceeding half the
“sampling rate” of the camera. The wheel completes more than 1/2 revolution per frame.
If, for example it actually completes 18/24 of a revolution per frame, it will appear to be
going backward at a rate of 6 revolutions per second. In other words, if we don’t witness
what happens between samples, a 270˚ revolution of the wheel is indistinguishable from a
-90˚ revolution. The samples we obtain in the two cases are precisely the same.

For the camera, a revolution of 18/24 is no different from a revolution of -6/24

For audio sampling, the phenomenon is practically identical. Any frequency that exceeds
the Nyquist rate is indistinguishable from a negative frequency the same amount less than
the Nyquist rate. (And we do not distinguish perceptually between positive and negative
frequencies.) To the extent that a frequency exceeds the Nyquist rate, it is folded back
down from the Nyquist frequency by the same amount.

For a demonstration, consider the next two examples. The following example shows a
graph of a 4,000 Hz cosine wave (energy only at 4,000 Hz) being sampled at a rate of
22,050 Hz. 22,050 Hz is half the CD sampling rate, and is an acceptable sampling rate for
sounds that do not have much energy in the top octave of our hearing range.

How Digital Audio Works

25

In this case the sampling rate is quite adequate because the maximum frequency we are
trying to record is well below the Nyquist frequency.

A 4,000 Hz cosine wave sampled at 22,050 Hz

Now consider the same 4,000 Hz cosine wave sampled at an inadequate rate, such as
6,000 Hz. The wave completes more than 1/2 cycle per sample, and the resulting samples
are indistinguishable from those that would be obtained from a 2,000 Hz cosine wave.

A 4,000 Hz cosine wave undersampled at 6,000 Hz

The simple lesson to be learned from the Nyquist theorem is that digital audio cannot
accurately represent any frequency greater than half the sampling rate. Any such
frequency will be misrepresented by being folded over into the range below half the
sampling rate.

Precision of quantization

Each sample of an audio signal must be ascribed a numerical value to be stored in the
computer. The numerical value expresses the instantaneous amplitude of the signal at the
moment it was sampled. The range of the numbers must be sufficiently large to express
adequately the entire amplitude range of the sound being sampled.

The range of possible numbers used by a computer depends on the number of binary
digits (bits) used to store each number. A bit can have one of two possible values: either 1
or 0. Two bits together can have one of four possible values: 00, 01, 10, or 11. As the
number of bits increases, the range of possible numbers they can express increases by a
power of two. Thus, a single byte (8 bits) of computer data can express one of 28 = 256
possible numbers. If we use two bytes to express each number, we get a much greater
range of possible values because 216 = 65,536.

How Digital Audio Works

26

The number of bits used to represent the number in the computer is important because it
determines the resolution with which we can measure the amplitude of the signal. If we
use only one byte to represent each sample, then we must divide the entire range of
possible amplitudes of the signal into 256 parts since we have only 256 ways of describing
the amplitude.

Using one byte per sample, each sample can have one of only 256 different possible values

For example, if the amplitude of the electrical signal being sampled ranges from -10 volts
to +10 volts and we use one byte for each sample, each number does not represent a
precise voltage but rather a 0.078125 V portion of the total range. Any sample that falls
within that portion will be ascribed the same number. This means each numerical
description of a sample’s value could be off from its actual value by as much as
0.078125V—1/256 of the total amplitude range. In practice each sample will be off by some
random amount from 0 to 1/256 of the total amplitude range. The mean error will be 1/512 of
the total range.

This is called quantization error. It is unavoidable, but it can be reduced to an acceptable
level by using more bits to represent each number. If we use two bytes per sample, the
quantization error will never be greater than 1/65,536 of the total amplitude range, and the
mean error will be 1/131,072.

Since the quantization error for each sample is usually random (sometimes a little to high,
sometimes a little too low), we generally hear the effect of quantization error as white
noise. This noise is not present in the original signal. It is added into the digital signal by
the imprecise nature of quantization. This is called quantization noise.

The ratio of the total amplitude range to the quantization error is called the signal-to-
quantization- noise-ratio (SQNR). This is the ratio of the maximum possible signal
amplitude to the average level quantization of the quantization noise, and is usually stated
in decibels.

As a rule of thumb, each bit of precision used in quantization adds 6 dB to the SQNR.
Therefore, sound quantized with 8-bit numerical precision will have a best case SQNR of
about 48 dB. This is adequate for cases where fidelity is not important, but is certainly not
desirable for music or other critical purposes. Sound sampled with 16-bit precision (“CD-

How Digital Audio Works

27

quality”) has a SQNR of 96 dB, which is quite good—much better than traditional tape
recording.

In short, the more bits used by the computer to store each sample, the better the potential
ratio of signal to noise.

Memory and storage

We have seen that the standard sampling rate for high-fidelity audio is 44,100 samples per
second. We’ve also seen that 16 bits (2 bytes) are needed per sample to achieve a good
signal-to-noise ratio. With this information we can calculate the amount of data needed
for digital audio: 41,000 samples per second, times 2 bytes per sample, times 2 channels
for stereo, times 60 seconds per minute equals more than 10 megabytes of data per
minute of CD-quality audio.

For this quality of audio, a high-density floppy disk holds less than 8 seconds of sound,
and a 100 MB Zip cartridge holds less than 10 minutes. Clearly, the memory and storage
requirements of digital audio are substantial. Fortunately, a compact disc holds over an
hour of stereo sound, and a computer hard disk of at least 1 gigabyte is standard for audio
recording and processing.

Clipping

If the amplitude of the incoming electrical signal exceeds the maximum amplitude that
can be expressed numerically, the digital signal will be a clipped-off version of the actual
sound.

A signal that exceeds maximum amplitude will be clipped when it is quantized

The clipped sample will often sound quite different from the original. Sometimes this
type of clipping causes only a slight distortion of the sound that is heard as a change in
timbre. More often though, it sounds like a very unpleasant noise added to the sound. For
this reason, it’s very important to take precautions to avoid clipping. The amplitude of the
electrical signal should not exceed the maximum expected by the ADC.

How Digital Audio Works

28

It’s also possible to produce numbers in the computer that exceed the maximum expected
by the DAC. This will cause the sound that comes out of the DAC to be a clipped version
of the digital signal. Clipping by the DAC is just as bad as clipping by the ADC, so care
must be taken not to generate a digital signal that goes beyond the numerical range the
DAC is capable of handling.

Advantages of digital audio
Synthesizing digital audio

Since a digital representation of sound is just a list of numbers, any list of numbers can
theoretically be considered a digital representation of a sound. In order for a list of
numbers to be audible as sound, the numerical values must fluctuate up and down at an
audio rate. We can listen to any such list by sending the numbers to a DAC where they
are converted to voltages. This is the basis of computer sound synthesis. Any numbers we
can generate with a computer program, we can listen to as sound.

Many methods have been discovered for generating numbers that produce interesting
sounds. One method of producing sound is to write a program that repeatedly solves a
mathematical equation containing two variables. At each repetition, a steadily increasing
value is entered for one of the variables, representing the passage of time. The value of the
other variable when the equation is solved is used as the amplitude for each moment in
time. The output of the program is an amplitude that varies up and down over time.

For example, a sine wave can be produced by repeatedly solving the following algebraic
equation, using an increasing value for n:

y = A sin(2_ƒn/R+ø)

where A is the amplitude of the wave, ƒ is the frequency of the wave, n is the sample
number (0,1, 2,3, etc.), R is the sampling rate, and ø is the phase. If we enter values for A,
ƒ,and ø, and repeatedly solve for y while increasing the value of n, the value of y (the
output sample) will vary sinusoidally.

A complex tone can be produced by adding sinusoids—a method known as additive
synthesis:

y = A1 sin(2_ƒ1n/R+ø1) + A2 sin(2_ƒ2n/R+ø2) + ...

This is an example of how a single algebraic expression can produce a sound. Naturally,
many other more complicated programs are possible. A few synthesis methods such as
additive synthesis, wavetable synthesis, frequency modulation, and waveshaping are
demonstrated in the MSP Tutorial.

How Digital Audio Works

29

Manipulating digital signals

Any sound in digital form—whether it was synthesized by the computer or was quantized
from a “real world” sound—is just a series of numbers. Any arithmetic operation
performed with those numbers becomes a form of audio processing.

For example, multiplication is equivalent to audio amplification. Multiplying each
number in a digital signal by 2 doubles the amplitude of the signal (increases it 6 dB).
Multiplying each number in a signal by some value between 0 and 1 reduces its
amplitude.

Addition is equivalent to audio mixing. Given two or more digital signals, a new signal
can be created by adding the first numbers from each signal, then the second numbers,
then the third numbers, and so on.

An echo can be created by recalling samples that occurred earlier and adding them to the
current samples. For example, whatever signal was sent out 1000 samples earlier could be
sent out again, combined with the current sample.

y = xn + A yn-1000

As a matter of fact, the effects that such operations can have on the shape of a signal
(audio or any other kind) are so many and varied that they comprise an entire branch of
electrical engineering called digital signal processing (DSP). DSP is concerned with the
effects of digital filters—formulae for modifying digital signals by combinations of delay,
multiplication, addition, and other numerical operations.

Summary

This chapter has described how the continuous phenomenon of sound can be captured
and faithfully reproduced as a series of numbers, and ultimately stored in computer
memory as a stream of binary digits. There are many benefits obtainable only by virtue of
this digital representation of sound: higher fidelity recording than was previously
possible, synthesis of new sounds by mathematical procedures, application of digital
signal processing techniques to audio signals, etc.

MSP provides a toolkit for exploring this range of possibilities. It integrates digital audio
recording, synthesis, and processing with the MIDI control and object-based
programming of Max.

30

How MSP Works: Max Patches and the MSP Signal Network

Introduction

Max objects communicate by sending each other messages through patch cords. These
messages are sent at a specific moment, either in response to an action taken by the user
(a mouse click, a MIDI note played, etc.) or because the event was scheduled to occur (by
metro, delay, etc.).

MSP objects are connected by patch cords in a similar manner, but their inter-
communication is conceptually different. Rather than establishing a path for messages to
be sent, MSP connections establish a relationship between the connected objects, and that
relationship is used to calculate the audio information necessary at any particular instant.
This configuration of MSP objects is known as the signal network.

The following example illustrates the distinction between a Max patch in which messages
are sent versus a signal network in which an ongoing relationship is established.

Max messages occur at a specific instant; MSP objects are in constant communication

In the Max example on the left, the number box doesn’t know about the number 0.75
stored in the float object. When the user clicks on the button, the float object sends out its
stored value. Only then does the number box receive, display, and send out the number 0.75.
In the MSP example on the right, however, each outlet that is connected as part of the
signal network is constantly contributing its current value to the equation. So, even
without any specific Max message being sent, the *~ object is receiving the output from
the two sig~ objects, and any object connected to the outlet of *~ would be receiving the
product 0.75.

Another way to think of a MSP signal network is as a portion of a patch that runs at a
faster (audio) rate than Max. Max, and you the user, can only directly affect that signal
portion of the patch every millisecond. What happens in between those millisecond
intervals is calculated and performed by MSP. If you think of a signal network in this
way—as a very fast patch—then it still makes sense to think of MSP objects as “sending”
and “receiving” messages (even though those messages are sent faster than Max can see
them), so we will continue to use standard Max terminology such as send, receive, input,
and output for MSP objects.

How MSP Works Max patches and the
MSP signal network

31

Audio rate and control rate

The basic unit of time for scheduling events in Max is the millisecond (0.001 seconds).
This rate—1000 times per second—is generally fast enough for any sort of control one
might want to exert over external devices such as synthesizers, or over visual effects such
as QuickTime movies.

Digital audio, however, must be processed at a much faster rate—commonly 44,100 times
per second per channel of audio. The way MSP handles this is to calculate, on an ongoing
basis, all the numbers that will be needed to produce the next few milliseconds of audio.
These calculations are made by each object, based on the configuration of the signal
network.

An oscillator (cycle~), and an amplifier (*~) controlled by another oscillator (phasor~)

In this example, a cosine waveform oscillator with a frequency of 2000 Hz (the cycle~
object) has its amplitude scaled (every sample is multiplied by some number in the *~
object) then sent to the digital-to-analog converter (dac~). Over the course of each
second, the (sub-audio) sawtooth wave output of the phasor~ object sends a continuous
ramp of increasing values from 0 to 1. Those increasing numbers will be used as the right
operand in the *~ for each sample of the audio waveform, and the result will be that the
2000 Hz tone will fade in linearly from silence to full amplitude each second. For each
millisecond of audio, MSP must produce about 44 sample values (assuming an audio
sample rate of 44,100 Hz), so for each sample it must look up the proper value in each
oscillator and multiply those two values to produce the output sample.

Even though many MSP objects accept input values expressed in milliseconds, they
calculate samples at an audio sampling rate. Max messages travel much more slowly, at
what is often referred to as a control rate. It is perhaps useful to think of there being
effectively two different rates of activity: the slower control rate of Max’s scheduler, and
the faster audio sample rate.

Note: Since you can specify time in Max in floating-point milliseconds, the resolution of
the scheduler varies depending on how often it runs. The exact control rate is set by a
number of MSP settings we’ll introduce shortly. However, it is far less efficient to

How MSP Works Max patches and the
MSP signal network

32

“process” audio using the “control” functions running in the scheduler than it is to use
the specialized audio objects in MSP.

The link between Max and MSP

Some MSP objects exist specifically to provide a link between Max and MSP—and to
translate between the control rate and the audio rate. These objects (such as sig~ and
line~) take Max messages in their inlets, but their outlets connect to the signal network; or
conversely, some objects (such as snapshot~) connect to the signal network and can peek
(but only as frequently as once per millisecond) at the value(s) present at a particular
point in the signal network.

Supply a Max message to the signal network, or get a Max message from a signal

These objects are very important because they give Max, and you the user, direct control
over what goes on in the signal network.

User interface control over the signal’s amplitude

Some MSP object inlets accept both signal input and Max messages. They can be
connected as part of a signal network, and they can also receive instructions or
modifications via Max messages.

How MSP Works Max patches and the
MSP signal network

33

For example the dac~ (digital-to-analog converter) object, for playing the audio signal,
can be turned on and off with the Max messages start and stop.

Some MSP objects can receive audio signals and Max messages in the same inlet

And the cycle~ (oscillator) object can receive its frequency as a Max float or int message, or
it can receive its frequency from another MSP object (although it can’t do both at the
same time, because the audio input can be thought of as constantly supplying values that
would immediately override the effect of the float or int message).

Some MSP objects can receive either Max messages or signals for the same purpose

So you see that a Max patch (or subpatch) may contain both Max objects and MSP
objects. For clear organization, it is frequently useful to encapsulate an entire process,
such as a signal network, in a subpatch so that it can appear as a single object in another
Max patch.

Encapsulation can clarify relationships in a Max patch

Limitations of MSP

From the preceding discussion, it’s apparent that digital audio processing requires a lot of
“number crunching”. The computer must produce tens of thousands of sample values per
second per channel of sound, and each sample may require many arithmetic calculations,
depending on the complexity of the signal network. And in order to produce realtime
audio, the samples must be calculated at least as fast as they are being played.

How MSP Works Max patches and the
MSP signal network

34

Realtime sound synthesis of this complexity on a general-purpose personal computer was
pretty much out of the question until the introduction of sufficiently fast processors such
as the PowerPC. Even with the PowerPC, though, this type of number crunching requires
a great deal of the processor’s attention. So it’s important to be aware that there are
limitations to how much your computer can do with MSP.

Unlike a MIDI synthesizer, in MSP you have the flexibility to design something that is too
complicated for your computer to calculate in real time. The result can be audio
distortion, a very unresponsive computer, or in extreme cases, crashes.

Because of the variation in processor performance between computers, and because of the
great variety of possible signal network configurations, it’s difficult to say precisely what
complexity of audio processing MSP can or cannot handle. Here are a few general
principles:

• The faster your computer’s CPU, the better will be the performance of MSP. We
strongly recommend computers that use the PowerPC 604 or newer processors. Older
PowerBook models such as the 5300 series are particularly ill-suited to run MSP, and
are not recommended.

• A fast hard drive and a fast SCSI connection will improve input/output of audio files,
although MSP will handle up to about eight tracks at once on most computers with no
trouble.

• Turning off background processes (such as file sharing) will improve performance.

• Reducing the audio sampling rate will reduce how many numbers MSP has to
compute for a given amount of sound, thus improving its performance (although a
lower sampling rate will mean degradation of high frequency response). Controlling
the audio sampling rate is discussed in the Audio Input and Output chapter.

When designing your MSP instruments, you should bear in mind that some objects
require more intensive computation than others. An object that performs only a few
simple arithmetic operations (such as sig~, line~, +~, -~, *~, or phasor~) is
computationally inexpensive. (However, /~ is much more expensive.) An object that
looks up a number in a function table and interpolates between values (such as cycle~)
requires only a few calculations, so it’s likewise not too expensive. The most expensive
objects are those which must perform many calculations per sample: filters (reson~,
biquad~), spectral analyzers (fft~, ifft~), and objects such as play~, groove~, comb~, and
tapout~ when one of their parameters is controlled by a continuous signal. Efficiency
issues are discussed further in the MSP Tutorial.

How MSP Works Max patches and the
MSP signal network

35

Note: To see how much of the processor’s time your patch is taking, look
at the CPU Utilization value in the DSP Status window. Choose DSP
Status… from the Options menu to open this window.

Advantages of MSP

The PowerPC is a general purpose computer, not a specially designed sound processing
computer such as a commercial sampler or synthesizer, so as a rule you can’t expect it to
perform quite to that level. However, for relatively simple instrument designs that meet
specific synthesis or processing needs you may have, or for experimenting with new audio
processing ideas, it is a very convenient instrument-building environment.

1. Design an instrument to fit your needs. Even if you have a lot of audio equipment, it
probably cannot do every imaginable thing you need to do. When you need to
accomplish a specific task not readily available in your studio, you can design it
yourself.

2. Build an instrument and hear the results in real time. With non-realtime sound
synthesis programs you define an instrument that you think will sound the way you
want, then compile it and test the results, make some adjustments, recompile it, etc.
With MSP you can hear each change that you make to the instrument as you build it,
making the process more interactive.

3. Establish the relationship between gestural control and audio result. With many
commercial instruments you can’t change parameters in real time, or you can do so
only by programming in a complex set of MIDI controls. With Max you can easily
connect MIDI data to the exact parameter you want to change in your MSP signal
network, and you know precisely what aspect of the sound you are controlling with
MIDI.

4. Integrate audio processing into your composition or performance programs. If your
musical work consists of devising automated composition programs or computer-
assisted performances in Max, now you can incorporate audio processing into those
programs. Need to do a hands- free crossfade between your voice and a pre-recorded
sample at a specific point in a performance? You can write a Max patch with MSP
objects that does it for you, triggered by a single MIDI message.

Some of these ideas are demonstrated in the MSP tutorials.

See Also

Audio I/O Audio input and output with MSP

36

Audio I/O: Audio input and output with MSP
MSP interfaces with your computer's audio hardware via the dac~ and adc~ objects and
their easy-to-use equivalents ezdac~ and ezadc~. If you don't have any special audio
hardware and have no need for inter-application audio routing, the default driver on your
system will give you stereo full-duplex audio I/O with no special configuration on your
part.

In addition to Core Audio or MME on Windows, there are a number of other ways to get
audio into and out of Max/MSP. Each of these methods involves using what we call a
driver, which is actually a special type of Max object. Some of these drivers facilitate the
use of MSP with third- party audio hardware. Also, a non real-time driver allows you to
use MSP as a disk-based audio processing and synthesis system, removing the limit of
how much processing you can do with your CPU in real time.

MSP audio driver objects are located in the ad folder located in the /Library/Application
Support/ Cycling '74 folder on Macintosh or in the C:\Program Files\Common
Files\Cycling '74\ad folder on Windows. These object files must be in this folder called ad
(which stands for audio driver), otherwise MSP will be unable to locate them.

We will begin with a discussion of audio input/output in MSP in general. Later in this
chapter we will discuss aspects of specific audio drivers that are available to you in MSP.
First we'll discuss the DSP Status window and how to use it to get information about your
audio hardware and set parameters for how MSP handles audio input and output.

The DSP Status Window

All global audio parameters in MSP are displayed in the DSP Status window. To open the
DSP Status window, just double-click on any dac~ or adc~ object in a locked Patcher
window. Alternately, you can choose DSP Status… from the Options menu.

The DSP Status window is arranged as a group of menus and checkboxes that set all of
the parameters of the audio input and output in MSP. Since all of these options can be
changed from within your patch (see below), the DSP Status window serves as a monitor
for your current audio settings as well.

Audio I/O Audio input and
output with MSP

37

Technical Detail: The DSP Status window is in fact a Max patch (called
DSP Status, in the patches subfolder of Max). Every parameter shown in
the DSP Status window is a menu or checkbox hooked up to an instance of
the adstatus object. The adstatus object can be used inside of your MSP
patches so that you can set and restore audio parameters specifically for
certain patches. The adstatus object is also useful for obtaining information
current CPU load, vector size, and sampling rate. See the adstatus object
manual pages in the MSP Reference Manual for more details.

At the very top of the DSP Status window is a pop-up menu for turning the audio in MSP
on and off. If you use another method to turn the audio on or off, the menu will update to
reflect the current state.

The second pop-up menu allows you to view and select an audio driver for MSP. The
specific audio drivers will be discussed later in this chapter. A brief summary will suffice
for now:

None This setting shuts off MSP audio processing.

Core Audio This is the default audio driver for MSP on Macintosh. It interfaces
with the system’s built-in Core Audio system and can be used with
the built-in audio of the computer, or, with the proper software
support, a third-party hardware interface, such as ASIO.

MME or (Windows only) On Windows, MSP loads the MME driver by
 DirectSound default. If you have correctly installed external hardware and it also

supports DirectSound, it should also appear as an option on the
pop-up menu.

Audio I/O Audio input and
output with MSP

38

ad_rewire This driver supports a standard developed by Propellerhead
Software that allows sound generating applications (ReWire
Devices) to send multiple channels of audio and midi to other
applications (ReWire Mixers) that process and output it. Selecting
the ad_rewire driver enables Max/MSP to function as a ReWire
Device to route audio from MSP into applications that support
ReWire (such as Live, Digital Performer or Cubase). Using MSP to
host ReWire devices (such as Reason) can be accomplished with
the rewire~ object.

ASIO (Windows only) If you have a third-party audio interface which
supports ASIO (a cross-platform audio hardware standard
developed by Steinberg), and it is installed correctly, it will be
found by the MSP ASIO driver. You may have as many ASIO
devices as you wish; they will all be found by the driver and will
appear in the Driver pull-down menu in the DSP Status Window
preceded by the word ASIO.

NonRealTime This driver enables MSP to work in non real-time mode, allowing
you to synthesize and process audio without any real-time
processor performance limitations. Real-time audio input and
output are disabled under this driver.

Only one audio driver can be selected at any given time. MSP saves the settings for each
audio driver separately and will recall the last used audio driver when you restart Max.

The next two pop-up menus are active only when using the Core Audio driver on
Macintosh or ASIO drivers. When the Core Audio driver or either the MME or
DirectSound drivers on Windows are selected, the pop-up menus allow you to change the
audio input source. On Macintosh only, an additional pop-up menu lets you choose
whether or not audio playthrough is enabled. These settings can also be changed using
the Audio MIDI Setup application on Macintosh or the Sounds and Audio Devices
Properties window (Start – Settings – Control Panel – Sounds and Audio Devices) on
Windows, but only with these menus while MSP is running.

Audio I/O Audio input and
output with MSP

39

When ASIO is in use, the pop-up menus allow you to set the clock source for your audio
hardware and whether or not to prioritize MIDI input and output over audio I/O.

The next three fields in the DSP Status window monitor the amount of signal processing
MSP is currently doing. The CPU Utilization field displays a rough estimate of how much
of your computer's CPU is being allocated for crunching audio in MSP. The Poll
checkbox turns on and off the CPU Utilization auto-polling feature (it will update
automatically four times a second when this is checked). If you turn off auto-polling, you
can update the CPU readout manually by clicking on the Update button.

 The number of Function Calls gives an approximate idea of how many calculations are
being required for each sample of audio. The number next to Signals Used shows the
number of internal buffers that were needed by MSP to connect the signal objects used in
the current signal network.Both of these fields will update whenever you change the
number of audio objects or how they are patched together.

The next two sections have Override checkboxes next to a number of the pop-up menus.
When checked, Override means that the setting you pick will not be saved in the
preferences file for the current audio driver. By default, all Overrides are disabled,
meaning that the currently displayed settings will be saved and restored the next time you
launch Max/MSP.

You can set the audio sampling rate with the Sampling Rate pop-up menu. For full-range
audio, the recommended sampling rate is 44.1 kHz. Using a lower rate will reduce the
number of samples that MSP has to calculate, thus lightening your computer’s burden,
but it will also reduce the frequency range. If your computer is struggling at 44.1 kHz, you
should try a lower rate.

The I/O Vector Size may have an effect on latency and overall performance. A smaller
vector size may reduce the inherent delay between audio input and audio output, because

Audio I/O Audio input and
output with MSP

40

MSP has to perform calculations for a smaller chunk of time. On the other hand, there is
an additional computational burden each time MSP prepares to calculate another vector
(the next chunk of audio), so it is easier over-all for the processor to compute a larger
vector. However, there is another side to this story. When MSP calculates a vector of
audio, it does so in what is known as an interrupt. If MSP is running on your computer,
whatever you happen to be doing (word processing, for example) is interrupted and an
I/O vector’s worth of audio is calculated and played. Then the computer returns to its
normally scheduled program. If the vector size is large enough, the computer may get a
bit behind and the audio output may start to click because the processing took longer
than the computer expected. Reducing the I/O Vector Size may solve this problem, or it
may not. On the other hand, if you try to generate too many interrupts, the computer will
slow down trying to process them (saving what you are doing and starting another task is
hard work). Therefore, you'll typically find the smaller I/O Vector Sizes consume a
greater percentage of the computer's resources. Optimizing the performance of any
particular signal network when you are close to the limit of your CPU’s capability is a
trial-and-error process. That’s why MSP provides you with a choice of vector sizes.

Technical Detail: Some audio interface cards do not provide a choice of
I/O Vector Sizes. There are also some ASIO drivers whose selection of I/O
Vector Sizes may not conform to the multiple- of-a-power-of-2 limitation
currently imposed by MSP's ASIO support. In some cases, this limitation
can be remedied by using the ASIO driver at a different sampling rate.

Changing the vector sizes does not affect the actual quality of the audio itself, unlike
changing the sampling rate, which affects the high frequency response. Changing the
signal vector size won’t have any effect on latency, and will have only a slight effect on
overall performance (the larger the size, the more performance you can expect). However,
certain types of algorithms benefit from a small signal vector size. For instance, the
minimum delay you can get from MSP’s delay line objects tapin~ and tapout~ is equal to
the number of samples in one signal vector at the current sampling rate. With a signal
vector size of 64 at 44.1 kHz sampling rate, this is 1.45 milliseconds, while at a signal
vector size of 1024, it is 23.22 milliseconds. The Signal Vector size in MSP can be set as
low as 2 samples, and in most cases can go as high as the largest available I/O Vector Size
for your audio driver. However, if the I/O Vector Size is not a power of 2, the maximum
signal vector size is the largest power of 2 that divides evenly into the I/O vector size.

Technical Detail: Subpatches loaded into the poly~ object can function at
different sampling rates and vector sizes from the top-level patch. In
addition, the poly~ object allows up- and down-sampling as well as
different vector sizes. The DSP Status window only displays and changes
settings for the top-level patch.

Audio I/O Audio input and
output with MSP

41

The Signal Vector Size is how many audio samples MSP calculates at a time. There are
two vector sizes you can control. The I/O Vector Size (I/O stands for input/output)
controls the number of samples that are transferred to and from the audio interface at
one time. The Signal Vector Size sets the number of samples that are calculated by MSP
objects at one time. This can be less than or equal to the I/O Vector Size, but not more. If
the Signal Vector Size is less than the I/O Vector Size, MSP calculates two or more signal
vectors in succession for each I/O vector that needs to be calculated.

With an I/O vector size of 256, and a sampling rate of 44.1 kHz, MSP calculates about 5.8
milliseconds of audio data at a time.

The Max Scheduler in Overdrive option enables you to turn Max's Overdrive setting on
and off from within the DSP Status window. When Overdrive is enabled, the Max event
scheduler runs at interrupt level. The event scheduler does things like trigger the bang
from a repeating metro object, as well as send out any recently received MIDI data. When
it is not enabled, overdrive runs the event scheduler inside a lower-priority event
handling loop that can be interrupted by doing things like pulling down a menu. You can
also enable and disable Overdrive using the Options menu. Overdrive generally improves
timing accuracy, but there may be exceptions, and some third-party software may not
work properly when Overdrive is enabled.

The Scheduler in Audio Interrupt feature is available when Overdrive is enabled. It runs
the Max event scheduler immediately before processing a signal vector’s worth of audio.
Enabling Scheduler in Audio Interrupt can greatly improve the timing of audio events
that are triggered from control processes or external MIDI input. However, the
improvement in timing can be directly related to your choice of I/O Vector Size, since
this determines the interval at which events outside the scheduler (such as MIDI input
and output) affect Max. When the Signal Vector Size is 512, the scheduler will run every
512 samples. At 44.1 kHz, this is every 11.61 milliseconds, which is just at the outer limits
of timing acceptability. With smaller Signal Vector Sizes (256, 128, 64), the timing will
sound “tighter.” Since you can change all of these parameters as the music is playing, you
can experiment to find acceptable combination of precision and performance.

Audio I/O Audio input and
output with MSP

42

If you are not doing anything where precise synchronization between the control and
audio is important, leave Scheduler in Audio Interrupt unchecked. You’ll get a bit more
overall CPU performance for signal processing

The pop-up menus labeled Input Channel 1, Input Channel 2, Output Channel 1, and
Output Channel 2 allow you to map the first two logical channels of I/O in MSP (i.e. the
first two outlets of the adc~ object and the first two inlets of the dac~ object) to physical
channels used by your audiodriver. Different audio drivers give you different options, for
example, the MME driver on Windows only supports two channels, so you will normally
use the default options. To map additional logical channels, use the I/O Mappings
window, which you can view by clicking the I/O Mappings button at the bottom of the
DSP Status window (see below for more information about the I/O Mappings window).
In addition, you can use the adstatus object from within your patch to map any of the 512
logical audio I/O channels.

The Optimize pop-up menu is found only on the Macintosh version of MSP. It allows you
to select whether G4 (Altivec) vector optimization will be used by MSP when computing
audio. Vector optimization allows four samples to be processed within the space of a
single instruction. However, not all audio signal processing algorithms can be optimized
in this way (for example, recursive filter algorithms are substantially immune from vector
optimization). Leaving this option on when using MSP on a G4 machine will enhance
CPU utilization and performance, although the exact performance gain depends on the
algorithm you are using and the number of MSP objects that implement it that have been
vector-optimized. If you are using a pre-G4 Macintosh turning the option on will have no
effect.

The CPU Limit option allows you to set a limit (expressed in terms of a percentage of
your computer's CPU) to how much signal processing MSP is allowed to do. MSP will not
go above the set CPU limit for a sustained period, allowing your computer to perform

Audio I/O Audio input and
output with MSP

43

other tasks without MSP locking them out. The trade-off, however, is that you'll hear
clicks in the audio output when the CPU goes over the specified limit. Setting this value
to either ‘0’ or ‘100’ will disable CPU limiting.

About Logical Input and Output Channels

In MSP 2, you can create a dac~ or adc~ object that uses a channel number between 1 and
512. These numbers refer to what we call logical channels and can be dynamically
reassigned to physical device channels of a particular driver using either the DSP Status
window, its I/O Mappings subwindow, or an adstatus object with an input or output
keyword argument.

The adc~ and dac~ objects allow you to specify arguments which define which logical
channels are mapped to their inlets and outlets, respectively. In the example below,
multiple logical channels are in use in a simple patch:

In this example, two separate adc~ objects output audio signals from logical channel pairs
1/2 and 3/4, respectively. The output of all four channels is sent to gain~ objects which
attenuate the incoming signals and send them to the first four logical output channels, as
specified by the first dac~ object. The input signals are also multiplied (ring modulated)
and sent out logical channels 9 and 10. Up to sixteen arguments can be typed into a single
adc~ or dac~ object; if you want to use more than 16 logical channels, you can use
multiple adc~ and dac~ objects. The ezadc~ and ezdac~ objects only access the first two
logical input and output channels in MSP.

The purpose of having both logical channels and physical device channels is to allow you
to create patches that use as many channels as you need without regard to the particular
hardware configuration you're using. For instance, some audio interfaces use physical
device channels 1 and 2 for S/ PDIF input and output. If you don't happen to have a
S/PDIF-compatible audio interface, you may wish to use channels 8 and 9 instead. With

Audio I/O Audio input and
output with MSP

44

MSP 1.x, you would have been required to change all instances of dac~ and/or adc~
objects with arguments 1 and 2 to have arguments 8 and 9. With MSP 2, this is no longer
necessary.

You can simply go to the DSP Status window and choose the eighth and ninth physical
channels listed in the Input and Output pop-up menus.

Logical channels in MSP are only created if there is a dac~ or adc~ object using them. In
other words, if you're only using logical outputs 1 and 2, there aren't 510 unused audio
streams sitting around hogging your CPU. However, since you can mix any number of
logical channels to a single physical channel if necessary, you can create a complex multi-
channel setup that will allow other people to hear all of your logical channels when they
use it on a two-channel output device.

Audio I/O Audio input and
output with MSP

45

To assign multiple logical channels to one physical channel of an output device, use the
I/O Mapping window. Click on the I/O Mappings button at the bottom of the DSP Status
window.

The configuration shows that logical channels 1, 3, 5, and 7 have been mapped to the left
output channel of the current audio device, and logical channels 2, 4, 6, and 8 have been
mapped to the right output channel of the current audio device.

Audio I/O Audio input and
output with MSP

46

I/O Mappings are saved for each audio driver. You can also create I/O mappings within
your patch using the adstatus object. The example patch below accomplishes the same
remapping as that shown in the I/O Mapping window above, but does so automatically
when the patch is loaded.

Using Core Audio on Macintosh

On Macintosh, MSP uses the Core Audio driver by default. As with all audio drivers, the
Core Audio object file must be located in a folder called ad which is placed in
/Library/Application Support/Cycling '74/. Core Audio is available on all Macintoshes
running Mac OS X 10.2 or later, and provides Audio I/O to Macintosh applications from
both the computer’s built-in audio hardware as well as any external audio hardware you
may have.

If you have external audio hardware, it should come the drivers to interface with Core
Audio. When these drivers are installed and the hardware is present, Core Audio will
include the external device as a Core Audio choice in the Driver menu in the DSP Status
window.

The Sound part of the System Preferences application can be used to set basic sound
settings for the system, such as the Output volume, left/right balance, and sound output
device, as well as the Input volume and sound input device. You can also use the Audio
MIDI Setup application (located in /Applications/Utilities) for more detailed control of
the sound I/O settings. Note that modifications you make to the Sound section of the

Audio I/O Audio input and
output with MSP

47

System Preferences application, such as changing the output volume or balance, are
reflected in the audio MIDI Setup (and vice versa). You can open the Audio MIDI Setup
application by clicking on the Open Audio Control Panel button in the lower left corner
of the DSP Status Window.

The Audio part of the Audio MIDI Setup application shows Input settings on the left side,
and Output settings on the right.

The System Settings let you choose which audio device is used for system audio input and
output, while the Selected Audio Device menu allows you to control the various settings
for the built-in and any external hardware audio devices.

When using external audio devices, the Input Volume and Output Volume sliders can be
used to set the overall input and output volumes of the selected device (they are not
available when using the built-in audio controller). The Device Mute checkboxes allow
you to mute the input and output devices, if applicable.

Audio I/O Audio input and
output with MSP

48

The Play Through checkbox just under the Input Volume slider lets you choose whether
or not the input device is ‘monitored’ directly through to the output. When playthrough
is enabled, the dry signal from the input source will play through to the output mixed in
with any processed signal you may be sending to the output in MSP. Disabling
playthrough will enable you to control how much (if any) dry signal from the audio input
is routed to the output.

This option can be changed in MSP on Macintosh by sending a message to the dsp object
to change it. Put the following in a message box and clicking on it will turn playthrough
off:

; dsp driver playthrough 0

Using an argument of 1 will turn it on.

The Input Section allows you to select the Input Source (for example Line or Mic input for
the selected device) as well as the sampling rate and bit depth in the Current Format pop-
up menu. Similarly, the Output Section also allows you to select the sampling rate and
bit-depth in its Current Format pop-up menu. The available selections will vary,
depending on your audio hardware.

You can set the volume levels for the individual audio input and output channels, mute
individual channels, and/or select them for playthrough using the controls located below
the Current Format menus. The lower part of the window is used to display the current
input and output settings.

Using MME Audio and DirectSound on Windows

Three types of sound card drivers are supported in Windows —MME, DirectSound and
ASIO. Your choice of driver will have a significant impact on the performance and
latency you will experience with MSP.

The MME driver (ad_mme) is the default used for output of Windows system sounds,
and are provided for almost any sound card and built-in audio system. While
compatibility with your hardware is almost guaranteed, the poor latency values you get
from an MME driver make this the least desirable option for real-time media operation.

DirectSound drivers, built on Microsoft’s DirectX technology, have become
commonplace for most sound cards, and provide much better latency and performance
than MME drivers. Whenever possible, a DirectSound driver (ad_directsound) should be
used in preference to an MME driver. Occasionally, (and especially in the case of
motherboard-based audio systems) you will find the DirectSound driver performs more
poorly than the MME driver. This can happen when a hardware-specific DirectSound

Audio I/O Audio input and
output with MSP

49

driver is not available, and the system is emulating DirectSound while using the MME
driver. In these cases, it is best to use MME directly, or find an ASIO driver for your
system.

The best performance and lowest latency will typically be achieved using ASIO drivers.
The ASIO standard, developed by Steinberg and supported by many media-oriented
sound cards, is optimized for very low latency and high performance. As with the
DirectSound driver, you need to verify that performance is actually better than other
options; occasionally, an ASIO driver will be a simple “wrapper” around the MME or
DirectSound driver, and will perform more poorly than expected.

Using MME and DirectSound Drivers on with MSP on Windows

On Windows, MSP loads the MME driver by default. The MSP MME and DirectSound
drivers are located in C:\Program Files\Common Files\Cycling ‘74\ad\.

If you have correctly installed external hardware, it should support playback and
recording with the MME driver and the Direct Sound driver in the Driver Menu of the
DSP Status Window.

If an audio device only supports MME or DirectSound, the Windows OS does an
automatic mapping of one to the other. Since many audio devices initially did not
support DirectSound, Microsoft emulated DirectSound with a layer that bridged from
DirectSound to MME. Currently, there is greater support for native DirectSound drivers,
and sometimes when you use MME drivers Windows is actually running a layer to
convert from MME to DirectSound.

Note: Some devices such as the Digidesign mBox only support the ASIO driver standard.
In such cases, you will need to select the proper ASIO driver in the DSP Status Window.
See the section “Using ASIO Drivers on Windows” for more information.

Audio I/O Audio input and
output with MSP

50

You can make overall changes to the basic operation of your default audio driver by
accessing the Sounds and Audio Devices Properties window (Start – Settings – Control
Panel – Sounds and Audio Devices). Here you can select Audio devices, and create
settings for balance and output volume.

MSP supports the use of different input and output devices with MME and DirectSound
drivers. Use the DSP Status Window to choose input and output devices.

Audio I/O Audio input and
output with MSP

51

Input and Output Devices

When using MME or Directsound drivers, you may choose input and output devices
from the pull-down menus in the DSP Status window, which will be automatically
populated with the drivers for your audio hardware. When using the MME and
Directsound drivers, it is possible to use different audio devices for input and output
simultaneously. However, this is not recommended or supported and unless there is
some external (from Max/MSP) provision for synchronizing the devices dropouts will
likely occur over time.

Thread Priority and Latency Settings

Both MME and Directsound drivers include settings for Thread Priority and Latency.
These are both set by default to settings which we hope will work on your computer in
the majority of situations. However, you may find that when you are working with a
patch that you have problems which you may be able to resolve by changing some of
these settings. If your audio is crackling or there are glitches in it, you may want to try
increasing the latency setting. This has the disadvantage of making your audio feel less
responsive in real time, but it will allow the audio driver more time to work on the extra
audio demands you have placed on it.

If your system is slow in other areas—such as screen redrawing or general timing
accuracy—you may wish to decrease the thread priority of the audio driver. This will give
your other tasks more room to get done, but may also result in you needing to increase
latency in order to give your audio driver room to breathe at the new lower priority.

Timing between the max scheduler and MSP is best when the I/O vector size is on the
order of 1ms. We recommend setting the IO vector size to 128 samples. Having a setting
of the latency separate from the I/O vector size allows this to work without audio glitches
on most hardware.

Using ReWire with MSP

The ad_rewire driver allows you to use MSP as a ReWire Device, where MSP audio will
be routed into a ReWire Mixer application such as Cubase. Both Max/MSP and the mixer
application must be running at the same time in order to take advantage of ReWire's
services. The mixer application should be also compatible with ReWire 2 or later for best
results.

When the ad_rewire driver is selected, audio from MSP can be routed to any of 16 inter-
application ReWire channels which will appear as inputs in ReWire mixer host
applications. The first time ad_rewire is selected it will register itself with the ReWire
system. Subsequent launches of ReWire Mixer applications will then offer Max/MSP as a
ReWire device.

Audio I/O Audio input and
output with MSP

52

For example, after the Max/MSP ReWire Device is registered, Cubase SX 1.0 will have a
Max/ MSP menu item in the Devices menu. When you choose it you will see a list of the
audio outputs from Max/MSP. They will default to the off state. Click on any of the
buttons to activate that channel. Once the channel is activated it will show up in the
Cubase Track Mixer.

MSP can also be used as a Mixer Application for ReWire Devices such as Reason. To do
this, you use the rewire~ object. Please see the MSP Reference Manual pages on the rewire~
object for more information.

If you try to use rewire~and the ad_rewire audio driver simultaneously, you won't get any
audio output. This is because each is waiting for the other: the ad_rewire driver is waiting
for the rewire~ object to ask it for an audio stream, but the rewire~ object can't do
anything unless given processing time by an audio driver.

However, you can use rewire~ in conjunction with the Max Runtime or a standalone built
using Max/MSP when the runtime or standalone is using the ad_rewire driver.

Inter-application Synchronization and MIDI in ReWire

ReWire supports sending synchronization, transport, and tempo information both to and
from ReWire Devices. The hostsync~, hostphasor~, and hostcontrol~ MSP objects can work
with the ad_rewire driver to provide this information and to control the host’s transport.
See the MSP Reference Manual pages of these objects for more information.

Rewire 2 also supports MIDI communication to and from ReWire Devices. Currently
both the rewire~ object and the ad_rewire driver support MIDI, although they work in
different ways. To send and receive midi using the rewire~ object, you send message to
and receive messages directly from the object. See the MSP Reference Manual pages for
the rewire~ object for more information.

The ad_rewire MIDI support is more integrated into the Max MIDI system—Max MIDI
ports are created so you can use the standard Max MIDI objects to send and receive MIDI
via the ad_rewire driver. After you choose the ad_rewire driver in the DSP Status
Window, MIDI ports will appear in the MIDI Setup window the next time it is opened.
The number of midi ports dedicated to ReWire can be changed using the MIDI Ports
option in the DSP Status Window.

For example, you can choose one of the Max ReWire MIDI ports as a MIDI output device
in Cubase and then use standard Max MIDI objects (such as notein) to control your
Max/MSP created synthesizer. Likewise, you can send MIDI into Cubase using the max
MIDI objects and the ReWire MIDI ports, and recorded the results to a track for further
manipulation or playback.

Audio I/O Audio input and
output with MSP

53

Advanced ad_rewire Features

When you build a standalone application using Max/MSP you can use the ad_rewire
driver in your standalone and it will create an ReWire Device that works independently of
Max/MSP and other Max/MSP-created standalone applications. By default, the ReWire
Device will take on the name of your application and will have 16 channels. You can
customize this by editing the msprewire.config file in the support/ad folder for your
standalone. Note: This file doesn’t exist until the default one is created the first time you
launch your standalone and choose ad_rewire in the DSP Status window.

The msprewire.config file is located in the ad folder found in the following locations:

Macintosh: Library/Application Support/Cycling ‘74/ad/

Windows: c:\Program Files\Common Files\Cycling '74\ad\

In a Max/MSP-built standalone this is in the standalone’s support/ad/ folder. The
msprewire.config contains two lines that specify the name that ReWire will use for the
device and the number of audio channels. You can edit this to change the behavior of
Max/MSP or your standalone.

Using ASIO on Windows

Selecting an ASIO driver from the DSP Status window allows MSP to talk directly to an
audio interface. To use ASIO soundcards your device needs to be correctly installed and
connected; The MSP ASIO driver will find it at startup.

All correctly installed ASIO devices should be available to you for selection in the DSP
Status window. However, MSP does not check to see if the relevant audio interface
hardware is installed correctly on your system until you explicitly switch to the ASIO
driver for that interface card. If an ASIO driver fails to load when you try to use it, an
error message will appear in the Max window (typically, an initialization error with a
code of –1000) and the menus in the rest of the DSP Status window will blank out.
Switching to the MME and/or DirectSound driver will re-enable MSP audio.

Audio I/O Audio input and
output with MSP

54

The Clock Source pop-up menu lets you to set the clock source for your audio hardware.
Some ASIO drivers do not support an external clock; if this is the case there will only be
one option in the menu, typically labeled Internal.

The Prioritize MIDI pop-up menu allows you to set the clock source for your audio
hardware and whether or not to prioritize MIDI input and output over audio I/O.

Many ASIO drivers have other settings you can edit in a separate window. Click the Open
ASIO Control Panel button at the bottom of the DSP Status window to access these
settings. If your interface card has a control panel in its ASIO driver, the documentation
for the interface should cover its operation.

Controlling ASIO Drivers with Messages to the dsp Object on Windows

Version 2 of the ASIO specification allows for direct monitoring of inputs to an audio
interface. In other words, you can patch audio inputs to the interface directly to audio
outputs without having the signals go through your computer. You also have control over
channel patching, volume, and pan settings.

To control direct monitoring, you send the monitor message to the dsp object. The monitor
message takes the following arguments

int Obligatory. A number specifying an input channel number
(starting at 1)

int Optional. A number specifying an outlet channel number, or 0 to
turn the routing for the specified input channel off. This is also
what happens if the second argument is not present.

int or float Optional. A number specifying the gain of the input -> output
connection, between 0 and 4. 1 represents unity gain (and is the
default).

Audio I/O Audio input and
output with MSP

55

int or float Optional. A number specifying the panning of the output channel. -
1 is left, 0 is center, and 1 is right. 0 is the default.

Here are some examples of the monitor message:

; dsp driver monitor 1 1 Patches input 1 to output 1 at unity gain with center pan.

; dsp driver monitor 1 0 Turns off input 1

; dsp driver monitor 1 4 2. -1. patches input 1 to output 4 with 6dB gain panned to the left

Note: When using these messages, the word “driver” is optional but recommended. Not
all ASIO drivers support this feature. If you send the monitor message and get an ASIO
result error -998 message in the Max window, then the driver does not support it.

 Another feature of ASIO 2 is the ability to start, stop, and read timecode messages. To
start timecode reading, send the following message:

; dsp driver timecode 1

To stop timecode reading, send the following message:

; dsp driver timecode 0

The plugsync~ object reports the sample position reported by the audio interface when
you enable timecode, but there isn't currently an object that reports the timecode of the
interface.

Working in Non-Real Time with MSP

The MSP NonRealTime driver allows you to use MSP for synthesis and signal processing
without worrying about the constraints imposed by the speed of your computer's CPU.
Non-real-time mode simply calculates samples in MSP independently of any physical
scheduling priority, allowing you to process a vector of audio using a signal path that
might take your computer more than one vector's worth of real time to compute.

Typically, you will want to use the dsptime~ object to see how long the audio has been
turned on, and you will pipe the output of your routine to sfrecord~ to capture the results.
Hardware audio input and output under the non-real-time driver are disabled.

Audio I/O Audio input and
output with MSP

56

A typical non-real-time signal path in MSP would look something like this:

Starting the DSP (by toggling the dac~ object) will start the dsptime~ object at 0 samples,
in sync with the playback of the audio out of sfplay~ and the recording of audio into the
sfrecord~ at the bottom of the patch. When five seconds have elapsed, the sfrecord~ object
will stop recording the output audio file.

See Also

adc~ Audio input and on/off
adstatus Access audio driver output channels
dac~ Audio output and on/off
ezadc~ Audio on/off; analog-to-digital converter
ezdac~ Audio output and on/off button

57

Tutorial 1: Fundamentals—Test tone
To open the example program for each chapter of the Tutorial, choose Open... from the
File menu in Max and find the document in the MSP Tutorial folder with the same
number as the chapter you are reading. It’s best to have the current Tutorial example
document be the only open Patcher window.

• Open the file called Tutorial 01. Test tone.

MSP objects are pretty much like Max objects

MSP objects are for processing digital audio (i.e., sound) to be played by your computer.
MSP objects look just like Max objects, have inlets and outlets just like Max objects, and
are connected together with patch cords just like Max objects. They are created the same
way as Max objects— just by placing an object box in the Patcher window and typing in
the desired name—and they co-exist quite happily with Max objects in the same Patcher
window.

...but they’re a little different

A patch of interconnected MSP objects works a little differently from the way a patch of
standard Max objects works.

One way to think of the difference is just to think of MSP objects as working much faster
than ordinary Max objects. Since MSP objects need to produce enough numbers to
generate a high fidelity audio signal (commonly 44,100 numbers per second), they must
work faster than the millisecond schedule used by standard Max objects.

Here’s another helpful way to think of the difference. Think of a patch of MSP objects not
as a program in which events occur at specific instants (as in a standard Max patch), but
rather as a description of an instrument design—a synthesizer, sampler, or effect
processor. It’s like a mathematical formula, with each object constantly providing
numerical values to the object(s) connected to its outlet. At any given instant in time, this
formula has a result, which is the instantaneous amplitude of the audio signal. This is why
we frequently refer to an ensemble of inter-connected MSP objects as a signal network.

So, whereas a patch made up of standard Max objects sits idle and does nothing until
something occurs (a mouse click, an incoming MIDI message, etc.) causing one object to
send a message to another object, a signal network of MSP objects, by contrast, is always
active (from the time it’s turned on to the time it’s turned off), with all its objects
constantly communicating to calculate the appropriate amplitude for the sound at that
instant.

Tutorial 1 Fundamentals:
Test tone

58

...so they look a little different

The names of all MSP objects end with the tilde character (~). This character, which looks
like a cycle of a sine wave, just serves as an indicator to help you distinguish MSP objects
from other Max objects.

The patch cords between MSP objects have stripes. This helps you distinguish the MSP
signal network from the rest of the Max patch.

MSP objects are connected by striped patch cords

Digital-to-analog converter: dac~

The digital-to-analog converter (DAC) is the part of your computer that translates the
stream of discrete numbers in a digital audio signal into a continuous fluctuating voltage
which will drive your loudspeaker.

Once you have calculated a digital signal to make a computer-generated sound, you must
send the numbers to the DAC. So, MSP has an object called dac~, which generally is the
terminal object in any signal network. It receives, as its input, the signal you wish to hear.
It has as many inlets as there are available channels of audio playback. If you are using
Core Audio (or WWWW on Windows) to play sounds directly from your computer’s
audio hardware, there are two output channels, so there will be two inlets to dac~. (If you
are using more elaborate audio output hardware, you can type in an argument to specify
other audio channels.)

dac~ plays the signal

Important! dac~ must be receiving a signal of non-zero amplitude in order for you to hear
anything. dac~ expects to receive signal values in the range -1.0 to 1.0. Numbers that
exceed that range will cause distortion when the sound is played.

Tutorial 1 Fundamentals:
Test tone

59

Wavetable synthesis: cycle~

The best way to produce a periodic waveform is with cycle~. This object uses the
technique known as “wavetable synthesis”. It reads through a list of 512 values at a
specified rate, looping back to the beginning of the list when it reaches the end. This
simulates a periodically repeating waveform.

You can direct cycle~ to read from a list of values that you supply (in the form of an audio
file), or if you don’t supply one, it will read through its own table which represents a cycle
of a cosine wave with an amplitude of 1. We’ll show you how to supply your own
waveform in Tutorial 3. For now we’ll use the cosine waveform.

Graph of 512 numbers describing one cycle of a cosine wave with amplitude 1

cycle~ receives a frequency value (in Hz) in its left inlet, and it determines on its own how
fast it should read through the list in order to send out a signal with the desired
frequency.

Technical detail: To figure out how far to step through the list for each
consecutive sample, cycle~ uses the basic formula

I=ƒL/R

where I is the amount to increment through the list, ƒ is the signal’s
frequency, L is the length of the list (512 in this case), and R is the audio
sampling rate. cycle~ is an “interpolating oscillator”, which means that if I
does not land exactly on an integer index in the list for a given sample,
cycle~ interpolates between the two closest numbers in the list to find the
proper output value. Performing interpolation in a wavetable oscillator
makes a substantial improvement in audio quality. The cycle~ object uses
linear interpolation, while other MSP objects use very high-quality (and
more computationally expensive) polynomial interpolation.

By default cycle~ has a frequency of 0 Hz. So in order to hear the signal, we need to supply
an audible frequency value. This can be done with a number argument as in the example

Tutorial 1 Fundamentals:
Test tone

60

patch, or by sending a number in the left inlet, or by connecting another MSP object to
the left inlet.

Starting and stopping signal processing

The way to turn audio on and off is by sending the Max messages start and stop (or 1 and 0)
to the left inlet of a dac~ object (or an adc~ object, discussed in a later chapter). Sending
start or stop to any dac~ or adc~ object enables or disables processing for all signal
networks.

The simplest possible signal network

Although dac~ is part of a signal network, it also understands certain Max messages, such
as start and stop. Many of the MSP objects function in this manner, accepting certain Max
messages as well as audio signals.

Listening to the Test Tone

The first time you start up Max/MSP, it will try to use your computer's default sound card
and driver (Core Audio on Macintosh or MME on Windows) for audio input and output.
If you have the audio output of your computer connected to headphones or an amplifier,
you should hear the output of MSP through it. If you don't have an audio cable connected
to your computer, you'll hear the sound through the computer's internal speaker.

In order to get MSP up and running properly, we recommend that you start the tutorials
using your computer’s built-in sound hardware. If you want to use an external audio
interface or sound care, please refer to the Audio Input and Output chapter for details on
configuring MSP to work with audio hardware.

• Set your audio amplifier (or amplified speakers) to their minimum setting, then click
on the start message box. Adjust your audio amplifier to the desired maximum setting,
then click on the stop message box to turn off that annoying test tone.

Troubleshooting

If you don't hear any sound coming from your computer when you start the dac~ in this
example, check the level setting on your amplifier or mixer, and check all your audio
connections. Check that the sound output isn't currently muted. On Macintosh, the

Tutorial 1 Fundamentals:
Test tone

61

sound output level is set using the Sound preferences in the System Preferences
application. On Windows, the sound output level is set using the Sounds and Audio
Devices setup (Start - Control Panels - Sounds and Audio Devices).

If you are still are not hearing anything, choose DSP Status from the Options Menu and
verify that Core Audio Built in Controller for Macintosh or MME driver for Windows is
selected in the Driver pop-up menu. If it isn't, choose it.

Summary

A signal network of connected MSP objects describes an audio instrument. The digital-to-
analog converter of the instrument is represented by the dac~ object; dac~ must be
receiving a signal of non-zero amplitude (in the range -1.0 to 1.0) in order for you to hear
anything. The cycle~ object is a wavetable oscillator which reads cyclically through a list of
512 amplitude values, at a rate determined by the supplied frequency value. Signal
processing is turned on and off by sending a start or stop message to any dac~ or adc~
object.

• Close the Patcher window before proceeding to the next chapter.

See Also

cycle~ Table lookup oscillator
dac~ Audio output and on/off
Audio I/O Audio input and output with MSP

62

Tutorial 2: Fundamentals—Adjustable oscillator

Amplifier: *~

A signal you want to listen to—a signal you send to dac~—must be in the amplitude range
from -1.0 to +1.0. Any values exceeding those bounds will be clipped off by dac~ (i.e.
sharply limited to 1 or -1). This will cause (in most cases pretty objectionable) distortion
of the sound. Some objects, such as cycle~, output values in that same range by default.

The default output of cycle~ has amplitude of 1

To control the level of a signal you simply multiply each sample by a scaling factor. For
example, to halve the amplitude of a signal you simply multiply it by 0.5. (Although it
would be mathematically equivalent to divide the amplitude of the signal by 2,
multiplication is a more efficient computation procedure than division.

Amplitude adjusted by multiplication

If we wish to change the amplitude of a signal continuously over time, we can supply a
changing signal in the right inlet of *~. By continuously changing the value in the right
inlet of *~, we can fade the sound in or out, create a crescendo or diminuendo effect, etc.

However, a sudden drastic change in amplitude would cause a discontinuity in the signal,
which would be heard as a noisy click.

Tutorial 2 Fundamentals:
Adjustable oscillator

63

Instantaneous change of amplitude causes a noisy distortion of the signal

For that reason it’s usually better to modify the amplitude using a signal that changes
more gradually with each sample, say in a straight line over the course of several
milliseconds.

Line segment generator: line~

If, instead of an instantaneous change of amplitude (which can cause an objectionable
distortion of the signal), we supply a signal in the right inlet of *~ that changes from 1.0 to
0.5 over the course of 5 milliseconds, we interpolate between the starting amplitude and
the target amplitude with each sample, creating a smooth amplitude change.

Linear amplitude change over 5 milliseconds using line~

The line~ object functions similarly to the Max object line. In its left inlet it receives a
target value and a time (in ms) to reach that target. line~ calculates the proper
intermediate value for each sample in order to change in a straight line from its current
value to the target value.

Tutorial 2 Fundamentals:
Adjustable oscillator

64

Technical detail: Any change in the over-all amplitude of a signal
introduces some amount of distortion during the time when the amplitude
is changing. (The shape of the waveform is actually changed during that
time, compared with the original signal.) Whether this distortion is objec-
tionable depends on how sudden the change is, how great the change in
amplitude is, and how complex the original signal is. A small amount of
such distortion introduced into an already complex signal may go largely
unnoticed by the listener. Conversely, even a slight distortion of a very
pure original signal will add partials to the tone, thus changing its timbre.

In the preceding example, the amplitude of a sinusoidal tone decreased by
half (6 dB) in 5 milliseconds. Although one might detect a slight change of
timbre as the amplitude drops, the shift is not drastic enough to be heard
as a click. If, on the other hand, the amplitude of a sinusoid increases
eightfold (18 dB) in 5 ms, the change is drastic enough to be heard as a
percussive attack.

An eightfold (18 dB) increase in 5 ms creates a percussive effect

Tutorial 2 Fundamentals:
Adjustable oscillator

65

Adjustable oscillator

The example patch uses this combination of *~ and line~ to make an adjustable amplifier
for scaling the amplitude of the oscillator. The pack object appends a transition time to the
target amplitude value, so every change of amplitude will take 100 milliseconds. A number
box for changing the frequency of the oscillator has also been included.

Oscillator with adjustable frequency and amplitude

Notice that the signal network already has default values before any Max message is sent
to it. The cycle~ object has a specified frequency of 1000 Hz, and the line~ object has a
default initial value of 0. Even if the *~ had a typed-in argument for initializing its right
inlet, its right operand would still be 0 because line~ is constantly supplying it that value.

• Use the Amplitude number box to set the volume to the level you desire, then click on
the toggle marked Audio On/Off to start the sound. Use the number box objects to
change the frequency and amplitude of the tone. Click on the toggle again to turn the
sound off.

Tutorial 2 Fundamentals:
Adjustable oscillator

66

Fade In and Fade Out

The combination of line~ and *~ also helps to avoid the clicks that can occur when the
audio is turned on and off. The 1 and 0 “on” and “off” messages from the toggle are used
to fade the volume up to the desired amplitude, or down to 0, just as the start or stop
message is sent to dac~. In that way, the sound is faded in and out gently rather than
being turned on instantaneously.

On and off messages fade audio in or out before starting or stopping the DAC

Just before turning audio off, the 0 from toggle is sent to the pack object to start a 100 ms
fade-out of the oscillator’s volume. A delay of 100 ms is also introduced before sending
the stop message to dac~, in order to let the fade-out occur. Just before turning the audio
on, the desired amplitude value is triggered, beginning a fade-in of the volume; the fade-
in does not actually begin, however, until the dac~ is started—immediately after, in this
case. (In an actual program, the start and stop message boxes might be hidden from view or
encapsulated in a subpatch in order to prevent the user from clicking on them directly.)

Summary

Multiplying each sample of an audio signal by some number other than 1 changes its
amplitude; therefore the *~ object is effectively an amplifier. A sudden drastic change of
amplitude can cause a click, so a more gradual fade of amplitude—by controlling the
amplitude with another signal—is usually advisable. The line segment signal generator
line~ is comparable to the Max object line and is appropriate for providing a linearly
changing value to the signal network. The combination of line~ and *~ can be used to
make an envelope for controlling the over-all amplitude of a signal.

Tutorial 2 Fundamentals:
Adjustable oscillator

67

See Also

cycle~ Table lookup oscillator
dac~ Audio output and on/off
line~ Linear ramp generator

68

Tutorial 3: Fundamentals—Wavetable oscillator

Audio on/off switch: ezdac~

In this tutorial patch, the dac~ object which was used in earlier examples has been
replaced by a button with a speaker icon. This is the ezdac~ object, a user interface object
available in the object palette.

ezdac~ is an on/off button for audio, available in the object palette

The ezdac~ works much like dac~, except that clicking on it turns the audio on or off. It
can also respond to start and stop messages in its left inlet, like dac~. (Unlike dac~, however,
it is appropriate only for output channels 1 and 2.) The ezdac~ button is highlighted when
audio is on.

A stored sound: buffer~

In the previous examples, the cycle~ object was used to read repeatedly through 512 values
describing a cycle of a cosine wave. In fact, though, cycle~ can read through any 512
values, treating them as a single cycle of a waveform. These 512 numbers must be stored
in an object called buffer~. (A buffer means a holding place for data.)

A buffer~ object requires a unique name typed in as an argument. A cycle~ object can then
be made to read from that buffer by typing the same name in as its argument. (The initial
frequency value for cycle~, just before the buffer name, is optional.)

cycle~ reads its waveform from a buffer~ of the same name

To get the sound into the buffer~, send it a read message. That opens an Open Document
dialog box, allowing you to select an audio file to load. The word read can optionally be
followed by a specific file name, to read a file in without selecting it from the dialog box,
provided that the audio file is in Max’s search path.

Tutorial 3 Fundamentals:
Wavetable oscillator

69

Read in a specific sound immediately

Regardless of the length of the sound in the buffer~, cycle~ uses only 512 samples from it
for its waveform. (You can specify a starting point in the buffer~ for cycle~ to begin its
waveform, either with an additional argument to cycle~ or with a set message to cycle~.) In
the example patch, we use an audio file that contains exactly 512 samples.

Technical detail: In fact, cycle~ uses 513 samples. The 513th sample is used
only for interpolation from the 512th sample. When cycle~ is being used to
create a periodic waveform, as in this example patch, the 513th sample
should be the same as the 1st sample. If the buffer~ contains only 512
samples, as in this example, cycle~ supplies a 513th sample that is the same
as the 1st sample.

• Click on the message box that says read gtr512.aiff. This loads in the audio file. Then click
on the ezdac~ object to turn the audio on. (There will be no sound at first. Can you
explain why?) Next, click on the message box marked B3 to listen to 1 second of the
cycle~ object.

There are several other objects that can use the data in a buffer~, as you will see in later
chapters.

Create a breakpoint line segment function with line~

In the previous example patch, we used line~ to make a linearly changing signal by
sending it a list of two numbers. The first number in the list was a target value and the
second was the amount of time, in milliseconds, for line~ to arrive at the target value.

line~ is given a target value (1.) and an amount of time to get there (100 ms)

If we want to, we can send line~ a longer list containing many value-time pairs of
numbers (up to 64 pairs of numbers). In this way, we can make line~ perform a more
elaborate function composed of many adjoining line segments. After completing the first

Tutorial 3 Fundamentals:
Wavetable oscillator

70

line segment, line~ proceeds immediately toward the next target value in the list, taking
the specified amount of time to get there.

A function made up of line segments

Synthesizer users are familiar with using this type of function to generate an “ADSR”
amplitude envelope. That is what we’re doing in this example patch, although we can
choose how many line segments we wish to use for the envelope.

Other signal generators: phasor~ and noise~

The phasor~ object produces a signal that ramps repeatedly from 0 to 1.

Signal produced by phasor~

The frequency with which it repeats this ramp can be specified as an argument or can be
provided in the left inlet, in Hertz, just as with cycle~. This type of function is useful at
sub-audio frequencies to generate periodically recurring events (a crescendo, a filter
sweep, etc.). At a sufficiently high frequency, of course, it is audible as a sawtooth
waveform.

Tutorial 3 Fundamentals:
Wavetable oscillator

71

In the example patch, the phasor~ is pitched an octave above cycle~, and its output is
scaled and offset so that it ramps from -1 to +1.

 220 Hz sawtooth wave

Technical detail: A sawtooth waveform produces a harmonic spectrum,
with the amplitude of each harmonic inversely proportional to the
harmonic number. Thus, if the waveform has amplitude A, the
fundamental (first harmonic) has amplitude A, the second harmonic has
amplitude A/ 2, the third harmonic has amplitude A/3, etc.

The noise~ object produces white noise: a signal that consists of a completely random
stream of samples. In this example patch, it is used to add a short burst of noise to the
attack of a composite sound.

• Click on the message box marked B1 to hear white noise. Click on the message box
marked B2 to hear a sawtooth wave.

Add signals to produce a composite sound

Any time two or more signals are connected to the same signal inlet, those signals are
added together and their sum is used by the receiving object.

Multiple signals are added (mixed) in a signal inlet

Addition of digital signals is equivalent to unity gain mixing in analog audio. It is
important to note that even if all your signals have amplitude less than or equal to 1, the
sum of such signals can easily exceed 1. In MSP it’s fine to have a signal with an

Tutorial 3 Fundamentals:
Wavetable oscillator

72

amplitude that exceeds 1, but before sending the signal to dac~ you must scale it (usually
with a *~ object) to keep its amplitude less than or equal to 1. A signal with amplitude
greater than 1 will be distorted by dac~.

In the example patch, white noise, a 220 Hz sawtooth wave, and a 110 Hz tone using the
waveform in buffer~ are all mixed together to produce a composite instrument sound.

Three signals mixed to make a composite instrument sound

Each of the three tones has a different amplitude envelope, causing the timbre of the note
to evolve over the course of its 1-second duration. The three tones combine to form a
note that begins with noise, quickly becomes electric-guitar-like, and gets a boost in its
overtones from the sawtooth wave toward the end. Even though the three signals
crossfade, their amplitudes are such that there is no possibility of clipping (except,
possibly, in the very earliest milliseconds of the note, which are very noisy anyway).

• Click on the button to play all three signals simultaneously. To hear each of the
individual parts that comprise the note, click on the message boxes marked A1, A2,
and A3. If you want to hear how each of the three signals sound sustained at full
volume, click on the message boxes marked B1, B2, and B3. When you have finished,
click on ezdac~ to turn the audio off.

Summary

The ezdac~ object is a button for switching the audio on and off. The buffer~ object stores
a sound. You can load an audio file into buffer~ with a read message, which opens an Open
Document dialog box for choosing the file to load in. If a cycle~ object has a typed-in

Tutorial 3 Fundamentals:
Wavetable oscillator

73

argument which gives it the same name as a buffer~ object has, the cycle~ will use 512
samples from that buffered sound as its waveform, instead of the default cosine wave.

The phasor~ object generates a signal that increases linearly from 0 to 1. This ramp from 0
to 1 can be generated repeatedly at a specific frequency to produce a sawtooth wave. For
generating white noise, the noise~ object sends out a signal consisting of random samples.

Whenever you connect more than one signal to a given signal inlet, the receiving object
adds those signals together and uses the sum as its input in that inlet. Exercise care when
mixing (adding) audio signals, to avoid distortion caused by sending a signal with
amplitude greater than 1 to the DAC; signals must be kept in the range -1 to +1 when sent
to dac~ or ezdac~.

The line~ object can receive a list in its left inlet that consists of up to 64 pairs of numbers
representing target values and transition times. It will produce a signal that changes
linearly from one target value to another in the specified amounts of time. This can be
used to make a function of line segments describing any shape desired, which is
particularly useful as a control signal for amplitude envelopes. You can achieve crossfades
between signals by using different amplitude envelopes from different line~ objects.

See Also

buffer~ Store audio samples
ezdac~ Audio output and on/off button
phasor~ Sawtooth wave generator
noise~ White noise generator

74

Tutorial 4: Fundamentals—Routing signals

Remote signal connections: send~ and receive~

The patch cords that connect MSP objects look different from normal patch cords
because they actually do something different. They describe the order of calculations in a
signal network. The connected objects will be used to calculate a whole block of samples
for the next portion of sound.

Max objects can communicate remotely, without patch cords, with the objects send and
receive (and some similar objects such as value and pv). You can transmit MSP signals
remotely with send and receive, too, but the patch cord(s) coming out of receive will not
have the yellow-and-black striped appearance of the signal network (because a receive
object doesn’t know in advance what kind of message it will receive). Two MSP objects
exist specifically for remote transmission of signals: send~ and receive~.

send and receive for Max messages; send~ and receive~ for signals

The two objects send~ and receive~ work very similarly to send and receive, but are only for
use with MSP objects. Max will allow you to connect normal patch cords to send~ and
receive~, but only signals will get passed through send~ to the corresponding receive~. The
MSP objects send~ and receive~ don’t transmit any Max messages besides signals.

There are a few other important differences between the Max objects send and receive and
the MSP objects send~ and receive~.

1. The names of send and receive can be shortened to s and r; the names of send~ and
receive~ cannot be shortened in the same way.

2. A Max message can be sent to a receive object from several other objects besides send,
such as float, forward, grab, if, int, and message; receive~ can receive a signal only from a
send~ object that shares the same name.

3. If receive has no typed-in argument, it has an inlet for receiving set messages to set or
change its name; receive~ also has an inlet for that purpose, but is nevertheless
required to have a typed-in argument.

Tutorial 4 Fundamentals:
Routing signals

75

4. Changing the name of a receive object with a set message is a useful way of dynamically
redirecting audio signals. Changing the name of receive~, however, does not redirect
the signal until you turn audio off and back on again.

Examples of each of these usages can be seen in the tutorial patch.

Routing a signal: gate~

The MSP object gate~ works very similarly to the Max object gate. Just as gate is used to
direct messages to one of several destinations, or to shut the flow of messages off entirely,
gate~ directs a signal to different places, or shuts it off from the rest of the signal network.

In the example patch, the gate~ objects are used to route signals to the left audio output,
the right audio output, both, or neither, according to what number is received from the
umenu object.

gate~ sends a signal to a chosen location

It is worth noting that changing the chosen outlet of a gate~ while an audio signal is
playing through it can cause an audible click because the signal shifts abruptly from one
outlet to another. To avoid this, you should generally design your patch in such a way
that the gate~ object’s outlet will only be changed when the audio signal going through it
is at zero or when audio is off. (No such precaution was taken in the tutorial patch.)

Wave interference

It’s a fundamental physical fact that when we add together two sinusoidal waves with
different frequencies we create interference between the two waves. Since they have
different frequencies, they will usually not be exactly in phase with each other; so, at some
times they will be sufficiently in phase that they add together constructively, but at other
times they add together destructively, canceling each other out to some extent. They only
arrive precisely in phase with each other at a rate equal to the difference in their
frequencies. For example, a sinusoid at 1000 Hz and another at 1002 Hz come into phase
exactly 2 times per second. In this case, they are sufficiently close in frequency that we
don’t hear them as two separate tones. Instead, we hear their recurring pattern of
constructive and destructive interference as beats occurring at a sub-audio rate of 2 Hz, a

Tutorial 4 Fundamentals:
Routing signals

76

rate known as the difference frequency or beat frequency. (Interestingly, we hear the two
waves as a single tone with a sub-audio beat frequency of 2 Hz and an audio frequency of
1001 Hz.)

When the example patch is opened, a loadbang object sends initial frequency values to the
cycle~ objects—1000 Hz and 1002 Hz—so we expect that these two tones sounded
together will cause a beat frequency of 2 Hz. It also sends initial values to the gate~ objects
(passing through the umenus on the way) which will direct one tone to the left audio
output and one to the right audio output.

The two waves interfere at a rate of 2 Hz

• Click on ezdac~ to turn audio on, then use the uslider marked “Volume” to adjust the
loudness of the sound to a comfortable level. Note that the beats occur exactly twice
per second. Try changing the frequency of Oscillator B to various other numbers close
to 1000, and note the effect. As the difference frequency approaches an audio rate
(say, in the range of 20-30 Hz) you can no longer distinguish individual beats, and the
effect becomes more of a timbral change. Increase the difference still further, and you
begin to hear two distinct frequencies.

Philosophical tangent: It can be shown mathematically and empirically that when two
sinusoidal tones are added, their interference pattern recurs at a rate equal to the
difference in their frequencies. This apparently explains why we hear beats; the
amplitude demonstrably varies at the difference rate. However, if you listen to this
patch through headphones—so that the two tones never have an opportunity to
interfere mathematically, electrically, or in the air—you still hear the beats! This
phenomenon, known as binaural beats is caused by “interference” occurring in the
nervous system. Although such interference is of a very different physical nature than
the interference of sound waves in the air, we experience it as similar. An experiment
like this demonstrates that our auditory system actively shapes the world we hear.

Tutorial 4 Fundamentals:
Routing signals

77

Amplitude and relative amplitude

The uslider marked “Volume” has been set to have a range of 101 values, from 0 to 100,
which makes it easy to convert its output to a float ranging from 0 to 1 just by dividing by
100. (The decimal point in argument typed into the / object ensures a float division.)

A volume fader is made by converting the int output of uslider to a float from 0. to 1.

The *~ objects use the specified amplitude value to scale the audio signal before it goes to
the ezdac~. If both oscillators get sent to the same inlet of ezdac~, their combined
amplitude will be 2. Therefore, it is prudent to keep the amplitude scaling factor at or
below 0.5. For that reason, the amplitude value—which the user thinks of as being
between 0 and 1—is actually kept between 0 and 0.5 by the * 0.5 object.

The amplitude is halved in case both oscillators are going to the same output channel

Because of the wide range of possible audible amplitudes, it may be more meaningful in
some cases to display volume numerically in terms of the logarithmic scale of decibels
(dB), rather than in terms of absolute amplitude. The decibel scale refers to relative
amplitude—the amplitude of a signal relative to some reference amplitude. The formula
for calculating amplitude in decibels is

dB = 20(log10(A/Aref))

where A is the amplitude being measured and Aref is a fixed reference amplitude.

Tutorial 4 Fundamentals:
Routing signals

78

The subpatch AtodB uses a reference amplitude of 1 in the formula shown above, and
converts the amplitude to dB.

The contents of the subpatch AtodB

Since the amplitude received from the uslider will always be less than or equal to 1, the
output of AtodB will always be less than or equal to 0 dB. Each halving of the amplitude is
approximately equal to a 6 dB reduction.

AtodB reports amplitude in dB, relative to a reference amplitude of 1

• Change the position of the uslider and compare the linear amplitude reading to the
logarithmic decibel scale reading.

Constant signal value: sig~

Most signal networks require some changing values (such as an amplitude envelope to
vary the amplitude over time) and some constant values (such as a frequency value to
keep an oscillator at a steady pitch). In general, one provides a constant value to an MSP
object in the form of a float message, as we have done in these examples when sending a
frequency in the left inlet of a cycle~ object.

However, there are some cases when one wants to combine both constant and changing
values in the same inlet of an MSP object. Most inlets that accept either a float or a signal
(such as the left inlet of cycle~) do not successfully combine the two.

Tutorial 4 Fundamentals:
Routing signals

79

For example, cycle~ ignores a float in its left inlet if it is receiving a signal in the same inlet.

cycle~ ignores its argument or a float input when a signal is connected to the left inlet

One way to combine a numerical Max message (an int or a float) with a signal is to convert
the number into a steady signal with the sig~ object. The output of sig~ is a signal with a
constant value, determined by the number received in its inlet.

sig~ converts a float to a signal so it can be combined with another signal

In the example patch, Oscillator B combines a constant frequency (supplied as a float to
sig~) with a varying frequency offset (an additional signal value). The sum of these two
signals will be the frequency of the oscillator at any given instant.

Tutorial 4 Fundamentals:
Routing signals

80

Changing the phase of a waveform

For the most part, the phase offset of an isolated audio wave doesn’t have a substantial
effect perceptually. For example, a sine wave in the audio range sounds exactly like a
cosine wave, even though there is a theoretical phase difference of a quarter cycle. For
that reason, we have not been concerned with the rightmost phase inlet of cycle~ until
now.

A sine wave offset by a quarter cycle is a cosine wave

However, there are some very useful reasons to control the phase offset of a wave. For
example, by leaving the frequency of cycle~ at 0, and continuously increasing its phase
offset, you can change its instantaneous value (just as if it had a positive frequency). The
phase offset of a sinusoid is usually referred to in degrees (a full cycle is 360˚) or radians
(a full cycle is 2π radians). In the cycle~ object, phase is referred to in wave cycles; so an
offset of π radians is 1/2 cycle, or 0.5. In other words, as the phase varies from 0 to 2π
radians, it varies from 0 to 1 wave cycles. This way of describing the phase is handy since
it allows us to use the common signal range from 0 to 1.

So, if we vary the phase offset of a stationary (0 Hz) cycle~ continuously from 0 to 1 over
the course of one second, the resulting output is a cosine wave with a frequency of 1 Hz.

The resulting output is a cosine wave with a frequency of 1 Hz

Tutorial 4 Fundamentals:
Routing signals

81

Incidentally, this shows us how the phasor~ object got its name. It is ideally suited for
continuously changing the phase of a cycle~ object, because it progresses repeatedly from
0 to 1. If a phasor~ is connected to the phase inlet of a 0 Hz cycle~, the frequency of the
phasor~ will determine the rate at which the cycle~ object’s waveform is traversed, thus
determining the effective frequency of the cycle~.

The effective frequency of the 0 Hz cycle~ is equal to the rate of the phasor~

The important point demonstrated by the tutorial patch, however, is that the phase inlet
can be used to read through the 512 samples of cycle~ object’s waveform at any desired
rate. (In fact, the contents of cycle~ can be scanned at will with any value in the range 0 to
1.) In this case, line~ is used to change the phase of cycle~ from .75 to 1.75 over the course
of 10 seconds.

The result is one cycle of a sine wave. The sine wave is multiplied by a “depth” factor to
scale its amplitude up to 8. This sub-audio sine wave, varying slowly from 0 up to 8, down
to -8 and back to 0, is added to the frequency of Oscillator B. This causes the frequency of
Oscillator B to fluctuate very slowly between 1008 Hz and 992 Hz.

• Click on the message box in the lower-left part of the window, and notice how the beat
frequency varies sinusoidally over the course of 10 seconds, from 0 Hz up to 8 Hz (as
the frequency of Oscillator B approaches 1008 Hz), back to 0 Hz, back up to 8 Hz (as
the frequency of Oscillator B approaches 992 Hz), and back to 0 Hz.

Tutorial 4 Fundamentals:
Routing signals

82

Receiving a different signal

The remaining portion of the tutorial patch exists simply to demonstrate the use of the set
message to the receive~ object. This is another way to alter the signal flow in a network.
With set, you can change the name of the receive~ object, which causes receive~ to get its
input from a different send~ object (or objects).

Giving receive~ a new name changes its input

• Click on the message box containing set sawtooth. Both of the connected receive~ objects
now get their signal from the phasor~ in the lower-right corner of the window. Click
on the message boxes containing set outL and set outR to receive the sinusoidal tones once
again. Click on ezdac~ to turn audio off.

Summary

It is possible to make signal connections without patch cords, using the MSP objects
send~ and receive~, which are similar to the Max objects send and receive. The set message
can be used to change the name of a receive~ object, thus switching it to receive its input
from a different send~ object (or objects). Signal flow can be routed to different
destinations, or shut off entirely, using the gate~ object, which is the MSP equivalent of
the Max object gate.

The cycle~ object can be used not only for periodic audio waves, but also for sub-audio
control functions: you can read through the waveform of a cycle~ object at any rate you
wish, by keeping its frequency at 0 Hz and changing its phase continuously from 0 to 1.
The line~ object is appropriate for changing the phase of a cycle~ waveform in this way,
and phasor~ is also appropriate because it goes repeatedly from 0 to 1.

The sig~ object converts a number to a constant signal; it receives a number in its inlet
and sends out a signal of that value. This is useful for combining constant values with

Tutorial 4 Fundamentals:
Routing signals

83

varying signals. Mixing together tones with slightly different frequencies creates
interference between waves, which can create beats and other timbral effects.

See Also

gate~ Route a signal to one of several outlets
receive~ Receive signals without patch cords
send~ Transmit signals without patch cords
sig~ Constant signal of a number

84

Tutorial 5: Fundamentals—Turning signals on and off

Turning audio on and off selectively

So far we have seen two ways that audio processing can be turned on and off:

1. Send a start or stop message to a dac~, adc~, ezdac~, or ezadc~ object.

2, Click on a ezdac~ or ezadc~ object.

There are a couple of other ways we have not yet mentioned:

3. Send an int to a dac~, adc~, ezdac~, or ezadc~ object. 0 is the same as stop, and a non-
zero number is the same as start.

4. Double-click on a dac~ or adc~ object to open the DSP Status window, then use its
Audio on/ off pop-up menu. You can also choose DSP Status… from the Options
menu to open the DSP Status window.

Any of those methods of starting MSP will turn the audio on in all open Patcher windows
and their subpatches. There is also a way to turn audio processing on and off in a single
Patcher.

Sending the message startwindow—instead of start—to a dac~, adc~, ezdac~, or ezadc~ object
turns the audio on only in the Patcher window that contains that object, and in its
subpatches. It turns audio off in all other Patchers. The startwindow message is very useful
because it allows you to have many different signal networks loaded in different Patchers,
yet turn audio on only in the Patcher that you want to hear. If you encapsulate different
signal networks in separate patches, you can have many of them loaded and available but
only turn on one at a time, which helps avoid overtaxing your computer’s processing
power. (Note that startwindow is used in all MSP help files so that you can try the help file’s
demonstration without hearing your other work at the same time.)

In some cases startwindow is more appropriate than start

Tutorial 5 Fundamentals:
Turning signals on and off

85

Selecting one of several signals: selector~

In the previous chapter, we saw the gate~ object used to route a signal to one of several
possible destinations. Another useful object for routing signals is selector~, which is
comparable to the Max object switch. Several different signals can be sent into selector~,
but it will pass only one of them—or none at all—out its outlet. The left inlet of selector~
receives an int specifying which of the other inlets should be opened. Only the signal
coming in the opened inlet gets passed on out the outlet.

The number in the left inlet determines which other inlet is open

As with gate~, switching signals with selector~ can cause a very abrupt change in the
signal being sent out, resulting in unwanted clicks. So if you want to avoid such clicks it’s
best to change the open inlet of selector~ only when audio is off or when all of its input
signal levels are 0.

In the tutorial patch, selector~ is used to choose one of four different classic synthesizer
wave types: sine, sawtooth, triangle, or square. The umenu contains the names of the wave
types, and sends the correct number to the control inlet of selector~ to open the desired
inlet.

• Choose a wave type from the pop-up menu, then click on the startwindow message. Use
the pop-up menu to listen to the four different waves. Click on the stop message to turn
audio off.

Tutorial 5 Fundamentals:
Turning signals on and off

86

Technical detail: A sawtooth wave contains all harmonic partials, with the
amplitude of each partial proportional to the inverse of the harmonic
number. If the fundamental (first harmonic) has amplitude A, the second
harmonic has amplitude A/2, the third harmonic has amplitude A/3, etc. A
square wave contains only odd numbered harmonics of a sawtooth
spectrum. A triangle wave contains only odd harmonics of the
fundamental, with the amplitude of each partial proportional to the square
of the inverse of the harmonic number. If the fundamental has amplitude
A, the third harmonic has amplitude A/9, the fifth harmonic has
amplitude A/25, etc.

Note that the waveforms in this patch are ideal shapes, not band-limited versions. That is
to say, there is nothing limiting the high frequency content of the tones. For the richer
tones such as the sawtooth and pulse waves, the upper partials can easily exceed the
Nyquist rate and be folded back into the audible range. The partials that are folded over
will not belong to the intended spectrum, and the result will be an inharmonic spectrum.
As a case in point, if we play an ideal square wave at 2,500 Hz, only the first four partials
can be accurately represented with a sampling rate of 44.1 kHz. The frequencies of the
other partials exceed the Nyquist rate of 22,050 Hz, and they will be folded over back into
the audible range at frequencies that are not harmonically related to the fundamental. For
example, the eighth partial (the 15th harmonic) has a frequency of 37,500 Hz, and will be
folded over and heard as 6,600 Hz, a frequency that is not a harmonic of 2,500. (And its
amplitude is only about 24 dB less than that of the fundamental.) Other partials of the
square wave will be similarly folded over.

22,050 Hz

A

ƒ6,600 37,500

Partials that exceed the Nyquist frequency are folded over

• Choose the square wave from the pop-up menu, and set the frequency to 2500 Hz.
Turn audio on. Notice that some of the partials you hear are not harmonically related
to the fundamental. If you move the frequency up further, the folded-over partials will
go down by the same amount. Turn audio off.

Tutorial 5 Fundamentals:
Turning signals on and off

87

Turning off part of a signal network: begin~

You have seen that the selector~ and gate~ objects can be used to listen selectively to a
particular part of the signal network. The parts of the signal network that are being
ignored—for example, any parts of the network that are going into a closed inlet of
selector~—continue to run even though they have been effectively disconnected. That
means MSP continues to calculate all the numbers necessary for that part of the signal
network, even though it has no effect on what you hear. This is rather wasteful,
computationally, and it would be preferable if one could actually shut down the
processing for the parts of the signal network that are not needed at a given time.

If the begin~ object is placed at the beginning of a portion of a signal network, and that
portion goes to the inlet of a selector~ or gate~ object, all calculations for that portion of
the network will be completely shut down when the selector~ or gate~ is ignoring that
signal. This is illustrated by comparing the sinusoid and sawtooth signals in the tutorial
patch.

When the sinusoid is chosen, processing for the sawtooth is turned off entirely

When the first signal inlet of selector~ is chosen, as in the example shown above, the other
signal inlets are ignored. Calculations cease for all the objects between begin~ and
selector~—in this case, the sig~, *~, and phasor~ objects. The line~ object, because it is not
in the chain of objects that starts with begin~, continues to run even while those other
objects are stopped.

 • Choose “Sawtooth” from the pop-up menu, set the frequency back to 440 Hz, and
turn audio on. Click on the message box above the line~ object. The line~ makes a
glissando up an octave and back down over the course of ten seconds. Now click on it
again, let the glissando get underway for two seconds, then use the pop-up menu to
switch the selector~ off. Wait five seconds, then switch back to the sawtooth. The

Tutorial 5 Fundamentals:
Turning signals on and off

88

glissando is on its way back down, indicating that the line~ object continued to work
even though the sig~, *~, and phasor~ objects were shut down. When the glissando has
finished, turn audio off.

The combination of begin~ and selector~ (or gate~) can work perfectly well from one
subpatch to another, as well.

• Double-click on the patcher triangle object to view its contents.

Contents of the patcher triangle object

Here the begin~ object is inside a subpatch, and the selector~ is in the main patch, but the
combination still works to stop audio processing in the objects that are between them.
There is no MSP object for making a triangle wave, so cycle~ reads a single cycle of a
triangle wave from an AIFF file loaded into a buffer~.

begin~ is really just an indicator of a portion of the signal network that will be disabled
when selector~ turns it off. What actually comes out of begin~ is a constant signal of 0, so
begin~ can be used at any point in the signal network where a 0 signal is appropriate. It
can either be added with some other signal in a signal inlet (in which case it adds nothing
to that signal), or it can be connected to an object that accepts but ignores signal input,
such as sig~ or noise~.

Disabling audio in a Patcher: mute~ and pcontrol

You have seen that the startwindow message to dac~ turns audio on in a single Patcher and
its subpatches, and turns audio off in all other patches. There are also a couple of ways to
turn audio off in a specific subpatch, while leaving audio on elsewhere.

Tutorial 5 Fundamentals:
Turning signals on and off

89

One way is to connect a mute~ object to the inlet of the subpatch you want to control.

Stopping audio processing in a specific subpatch

To mute a subpatch, connect a mute~ object to the inlet of the subpatch, as shown. When
mute~ receives a non-zero int in its inlet, it stops audio processing for all MSP objects in
the subpatch. Sending 0 to mute~ object’s inlet unmutes the subpatch.

• Choose “Square” from the pop-up menu, and turn audio on to hear the square wave.
Click on the toggle above the mute~ object to disable the patcher pulsewave subpatch.
Click on the same toggle again to unmute the subpatch.

This is similar to using the begin~ and selector~ objects, but the mute~ object disables the
entire subpatch. (Also, the syntax is a little different. Because of the verb “mute”, a non-
zero int to mute~ has the effect of turning audio off, and 0 turns audio on.)

In the tutorial example, it really is overkill to have the output of patcher pulsewave go to
selector~ and to have a mute~ object to mute the subpatch. However, it’s done here to
show a distinction. The selector~ can cut off the flow of signal from the patcher pulsewave
subpatch, but the MSP objects in the subpatch continue to run (because there is no begin~
object at its beginning). The mute~ object allows one to actually stop the processing in the
subpatch, without using begin~ and selector~.

• Double-click on the patcher pulsewave object to see its contents.

Output is 1 for half the cycle, and 0 for half the cycle

Tutorial 5 Fundamentals:
Turning signals on and off

90

To make a square wave oscillator, we simply send the output of phasor~—which goes
from 0 to 1—into the inlet of <~ 0.5 (<~ is the MSP equivalent of the Max object <). For
the first half of each wave cycle, the output of phasor~ is less than 0.5, so the <~ object
sends out 1. For the second half of the cycle, the output of phasor~ is greater than 0.5, so
the <~ object sends out 0.

The pass~ object between the <~ object and the outlet is necessary to avoid unwelcome
noise when the subpatcher is muted. It merely passes its input to its output unless the
subpatcher is muted, when it outputs a zero signal. pass~ objects are needed above any
outlet of a patcher that might be muted.

Another way to disable the MSP objects in a subpatch is with the pcontrol object. Sending
the message enable 0 to a pcontrol object connected to a subpatch disables all MSP
objects—and all MIDI objects!—in that subpatch. The message enable 1 re-enables MIDI
and audio objects in the subpatch.

pcontrol can disable and re-enable all MIDI and audio objects in a subpatch

The patcher harmonics subpatch contains a complete signal network that’s essentially
independent of the main patch. We used pcontrol to disable that subpatch initially, so that
it won’t conflict with the sound coming from the signal network in the main patch.
(Notice that loadbang causes an enable 0 message to be sent to pcontrol when the main patch
is loaded, disabling the MSP objects in the subpatch.)

• Turn audio off, click on the toggle above the patcher harmonics object to enable it, then
double- click on the patcher harmonics object to see its contents.

Tutorial 5 Fundamentals:
Turning signals on and off

91

This subpatch combines 8 harmonically related sinusoids to create a complex tone in
which the amplitude of each harmonic (harmonic number n) is proportional to 1/2

n.
Because the tones are harmonically related, their sum is a periodic wave at the
fundamental frequency.

Wave produced by the patcher harmonics subpatch

The eight frequencies fuse together psychoacoustically and are heard as a single complex
tone at the fundamental frequency. It is interesting to note that even when the
fundamental tone is removed, the sum of the other seven harmonics still implies that
fundamental, and we perceive only a loudness change and a timbral change but no
change in pitch.

The same tone, minus its first harmonic, still has the same period

• Click on the startwindow message to start audio in the subpatch. Try removing and
replacing the fundamental frequency by sending 0 and 1 to the selector~. Click on stop
to turn audio off.

Summary

The startwindow message to dac~ (or adc~) starts audio processing in the Patcher window
that contains the dac~, and in any of that window’s subpatches, but turns audio off in all
other patches. The mute~ object, connected to an inlet of a subpatch, can be used to
disable all MSP objects in that subpatch. An enable 0 message to a pcontrol object connected
to an inlet of a subpatch can also be used to disable all MSP objects in that subpatch. (This

Tutorial 5 Fundamentals:
Turning signals on and off

92

disables all MIDI objects in the subpatch, too.) The pass~ object silences the output of a
subpatcher when it is muted.

You can use a selector~ object to choose one of several signals to be passed on out the
outlet, or to close off the flow of all the signals it receives. All MSP objects that are
connected in a signal flow between the outlet of a begin~ object and an inlet of a selector~
object (or a gate~ object) get completely disconnected from the signal network when that
inlet is closed.

Any of these methods is an effective way to play selectively a subset of all the MSP objects
in a given signal network (or to select one of several different networks). You can have
many signal networks loaded, but only enable one at a time; in this way, you can switch
quickly from one sound to another, but the computer only does processing that affects
the sound you hear.

See Also

begin~ Define a switchable part of a signal network
mute~ Disable signal processing in a subpatch
pass~ Eliminate noise in a muted subpatcher
pcontrol Open and close subwindows within a patcher
selector~ Assign one of several inputs to an outlet

93

Tutorial 6: A Review of Fundamentals

Exercises in the fundamentals of MSP

In this chapter, we suggest some tasks for you to program that will test your
understanding of the fundamentals of MSP presented in the Tutorial so far. A few hints
are included to get you started. Try these three progressive exercises on your own first, in
new file of your own. Then check the example patch to see a possible solution, and read
on in this chapter for an explanation of the solution patch.

Exercise 1

• Write a patch that plays the note E above middle C for one second, ten times in a row,
with an electric guitar-like timbre. Make it so that all you have to do is click once to
turn audio on, and once to play the ten notes.

Here are a few hints:

1. The frequency of E above middle C is 329.627557 Hz.

2. For an “electric guitar-like timbre” you can use the AIFF file gtr512.aiff that was used
in Tutorial 3. You’ll need to read that file into a buffer~ object, and access the buffer~
with a cycle~ object. In order to read the file in directly, without a dialog box to find
the file, your patch and the audio file should be saved in the same folder. You can
either save your patch in the MSP Tutorial folder or, in the Finder, option-drag a copy
of the gtr512.aiff file into the folder where you have saved your patch.

3. Your sound will also need an amplitude envelope that is characteristic of a guitar: very
fast attack, fast decay, and fairly steady (only slightly diminishing) sustain. Try using a
list of line segments (target values and transition times) to a line~ object, and using
the output of line~ to scale the amplitude of the cycle~.

4. To play the note ten times in a row, you’ll need to trigger the amplitude envelope
repeatedly at a steady rate. The Max object metro is well suited for that task. To stop
after ten notes, your patch should either count the notes or wait a specific amount of
time, then turn the metro off.

Exercise 2

• Modify your first patch so that, over the course of the ten repeated notes, the electric
guitar sound crossfades with a sinusoidal tone a perfect 12th higher. Use a linear
crossfade, with the amplitude of one sound going from 1 to 0, while the other sound
goes from 0 to 1. (We discuss other ways of crossfading in a future chapter.) Send the
guitar tone to the left audio output channel, and the sine tone to the right channel.

Hints:

Tutorial 6 A review of fundamentals

94

1. You will need a second cycle~ object to produce the tone a 12th higher.

2. To obtain the frequency that’s a (just tuned) perfect 12th above E, simply multiply
329.627557 times 3. The frequency that’s an equal tempered perfect 12th above E is
987.7666 Hz. Use whichever tuning you prefer.

3. In addition to the amplitude envelope for each note, you will need to change the over-
all amplitude of each tone over the course of the ten seconds. This can be achieved
using an additional *~ object to scale the amplitude of each tone, slowly changing the
scaling factor from 1 to 0 for one tone, and from 0 to 1 for the other.

Exercise 3

• Modify your second patch so that, over the course of the ten repeated notes, the two
crossfading tones also perform an over-all diminuendo, diminishing to 1/32 their
original amplitude (i.e., by 30 dB).

Hints:

1. This will require yet another amplitude scaling factor (presumably another *~ object)
to reduce the amplitude gradually by a factor of .03125.

2. Note that if you scale the amplitude linearly from 1 to .03125 in ten seconds, the
diminuendo will seem to start slowly and accelerate toward the end. That’s because
the linear distance between 1 and .5 (a reduction in half) is much greater than the
linear distance between .0625 and .03125 (also a reduction in half). The first 6 dB of
diminuendo will therefore occur in the first 5.16 seconds, but the last 6 dB reduction
will occur in the last .32 seconds. So, if you want the diminuendo to be perceived as
linear, you will have to adjust accordingly.

Solution to Exercise 1

• Scroll the example Patcher window all the way to the right to see one possible solution
to these exercises.

Tutorial 6 A review of fundamentals

95

To make an oscillator with a guitar-like waveform, you need to read the audio file
gtr512.aiff (or some similar waveform) into a buffer~, and then refer to that buffer~ with a
cycle~. (See Tutorial 3.)

cycle~ traverses the buffer~ 329.627533 times per second

Note that there is a limit to the precision with which Max can represent decimal numbers.
When you save your patch, Max may change float values slightly. In this case, you won’t
hear the difference.

If you want the audio file to be read into the buffer~ immediately when the patch is
loaded, you can type the filename in as a second argument in the buffer~ object, or you
can use loadbang to trigger a read message to buffer~. In our solution we also chose to
provide the frequency from a number box—which allows you to play other pitches—rather
than as an argument to cycle~, so we also send cycle~ an initial frequency value with
loadbang.

loadbang is used to initialize the contents of buffer~ and the frequency of cycle~

Now that we have an oscillator producing the desired tone, we need to provide an
amplitude envelope to shape a note.

Tutorial 6 A review of fundamentals

96

We chose the envelope shown below, composed of straight line segments. (See Tutorial
3.)

0
0 1 sec.

1

“Guitar-like” amplitude envelope

This amplitude envelope is imposed on the output of cycle~ with a combination of line~
and *~. A metro is used to trigger the envelope once per second, and the metro gets turned
off after a 10-second delay.

Ten guitar-like notes are played when the button is clicked

Tutorial 6 A review of fundamentals

97

Solution to Exercise 2

For the right output channel we want a sinusoidal tone at three times the frequency (the
third harmonic of the fundamental tone), with the same amplitude envelope.

Two oscillators with the same amplitude envelope and related frequencies

To crossfade between the two tones, the amplitude of the first tone must go from 1 to 0
while the amplitude of the second tone goes from 0 to 1. This can again be achieved with
the combination of line~ and *~ for each tone.

Linear crossfade of two tones

We used a little trick to economize. Rather than use a separate line~ object to fade the
second tone from 0 to 1, we just subtract 1 from the output of the existing line~, which
gives us a ramp from 0 to -1. Perceptually this will have the same effect.

This crossfade is triggered (via s and r objects) by the same button that triggers the metro,
so the crossfade starts at the same time as the ten individual notes do.

Tutorial 6 A review of fundamentals

98

Solution to Exercise 3

Finally, we need to use one more amplitude envelope to create a global diminuendo. The
two tones go to yet another *~ object, controlled by another line~. As noted earlier, a
straight line decrease in amplitude will not give the perception of constant diminuendo in
loudness.

Therefore, we used five line segments to simulate a curve that decreases by half every two
seconds.

0 10 sec.
0

1

Global amplitude envelope decreasing by half every two seconds

This global amplitude envelope is inserted in the signal network to scale both tones down
smoothly by a factor of .03125 over 10 seconds.

Both tones are scaled by the same global envelope

99

Tutorial 7: Synthesis—Additive synthesis
In the tutorial examples up to this point we have synthesized sound using basic
waveforms. In the next few chapters we’ll explore a few other well known synthesis
techniques using sinusoidal waves. Most of these techniques are derived from pre-
computer analog synthesis methods, but they are nevertheless instructive and useful.

Combining tones

A sine wave contains energy at a single frequency. Since complex tones, by definition, are
composed of energy at several (or many) different frequencies, one obvious way to
synthesize complex tones is to use multiple sine wave oscillators and add them together.

Four sinusoids added together to make a complex tone

Of course, you can add any waveforms together to produce a composite tone, but we’ll
stick with sine waves in this tutorial example. Synthesizing complex tones by adding sine
waves is a somewhat tedious method, but it does give complete control over the
amplitude and frequency of each component (partial) of the complex tone.

In the tutorial patch, we add together six cosine oscillators (cycle~ objects), with
independent control over the frequency, amplitude, and phase of each one. In order to
simplify the patch, we designed a subpatch called partial~ which allows us to specify the
frequency of each partial as a ratio relative to a fundamental frequency.

The contents of the subpatch partial~

For example, if we want a partial to have a frequency twice that of the fundamental we
just type in 2.0 as an argument (or send it in the second inlet). This way, if several partial~
objects are receiving their fundamental frequency value (in the left inlet) from the same

Tutorial 7 Synthesis:
Additive synthesis

100

source, their relative frequencies will stay the same even when the value of the
fundamental frequency changes.

Of course, for the sound to be very interesting, the amplitudes of the partials must evolve
with relative independence. Therefore, in the main patch, we control the amplitude of
each partial with its own envelope generator.

Envelope generator: function

In Tutorial 3 you saw how to create an amplitude envelope by sending a list of pairs of
numbers to a line~ object, thus giving it a succession of target values and transition times.
This idea of creating a control function from a series of line segments is useful in many
contexts—generating amplitude envelopes happens to be one particularly common
usage—and it is demonstrated in Tutorial 6, as well.

The function object is a great help in generating such line segment functions, because it
allows you to draw in the shape that you want, as well as define the function’s domain and
range (the numerical value of its dimensions on the x and y axes). You can draw a
function simply by clicking with the mouse where you want each breakpoint to appear.
When function receives a bang, it sends a list of value-time pairs out its 2nd outlet. That list,
when used as input to the line~ object, produces a changing signal that corresponds to the
shape drawn.

function is a graphic function generator for a control signal when used with line~

By the way, function is also useful for non-signal purposes in Max. It can be used as an
interpolating lookup table. When it receives a number in its inlet, it considers that
number to be an x value and it looks up the corresponding y value in the drawn function
(interpolating between breakpoints as necessary) and sends it out the left outlet.

Tutorial 7 Synthesis:
Additive synthesis

101

A variety of complex tones

Even with only six partials, one can make a variety of timbres ranging from “realistic”
instrument- like tones to clearly artificial combinations of frequencies. The settings for a
few different tones have been stored in a preset object, for you to try them out. A brief
explanation of each tone is provided below.

• Click on the ezdac~ speaker icon to turn audio on. Click on the button to play a tone.
Click on one of the stored presets in the preset object to change the settings, then click
the button again to hear the new tone.

Preset 1. This tone is not really meant to emulate a real instrument. It’s just a set of
harmonically related partials, each one of which has a different amplitude envelope.
Notice how the timbre of the tone changes slightly over the course of its duration as
different partials come to the foreground. (If you can’t really notice that change of timbre,
try changing the note’s duration to something longer, such as 8000 milliseconds, to hear
the note evolve more slowly.)

Preset 2. This tone sounds rather like a church organ. The partials are all octaves of the
fundamental, the attack is moderately fast but not percussive, and the amplitude of the
tone does not diminish much over the course of the note. You can see and hear that the
upper partials die away more quickly than the lower ones.

Preset 3. This tone consists of slightly mistuned harmonic partials. The attack is
immediate and the amplitude decays rather rapidly after the initial attack, giving the note
a percussive or plucked effect.

Preset 4. The amplitude envelopes for the partials in this tone are derived from an
analysis of a trumpet note in the lower register. Of course, these are only six of the many
partials present in a real trumpet sound.

Preset 5. The amplitude envelopes for the partials of this tone are derived from the same
trumpet analysis. However, in this case, only the odd-numbered harmonics are used. This
creates a tone more like a clarinet, because the cylindrical bore of a clarinet resonates the
odd harmonics. Also, the longer duration of this note slows down the entire envelope,
giving it a more characteristically clarinet-like attack.

Preset 6. This is a completely artificial tone. The lowest partial enters first, followed by the
sixth partial a semitone higher. Eventually the remaining partials enter, with frequencies
that lie between the first and sixth partial, creating a microtonal cluster. The beating effect
is due to the interference between these waves of slightly different frequency.

Tutorial 7 Synthesis:
Additive synthesis

102

Preset 7. In this case the partials are spaced a major second apart, and the amplitude of
each partial rises and falls in such a way as to create a composite effect of an arpeggiated
whole-tone cluster. Although this is clearly a whole-tone chord rather than a single tone,
the gradual and overlapping attacks and decays cause the tones to fuse together fairly
successfully.

Preset 8. In this tone the partials suggest a harmonic spectrum strongly enough that we
still get a sense of a fundamental pitch, but they are sufficiently mistuned that they
resemble the inharmonic spectrum of a bell. The percussive attack, rapid decay, and
independently varying partials during the sustain portion of the note are also all
characteristic of a struck metal bell.

Notice that when you are adding several signals together like this, their sum will often
exceed the amplitude limits of the dac~ object, so the over-all amplitude must be scaled
appropriately with a *~ object.

Experiment with complex tones

• Using these tones as starting points, you may want to try designing your own tones
with this additive synthesis patch. Vary the tones by changing the fundamental
frequency, partials, and duration of the preset tones. You can also change the
envelopes by dragging on the breakpoints.

To draw a function in the function object:

• Click in the function object to create a new breakpoint. If you click and drag, the x and
y coordinates of the point are shown in the upper portion of the object, and you can
immediately move the breakpoint to the position you want.

• Similarly, you can click and drag on any existing breakpoint to move it.

• Shift-click on an existing point to delete it.

Although not demonstrated in this tutorial, it is also possible to create, move, and delete
breakpoints in a function just by using Max messages. See the description of function in the
Objects section of the manual for details.

The message setdomain, followed by a number, changes the scale of the x axis in the function
without changing the shape of the envelope. When you change the number in the
“Duration” number box, it sends a setdomain message to the function.

Tutorial 7 Synthesis:
Additive synthesis

103

Summary

Additive synthesis is the process of synthesizing new complex tones by adding tones
together. Since pure sine tones have energy at only one frequency, they are the
fundamental building blocks of additive synthesis, but of course any signals can be added
together. The sum signal may need to by scaled by some constant signal value less than 1
in order to keep it from being clipped by the DAC.

In order for the timbre of a complex tone to remain the same when its pitch changes, each
partial must maintain its relationship to the fundamental frequency. Stating the frequency
of each partial in terms of a ratio to (i.e., a multiplier of) the fundamental frequency
maintains the tone’s spectrum even when the fundamental frequency changes.

In order for a complex tone to have an interesting timbre, the amplitude of the partials
must change with a certain degree of independence. The function object allows you to
draw control shapes such as amplitude envelopes, and when function receives a bang it
describes that shape to a line~ object to generate a corresponding control signal.

See Also

function Graphical function breakpoint editor

104

Tutorial 8: Synthesis—Tremolo and ring modulation

Multiplying signals

In the previous chapter we added sine tones together to make a complex tone. In this
chapter we will see how a very different effect can be achieved by multiplying signals.
Multiplying one wave by another—i.e., multiplying their instantaneous amplitudes,
sample by sample—creates an effect known as ring modulation (or, more generally,
amplitude modulation). “Modulation” in this case simply means change; the amplitude of
one waveform is changed continuously by the amplitude of another.

Technical detail: Multiplication of waveforms in the time domain is
equivalent to convolution of waveforms in the frequency domain. One
way to understand convolution is as the superimposition of one spectrum
on every frequency of another spectrum. Given two spectra S1 and S2,
each of which contains many different frequencies all at different
amplitudes, make a copy of S1 at the location of every frequency in S2,
with each copy scaled by the amplitude of that particular frequency of S2.

Since a cosine wave has equal amplitude at both positive and negative
frequencies, its spectrum contains energy (equally divided) at both ƒ and -
ƒ. When convolved with another cosine wave, then, a scaled copy of (both
the positive and negative frequency components of) the one wave is
centered around both the positive and negative frequency components of
the other.

Multiplication in the time domain is equivalent to convolution in the
frequency domain

In our example patch, we multiply two sinusoidal tones. Ring modulation
(multiplication) can be performed with any signals, and in fact the most sonically
interesting uses of ring modulation involve complex tones.

However, we’ll stick to sine tones in this example for the sake of simplicity, to allow you
to hear clearly the effects of signal multiplication.

Tutorial 8 Synthesis:
Tremolo and ring modulation

105

Simple multiplication of two cosine waves

The tutorial patch contains two cycle~ objects, and the outlet of each one is connected to
one of the inlets of a *~ object. However, the output of one of the cycle~ objects is first
scaled by an additional *~ object, which provides control of the over-all amplitude of the
result. (Without this, the over-all amplitude of the product of the two cycle~ objects would
always be 1.)

Product of two cosine waves (one with amplitude scaled beforehand)

Tremolo

When you first open the patch, a loadbang object initializes the frequency and amplitude
of the oscillators. One oscillator is at an audio frequency of 1000 Hz. The other is at a sub-
audio frequency of 0.1 Hz (one cycle every ten seconds). The 1000 Hz tone is the one we
hear (this is termed the carrier oscillator), and it is modulated by the other wave (called
the modulator) such that we hear the amplitude of the 1000 Hz tone dip to 0 whenever
the 0.1 Hz cosine goes to 0. (Twice per cycle, meaning once every five seconds.)

• Click on the ezdac~ to turn audio on. You will hear the amplitude of the 1000 Hz tone
rise and fall according to the cosine curve of the modulator, which completes one full
cycle every ten seconds. (When the modulator is negative, it inverts the carrier, but we
don’t hear the difference, so the effect is of two equivalent dips in amplitude per
modulation period.)

The amplitude is equal to the product of the two waves. Since the peak amplitude of the
carrier is 1, the over-all amplitude is equal to the amplitude of the modulator.

Tutorial 8 Synthesis:
Tremolo and ring modulation

106

• Drag on the “Amplitude” number box to adjust the sound to a comfortable level. Click
on the message box containing the number 1 to change the modulator rate.

With the modulator rate set at 1, you hear the amplitude dip to 0 two times per second.
Such a periodic fluctuation in amplitude is known as tremolo. (Note that this is distinct
from vibrato, a term usually used to describe a periodic fluctuation in pitch or frequency.)
The perceived rate of tremolo is equal to two times the modulator rate, since the
amplitude goes to 0 twice per cycle. As described on the previous page, ring modulation
produces the sum and difference frequencies, so you’re actually hearing the frequencies
1001 Hz and 999 Hz, and the 2 Hz beating due to the interference between those two
frequencies.

• One at a time, click on the message box objects containing 2 and 4. What tremolo rates
do you hear? The sound is still like a single tone of fluctuating amplitude because the
sum and difference tones are too close in frequency for you to separate them
successfully, but can you calculate what frequencies you’re actually hearing?

• Now try setting the rate of the modulator to 8 Hz, then 16 Hz.

In these cases the rate of tremolo borders on the audio range. We can no longer hear the
tremolo as distinct fluctuations, and the tremolo just adds a unique sort of “roughness” to
the sound. The sum and difference frequencies are now far enough apart that they no
longer fuse together in our perception as a single tone, but they still lie within what
psychoacousticians call the critical band. Within this critical band we have trouble
hearing the two separate tones as a pitch interval, presumably because they both affect the
same region of our basilar membrane.

Sidebands

• Try setting the rate of the modulator to 32 Hz, then 50 Hz.

At a modulation rate of 32 Hz, you can hear the two tones as a pitch interval
(approximately a minor second), but the sensation of roughness persists. With a
modulation rate of 50 Hz, the sum and difference frequencies are 1050 Hz and 950 Hz—a
pitch interval almost as great as a major second—and the roughness is mostly gone. You
might also hear the tremolo rate itself, as a tone at 100 Hz.

You can see that this type of modulation produces new frequencies not present in the
carrier and modulator tones. These additional frequencies, on either side of the carrier
frequency, are often called sidebands.

• Listen to the remaining modulation rates.

Tutorial 8 Synthesis:
Tremolo and ring modulation

107

At certain modulation rates, all the sidebands are aligned in a harmonic relationship.
With a modulation rate of 200 Hz, for example, the tremolo rate is 400 Hz and the sum
and difference frequencies are 800 Hz and 1200 Hz. Similarly, with a modulation rate of
500 Hz, the tremolo rate is 1000 Hz and the sum and difference frequencies are 500 Hz
and 1500 Hz. In these cases, the sidebands fuse together more tightly as a single complex
tone.

• Experiment with other carrier and modulator frequencies by typing other values into
the number box objects. When you have finished, click on ezdac~ again to turn audio
off.

Summary

Multiplication of two digital signals is comparable to the analog audio technique known
as ring modulation. Ring modulation is a type of amplitude modulation—changing the
amplitude of one tone (termed the carrier) with the amplitude of another tone (called the
modulator). Multiplication of signals in the time domain is equivalent to convolution of
spectra in the frequency domain.

Multiplying an audio signal by a sub-audio signal results in regular fluctuations of
amplitude known as tremolo. Multiplication of signals creates sidebands—additional
frequencies not present in the original tones. Multiplying two sinusoidal tones produces
energy at the sum and difference of the two frequencies. This can create beating due to
interference of waves with similar frequencies, or can create a fused complex tone when
the frequencies are harmonically related. When two signals are multiplied, the output
amplitude is determined by the product of the carrier and modulator amplitudes.

108

Tutorial 9: Synthesis—Amplitude modulation

Ring modulation and amplitude modulation

Amplitude modulation (AM) involves changing the amplitude of a “carrier” signal using
the output of another “modulator” signal. In the specific AM case of ring modulation
(discussed in Tutorial 8) the two signals are simply multiplied. In the more general case,
the modulator is used to alter the carrier’s amplitude, but is not the sole determinant of it.
To put it another way, the modulator can cause fluctuation of amplitude around some
value other than 0. The example below illustrates the difference between ring modulation
and more common amplitude modulation.

1

0

-1

0

1

-1

Ring modulation Amplitude modulation

The example on the left is 1/4 second of a 100 Hz cosine multiplied by a 4 Hz cosine; the
amplitude of both cosines is 1. In the example on the right, the 4 Hz cosine has an
amplitude of 0.25, which is used to vary the amplitude of the 100 Hz tone ±0.25 around
0.75 (going as low as 0.5 and as high as 1.0). The two main differences are a) the AM
example never goes all the way to 0, whereas the ring modulation example does, and b)
the ring modulation is perceived as two amplitude dips per modulation period (thus
creating a tremolo effect at twice the rate of the modulation) whereas the AM is perceived
as a single cosine fluctuation per modulation period.

Tutorial 9 Synthesis:
Amplitude modulation

109

The two MSP patches that made these examples are shown below.

Ring modulation Amplitude modulation

The difference in effect is due to the constant value of 0.75 in the AM patch, which is
varied by a modulator of lesser amplitude. This constant value can be thought of as the
carrier’s amplitude, which is varied by the instantaneous amplitude of the modulator. The
amplitude still varies according to the shape of the modulator, but the modulator is not
centered on 0.

Technical detail: The amount that a wave is offset from 0 is called the DC
offset. A constant amplitude value such as this represents spectral energy
at the frequency 0 Hz. The modulator in AM has a DC offset, which
distinguishes it from ring modulation.

Tutorial 9 Synthesis:
Amplitude modulation

110

Implementing AM in MSP

The tutorial patch is designed in such a way that the DC offset of the modulator is always
1 minus the amplitude of its sinusoidal variation. That way, the peak amplitude of the
modulator is always 1, so the product of carrier and modulator is always 1. A separate *~
object is used to control the over-all amplitude of the sound.

The modulator is a sinusoid with a DC offset, which is multiplied by the carrier

• Click on the ezdac~ to turn audio on. Notice how the tremolo rate is the same as the
frequency of the modulator. Click on the message boxes 2, 4, and 8 in turn to hear
different tremolo rates.

Achieving different AM effects

The primary merit of AM lies in the fact that the intensity of its effect can be varied by
changing the amplitude of the modulator.

• To hear a very slight tremolo effect, type the value 0.03 into the number box marked
“Tremolo Depth”. The modulator now varies around 0.97, from 1 to 0.94, producing
an amplitude variation of only about half a decibel. To hear an extreme tremolo effect,
change the tremolo depth to 0.5; the modulator now varies from 1 to 0—the
maximum modulation possible.

Tutorial 9 Synthesis:
Amplitude modulation

111

Amplitude modulation produces sidebands—additional frequencies not present in the
carrier or the modulator—equal to the sum and the difference of the frequencies present
in the carrier and modulator. The presence of a DC offset (technically energy at 0 Hz) in
the modulator means that the carrier tone remains present in the output, too (which is
not the case with ring modulation).

• Click on the message boxes containing the numbers 32, 50, 100, and 150, in turn. You
will hear the carrier frequency, the modulator frequency (which is now in the low end
of the audio range), and the sum and difference frequencies.

When there is a harmonic relationship between the carrier and the modulator, the
frequencies produced belong to the harmonic series of a common fundamental, and tend
to fuse more as a single complex tone. For example, with a carrier frequency of 1000 Hz
and a modulator at 250 Hz, you will hear the frequencies 250 Hz, 750 Hz, 1000 Hz, and
1250 Hz— the 1st, 3rd, 4th, and 5th harmonics of the fundamental at 250 Hz.

• Click on the message boxes containing the numbers 200, 250, and 500 in turn to hear
harmonic complex tones. Drag on the “Tremolo Depth” number box to change the
depth value between 0. and 0.5, and listen to the effect on the relative strength of the
sidebands.

• Explore different possibilities by changing the values in the number box objects. When
you have finished, click on the ezdac~ to turn audio off.

It is worth noting that any audio signals can be used as the carrier and modulator tones,
and in fact many interesting results can be obtained by amplitude modulation with
complex tones. (Tutorial 23 allows you to perform amplitude modulation on the sound
coming into the computer.)

Summary

The amplitude of an audio (carrier) signal can be modulated by another (modulator)
signal, either by simple multiplication (ring modulation) or by adding a time-varying
modulating signal to a constant signal (DC offset) before multiplying it with the carrier
signal (amplitude modulation). The intensity of the amplitude modulation can be
controlled by increasing or reducing the amplitude of the time-varying modulator relative
to its DC offset. When the modulator has a DC offset, the carrier frequency will remain
present in the output sound, along with sidebands at frequencies determined by the sum
and the difference of the carrier and the modulator. At sub-audio modulating
frequencies, amplitude modulation is heard as tremolo; at audio frequencies the carrier,
modulator, and sidebands are all heard as a chord or as a complex tone.

112

Tutorial 10: Synthesis—Vibrato and FM

Basic FM in MSP

Frequency modulation (FM) is a change in the frequency of one signal caused by
modulating it with another signal. In the most common implementation, the frequency of
a sinusoidal carrier wave is varied continuously with the output of a sinusoidal
modulating oscillator. The modulator is added to the constant base frequency of the
carrier.

Simple frequency modulation

The example above shows the basic configuration for FM. The frequency of the
modulating oscillator determines the rate of modulation, and the amplitude of the
modulator determines the “depth” (intensity) of the effect.

• Click on the ezdac~ to turn audio on.

The sinusoidal movement of the modulator causes the frequency of the carrier to go as
high as 1015 Hz and as low as 885 Hz. This frequency variation completes six cycles per
second, so we hear a 6 Hz vibrato centered around 1000 Hz. (Note that this is distinct
from tremolo, which is a fluctuation in amplitude, not frequency.)

• Drag upward on the number box marked “Modulation Depth” to change the amplitude
of the modulator. The vibrato becomes wider and wider as the modulator amplitude
increases. Set the modulation depth to 500.

With such a drastic frequency modulation, one no longer really hears the carrier
frequency. The tone passes through 1000 Hz so fast that we don’t hear that as its
frequency. Instead we hear the extremes—500 Hz and 1500 Hz—because the output
frequency actually spends more time in those areas.

Note that 500 Hz is an octave below 1000 Hz, while 1500 Hz is only a perfect fifth above
1000 Hz. The interval between 500 Hz and 1500 Hz is thus a perfect 12th (as one would
expect, given their 1:3 ratio). So you can see that a vibrato of equal frequency variation

Tutorial 10 Synthesis:
Vibrato and FM

113

around a central frequency does not produce equal pitch variation above and below the
central pitch. (In Tutorial 17 we demonstrate how to make a vibrato that is equal in pitch
up and down.)

• Set the modulation depth to 1000. Now begin dragging the “Modulator Frequency”
number box upward slowly to hear a variety of effects.

As the modulator frequency approaches the audio range, you no longer hear individual
oscillations of the modulator. The modulation rate itself is heard as a low tone. As the
modulation frequency gets well into the audio range (at about 50 Hz), you begin to hear a
complex combination of sidebands produced by the FM process. The precise frequencies
of these sidebands depend on the relationship between the carrier and modulator
frequencies.

• Drag the “Modulator Frequency” number box all the way up to 1000. Notice that the
result is a rich harmonic tone with fundamental frequency of 1000 Hz. Try typing in
modulator frequencies of 500, 250, and 125 and note the change in perceived
fundamental.

In each of these cases, the perceived fundamental is the same as the modulator frequency.
In fact, though, it is not determined just by the modulator frequency, but rather by the
relationship between carrier frequency and modulator frequency. This will be examined
more in the next chapter.

• Type in 125 as the modulator frequency. Now drag up and down on the “Modulation
Depth” number box, making drastic changes. Notice that the pitch stays the same but
the timbre changes.

The timbre of an FM tone depends on the ratio of modulator amplitude to modulator
frequency. This, too, will be discussed more in the next chapter.

Summary

Frequency modulation (FM) is achieved by adding a time-varying signal to the constant
frequency of an oscillator. It is good for vibrato effects at sub-audio modulating
frequencies, and can produce a wide variety of timbres at audio modulating frequencies.
The rich complex tones created with FM contain many partials, even though only two
oscillators are needed to make the sound. This is a great improvement over additive
synthesis, in terms of computational efficiency.

114

Tutorial 11: Synthesis—Frequency modulation

Elements of FM synthesis

Frequency modulation (FM) has proved to be a very versatile and effective means of
synthesizing a wide variety of musical tones. FM is very good for emulating acoustic
instruments, and for producing complex and unusual tones in a computationally efficient
manner.

Modulating the frequency of one wave with another wave generates many sidebands,
resulting in many more frequencies in the output sound than were present in the carrier
and modulator waves themselves. As was mentioned briefly in the previous chapter, the
frequencies of the sidebands are determined by the relationship between the carrier
frequency (Fc) and the modulator frequency (Fm); the relative strength of the different
sidebands (which affects the timbre) is determined by the relationship between the
modulator amplitude (Am) and the modulator frequency (Fm).

Because of these relationships, it’s possible to boil the control of FM synthesis down to
two crucial values, which are defined as ratios of the pertinent parameters. One important
value is the harmonicity ratio, defined as Fm/Fc; this will determine what frequencies are
present in the output tone, and whether the frequencies have an harmonic or inharmonic
relationship. The second important value is the modulation index, defined as Am/Fm; this
value affects the “brightness” of the timbre by affecting the relative strength of the
partials.

Technical detail: In John Chowning’s article “Synthesis of Complex Audio
Spectra by Means of Frequency Modulation” and in Curtis Roads’
Computer Music Tutorial, they write about the ratio Fc/Fm. However, in
F.R. Moore’s Elements of Computer Music he defines the term
harmonicity ratio as Fm/Fc. The idea in all cases is the same, to express the
relationship between the carrier and modulator frequencies as a ratio. In
this tutorial we use Moore’s definition because that way whenever the
harmonicity ratio is an integer the result will be a harmonic tone with Fc
as the fundamental.

The frequencies of the sidebands are determined by the sum and difference of the carrier
frequency plus and minus integer multiples of the modulator frequency. Thus, the
frequencies present in an FM tone will be Fc, Fc+Fm, Fc-Fm, Fc+2Fm, Fc-2Fm, Fc+3Fm,
Fc-3Fm, etc. This holds true even if the difference frequency turns out to be a negative
number; the negative frequencies are heard as if they were positive. The number and
strength of sidebands present is determined by the modulation index; the greater the
index, the greater the number of sidebands of significant energy.

Tutorial 11 Synthesis:
Frequency modulation

115

An FM subpatch: simpleFM~

The simpleFM~ object in this tutorial patch is not an MSP object; it’s a subpatch that
implements the ideas of harmonicity ratio and modulation index.

• Double-click on the simpleFM~ subpatch object to see its contents.

The simpleFM~ subpatch

The main asset of this subpatch is that it enables one to specify the carrier frequency,
harmonicity ratio, and modulation index, and it then calculates the necessary modulator
frequency and modulator amplitude (in the *~ objects) to generate the correct FM signal.
The subpatch is flexible in that it accepts either signals or numbers in its inlets, and the
harmonicity ratio and modulation index can be typed in as arguments in the main patch.

• Close the [simpleFM~] window.

Tutorial 11 Synthesis:
Frequency modulation

116

Producing different FM tones

In the main patch, the carrier frequency and harmonicity ratio are provided to simpleFM~
as constant values, and the modulation index is provided as a time-varying signal
generated by the envelope in the function object.

Providing values for the FM instrument

Because modulation index is the main determinant of timbre (brightness), and because
the timbre of most real sounds varies over time, the modulation index is a prime
candidate to be controlled by an envelope. This timbre envelope may or may not
correspond exactly with the amplitude of the sound, so in the main patch one envelope is
used to control amplitude, and another to control brightness.

Over the course of the note, the timbre and the amplitude evolve independently

Each of the presets contains settings to produce a different kind of FM tone, as described
below.

Tutorial 11 Synthesis:
Frequency modulation

117

• Turn audio on and click on the first preset in the preset object to recall some settings
for the instrument. Click on the button to play a note. To hear each of the different
preset tones, click on a different preset in the preset object to recall the settings for the
instrument, then click on the button to play a note.

Preset 1. The carrier frequency is for the pitch C an octave below middle C. The non-
integer value for the harmonicity ratio will cause an inharmonic set of partials. This
inharmonic spectrum, the steady drop in modulation index from bright to pure, and the
long exponential amplitude decay all combine to make a metallic bell-like tone.

Preset 2. This tone is similar to the first one, but with a (slightly mistuned) harmonic
value for the harmonicity ratio, so the tone is more like an electric piano.

Preset 3. An “irrational” (1 over the square root of 2) value for the harmonicity ratio, a
low modulation index, a short duration, and a characteristic envelope combine to give
this tone a quasi- pitched drum-like quality.

Preset 4. In brass instruments the brightness is closely correlated with the loudness. So, to
achieve a trumpet-like sound in this example the modulation index envelope essentially
tracks the amplitude envelope. The amplitude envelope is also characteristic of brass
instruments, with a slow attack and little decay. The pitch is G above middle C, and the
harmonicity ratio is 1 for a fully harmonic spectrum.

Preset 5. On the trumpet, a higher note generally requires a more forceful attack; so the
same envelope applied to a shorter duration, and a carrier frequency for the pitch high C,
emulate a staccato high trumpet note.

Preset 6. The same pitch and harmonicity, but with a percussive attack and a low
modulation index, give a xylophone sound.

Preset 7. A harmonicity ratio of 4 gives a spectrum that emphasizes odd harmonics. This,
combined with a low modulation index and a slow attack, produces a clarinet-like tone.

Preset 8. Of course, the real fun of FM synthesis is the surreal timbres you can make by
choosing unorthodox values for the different parameters. Here, an extreme and wildly
fluctuating modulation index produces a sound unlike that produced by any acoustic
object.

• You can experiment with your own envelopes and settings to discover new FM
sounds. When you have finished, click on the ezdac~ to turn audio off.

As with amplitude modulation, frequency modulation can also be performed using
complex tones. Sinusoids have traditionally been used most because they give the most

Tutorial 11 Synthesis:
Frequency modulation

118

predictable results, but many other interesting sounds can be obtained by using complex
tones for the carrier and modulator signals.

Summary

FM synthesis is an effective technique for emulating acoustic instrumental sounds as well
as for generating unusual new sounds.

The frequencies present in an FM tone are equal to the carrier frequency plus and minus
integer multiples of the modulator frequency. Therefore, the harmonicity of the tone can
be described by a single number—the ratio of the modulator and carrier
frequencies—sometimes called the harmonicity ratio. The relative amplitude of the
partials is dependent on the ratio of the modulator’s amplitude to its frequency, known as
the modulation index.

In most acoustic instruments, the timbre changes over the course of a note, so envelope
control of the modulation index is appropriate for producing interesting sounds. A non-
integer harmonicity ratio yields an inharmonic spectrum, and when combined with a
percussive amplitude envelope can produce drum-like and bell-like sounds. An integer
harmonicity ratio combined with the proper modulation index envelope and amplitude
envelope can produce a variety of pitched instrument sounds.

119

Tutorial 12: Synthesis—Waveshaping

Using a stored wavetable

In Tutorial 3 we used 512 samples stored in a buffer~ as a wavetable to be read by the
cycle~ object. The name of the buffer~ object is typed in as an argument to the cycle~
object, causing cycle~ to use samples from the buffer~ as its waveform, instead of its
default cosine wave. The frequency value received in the left inlet of the cycle~ determines
how many times per second it will read through those 512 samples, and thus determines
the fundamental frequency of the tone it plays.

Just to serve as a reminder, an example of that type of wavetable synthesis is included in
the lower right corner of this tutorial patch.

The cycle~ object reads repeatedly through the 512 samples stored in the buffer~

• Double-click on the buffer~ object to see its contents. The file gtr512.aiff contains one
cycle of a recorded electric guitar note. Click on the ezdac~ speaker icon to turn audio
on. Click on the toggle to open the gate~, allowing the output of cycle~ to reach the
dac~. Click on the toggle again to close the gate~.

This type of synthesis allows you to use any waveform for cycle~, but the timbre is static
and somewhat lifeless because the waveform is unchanging. This tutorial presents a new
way to obtain dynamically changing timbres, using a technique known as waveshaping.

Table lookup: lookup~

In waveshaping synthesis an audio signal—most commonly a sine wave—is used to access
a lookup table containing some shaping function (also commonly called a transfer
function). Each sample value of the input signal is used as an index to look up a value
stored in a table (an array of numbers). Because a lookup table may contain any values in
any order, it is useful for mapping a linear range of values (such as the signal range -1 to
1) to a nonlinear function (whatever is stored in the lookup table). The Max object table is
an example of a lookup table; the number received as input (commonly in the range 0 to
127) is used to access whatever values are stored in the table.

Tutorial 12 Synthesis:
Waveshaping

120

The MSP object lookup~ allows you to use samples stored in a buffer~ as a lookup table
which can be accessed by a signal in the range -1 to 1. By default, lookup~ uses the first 512
samples in a buffer~, but you can type in arguments to specify any excerpt of the buffer~
object’s contents for use as a lookup table. If 512 samples are used, input values ranging
from -1 to 0 are mapped to the first 256 samples, and input values from 0 to 1 are mapped
to the next 256 samples; lookup~ interpolates between two stored values as necessary.

Sine wave used to read back and forth through an excerpt of the buffer~

The most commonly used input signal for indexing the lookup table is a sine wave—it’s a
reasonable choice because it reads smoothly back and forth through the table—but any
audio signal can be used as input to lookup~.

The important thing to observe about waveshaping synthesis is this: changing the
amplitude of the input signal changes the amount of the lookup table that gets used. If the
range of the input signal is from -1 to 1, the entire lookup table is used. However, if the
range of the input signal is from -0.33 to 0.33, only the middle third of the table is used.
As a general rule, the timbre of the output signal becomes brighter (contains more high
frequencies) as the amplitude of the input signal increases.

It’s also worth noting that the amplitude of the input signal has no direct effect on the
amplitude of the output signal; the output amplitude depends entirely on the values being
indexed in the lookup table.

Varying timbre with waveshaping

The waveshaping part of the tutorial patch is in the lower left portion of the Patcher
window. It’s very similar to the example shown above.

Tutorial 12 Synthesis:
Waveshaping

121

The lookup table consists of the 512 samples in the buffer~, and it is read by a cosine wave
from a cycle~ object.

Lookup table used for waveshaping

The upper portion of the Patcher window contains three different ways to vary the
amplitude of the cosine wave, which will vary the timbre.

• With the audio still on, choose “Set range by hand” from the pop-up umenu. This
opens the first signal inlet of the selector~, so you can alter the amplitude of the cycle~
by dragging in the number box marked “By hand”. Change the value in the number box
to hear different timbres.

Set the amplitude of the input signal to change the timbre of the output

To make the timbre change over the course of the note, you can use a control function
envelope to vary the amplitude of the cycle~ automatically over time.

Tutorial 12 Synthesis:
Waveshaping

122

• Choose “Control range by envelope” from the umenu. Set a note duration by typing a
value into the number box marked “Duration” (such as 1000 ms), then click on the
button to play a note. Experiment with different durations and envelopes.

You can also modulate the amplitude of the input wave with another signal. An extremely
slow modulating frequency (such as 0.1 Hz) will change the timbre very gradually. A
faster sub-audio modulating frequency (such as 8 Hz) will create a unique sort of “timbre
tremolo”. Modulating the input wave at an audio rate creates sum and difference
frequencies (as you have seen in Tutorial 9) which may interfere in various ways
depending on the modulation rate.

• Choose “Modulate range by wave” from the umenu. Set the modulation rate to 0.1 Hz
and set the modulation depth to 0.9.

Very slow modulation of the input wave’s amplitude creates a gradual timbre change

Notice that the amplitude of the cycle~ is multiplied by 0.45 and offset by 0.5. That makes
it range from 0.05 to 0.95. (If it went completely to 0 the amplitude of the wave it’s
modulating would be 0 and the sound would stop.) The “Modulation depth” number box
goes from 0 to 1, but it’s actually scaling the cycle~ within that range from 0.05 to 0.95.

• Experiment with other values for the depth and rate of modulation.

If you’re designing an instrument for musical purposes, you might use some combination
of these three ways to vary the timbre, and you almost certainly would have an
independent amplitude envelope to scale the amplitude of the output sound. (Remember
that the amplitude of the signal coming out of lookup~ depends on the sample values
being read, and is not directly affected by the amplitude of the signal coming into it.)

Summary

Waveshaping is the nonlinear distortion of a signal to create a new timbre. The sample
values of the original signal are used to address a lookup table, and the corresponding
value from the lookup table is sent out. The lookup~ object treats samples from a buffer~
as such a lookup table, and uses the input range -1 to 1 to address those samples. A sine
wave is commonly used as the input signal for waveshaping synthesis. The amplitude of

Tutorial 12 Synthesis:
Waveshaping

123

the input signal determines how much of the lookup table gets used. As the amplitude of
the input signal increases, more of the table gets used, and consequently more frequencies
are generally introduced into the output. Thus, you can change the timbre of a
waveshaped signal dynamically by continuously altering the amplitude of the input
signal, using a control function or a modulating signal.

See Also

buffer~ Store audio samples
cycle~ Table lookup oscillator
lookup~ Transfer function lookup table

124

Tutorial 13: Sampling—Recording and playback

Sound input: adc~

For getting sound from the “real world” into MSP, there is an analog-to-digital
conversion object called adc~. It recognizes all the same messages as the dac~ object, but
instead of sending signal to the audio output jacks of the computer, adc~ receives signal
from the audio input jacks, and sends the incoming signal out its outlets. Just as dac~ has
a user interface version called ezdac~, there is an iconic version of adc~ called ezadc~.

adc~ and ezadc~ get sound from the audio input jacks and send it out as a signal

To use the adc~ object, you need to send sound from some source into the computer. The
sound may come from the CD player of your computer, from any line level source such as
a tape player, or from a microphone—your computer might have a built-in microphone,
or you can use a standard microphone via a preamplifer..

• Double click on the adc~ object to open the DSP Status window. Make sure that the
Input Source popup menu displays the input device you want. Depending on your
computer system, audio card and driver, you may not have a choice of input device-
this is nothing to be concerned about.

Tutorial 13 Sampling:
Recording and playback

125

• Click on the toggle above the adc~ object to turn audio on. If you want to hear the
input sound played directly out the output jacks, adjust the number box marked Audio
thruput level.

Adjust the audio throughput to a comfortable listening level

If your input source is a microphone, you’ll need to be careful not to let the output sound
from your computer feed back into the microphone.

Recording a sound: record~

To record a sample of the incoming sound (or any signal), you first need to designate a
buffer in which the sound will be stored. Your patch should therefore include at least one
buffer~ object. You also need a record~ object with the same name as the buffer~. The
sound that you want to record must go in the inlet of the record~ object.

Record two seconds of stereo sound into the buffer~ named soundbite

When record~ receives a non-zero int in its left inlet, it begins recording the signals
connected to its record inlets; 0 stops the recording. You can specify recording start and
end points within the buffer~ by sending numbers in the two right inlets of record~. If you
don’t specify start and end points, recording will fill the entire buffer~. Notice that the

Tutorial 13 Sampling:
Recording and playback

126

length of the recording is limited by the length of the buffer~. If this were not the case,
there would be the risk that record~ might be left on accidentally and fill the entire
application memory.

In the tutorial patch, record~ will stop recording after 2 seconds (2000 ms). We have
included a delayed bang to turn off the toggle after two seconds, but this is just to make the
toggle accurately display the state of record~. It is not necessary to stop record~ explicitly,
because it will stop automatically when it reaches its end point or the end of the buffer~.

A delayed bang turns off the toggle after two seconds so it will display correctly

• Make sure that you have sound coming into the computer, then click on the toggle to
record two seconds of the incoming sound. If you want to, you can double-click on
the buffer~ afterward to see the recorded signal.

Reading through a buffer~: index~

So far you have seen two ways to get sound into a buffer~. You can read in an existing
audio file with the read message, and you can record sound into it with the record~ object.
Once you get the sound into a buffer~, there are several things you can do with it. You can
save it to an audio file by sending the write message to the buffer~. You can use 513
samples of it as a wavetable for cycle~, as demonstrated in Tutorial 3. You can use any
section of it as a transfer function for lookup~, as demonstrated in Tutorial 12. You can
also just read straight through it to play it out the dac~. This tutorial patch demonstrates
the two most basic ways to play the sound in a buffer~. A third way is demonstrated in
Tutorial 14.

Tutorial 13 Sampling:
Recording and playback

127

The index~ object receives a signal as its input, which represents a sample number. It looks
up that sample in its associated buffer~, and sends the value of that sample out its outlet as
a signal. The count~ object just sends out a signal value that increases by one with each
sample. So, if you send the output of count~—a steady stream of increasing numbers—to
the input of index~—which will treat them as sample numbers—index~ will read straight
through the buffer~, playing it back at the current sampling rate.

Play the sound in a buffer~ by looking up each sample and sending it to the dac~

• Click on the button marked “Play” to play the sound in the buffer~. You can change
the starting sample number by sending a different starting number into count~.

This combination of count~ and index~ lets you specify a precise sample number in the
buffer~ where you want to start playback. However, if you want to specify starting and
ending points in the buffer~ in terms of milliseconds, and/or you want to play the sound
back at a different speed—or even backward—then the play~ object is more appropriate.

Variable speed playback: play~

The play~ object receives a signal in its inlet which indicates a position, in milliseconds, in
its associated buffer~; play~ sends out the signal value it finds at that point in the buffer~.
Unlike index~, though, when play~ receives a position that falls between two samples in
the buffer~ it interpolates between those two values. For this reason, you can read through
a buffer~ at any speed by sending an increasing or decreasing signal to play~, and it will
interpolate between samples as necessary. (Theoretically, you could use index~ in a similar
manner, but it does not interpolate between samples so the sound fidelity would be
considerably worse.)

Tutorial 13 Sampling:
Recording and playback

128

The most obvious way to use the play~ object is to send it a linearly increasing (or
decreasing) signal from a line~ object, as shown in the tutorial patch.

Read through a buffer~, from one position to another, in a given amount of time

Reading from 0 to 2000 (millisecond position in the buffer~) in a time of 2000 ms
produces normal playback. Reading from 0 to 2000 in 4000 ms produces half-speed
playback, and so on.

• Click on the different message box objects to hear the sound played in various
speed/direction combinations. Turn audio off when you have finished.

Although not demonstrated in this tutorial patch, it’s worth noting that you could use
other signals as input to play~ in order to achieve accelerations and decelerations, such as
an exponential curve from a curve~ object or even an appropriately scaled sinusoid from a
cycle~ object.

Summary

Sound coming into the computer enters MSP via the adc~ object. The record~ object
stores the incoming sound—or any other signal—in a buffer~. You can record into the
entire buffer~, or you can record into any portion of it by specifying start and end buffer
positions in the two rightmost inlets of record~. For simple normal-speed playback of the
sound in a buffer~, you can use the count~ and index~ objects to read through it at the
current sampling rate. Use the line~ and play~ objects for variable-speed playback and/or
for reading through the buffer~ in both directions.

Tutorial 13 Sampling:
Recording and playback

129

See Also

adc~ Audio input and on/off
ezadc~ Audio on/off; analog-to-digital converter
index~ Sample playback without interpolation
play~ Position-based sample playback
record~ Record sound into a buffer

130

Tutorial 14: Sampling—Playback with loops

Playing samples with groove~

The groove~ object is the most versatile object for playing sound from a buffer~. You can
specify the buffer~ to read, the starting point, the playback speed (either forward or
backward), and starting and ending points for a repeating loop within the sample. As
with other objects that read from a buffer~, groove~ accesses the buffer~ remotely, without
patch cords, by sharing its name.

A standard configuration for the use of groove~

In the example above, the message loop 1 turns looping on, the start time of 0 ms indicates
the beginning of the buffer~, the playback speed of 1 means to play forward at normal
speed, and the loop start and end times mean that (because looping is turned on) when
groove~ reaches a point 860 milliseconds into the buffer~ it will return to a point 572 ms
into the buffer~ and continue playing from there. Notice that the start time must be
received as a float (or int), and the playback speed must be received as a signal. This means
the speed can be varied continuously by sending a time- varying signal in the left inlet.

Whenever a new start time is received, groove~ goes immediately to that time in the
buffer~ and continues playing from there at the current speed. When groove~ receives the
message loop 1 or startloop it goes to the beginning of the loop and begins playing at the
current speed. (Note that loop points are ignored when groove~ is playing in reverse, so
this does not work when the playback speed is negative.) groove~ stops when it reaches
the end of the buffer~ (or the beginning if it’s playing backward), or when it receives a
speed of 0.

Tutorial 14 Sampling:
Playback with loops

131

In the tutorial patch, three different buffer~ objects are loaded with AIFF files so that a
single groove~ object can switch between various samples instantly. The message set,
followed by the name of a buffer~, refers groove~ to that new buffer~ immediately. (If
groove~ always referred to the same buffer~, and we used read messages to change the
contents of the buffer~, some time would be needed to open and load each new file.)

Refer groove~ to a different buffer~ with a set message

• Click on the preset object to play the samples in different ways.

The first preset just functions as an “Off” button. The next three presets play the three
buffer~ objects at normal speed without looping. The rest of the presets demonstrate a
variety of sound possibilities using different playback speeds on different excerpts of the
buffered files, with or without looping.

• You may want to experiment with your own settings by changing the user interface
objects directly.

You can control all aspects of the playback by changing the user interface object settings

If you want to create smooth undetectable loops with groove~, you can use the loopinterp
message to enable crossfades between the end of a loop and the beginning of the next pass
through the loop to smooth out the transition back to the start point (see the groove~
reference page for more information on this message). If the buffer~ contains an AIFF file
that has its own loop points—points established in a separate audio editing
program—there is a way to use those loop points to set the loop points of groove~.

Tutorial 14 Sampling:
Playback with loops

132

The info~ object can report the loop points of an AIFF file contained in a buffer~, and you
can send those loop start and end times directly into groove~.

Using info~ to get loop point information from an AIFF file

Summary

The groove~ object is the most versatile way to play sound from a buffer~. You can specify
the buffer~ to read, the starting point, the playback speed (either forward or backward),
and starting and ending points for a repeating loop within the sample. If the buffer~
contains an AIFF file that has its own pre-established loop points, you can use the info~
object to get those loop times and send them to groove~. The playback speed of groove~ is
determined by the value of the signal coming in its left inlet. You can set the current
buffer position of groove~ by sending a float time value in the left inlet.

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
sig~ Constant signal of a number

133

Tutorial 15: Sampling—Variable-length wavetable

Use any part of a buffer~ as a wavetable: wave~

As was shown in Tutorial 3, the cycle~ object can use 512 samples of a buffer~ as a
wavetable through which it reads repeatedly to play a periodically repeating tone. The
wave~ object is an extension of that idea; it allows you to use any section of a buffer~ as a
wavetable.

The starting and ending points within the buffer~ are determined by the number or signal
received in the middle and right inlets of wave~. As a signal in the wave~ object’s left inlet
goes from 0 to 1, wave~ sends out the contents of the buffer~ from the specified start point
to the end point. The phasor~ object, ramping repeatedly from 0 to 1, is the obvious
choice as an input signal for the left inlet of wave~.

phasor~ drives wave~ through the section of the buffer~ specified as the wavetable

In a standard implementation of wavetable synthesis, the wavetable (512 samples in the
case of cycle~, or a section of any length in the case of wave~) would be one single cycle of
a waveform, and the frequency of the cycle~ object (or the phasor~ driving the wave~)
would determine the fundamental frequency of the tone. In the case of wave~, however,
the wavetable could contain virtually anything (an entire spoken sentence, for example).

wave~ yields rather unpredictable results compared to some of the more traditional sound
generation ideas presented so far, but with some experimentation you can find a great
variety of timbres using wave~. In this tutorial patch, you will see some ways of reading
the contents of a buffer~ with wave~.

Synthesis with a segment of sampled sound

The tutorial patch is designed to let you try three different ways of driving wave~: with a
repeating ramp signal (phasor~), a sinusoid (cycle~), or a single ramp (line~). The bottom
part of the Patcher window is devoted to the basic implementation of wave~, and the
upper part of the window contains the three methods of reading through the wavetable.
First, let’s look at the bottom half of the window.

Tutorial 15 Sampling:
Variable-length wavetable

134

wave~ can use an excerpt of any length from either buffer~ as its wavetable

• Click on the toggle to turn audio on. Set the amplitude to some level greater than 0.
Set the end time of the wavetable to 782 (the length in milliseconds of the file
isthatyou.aiff).

With these settings, wave~ will use the entire contents of buffer~ words isthatyou.aiff as its
wavetable. Now we are ready to read through the wavetable.

• Choose “Read forward” from the pop-up umenu in the middle of the window. This
will open the first signal inlet of the selector~, allowing wave~ to be controlled by the
phasor~ object.

Read through wave~ by going repeatedly from 0 to 1 with a phasor~ object

• Set the number box marked “Range” to 1. This sets the amplitude of the phasor~, so it
effectively determines what fraction of the wavetable will be used. Set the number box

Tutorial 15 Sampling:
Variable-length wavetable

135

marked “Frequency” to 2. The phasor~ now goes from 0 to 1 two times per second, so
you should hear wave~ reading through the buffer~ every half second.

• Try a few different sub-audio frequency values for the phasor~, to read through the
buffer~ at different speeds. You can change the portion of the buffer~ being read,
either by changing the “Range” value, or by changing the start and end times of the
wave~. Try audio frequencies for the phasor~ as well.

Notice that the rate of the phasor~ often has no obvious relationship to the perceived
pitch, because the contents of the wavetable do not represent a single cycle of a waveform.
Furthermore, such rapid repetition of an arbitrarily selected segment of a complex sample
has a very high likelihood of producing frequencies well in excess of the Nyquist rate,
which will be folded back into the audible range in unpredictable ways.

• Click on the message box to refer wave~ to the buffer~ chords object.

This changes the contents of the wavetable (because wave~ now accesses a different
buffer~), and sets the maximum value of the “End time” number box equal to the length of
the file sacre.aiff. Notice an additional little programming trick—shown in the example
below—employed to prevent the user from entering inappropriate start and end times for
wave~.

Each time the start or end time is changed, it revises the limits of the other number box

• With this new buffer~, experiment further by reading different length segments of the
buffer~ at various rates.

Using wave~ as a transfer function

The buffer~ object is essentially a lookup table that can be accessed in different ways by
other objects. In Tutorial 12 the lookup~ object was used to treat a segment of a buffer~ as
a transfer function, with a cosine wave as its input. The wave~ object can be used
similarly. The only difference is that its input must range from 0 to 1, whereas lookup~
expects input in the range from -1 to 1. To use wave~ in this way, then, we must scale and
offset the incoming cosine wave so that it ranges from 0 to 1.

• Set the start and end times of wave~ close together, so that only a few milliseconds of
sound are being used for the wavetable. Choose “Read back and forth” from the pop-

Tutorial 15 Sampling:
Variable-length wavetable

136

up umenu in the middle of the window. This opens the second signal inlet of the
selector~, allowing wave~ to be controlled by the cycle~ object.

cycle~, scaled and offset to range from 0 to 1, reads back and forth in the wavetable

• Set the “Range” number box to a very small value such as 0.01 at first, to limit the cycle~
object’s amplitude. This way, cycle~ will use a very small segment of the wavetable as
the transfer function. Set the frequency of cycle~ to 220 Hz. You will probably hear a
rich tone with a fundamental frequency of 220 Hz. Drag on the “Range” number box to
change the amplitude of the cosine wave; the timbre will change accordingly. You can
also experiment with different wavetable lengths by changing the start and end times
of wave~. Sub-audio frequencies for the cycle~ object will produce unusual vibrato-like
effects as it scans back and forth through the wavetable.

Play the segment as a note

Because wave~ accepts any signal input in the rage 0 to 1, you can read through the
wavetable just once by sending wave~ a ramp signal from 0 to 1 (or backward, from 1 to
0). Other objects such as play~ and groove~ are better suited for this purpose, but it is
nevertheless possible with wave~.

• Choose “Read once” from the pop-up umenu in the middle of the window. This opens
the third signal inlet of the selector~, allowing wave~ to be controlled by the line~
object. Set start and end times for your wavetable, set the “Duration” number box to
1000, and click on the button to traverse the wavetable in one second. Experiment with
both buffer~ objects, using various wavetable lengths and durations.

Tutorial 15 Sampling:
Variable-length wavetable

137

Changing the wavetable dynamically

The cycle~ object in the right part of the Patcher window is used to add a sinusoidal
position change to the wavetable. As the cosine wave rises and falls, the start and end
times of the wavetable increase and decrease. As a result, the wavetable is constantly
shifting its position in the buffer~, in a sinusoidally varying manner. Sonically this
produces a unique sort of vibrato, not of fundamental frequency but of timbre. The
wavetable length and the rate at which it is being read stay the same, but the wavetable’s
contents are continually changing.

Shifting the wavetable by adding a sinusoidal offset to the start and end times

• Set the “Shift amount” to 0.35, and set the “Shift rate” to 6. Set the start time of the
wavetable to 102 and the end time to 109. Click on the message box to refer wave~ to the
buffer~ chords object. Choose “Read forward” from the pop-up umenu. Set the
frequency of the phasor~ to an audio rate such as 110, and set its range to 1. You should
hear a vibrato-like timbre change at the rate of 6 Hz. Experiment with varying the
shift rate and the shift amount. When you are done, click on the toggle to turn audio
off.

Summary

Any segment of the contents of a buffer~ can be used as a wavetable for the wave~ object.
You can read through the wavetable by sending a signal to wave~ that goes from 0 to 1.
So, by connecting the output of a phasor~ object to the input of wave~, you can read
through the wavetable repeatedly at a sub-audio or audio rate. You can also scale and
offset the output of a cycle~ object so that it is in the range 0 to 1, and use that as input to
wave~. This treats the wavetable as a transfer function, and results in waveshaping
synthesis. The position of the wavetable in the buffer~ can be varied dynamically—by
adding a sinusoidal offset to the start and end times of wave~, for example—resulting in
unique sorts of timbre modulation.

Tutorial 15 Sampling:
Variable-length wavetable

138

See Also

buffer~ Store audio samples
phasor~ Sawtooth wave generator
wave~ Variable-size wavetable

139

Tutorial 16: Sampling—Record and play audio files

Playing from memory vs. playing from disk

You have already seen how to store sound in memory—in a buffer~—by recording into it
directly or by reading in a pre-recorded audio file. Once the sound is in memory, it can be
accessed in a variety of ways with cycle~, lookup~, index~, play~, groove~, wave~, etc.

The main limitation of buffer~ for storing samples, of course, is the amount of unused
RAM available to the Max application. You can only store as much sound in memory as
you have memory to hold it. For playing and recording very large amounts of audio data,
it is more reasonable to use the hard disk for storage. But it takes more time to access the
hard disk than to access RAM; therefore, even when playing from the hard disk, MSP still
needs to create a small buffer to preload some of the sound into memory. That way, MSP
can play the preloaded sound while it is getting more sound from the hard disk, without
undue delay or discontinuities due to the time needed to access the disk.

Record audio files: sfrecord~

MSP has objects for recording directly into, and playing directly from, an AIFF file:
sfrecord~ and sfplay~. Recording an audio file is particularly easy, you just open a file,
begin recording, and stop recording. (You don’t even need to close the file; sfrecord~ takes
care of that for you.) In the upper right corner of the Patcher window there is a patch for
recording files.

Recording audio into an audio file on disk

sfrecord~ records to disk whatever signal data it receives in its inlets. The signal data can
come directly from an adc~ or ezadc~ object, or from any other MSP object.

• Click on the message box marked “Create an AIFF file”. You will be shown a Save As
dialog box for naming your file. (Make sure you save the file on a volume with
sufficient free space.) Navigate to the folder where you want to store the sound, name
the file, and click Save. Turn audio on. Click on the toggle to begin recording; click on
it again when you have finished.

Tutorial 16 Sampling:
Record and play audio files

140

Play audio files: sfplay~

In the left part of the Patcher window there is a patch for playing audio files. The basic
usage of sfplay~ requires only a few objects, as shown in the following example. To play a
file, you just have to open it and start sfplay~. The audio output of sfplay~ can be sent
directly to dac~ or ezdac~, and/or anywhere else in MSP.

Simple implementation of audio file playback

 • Click on the open message box marked “Set the current file”, and open the audio file
you have just recorded. Then (with audio on) click on the toggle marked “Play/Stop”
to hear your file.

Play excerpts on cue

Because sfplay~ does not need to load an entire audio file into memory, you can actually
have many files open in the same sfplay~ object, and play any of them (or any portion of
them) on cue. The most recently opened file is considered by sfplay~ to be the “current”
file, and that is the file it will play when it receives the message 1.

• Click on the remaining open message boxes to open some other audio files, and then
click on the message box marked “Define cues, 2 to 9”.

The preload message to sfplay~ specifies an entire file or a portion of a file, and assigns it a
cue number. From then on, every time sfplay~ receives that number, it will play that cue.
In the example patch, cues 2, 3, and 4 play entire files, cue 5 plays the first 270 milliseconds
of sacre.aiff, and so on. Cue 1 is always reserved for playing the current (most recently
opened) file, and cue 0 is reserved for stopping sfplay~.

Whenever sfplay~ receives a cue, it stops whatever it is playing and immediately plays the
new cue. (You can also send sfplay~ a queue of cues, by sending it a list of numbers, and it
will play each cue in succession.) Each preload message actually creates a small buffer
containing the audio data for the beginning of the cue, so playback can start immediately
upon receipt of the cue number.

Tutorial 16 Sampling:
Record and play audio files

141

Now that cues 0 through 9 are defined, you can play different audio excerpts by sending
sfplay~ those numbers. The upper-left portion of the patch permits you to type those
numbers directly from the computer keyboard.

ASCII codes from the number keys used to send cues to sfplay~

• Click on the toggle marked “Keyplay On/Off”. Type number keys to play the different
pre- defined cues. Turn “Keyplay” off when you are done.

Try different file excerpts

Before you define a cue, you will probably need to listen to segments of the file to
determine the precise start and end times you want. You can use the seek message to hear
any segment of the current file.

• Open your own audio file again (or any other audio file) to make it the current file. In
the right portion of this patch, enter an end time for the seek message. The excerpt you
have specified will begin playing. Try different start and end times.

Once you find start and end times you like, you could use them in a preload message to
establish a cue. Because sfplay~ can’t know in advance what excerpt it will be required to
play in response to a seek message, it can’t preload the excerpt. There will be a slight delay
while it accesses the hard disk before it begins playing. For that reason, seek is best used as
an auditioning tool; preloaded cues are better for performance situations where
immediate playback is more critical.

Trigger an event at the end of a file

The patch in the lower right portion of the Patcher window demonstrates the use of the
right outlet of sfplay~. When a cue is done playing (or when it is stopped with a 0
message), sfplay~ sends a bang out the right outlet. In this example patch, the bang is used

Tutorial 16 Sampling:
Record and play audio files

142

to trigger the next (randomly chosen) cue, so sfplay~ effectively restarts itself when each
cue is done.

When a cue is completed, sfplay~ triggers the next cue

Note the importance of the gate object in this patch. If it were not present, there would be
no way to stop sfplay~ because each 0 cue would trigger another non-zero cue. The gate
must be closed before the 0 cue is sent to sfplay~.

• In the patch marked “Play random excerpts”, click on the message box to preload the
cues, then click on the toggle to start the process. To stop it, click on the toggle again.
Turn audio off.

Summary

For large and/or numerous audio samples, it is often better to read the samples from the
hard disk than to try to load them all into RAM. The objects sfrecord~ and sfplay~ provide
a simple way to record and play audio files to and from the hard disk. The sfplay~ object
can have many audio files open at once. Using the preload message, you can pre-define
ready cues for playing specific files or sections of files. The seek message to sfplay~ lets you
try different start and end points for a cue. When a cue is done playing (or is stopped)
sfplay~ sends a bang out its right outlet. This bang can be used to trigger other processes,
including sending sfplay~ its next cue.

See Also

sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk

143

Tutorial 17: Sampling: Review

A sampling exercise

In this chapter we suggest an exercise to help you check your understanding of how to
sample and play audio. Try completing this exercise in a new file of your own before you
check the solution given in the example patch. (But don’t have the example Patcher open
while you design your own patch, or you will hear both patches when you turn audio on.)
The exercise is to design a patch in which:

• Typing the a key on the computer keyboard turns audio on. Typing a again toggles
audio off.

• Typing r on the computer keyboard makes a one-second recording of whatever audio
is coming into the computer (from the input jacks or from the internal CD player).

• Typing p plays the recording. Playback is to be at half speed, so that the sound lasts
two seconds.

• An amplitude envelope is applied to the sample when it is played, tapering the
amplitude slightly at the beginning and end so that there are no sudden clicks heard at
either end of the sample.

• The sample is played back with a 3 Hz vibrato added to it. The depth of the vibrato is
one semitone (a factor of 2±1/12) up and down.

Hints

You will need to store the sound in a buffer~ and play it back from memory.

You can record directly into the buffer~ with record~. (See Tutorial 13.) The input to
record~ will come from adc~ (or ezadc~).

The two obvious choices for playing a sample from a buffer~ at half speed are play~ and
groove~. However, because we want to add vibrato to the sound—by continuously varying
the playback speed—the better choice is groove~, which uses a (possibly time-varying)
signal to control its playback speed directly. (See Tutorial 14.)

The amplitude envelope is best generated by a line~ object which is sending its output to a
*~ object to scale the amplitude of the output signal (coming from groove~). You might
want to use a function object to draw the envelope, and send its output to line~ to describe
the envelope. (See Tutorial 7.)

Tutorial 17 Sampling review

144

The computer keyboard will need to trigger messages to the objects adc~, record~, groove~,
and line~ (or function) in order to perform the required tasks. Use the key object to get the
keystrokes, and use select to detect the keys you want to use.

Use a sinusoidal wave from a cycle~ object to apply vibrato to the sample. The frequency
of the cycle~ will determine the rate of the vibrato, and the amplitude of the sinusoid will
determine the depth of vibrato. Therefore, you will need to scale the cycle~ object’s
amplitude with a *~ object to achieve the proper vibrato depth.

In the discussion of vibrato in Tutorial 10, we created vibrato by adding the output of the
modulating oscillator to the frequency input of the carrier oscillator. However, two things
are different in this exercise. First of all, the modulating oscillator needs to modulate the
playback speed of groove~ rather than the frequency of another cycle~ object. Second,
adding the output of the modulator to the input of the carrier—as in Tutorial 10—creates
a vibrato of equal frequency above and below the carrier frequency, but does not create a
vibrato of equal pitch up and down (as required in this exercise). A change in pitch is
achieved by multiplying the carrier frequency by a certain amount, rather than by adding
an amount to it.

To raise the pitch of a tone by one semitone, you must multiply its frequency by the
twelfth root of 2, which is a factor of 2 to the 1/12 power (approximately 1.06). To lower the
pitch of a tone by one semitone, you must multiply its frequency by 2 to the -1/12 power
(approximately 0.944). To calculate a signal value that changes continuously within this
range, you may need to use an MSP object not yet discussed, pow~. Consult its
description in the Objects section of this manual for details.

Tutorial 17 Sampling review

145

Solution

• Scroll the example Patcher window all the way to the right to see a solution to this
exercise.

Solution to the exercise for recording and playing an audio sample

The arguments to the buffer~ object specify a length in milliseconds (1000) and a number
of channels (2). This determines how much memory will initially be allocated to the
buffer~.

Set name, length, and channels of the buffer~

Since the memory allocated in the buffer~ is limited to one second, there is no need to tell
the record~ object to stop when you record into the buffer~. It stops when it reaches the
end of the buffer~.

Tutorial 17 Sampling review

146

The keystrokes from the computer keyboard are reported by key, and the select object is
used to detect the a, r, and p keys. The bangs from select trigger the necessary messages to
adc~, record~, and groove~.

Keystrokes are detected and used to send messages to MSP objects

The keystroke p is also used to trigger the amplitude envelope at the same time as the
sample is played. This envelope is used to scale the output of groove~.

A two-second envelope tapers the amplitude at the beginning and end of the sample

Tutorial 17 Sampling review

147

A sig~ 0.5 object sets the basic playback speed of groove~ at half speed. The amplitude of a
3 Hz cosine wave is scaled by a factor of 0.083333 (equal to 1/12, but more computationally
efficient than dividing by 12) so that it varies from -1/12 to 1/12. This sinusoidal signal is used
as the exponent in a power function in pow~ (2 to the power of the input), and the result
is used as the factor by which to multiply the playback speed.

Play at half speed, ± one semitone

148

Tutorial 18: MIDI control—Mapping MIDI to MSP

MIDI range vs. MSP range

One of the greatest assets of MSP is the ease with which one can combine MIDI and
digital signal processing. The great variety of available MIDI controllers means that you
have many choices for the instrument you want to use to control sounds in MSP. Because
Max is already a well developed environment for MIDI programming, and because MSP
is so fully integrated into that environment, it is not difficult to use MIDI to control
parameters in MSP.

The main challenge in designing programs that use MIDI to control MSP is to reconcile
the numerical ranges needed for the two types of data. MIDI data bytes are exclusively
integers in the range 0 to 127. For that reason, most numerical processing in Max is done
with integers and most Max objects (especially user interface objects) deal primarily with
integers. In MSP, on the other hand, audio signal values are most commonly decimal
numbers between -1.0 and 1.0, and many other values (such as frequencies, for example)
require a wide range and precision to several decimal places. Therefore, almost all
numerical processing in MSP is done with floating-point (decimal) numbers.

Often this “incompatibility” can be easily reconciled by linear mapping of one range of
values (such as MIDI data values 0 to 127) into another range (such as 0 to 1 expected in
the inlets of many MSP objects). Linear mapping is explained in Tutorial 29 of the
Tutorials and Topics manual from the Max documentation, and is reviewed in this
chapter. In many other cases, however, you may need to map the linear numerical range
of a MIDI data byte to some nonlinear aspect of human perception—such as our
perception of a 12-semitone increase in pitch as a power of 2 increase in frequency, etc.
This requires other types of mapping; some examples are explored in this tutorial chapter.

Tutorial 18 MIDI Control:
Mapping MIDI to MSP

149

Controlling synthesis parameters with MIDI

In this tutorial patch, we use MIDI continuous controller messages to control several
different parameters in an FM synthesis patch. The synthesis is performed in MSP by the
subpatch simpleFM~ which was introduced in Tutorial 11, and we map MIDI controller 1
(the mod wheel) to affect, in turn, its amplitude, modulation index, vibrato depth, vibrato
rate, and pitch bend.

An FM synthesis subpatch is the sound generator to be modified by MIDI

If we were designing a real performance instrument, we would probably control each of
these parameters with a separate type of MIDI message—controller 7 for amplitude,
controller 1 for vibrato depth, pitchbend for pitch bend, and so on. In this patch,
however, we use the mod wheel controller for everything, to ensure that the patch will
work for almost any MIDI keyboard. While this patch is not a model of good synthesizer
design, it does let you isolate each parameter and control it with the mod wheel.

In the lower right corner of the Patcher window, you can see that keys 0 to 5 of the
computer keyboard can be used to choose an item in the pop-up umenu at the top of the
window.

Use ASCII from the computer keyboard to assign the function of the MIDI controller

Tutorial 18 MIDI Control:
Mapping MIDI to MSP

150

The umenu sends the chosen item number to gate to open one of its outlets, thus directing
the controller values from the mod wheel to a specific place in the signal network.

gate directs the control messages to a specific place in the signal network

We will look at the special mapping requirements of each parameter individually. But
first, let’s review the formula for linear mapping.

Linear mapping

The problem of linear mapping is this: Given a value x which lies in a range from xmin to
xmax, find the value y that occupies a comparable location in the range ymin to ymax.
For example, 3 occupies a comparable location within the range 0 to 4 as 0.45 occupies
within the range 0 to 0.6. This problem can be solved with the formula:

y = ((x - xmin) * (ymax - ymin) ÷ (xmax - xmin)) + ymin

For this tutorial, we designed a subpatch called map to solve the equation. map receives an
x value in its left inlet, and—based on the values for xmin, xmax, ymin, and ymax received
in its other inlets—it sends out the correct value for y. This equation will allow us to map
the range of controller values—0 to 127—onto various other ranges needed for the signal
network. The map subpatch appears in the upper right area of the Patcher window.

The contents of the map subpatch: the linear mapping formula expressed in an expr object

Tutorial 18 MIDI Control:
Mapping MIDI to MSP

151

Once we have scaled the range of control values with map, some additional mapping may
be necessary to suit various signal processing purposes, as you will see.

Mapping MIDI to amplitude

As noted in Tutorial 4, we perceive relative amplitude on a multiplicative rather than an
additive scale. For example we hear the same relationship between amplitudes of 0.5 and
0.25 (a factor of 1/2, but a difference of 0.25) as we do between amplitudes of 0.12 and
0.06 (again a factor of 1/2, but a difference of only 0.06). For this reason, if we want to
express relative amplitude on a linear scale (using the MIDI values 0 to 127), it is more
appropriate to use decibels.

• Click on the toggle to turn audio on. Type the number 5 (or choose “Amplitude” from
the umenu) to direct the controller values to affect the output amplitude.

The item number chosen in the umenu also recalls a preset in the preset object, which
provides range values to map. In this case, ymin is -80 and ymax is 0, so as the mod wheel
goes from 0 to 127 the amplitude goes from -80 dB to 0 dB (full amplitude). The decibel
values are converted to amplitude in the subpatch called dBtoA. This converts a straight
line into the exponential curve necessary for a smooth increase in perceived loudness.

The contents of the dBtoA subpatch

• Move the mod wheel on your MIDI keyboard to change the amplitude of the tone. Set
the amplitude to a comfortable listening level.

With this mapping, the amplitude changes by approximately a factor of 2 every time the
controller value changes by 10. This permits the same amount of control at low
amplitudes as at high amplitudes (which would not be the case with a straight linear
mapping).

Mapping MIDI to frequency

Our perception of relative pitch is likewise multiplicative rather than additive with respect
to frequency. In order for us to hear equal spacings of pitch, the frequency must change in

Tutorial 18 MIDI Control:
Mapping MIDI to MSP

152

equal powers of 2. (See the discussions of pitch-to-frequency conversion in Tutorial 17
and Tutorial 19.)

• Type the number 1 (or choose “Octave Pitch Bend” from the umenu) to direct the
controller values to affect the carrier frequency. Move the mod wheel to bend the
pitch upward as much as one octave, and back down to the original frequency.

In order for the mod wheel to perform a pitch bend of one octave, we map its range onto
the range 0 to 1. This number is then used as the exponent in a power of 2 function and
multiplied times the fundamental frequency in expr.

Octave bend factor ranges from 20 to 21

20 = 1, and 21 = 2, so as the control value goes from 0 to 1 the carrier frequency increases
from 220 to 440, which is to say up an octave. The increase in frequency from 220 to 440
follows an exponential curve, which produces a linear increase in perceived pitch from A
to A.

Mapping MIDI to modulation index

Mapping the MIDI controller to the modulation index of the FM instrument is much
simpler, because a linear control is what’s called for. Once the controller values are
converted by the map subpatch, no further modification is needed. The mod wheel varies
the modulation index from 0 (no modulation) to 24 (extreme modulation).

• Type the number 4 (or choose “Modulation Index” from the umenu) to direct the
controller values to affect the modulation index. Move the mod wheel to change the
timbre of the tone.

Tutorial 18 MIDI Control:
Mapping MIDI to MSP

153

Mapping MIDI to vibrato

This instrument has an additional low-frequency oscillator (LFO) for adding vibrato to
the tone by modulating the carrier frequency at a sub-audio rate. In order for the depth of
the vibrato to be equal above and below the fundamental frequency, we use the output of
the LFO as the exponent of a power function in pow~.

Calculate the vibrato factor

The base of the power function (controlled by the mod wheel) varies from 1 to 2. When
the base is 1 there is no vibrato; when the base is 2 the vibrato is ± one octave.

• You’ll need to set both the vibrato rate and the vibrato depth before hearing the
vibrato effect. Type 2 and move the mod wheel to set a non-zero vibrato rate. Then
type 3 and move the mod wheel to vary the depth of the vibrato.

The clumsiness of this process (re-assigning the mod wheel to each parameter in turn)
emphasizes the need for separate MIDI controllers for different parameters (or perhaps
linked simultaneous control of more than one parameter with the same MIDI message).
In a truly responsive instrument, you would want to be able to control all of these
parameters at once. The next chapter shows a more realistic assignment of MIDI to MSP.

Summary

MIDI messages can easily be used to control parameters in MSP instruments, provided
that the MIDI data is mapped into the proper range. The map subpatch implements the
linear mapping equation. When using MIDI to control parameters that affect frequency
and amplitude in MSP, the linear range of MIDI data from 0 to 127 must be mapped to
an exponential curve if you want to produce linear variation of perceived pitch and
loudness. The dBtoA subpatch maps a linear range of decibels onto an exponential
amplitude curve. The pow~ object allows exponential calculations with signals.

154

Tutorial 19: MIDI control—Synthesizer

Implementing standard MIDI messages

In this chapter we’ll demonstrate how to implement MIDI control of a synthesis
instrument built in MSP. The example instrument is a MIDI FM synthesizer with velocity
sensitivity, pitch bend, and mod wheel control of timbre. To keep the example relatively
simple, we use only a single type of FM sound (a single “patch”, in synthesizer parlance),
and only 2-voice polyphony.

The main issues involved in MIDI control of an MSP synthesizer are

• converting a MIDI key number into the proper equivalent frequency

• converting a MIDI pitch bend value into an appropriate frequency-scaling factor

• converting a MIDI controller value into a modulator parameter (such as vibrator rate,
vibrato depth, etc.).

Additionally, since a given MSP object can only play one note at a time, we will need to
handle simultaneous MIDI note messages gracefully.

Polyphony

Each sound-generating object in MSP—an oscillator such as cycle~ or phasor~, or a sample
player such as groove~ or play~—can only play one note at a time. Therefore, to play more
than one note at a time in MSP you need to have more than one sound-generating object.
In this tutorial patch, we make two identical copies of the basic synthesis signal network,
and route MIDI note messages to one or the other of them. This 2-voice polyphony
allows some overlap of consecutive notes, which normally occurs in legato keyboard
performance of a melody.

Assign a voice number with poly to play polyphonic music

The poly object assigns a voice number—1 or 2 in this case—to each incoming note
message, and if more than two keys are held down at a time poly provides note-off

Tutorial 19 MIDI Control:
Synthesizer

155

messages for the earlier notes so that the later notes can be played. The voice number, key
number, and velocity are packed together in a three-item list, and the route object uses the
voice number to send the key number and velocity to one synthesizer “voice” or the
other. If your computer is fast enough, of course, you can design synthesizers with many
more voices. You can test the capability of your computer by adding more and more
voices and observing the CPU Utilization in the DSP Status window.

There is another way to manage polyphonic voice allocation in MSP—the poly~ object.
We’ll look at the elegant and efficient poly~ object (and its helper objects in, in~, out, out~,
and thispoly~) in Tutorial 21; in the meantime, we’ll use the poly object to make
polyphonic voice assignments for the simple case required for this tutorial.

Pitch bend

In this instrument we use MIDI pitch bend values from 0 to 127 to bend the pitch of the
instrument up or down by two semitones. Bending the pitch of a note requires
multiplying its (carrier) frequency by some amount. For a bend of ±2 semitones, we will
need to calculate a bend factor ranging from 2-2/12 (approximately 0.891) to 22/12

(approximately 1.1225).

MIDI pitch bend presents a unique mapping problem because, according to the MIDI
protocol, a value of 64 is used to mean “no bend” but 64 is not precisely in the center
between 0 and 127. (The precise central value would be 63.5.) There are 64 values below
64 (0 to 63), but only 63 values above it (65 to 127). We will therefore need to treat
upward bends slightly differently from downward bends.

Downward bend is calculated slightly differently from upward bend

The downward bend values (0 to 63) are offset by -64 and divided by 384 so that the
maximum downward bend (pitch bend value 0) produces an exponent of -64/384, which is
equal to -2/12. The upward bend values (64 to 127) are offset by -64 and divided by 378 so
that an upward bend produces an exponent ranging from 0 to 63/378, which is equal to 2/12.

Tutorial 19 MIDI Control:
Synthesizer

156

The pack and line~ objects are used to make the frequency factor change gradually over 20
milliseconds, to avoid creating the effect of discrete stepwise changes in frequency.

Mod wheel

The mod wheel is used here to change the modulation index of our FM synthesis patch.
The mapping is linear; we simply divide the MIDI controller values by 16 to map them
into a range from 0 to (nearly) 8. The precise way this range is used will be seen when we
look at the synthesis instrument itself.

Controller values mapped into the range 0 to 7.9375

The FM synthesizer

• Double-click on one of the synthFMvoice~ subpatch objects to open its Patcher
window.

The basis for this FM synthesis subpatch is the simpleFM~ subpatch introduced (and
explained) in Tutorial 11. A typed-in argument is used to set the harmonicity ratio at 1,
yielding a harmonic spectrum. The MIDI messages will affect the frequency and the
modulation index of this FM sound. Let’s look first at the way MIDI note and pitch bend
information is used to determine the frequency.

MIDI-to-frequency conversion

The object mtof is not a signal object, but it is very handy for use in MSP. It converts a
MIDI key number into its equivalent frequency.

Calculate the frequency of a given pitch

Tutorial 19 MIDI Control:
Synthesizer

157

This frequency value is multiplied by the bend factor which was calculated in the main
patch, and the result is used as the carrier frequency in the simpleFM~ subpatch.

The frequency of the note calculated from key number and pitch bend data

Velocity control of amplitude envelope

MIDI note-on velocity is used in this patch, as in most synthesizers, to control the
amplitude envelope. The tasks needed to accomplish this are

• Separate note-on velocities from note-off velocities.

• Map the range of note-on velocities—1 to 127—into an amplitude range from 0 to 1
(a non- linear mapping is usually best).

• Map note-on velocity to rate of attack and decay of the envelope (in this case).

Tutorial 19 MIDI Control:
Synthesizer

158

The first task is achieved easily with a select 0 object, so that note-on velocity triggers a
function object to send the attack and decay shape, and note-off velocity returns the
amplitude to 0, as shown in the following example.

MIDI note-on velocity sets domain and range of the amplitude envelope

Before the function is triggered, however, we use the note-on velocity to set the domain
and range, which determine the duration and amplitude of the envelope. The expr object
on the right calculates the amount of time in which the attack and decay portions of the
envelope will occur. Maximum velocity of 127 will cause them to occur in 100 ms, while a
much lesser velocity of 60 will cause them to occur in 496 ms. Thus notes that are played
more softly will have a slower attack, as is the case with many wind and brass
instruments.

Tutorial 19 MIDI Control:
Synthesizer

159

The expr object on the left maps velocity to an exponential curve to determine the
amplitude.

1270

1.0

0
velocity

amplitude

Velocity mapped to amplitude with an exponent of 4

If we used a straight linear mapping, MIDI velocities from 127 to 64 (the range in which
most notes are played) would cover only about a 6 dB amplitude range. The exponential
mapping increases this to about 24 dB, so that change in the upper range of velocities
produces a greater change in amplitude.

MIDI control of timbre

It’s often the case that acoustic instruments sound brighter (contain more high
frequencies) when they’re played more loudly. It therefore makes sense to have note-on
velocity affect the timbre of the sound as well as its loudness. In the case of brass
instruments, the timbre changes very much in correlation with amplitude, so in this patch
we use the same envelope to control both the amplitude and the modulation index of the
FM instrument. The envelope is sent to a *~ object to scale it into the proper range. The
+~ 8 object ensures that the modulation index affected by velocity ranges from 0 to 8
(when the note is played with maximum velocity). As we saw earlier, in the main patch
the modulation wheel can be used to increase the modulation index still further (adding
up to 8 more to the modulation index range).

Tutorial 19 MIDI Control:
Synthesizer

160

Thus, the combination of velocity and mod wheel position can affect the modulation
index substantially.

 Envelope and mod wheel control modulation index

• Listening only to MSP (with the volume turned down on your keyboard synth), play a
single- line melody on the MIDI keyboard. As you play, notice the effect that velocity
has on the amplitude, timbre, and rate of attack. Move the mod wheel upward to
increase the over-all brightness of the timbre. You can also use the mod wheel to
modulate the timbre during the sustain portion of the note. Try out the pitch bend
wheel to confirm that it has the intended effect on the frequency.

Summary

MIDI data can be used to control an MSP synthesis patch much like any other
synthesizer. In normal instrument design, MIDI key number and pitch bend wheel
position are both used to determine the pitch of a played note. The key number must be
converted into frequency information with the mtof object. The pitch bend value must be
converted into the proper frequency bend factor, based on the twelfth-root-of-two per
semitone used in equal temperament. Since the designated “no-bend” value of 64 is not in
the precise center of the 0 to 127 range, upward bend must be calculated slightly
differently from downward bend.

Note-on velocity is generally used to determine the amplitude of the note, and triggers the
attack portion of the amplitude envelope. The note-off message triggers the release
portion of the envelope. The velocity value can be used to alter the range of the envelope
(or to provide a factor for scaling the amplitude). It is usually best to map velocity to
amplitude exponentially rather than linearly. Velocity can also be used to alter the rate of
the envelope, and/or other parameters such as modulation index.

An MSP object can only make one sound at a time, so if you want to play more than one
simultaneous note via MIDI you will need to assign each note a voice number with poly,
and route each voice to a different MSP object. In the next tutorial, we’ll use the poly
object to make polyphonic voice assignments for the simple case required for this tutorial.

Tutorial 19 MIDI Control:
Synthesizer

161

Tutorial 21 will introduce another way to manage polyphonic voice allocation in
MSP—the poly~ object.

See Also

mtof Convert a MIDI note number to frequency
poly Allocate notes to different voices

162

Tutorial 20: MIDI control—Sampler

Basic sampler features

In this chapter we demonstrate a design for playing pre-recorded samples from a MIDI
keyboard. This design implements some of the main features of a basic sampler keyboard:
assigning samples to regions of the keyboard, specifying a base (untransposed) key
location for each sample, playing samples back with the proper transposition depending
on which key is played, and making polyphonic voice assignments. For the sake of
simplicity, this patch does not implement control from the pitchbend wheel or mod
wheel, but the method for doing so would not be much different from that demonstrated
in the previous two chapters.

In this patch we use the groove~ object to play samples back at various speeds, in some
cases using looped samples. As was noted in Tutorial 19, if we want a polyphonic
instrument we need as many sound-generating objects as we want separate simultaneous
notes. In this tutorial patch, we use four copies of a subpatch called samplervoice~ to
supply four-voice polyphony. As in Tutorial 19— we use a poly object to assign a voice
number to each MIDI note, and we use route to send the note information to the correct
samplervoice~ subpatch.

poly assigns a voice number to each MIDI note, to send information to the correct subpatch

Before we examine the workings of the samplervoice~ subpatch, it will help to review what
information is needed to play a sample correctly.

1. The sound samples must be read into memory (in buffer~ objects), and a list of the
memory locations (buffer~ names) must be kept.

2. Each sample must be assigned to a region of the keyboard, and a list of the key
assignments must be kept.

Tutorial 20 MIDI Control:
Sampler

163

3. A list of the base key for each region—the key at which the sample should play back
untransposed—must be kept.

4. A list of the loop points for each sample (and whether looping should be on or off)
must be kept.

5. When a MIDI note message is received, and is routed to a samplervoice~ subpatch, the
groove~ object in that subpatch must first be told which buffer~ to read (based on the
key region being played), how fast to play the sample (based on the ratio between the
frequency being played and the base key frequency for that region), what loop points
to use for that sample, whether looping is on or off, and what amplitude scaling factor
to use based on the note- on velocity.

In this patch, the samples are all read into memory when the patch is first loaded.

• Double-click on the p samplebuffers subpatch to open its Patcher window.

You can see that six samples have been loaded into buffer~ objects named sample1, sample2,
etc. If, in a performance situation, you need to have access to more samples than you can
store at once in RAM, you can use read messages with filename arguments to load new
samples into buffer~ objects as needed.

• Close the subpatch window. Click on the message box marked “keyboard sample
assignments”.

Tutorial 20 MIDI Control:
Sampler

164

This stores a set of numbered key regions in the funbuff object. (This information could
have been embedded in the funbuff and saved with the patch, but we left it in the message
box here so that you can see the contents of the funbuff.) MIDI key numbers 0 to 40 are
key region 1, keys 41 to 47 are key region 2, etc. When a note-on message is received, the
key number goes into funbuff, and funbuff reports the key region number for that key. The
key region number is used to look up other vital information in the coll.

Note-on key number finds region number in funbuff, which looks up sample info in coll

• Double-click on the coll object to see its contents.
1, 24 sample1 0 0 0;

2, 33 sample2 0 0 0;
3, 50 sample3 0.136054 373.106537 1;
4, 67 sample4 60.204079 70.476189 1;
5, 84 sample5 0 0 0;
6, 108 sample6 0 0 0;

coll contains sample information for each key region

The key region number is used to index the information in coll. For example, whenever a
key from 48 to 52 is pressed, funbuff sends out the number 3, and the information for key
region 3 is recalled and sent to the appropriate samplervoice~ subpatch. The data for each
key region is: base key, buffer~ name, loop start time, loop end time, and loop on/off flag.

The voice number from poly opens the correct outlet of gate so that the information from
coll goes to the right subpatch.

Tutorial 20 MIDI Control:
Sampler

165

Playing a sample: the samplervoice~ subpatch

• Close the coll window, and double-click on one of the samplervoice~ subpatch objects
to open its Patcher window.

The samplervoice~ subpatch

You can see that the information from coll is unpacked in the subpatch and is sent to the
proper places to prepare the groove~ object for the note that is about to be played. This
tells groove~ what buffer~ to read, what loop times to use, and whether looping should be
on or off. Then, when the note information comes in the left inlet, the velocity is used to
send an amplitude value to the *~ object, and the note-on key number is used (along with
the base key number received from the right inlet) to calculate the proper playback speed
for groove~ and to trigger groove~ to begin playback from time 0.

MSP sample rate vs. audio file sample rate

• Close the subpatch window.

You’re almost ready to begin playing samples, but there is one more detail to attend to
first. To save storage space, the samples used in this patch are mono AIFF files with a
sample rate of 22,050 Hz. To hear them play properly you should set the sample rate of
MSP to that rate.

• Double-click on the dac~ object to open the DSP Status window. Set the Sampling
Rate to 22.050 kHz, then close the DSP Status window.

Tutorial 20 MIDI Control:
Sampler

166

Note: Resetting the sampling rate may not be possible, depending on your hardware.

The difference between the sample rate of an audio file and the sample rate being used in
MSP is a potential problem when playing samples. This method of resolving the
difference suffices in this situation because the audio files are all at the same sample rate
and because these samples are the only sounds we will be playing in MSP. In other
situations, however, you’re likely to want to play samples (perhaps with different
sampling rates) combined with other sounds in MSP, and you’ll want to use the optimum
sampling rate.

For such situations, you would be best advised to use the ratio between the audio file
sample rate and the MSP sample rate as an additional factor in determining the correct
playback speed for groove~. For example, if the sample rate of the audio file is half the
sample rate being used by MSP, then groove~ should play the sample half as fast.

You can use the objects info~ and dspstate~ to find out the sampling rate of the sample
and of MSP respectively, as demonstrated in the following example.

Calculate playback speed based on the sampling rates of the audio file and of MSP

The note-on key number is used first to recall the information for the sample to be
played. The name of a buffer~ is sent to groove~ and info~. Next, a bang is sent to dspstate~
and info~. Upon receiving a bang, dspstate~ reports the sampling rate of MSP and info~
reports the sampling rate of the AIFF file stored in the buffer~. In the lower left part of the
example, you can see how this sampling rate information is used as a factor in
determining the correct playback speed for groove~.

Tutorial 20 MIDI Control:
Sampler

167

Playing samples with MIDI

• Turn audio on and set the “Output Level” number box to a comfortable listening level.
Play a slow chromatic scale on the MIDI keyboard to hear the different samples and
their arrangement on the keyboard.

To arrange a unified single instrument sound across the whole keyboard, each key region
should contain a sample of a note from the same source. In this case, though, the samples
are arranged on the keyboard in such a way as to make available a full “band” consisting
of drums, bass, and keyboard. This sort of multi-timbral keyboard layout is useful for
simple keyboard splits (such as bass in the left hand and piano in the right hand) or, as in
this case, for accessing several different sounds on a single MIDI channel with a
sequencer.

• For an example of how a multi-timbral sample layout can be used by a sequencer,
click on the toggle marked “Play Sequence”. Click on it again when you want to stop
the sequence. Turn audio off. Double-click on the p sequence object to open the Patcher
window of the subpatch.

The p sequence subpatch

The seq sampleseq.midi object contains a pre-recorded MIDI file. The midiparse object sends
the MIDI key number and velocity to poly in the main patch. Each time the sequence
finishes playing, a bang is sent out the right outlet of seq; the bang is used to restart the seq
immediately, to play the sequence as a continuous loop. When the sequence is stopped by
the user, a bang is sent to midiflush to turn off any notes currently being played.

• When you have finished with this patch, don’t forget to open the DSP Status window
and restore the Sampling Rate to its original setting.

Tutorial 20 MIDI Control:
Sampler

168

Summary

To play samples from the MIDI keyboard, load each sample into a buffer~ and play the
samples with groove~. For polyphonic sample playback, you will need one groove~ object
per voice of polyphony. You can route MIDI notes to different groove~ objects using voice
assignments from the poly object.

To assign each sample to a region of the MIDI keyboard, you will need to keep a list of
key regions, and for each key region you will need to keep information about which
buffer~ to use, what transposition to use, what loop points to use, etc. A funbuff object is
good for storing keyboard region assignments. The various items of information about
each sample can be best stored together as lists in a coll, indexed by the key region
number. When a note is played, the key region is looked up in the funbuff, and that
number is used to look up the sample information in coll.

The proper transposition for each note can be calculated by dividing the played frequency
(obtained with the mtof object) by the base frequency of the sample. The result is used as
the playback speed for groove~. If the sampling rate of the recorded samples differs from
the sampling rate being used in MSP, that fact must be accounted for when playing the
samples with groove~. Dividing the audio file sampling rate by the MSP sampling rate
provides the correct factor by which to multiply the playback speed of groove~. The
sampling rate of MSP can be obtained with the dspstate~ object. The sampling rate of the
AIFF file in a buffer~ can be obtained with info~ (Remember—resetting the sampling rate
may not be possible on your hardware).

Note-on velocity can be used to control the amplitude of the samples. An exponential
mapping of velocity to amplitude is usually best. Multi-timbral sample layouts on the
keyboard can be useful for playing many different sounds, especially from a sequencer.
The end-of-file bang from the right outlet of seq can be used to restart the seq to play it in a
continuous loop. If the MIDI data goes through a midiflush object, any notes that are on
when the seq is stopped can be turned off by sending a bang to midiflush.

See Also

buffer~ Store audio samples
dspstate~ Report current DSP setting
groove~ Variable-rate looping sample playback
poly~ Polyphony/DSP manager for patchers

169

Tutorial 21: MIDI control—Using the poly~ object

A different approach to polyphony

In the last chapter, we demonstrated how to use the poly object to make polyphonic voice
assignments in a simple case. This chapter will describe a more elegant and efficient way
to handle polyphonic voice allocation—the poly~ object.

In the example in the previous chapter, we created multiple copies of our sampler
subpatch and used the poly object’s voice numbering to route messages to different copies
of the subpatch. Our example could just as easily have used any kind of sound-producing
subpatch. The following example uses the subpatch littlesynth~ to implement a simple
four-voice polyphonic synthesizer:

While this method works, it has two disadvantages. First, there’s a lot of housekeeping
necessary to duplicate and patch the multiple copies of littlesynth~ together. But there is
also a problem in terms of CPU usage. All four copies of the littlesynth~ subpatcher are
always on, processing their audio even when there is no sound being produced.

MSP 2.0, introduces a different way to solve the problem—the poly~ object allows you to
create and manage multiple copies of the same MSP subpatch all within one object. You
can also control the signal processing activity within each copy of the subpatch to
conserve CPU resources.

Tutorial 21 MIDI Control:
Using the poly~ object

170

The poly~ object

The poly~ object takes as its argument the name of a patcher file, followed by a number
that specifies the number of copies (or instances) of the patch to be created. You'll want to
specify the same number of copies as you would have had to duplicate manually when
implementing polyphony the old-fashioned way. Here's an example of the poly~ object.

Double-clicking on the poly~ object opens up the subpatcher to show you the inside of the
littlebeep~ object:

Let's look at the littlebeep~ patch for a minute. While you haven't seen the in, out~, or
thispoly~ objects before, the rest of the patcher is pretty straightforward; it takes an
incoming MIDI note number, converts it to a frequency value using the mtof object, and
outputs a sine wave at that frequency with a duration of 140 milliseconds and an
amplitude envelope supplied by the line~ object for 140 ms with an envelope on it.

But what about the in and out~ objects? Subpatches created for use in the poly~ object use
special objects for inlets and outlets. The objects in and out create control inlets and
outlets, and the in~ and out~ objects create signal inlets and outlets. You specify which
inlet is assigned to which object by adding a number argument to the object—the in 1
object corresponds to the leftmost inlet on the poly~ object, and so on. The poly~ object

Tutorial 21 MIDI Control:
Using the poly~ object

171

keeps track of the number of inlets and outlets it needs to create when you tell it which
subpatch to load.

Messages sent to a poly~ object are directed to different instances of the subpatch
dynamically using the note and midinote messages, and manually using the target message.

When poly~ receives a note message in its left inlet, it scans through the copies of the
subpatch it has in memory until it finds one that is currently not busy, and then passes
the message to it. A subpatch instance can tell its parent poly~ object that it is busy using
the thispoly~ object. The thispoly~ object accepts either a signal or number in its inlet to set
its busy state. A zero signal or a value of 0 sent to its inlet tells the parent poly~ that this
instance is available for note or midinote messages. A non-zero signal or value sent to its
inlet tells the parent poly~ that the instance is busy; no note or midinote messages will be sent
to the object until it is no longer busy. The busy state was intended to correspond to the
duration of a note being played by the subpatcher instance, but it could be used to mean
anything. In the example above, when the audio level out of the *~ is nonzero—that
iteration of the subpatch is currently busy. Once the amplitude envelope out of line~
reaches zero and the sound stops, that subpatch's copy of thispoly~ tells poly~ that it is
ready for more input.

The thispoly~ object can also control the activity of signal processing within each copy of
the subpatch. When the mute message is sent to thispoly~ followed by a 1, all signal
processing in that subpatch stops. When a mute 0 message is received, signal processing
starts again.

Tutorial 21 MIDI Control:
Using the poly~ object

172

We can rewrite the littlebeep~ subpatcher to take advantage of this by turning off signal
processing when a note is finished and turning it on again when a new event is received:

While this doesn’t change the function of the patch, it would be more efficient, since the
amount of CPU allocated is always based on the number of notes currently sounding.

Another way to allocate events using poly~ is through the target message. Sending a target
message followed by an integer in the left inlet of a poly~ subpatch tells poly~ to send all
subsequent messages to that instance of the subpatch. You can then use poly~ in
conjunction with the poly object from the last chapter to create a MIDI synthesizer.

Tutorial 21 MIDI Control:
Using the poly~ object

173

A poly~ subpatch that uses the target message looks like this:

Tutorial 21 MIDI Control:
Using the poly~ object

174

In this example subpatcher, pairs of incoming MIDI pitches and velocities are used to
synthesize a sine tone. When a list is received, the subpatcher sends a bang to thispoly~,
causing it to output the instance or voice number. In the example below, the voice
number is sent out an outlet so you can watch it from the parent patch.

In the parent patch the poly object assigns voice numbers to MIDI pitch/velocity pairs
output by makenote. The voice number from the poly object is sent to poly~ with the target
message prepended to it, telling poly~ to send subsequent data to the instance of the
targetbeep~ subpatcher specified by poly~. When a new note is generated, the target will
change. Since poly keeps track of note-offs, it should recycle voices properly. The second
outlet of poly~ reports the voice that last received a message—it should be the same as the
voice number output by poly, since we're using poly to specify a specific target.

Tutorial 21 MIDI Control:
Using the poly~ object

175

The thispoly~ object can be used to specify parameters to specific instances of a poly~
subpatcher. By connecting a loadbang object to thispoly~, we can use the voice number to
control the center frequency of a filter:

The littlefilter~ subpatcher, shown here uses the voice number from thispoly~ and
multiplies it by the base frequency received in the second inlet. The incoming signal is
filtered by all sixteen instances simultaneously, with the output amplitude of each
instance being controlled by an integer coming into the first inlet.

Tutorial 21 MIDI Control:
Using the poly~ object

176

Here’s an example of a patch which uses littlefilter~

:

The metro object is hooked up to both a counter and a random. The counter, which feeds the
target message, cycles through the 16 voices of littlefilter~ loaded into the poly~ object,
supplying each with a random number which is used to control the amplitude of that
voice.

A signal connected to an inlet of poly~ will be sent to the corresponding in~ objects of all
subpatcher instances, so the noise~ object in the example above feeds noise to all the
subpatchers inside the poly~. The second inlet (which corresponds to the in 2 box in the
subpatcher) controls the base frequency of the filters. Note that for the frequency to get
sent to all poly~ iterations it is preceded by a target 0 message. You can open a specific
instance of a poly~ subpatch by giving the object the open message, followed by the voice
you want to look at.

Tutorial 21 MIDI Control:
Using the poly~ object

177

The subpatch assigned to voice number 15 looks like this:

As you can see, the base frequency of this particular iteration of littlefilter~ is 1500. Hz,
which is the multiple of the voice number (15) with the most recently entered base
frequency into the second inlet (100. Hz).

Summary

poly~ is a powerful way to manage multiple copies of the same subpatch for polyphonic
voice allocation. The thispoly~ object works inside a subpatch to control its busy state and
turn signal processing on and off. The objects in, in~, out, and out~ create special control
and signal inputs and outputs that work with the inlets and outlets of the poly~ object.

See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting

178

Tutorial 22—MIDI control: Panning

Panning for localization and distance effects

Loudness is one of the cues we use to tell us how far away a sound source is located. The
relative loudness of a sound in each of our ears is a cue we use to tell us in what direction
the sound is located. (Other cues for distance and location include inter-aural delay, ratio
of direct to reflected sound, etc. For now we"ll only be considering loudness.)

When a sound is coming from a single speaker, we localize the source in the direction of
that speaker. When the sound is equally balanced between two speakers, we localize the
sound in a direction precisely between the speakers. As the balance between the two
speakers varies from one to the other, we localize the sound in various directions between
the two speakers.

The term panning refers to adjusting the relative loudness of a single sound coming from
two (or more) speakers. On analog mixing consoles, the panning of an input channel to
the two channels of the output is usually controlled by a single knob. In MIDI, panning is
generally controlled by a single value from 0 to 127. In both cases, a single continuum is
used to describe the balance between the two stereo channels, even though the precise
amplitude of each channel at various intermediate points can be calculated in many
different ways.

All other factors being equal, we assume that a softer sound is more distant than a louder
sound, so the overall loudness effect created by the combined channels will give us an
important distance cue. Thus, panning must be concerned not only with the proper
balance to suggest direction of the sound source; it must also control the perceived
loudness of the combined speakers to suggest distance.

This tutorial demonstrates three ways of calculating panning, controllable by MIDI values
0 to 127. You can try out the three methods and decide which is most appropriate for a
given situation in which you might want to control panning.

Patch for testing panning methods

In this tutorial patch, we use a repeated “chirp” (a fast downward glissando spanning
more than three octaves) as a distinctive and predictable sound to pan from side to side.

• To see how the sound is generated, double-click on the p ”sound source” subpatch to
open its Patcher window.

Because of the gate~ and begin~ objects, audio processing is off in this subpatch until a 1 is
received in the inlet to open the gate~. At that time, the phasor~ generates a linear
frequency glissando going from 2000 to 200 two times per second.

Tutorial 22 MIDI Control:
Panning

179

The p “sound source”subpatch

• Close the subpatch window.

The output of this subpatch is sent to two *~ objects—one for each output
channel—where its amplitude at each output channel will be scaled by one of the panning
algorithms. You can choose the panning algorithm you want to try from the pop-up
umenu at the top of the patch. This opens the inlet of the two selector~ objects to receive
the control signals from the correct panning subpatch. It also opens an outlet of the gate
object to allow control values into the desired subpatch. The panning is controlled by
MIDI input from continuous controller No. 10 (designated for panning in MIDI).

Tutorial 22 MIDI Control:
Panning

180

In case your MIDI keyboard doesn"t send controller 10 easily, you can also use the pitch
bend wheel to test the panning. (For that matter, you don"t need MIDI at all. You can just
drag on the number box marked “MIDI panning”.)

Selection from the umenu opens input and output for one of the three panning subpatches

Linear crossfade

The most direct way to implement panning is to fade one channel linearly from 0 to 1 as
the other channel fades linearly from 1 to 0. This is the easiest type of panning to
calculate. We map the range of MIDI values 0 to 127 onto the amplitude range 0 to 1, and
use that value as the amplitude for the right channel; the left channel is always set to 1
minus the amplitude of the left channel. The only hitch is that a MIDI pan value of 64 is
supposed to mean equal balance between channels, but it is not precisely in the center of
the range (64/127 - 0.5). So we have to treat MIDI values 0 to 64 differently from values 65 to
127.

Tutorial 22 MIDI Control:
Panning

181

• Double-click on the p “simple linear xfade” object to open its Patcher window.

Linear crossfade using MIDI values 0 to 127 for control

This method seems perfectly logical since the sum of the two amplitudes is always 1. The
problem is that the intensity of the sound is proportional to the sum of the squares of the
amplitudes from each speaker. That is, two speakers playing an amplitude of 0.5 do not
provide the same intensity (thus not the same perceived loudness) as one speaker playing
an amplitude of 1. With the linear crossfade, then, the sound actually seems softer when
panned to the middle than it does when panned to one side or the other.

• Close the subpatch window. Choose “Simple Linear Crossfade” from the umenu. Click
on the ezdac~ to turn audio on, click on the toggle to start the “chirping” sound, and
use the “Amplitude” number box to set the desired listening level. Move the pitch bend
wheel of your MIDI keyboard to pan the sound slowly from one channel to the other.
Listen to determine if the loudness of the sound seems to stay constant as you pan.

While this linear crossfade might be adequate in some situations, we may also want to try
to find a way to maintain a constant intensity as we pan.

Equal distance crossfade

If we can maintain a constant intensity as we pan from one side to the other, this will give
the impression that the sound source is maintaining a constant distance from the listener.
Geometrically, this could only be true if the sound source were moving in an arc, with the
listener at the center, so that the distance between the sound source and the listener was
always equal to the radius of the arc.

It happens that we can simulate this condition by mapping one channel onto a quarter
cycle of a cosine wave and the other channel onto a quarter cycle of a sine wave.

Tutorial 22 MIDI Control:
Panning

182

Therefore, we"ll map the range of MIDI values 0 to 127 onto the range 0 to 0.25, and use
the result as an angle for looking up the cosine and sine values.

Technical detail: As the sound source travels on a hypothetical arc from 0˚
to 90˚ (1/4 cycle around a circle with the listener at the center), the cosine of
its angle goes from 1 to 0 and the sine of its angle goes from 0 to 1. At all
points along the way, the square of the cosine plus the square of the sine
equals 1. This trigonometric identity is analogous to what we are trying to
achieve—the sum of the squares of the amplitudes always equaling the
same intensity—so these values are a good way to obtain the relative
amplitudes necessary to simulate a constant distance between sound
source and listener.

• Double-click on the p "constant distance xfade" object to open its Patcher window.

MIDI values 0 to 127 are mapped onto 1/4 cycle of cosine and sine functions

Once again we need to treat MIDI values greater than 64 differently from those less than
or equal to 64, in order to retain 64 as the “center” of the range. Once the MIDI value is
mapped into the range 0 to 0.25, the result is used as a phase angle two cycle~ objects, one
a cosine and the other (because of the additional phase offset of 0.75) a sine.

• Close the subpatch window. Choose “Equal Distance Crossfade” from the umenu.
Listen to the sound while panning it slowly from one channel to the other.

Is the difference from the linear crossfade appreciable? Perhaps you don"t care whether
the listener has the impression of movement in an arc when listening to the sound being
panned. But the important point is that the equal distance method is preferable if only

Tutorial 22 MIDI Control:
Panning

183

because it does not cause a noticeable dip in intensity when panning from one side to the
other.

Speaker-to-speaker crossfade

Given a standard stereo speaker placement—with the two speakers in front of the listener
at equal distances and angles—if an actual sound source (say, a person playing a trumpet)
moved in a straight line from one speaker to the other, the sound source would actually
be closer to the listener when it"s in the middle than it would be when it"s at either
speaker. So, to emulate a sound source moving in a straight line from speaker to speaker,
we will need to calculate the amplitudes such that the intensity is proportional to the
distance from the listener.

L R

a
b

c

x

o

d

y

Distance b is shorter than distance a

Technical detail: If we know the angle of the speakers (x and -x), we can
use the cosine function to calculate distance a relative to distance b.
Similarly we can use the tangent function to calculate distance c relative to
b. The distance between the speakers is thus 2c, and as the MIDI pan value
varies away from its center value of 64 it can be mapped as an offset (o)
from the center ranging from -c to +c. Knowing b and o, we can use the
Pythagorean theorem to obtain the distance (d) of the source from the
listener, and we can use the arctangent function to find its angle (y).
Armed with all of this information, we can finally calculate the gain for the
two channels as a.cos(y±x)/d.

• Choose “Speaker-to-Speaker Crossfade” from the umenu. Listen to the sound while
panning it slowly from one channel to the other. You can try different speaker angles
by changing the value in the “Speaker Angle” number box. Choose a speaker angle best
suited to your actual speaker positions.

This effect becomes more pronounced as the speaker angle increases. It is most effective
with “normal” speaker angles ranging from about 30˚ up to 45˚, or even up to 60˚. Below
30˚ the effect is too slight to be very useful, and above about 60˚ it"s too extreme to be
realistic.

Tutorial 22 MIDI Control:
Panning

184

• Double-click on the p "speaker-to-speaker xfade" object to open its Patcher window.

The trigonometric calculations described above are implemented in this subpatch. The
straight ahead distance (b) is set at 1, and the other distances are calculated relative to it.
The speaker angle—specified in degrees by the user in the main patch—is converted to a
fraction of a cycle, and is eventually converted to radians (multiplied by 2π, or 6.2832) for
the trigonometric operations. When the actual gain value is finally calculated, it is
multiplied by a normalizing factor of 2/ (d+b) to avoid clipping. When the source reaches
an angle greater than 90˚ from one speaker or the other, that speaker"s gain is set to 0.

• To help get a better understanding of these calculations, move the pitch bend wheel
and watch the values change in the subpatch. Then close the subpatch and watch the
gain values change in the main Patcher window.

The signal gain values are displayed by an MSP user interface object called number~,
which is explained in the next chapter.

Summary

MIDI controller No. 10 (or any other MIDI data) can be used to pan a signal between
output channels. The relative amplitude of the two channels gives a localization cue for
direction of the sound source. The overall intensity of the sound (which is proportional to
the sum of the squares of the amplitudes) is a cue for perceived distance of the sound
source.

Mapping the MIDI data to perform a linear crossfade of the amplitudes of the two
channels is one method of panning, but it causes a drop in intensity when the sound is
panned to the middle. Using the panning value to determine the angle of the sound
source on an arc around the listener (mapped in a range from 0˚ to 90˚), and setting the
channel amplitudes proportional to the cosine and sine of that angle, keeps the intensity
constant as the sound is panned.

When a sound moves past the listener in a straight line, it is loudest when it passes
directly in front of the listener. To emulate straight line movement, one can calculate the
relative distance of the sound source as it travels, and modify the amplitude of each
channel (and the overall intensity) accordingly.

See Also

expr Evaluate a mathematical expression
gate~ Route a signal to one of several outlets

185

Tutorial 23: Analysis—Viewing signal data

Display the value of a signal: number~

This chapter demonstrates several MSP objects for observing the numerical value of
signals, and/ or for translating those values into Max messages.

• Turn audio on and send some sound into the input jacks of the computer.

Every 250 milliseconds the number~ objects at the top of the Patcher display the current
value of the signal coming in each channel, and the meter~ objects show a graphic
representation of the peak amplitude value in the past 250 milliseconds, like an analog
LED display.

Current signal value is shown by number~; peak amplitude is shown by meter~

The signal coming into number~ is sent out its right outlet as a float once every time it’s
displayed. This means it is possible to sample the signal value and send it as a message to
other Max objects.

The number~ object is actually like two objects in one. In addition to receiving signal
values and sending them out the right outlet as a float, number~ also functions as a
floating-point number box that sends a signal (instead of a float) out its left outlet.

Tutorial 23 Analysis:
Viewing signal data

186

• Move the mod wheel of your MIDI keyboard or drag on the right side of the number~
marked “Amplitude”. This sets the value of the signal being sent out the number~
object’s left outlet. The signal is connected to the right inlet of two *~ objects, to
control the amplitude of the signal sent to the ezdac~.

float input to number~ sets the value of the signal sent out the left outlet

A number~ object simultaneously converts any signal it receives into floats sent out the
right outlet, and converts any float it receives into a signal sent out the left outlet. Although
it can perform both tasks at the same time, it can only display one value at a time. The
value displayed by number~ depends on which display mode it is in. When a small
waveform appears in the left part of the number~, it is in Signal Monitor Mode, and shows
the value of the signal coming in the left inlet. When a small arrow appears in the left part
of number~, it is in Signal Output Mode, and shows the value of the signal going out the
left outlet.

The two display modes of number~

Tutorial 23 Analysis:
Viewing signal data

187

You can restrict number~ to one display mode or the other by selecting the object in an
unlocked Patcher and choosing Get Info… from the Object menu.

Allowed display modes can be chosen in the number~ Inspector

At least one display mode must be checked. By default, both display modes are allowed, as
shown in the above example. If both display modes are allowed, you can switch from one
display mode to the other in a locked Patcher by clicking on the left side of the number~.
The output of number~ continues regardless of what display mode it’s in.

In the tutorial patch you can see the two display modes of number~. The number~ objects
at the top of the Patcher window are in Signal Monitor Mode because we are using them
to show the value of the incoming signal. The “Amplitude” number~ is in Signal Output
Mode because we are using it to send a signal and we want to see the value of that signal.
(New values can be entered into a number~ by typing or by dragging with the mouse only

Tutorial 23 Analysis:
Viewing signal data

188

when it is in Signal Output display mode.) Since each of these number~ objects is serving
only one function, each has been restricted to only one display mode in the Inspector
window.

• Click on the left side of the number~ objects. They don’t change display mode because
they have been restricted to one mode or the other in the Inspector window.

Interpolation with number~

The number~ object has an additional useful feature. It can be made to interpolate
between input values to generate a ramp signal much like the line~ object. If number~
receives a non-zero number in its right inlet, it uses that number as an amount of time, in
milliseconds, to interpolate linearly to the new value whenever it receives a number in the
left inlet. This is equivalent to sending a list to line~.

number~ can send a linear ramp signal from its old value to a new value

Unlike line~, however, number~ does not need to receive the interpolation time value
more than once; it remembers the interpolation time and uses it for each new number
received in the left inlet. This feature is used for the “Amplitude” number~ so that it won’t
cause discontinuous changes of amplitude in the output signal.

Tutorial 23 Analysis:
Viewing signal data

189

Peak amplitude: meter~

The meter~ object periodically displays the peak amplitude it has received since the last
display. At the same time it also sends the peak signal value out its outlet as a float. The
output value is always a positive number, even if the peak value was negative.

meter~ displays the peak signal amplitude and sends it out as a float

meter~ is useful for observing the peak amplitude of a signal (unlike number~, which
displays and sends out the instantaneous amplitude of the signal). Since meter~ is
intended for audio signals, it expects to receive a signal in the range -1 to 1. If that range is
exceeded, meter~ displays a red “clipping” LED as its maximum.

• If you want to see the clipping display, increase the amplitude of the output signal
until it exceeds 1. (Then return it to a desirable level.)

The default interval of time between the display updates of meter~ is 250 milliseconds, but
the display interval can be altered with the interval message. A shorter display interval
makes the LED display more accurate, while a longer interval gives you more time to read
its visual and numerical output.

• You can try out different display intervals by changing the number in the number box
marked “Display Interval” in the lower left corner of the Patcher window.

By the way, the display interval of a number~ object can be set in the same manner (as well
as via its Inspector window).

Use a signal to generate Max messages: snapshot~

The snapshot~ object sends out the current value of a signal, as does the right inlet of
number~. With snapshot~, though, you can turn the output on and off, or request output
of a single value by sending it a bang. When you send a non-zero number in the right inlet,
snapshot~ uses that number as a millisecond time interval, and begins periodically

Tutorial 23 Analysis:
Viewing signal data

190

reporting the value of the signal in its left inlet. Sending in a time interval of 0 stops
snapshot~.

This right half of the tutorial patch shows a simple example of how a signal waveform
might be used to generate MIDI data. We’ll sample a sub-audio cosine wave to obtain
pitch values for MIDI note messages.

• Use the number~ to set the output amplitude to 0. In the number box objects at the top
of the patch, set the “Rate” number box to 0.14 and set the “Depth” number box to 0.5.
Click on the message box 200 to start snapshot~ reporting signal values every fifth of a
second.

Because snapshot~ is reporting the signal value every fifth of a second, and the period of
the cycle~ object is about 7 seconds, the melody will describe one cycle of a sinusoidal
wave every 35 notes. Since the amplitude of the wave is 0.5, the melody will range from 36
to 84 (60±24).

• Experiment with different “Rate” and “Depth” values for the cycle~. Since snapshot~ is
sampling at a rate of 5 Hz (once every 200 ms), its Nyquist rate is 2.5 Hz, so that limits
the effective frequency of the cycle~ (any greater frequency will be “folded over”).
Click on the 0 message box to stop snapshot~.

Amplitude modulation

• Set the tremolo depth to 0.5 and the tremolo rate to 4. Increase the output amplitude
to a desirable listening level.

The cycle~ object is modulating the amplitude of the incoming sound with a 4 Hz
tremolo.

• Experiment with faster (audio range) rates of modulation to hear the timbral effect of
amplitude modulation. To hear ring modulation, set the modulation depth to 1. To
remove the modulation effect, simply set the depth to 0.

View a signal excerpt: capture~

The capture~ object is comparable to the Max object capture. It stores many signal values
(the most recently received 4096 samples, by default), so that you can view an entire
excerpt of a signal as text.

• Set the tremolo depth to 1, and set the tremolo rate to 172. Double-click on the
capture~ object to open a text window containing the last 4096 samples.

Tutorial 23 Analysis:
Viewing signal data

191

This object is useful for seeing precisely what has occurred in a signal over time. (4096
samples is about 93 milliseconds at a sampling rate of 44.1 kHz.) You can type in an
argument to specify how many samples you want to view, and capture~ will store that
many samples (assuming there is enough RAM available in Max. There are various
arguments and messages for controlling exactly what will be stored by capture~. See its
description in the MSP Reference Manual for details.

Summary

The capture~ object stores a short excerpt of a signal to be viewed as text. The meter~
object periodically displays the peak level of a signal and sends the peak level out its outlet
as a float. The snapshot~ object sends out a float to report the current value of a signal.
snapshot~ reports the signal value once when it receives a bang, and it can also report the
signal value periodically if it receives a non-zero interval time in its right inlet.

The number~ object is like a combination of a float number box, sig~, and snapshot~, all at
once. A signal received in its left inlet is sent out the right outlet as a float, as with
snapshot~. A float or int received in its left inlet sets the value of the signal going out its left
outlet, as with sig~. Both of these activities can go on at once in the same number~ object,
although number~ can only display one value at a time. When number~ is in Signal
Monitor Mode, it displays the value of the incoming signal. When number~ is in Signal
Output Mode, it displays the value of the outgoing signal.

number~ can also function as a signal ramp generator, like the line~ object. If a non-zero
number has been received in the right inlet (representing interpolation time in
milliseconds), whenever number~ receives a float, its output signal interpolates linearly
between the old and new values.

These objects (along with a few others such as sig~, peek~ and avg~) comprise the primary
links between MSP and Max. They convert signals to numerical Max messages, or vice
versa.

See Also

capture~ Store a signal to view as text
meter~ Visual peak level indicator
number~ Signal monitor and constant generator
snapshot~ Convert signal values to numbers

192

Tutorial 24: Analysis—Oscilloscope

Graph of a signal over time

There are times when seeing a picture of a signal is instructive. The scope~ object depicts
the signal it receives, in the manner of an analog oscilloscope, as a graph of amplitude
over time.

There are two problems scope~ must consider when plotting a graph of a signal in real
time. First of all, in order for your eye to follow a time-varying signal, an excerpt of the
signal must be captured and displayed for a certain period of time (long enough for you
really to see it). Therefore, the graph must be displayed periodically, and will always lag a
bit behind what you hear. Second, there aren’t enough pixels on the screen for you to see
a plot of every single sample (at least, not without the display being updated at blinding
speed), so scope~ has to use a single pixel to summarize many samples.

A patch to view different waveforms

This tutorial shows how to get a useful display of a signal. The patch adds four cosine
oscillators to create a variety of waveforms, and displays them in scope~. The frequency,
phase, and amplitude of each sinusoid is set independently, and the over-all amplitude of
the sum of the oscillators is scaled with an additional *~ object. The settings for each
waveform are stored in a preset object.

Additive synthesis can be used to create a variety of complex waveforms

• Click on the first preset in the preset object.

When audio is turned on, the dspstate~ object sends the current sampling rate out its
middle outlet. This is divided by the number of pixels per display buffer (the display
buffer is where the display points are held before they’re shown on the screen), and the
result is the number of signal samples per display point (samples per pixel). This number
is sent in the left inlet of scope~ to tell it how many samples to assign to each display pixel.
The default number of pixels per display buffer is 128, so by this method each display will
consist of exactly one second of signal. In other words, once per second scope~ displays

Tutorial 24 Analysis:
Oscilloscope

193

the second that has just passed. We have stretched the scope~ (using its grow handle) to
be 256 pixels wide—twice its default width—in order to provide a better view.

On the next page we will describe the different waveforms created by the oscillators.

• One by one, click on the different presets to see different waveforms displayed in the
scope~. The first eight waves are at the sub-audio frequency of 1 Hz to allow you to see
a single cycle of the waveform, so the signal is not sent to the dac~ until the ninth
preset is recalled.

Preset 1. A 1 Hz cosine wave.

Preset 2. A 1 Hz sine wave. (A cosine wave with a phase offset of 3/4 cycle.)

Preset 3. A 1 Hz cosine wave plus a 2 Hz cosine wave (i.e. octaves).

Preset 4. Four octaves: cosine waves of equal amplitude at 1, 2, 4, and 8 Hz.

Preset 5. A band-limited square wave. The four oscillators produce four sine waves with
the correct frequencies and amplitudes to represent the first four partials of a square
wave. (Although the amplitudes of the oscillators are only shown to two decimal places,
they are actually stored in the preset with six decimal place precision.)

Preset 6. A band-limited sawtooth wave. The four oscillators produce four sine waves
with the correct frequencies and amplitudes to represent the first four partials of a
sawtooth wave.

Preset 7. A band-limited triangle wave. The four oscillators produce four sine waves with
the correct frequencies and amplitudes to represent the first four partials of a triangle
wave (which, it appears, is actually not very triangular without its upper partials).

Preset 8. This wave has the same frequencies and amplitudes as the band-limited square
wave, but has arbitrarily chosen phase offsets for the four components. This shows what a
profound effect the phase of components can have on the appearance of a waveform, even
though its effect on the sound of a waveform is usually very slight.

Preset 9. A 32 Hz sinusoid plus a 36 Hz sinusoid (one-half cycle out of phase for the sake
of the appearance in the scope~). The result is interference causing beating at the
difference frequency of 4 Hz.

Preset 10. Combined sinusoids at 200, 201, and 204 Hz, producing beats at 1, 3, and 4 Hz.

Preset 11. Although the frequencies are all displayed as 200 Hz, they are actually 200,
200.25, 200.667, and 200.8. This produces a complicated interference pattern of six

Tutorial 24 Analysis:
Oscilloscope

194

different sub-audio beat frequencies, a pattern which only repeats precisely every minute.
We have set the number of samples per pixel much lower, so each display represents
about 50 ms. This allows you to see about 10 wave cycles per display.

Preset 12. Octaves at 100, 200, and 400 Hz (with different phase offsets), plus one
oscillator at 401 Hz creating beats at 1 Hz.

Preset 13. A cluster of equal-tempered semitones. The dissonance of these intervals is
perhaps all the more pronounced when pure tones are used. Each display shows about
100 ms of sound.

Preset 14. A just-tuned dominant seventh chord; these are the 4th, 5th, 6th, and 7th
harmonics of a common fundamental, so their sum has a periodicity of 100 Hz, two
octaves below the chord itself.

Preset 15. Total phase cancellation. A sinusoid is added to a copy of itself 180˚ out of
phase.

Preset 16. All oscillators off.

Summary

The scope~ object gives an oscilloscope view of a signal, graphing amplitude over time.
Because scope~ needs to collect the samples before displaying them, and because the user
needs a certain period of time to view the signal, the display always lags behind the signal
by one display period. A display period (in seconds) is determined by the number of
pixels per display buffer, times the number of samples per pixel, divided by the signal
sampling rate. You can control those first two values by sending integer values in the
inlets of scope~. The sampling rate of MSP can be obtained with the dspstate~ object.

See Also

dspstate~ Report current DSP setting
scope~ Signal oscilloscope

195

Tutorial 25: Analysis—Using the FFT

Fourier’s theorem

The French mathematician Joseph Fourier demonstrated that any periodic wave can be
expressed as the sum of harmonically related sinusoids, each with its own amplitude and
phase. Given a digital representation of a periodic wave, one can employ a formula
known as the discrete Fourier transform (DFT) to calculate the frequency, phase, and
amplitude of its sinusoidal components. Essentially, the DFT transforms a time-domain
representation of a sound wave into a frequency- domain spectrum.

Typically the Fourier transform is used on a small “slice” of time, which ideally is equal to
exactly one cycle of the wave being analyzed. To perform this operation on “real world”
sounds—which are almost invariably not strictly periodic, and which may be of unknown
frequency—one can perform the DFT on consecutive time slices to get a sense of how the
spectrum changes over time.

If the number of digital samples in each time slice is a power of 2, one can use a faster
version of the DFT known as the fast Fourier transform (FFT). The formula for the FFT is
encapsulated in the fft~ object. The mathematics of the Fourier transform are well
beyond the scope of this manual, but this tutorial chapter will demonstrate how to use the
fft~ object for signal analysis.

Spectrum of a signal: fft~

fft~ receives a signal in its inlet. For each slice of time it receives (512 samples long by
default) it sends out a signal of the same length listing the amount of energy in each
frequency region. The signal that comes out of fft~ is not anything you’re likely to want to
listen to. Rather, it’s a list of relative amplitudes of 512 different frequency bands in the
received signal. This “list” happens to be exactly the same length as the samples received
in each time slice, so it comes out at the same rate as the signal comes in. The signal
coming out of fft~ is a frequency-domain analysis of the samples it received in the
previous time slice.

Tutorial 25 Analysis:
Using the FFT

196

Although the transform comes out of fft~ in the form of a signal, it is not a time-domain
signal. The only object that “understands” this special signal is the ifft~ object, which
performs an inverse FFT on the spectrum and transforms it back into a time-domain
waveform.

The signal coming out of fft~ is spectral information, not a time-domain signal

With the capture~ object you can grab some of the output of fft~ and examine the
frequency analysis of a signal.

• Click on one of the ezdac~ objects to turn audio on.

When audio is turned on, dspstate~ sends the MSP sampling rate out its middle outlet.
We use this number to calculate a frequency that has a period of exactly 512 samples. This
is the fundamental frequency of the FFT itself. If we send a wave of that frequency into
fft~, each time slice would contain exactly one cycle of the waveform. We will actually use
a cosine wave at ten times that frequency as the test tone for our analysis, as shown below.

The test tone is at 10 times the base frequency of the FFT time slice

Tutorial 25 Analysis:
Using the FFT

197

The upper left corner of the Patcher window shows a very simple use of fft~. The analysis
is stored in a capture~ object, and an ifft~ object transforms the analysis back into an
audio signal. (Ordinarily you would not transform and inverse-transform an audio signal
for no reason like this. The ifft~ is used in this patch simply to demonstrate that the
analysis-resynthesis process works.)

• Click on the toggle in the upper left part of the patch to hear the resynthesized sound.
Click on the toggle again to close the gate~. Now double-click on the capture~ object in
that part of the patch to see the analysis performed by fft~.

In the capture~ text window, the first 512 numbers are all 0.0000. That is the output of fft~
during the first time slice of its analysis. Remember, the analysis it sends out is always of
the previous time slice. When audio was first turned on, there was no previous audio, so
the fft~ object’s analysis shows no signal.

• Scroll past the first 512 numbers. (The numbers in the capture~ object’s text window
are grouped in blocks, so if your signal vector size is 256 you will have two groups of
numbers that are all 0.0000.) Look at the second time slice of 512 numbers.

Each of the 512 numbers represents a harmonic of the FFT frequency itself, starting at the
0th harmonic (0 Hz). The analysis shows energy in the eleventh number, which
represents the 10th harmonic of the FFT, 10/512 the sampling rate—precisely our test
frequency. (The analysis also shows energy at the 10th number from the end, which
represents 502/512 the sampling rate. This frequency exceeds the Nyquist rate and is actually
equivalent to -10/512 of the sampling rate.

Technical detail: An FFT divides the entire available frequency range into
as many bands (regions) as there are samples in each time slice. Therefore,
each set of 512 numbers coming out of fft~ represents 512 divisions of the
frequency range from 0 to the sampling rate. The first number represents
the energy at 0 Hz, the second number represents the energy at 1/512 the
sampling rate, the third number represents the energy at 2/512 the sampling
rate, and so on.

Note that once we reach the Nyquist rate on the 257th number (256/512 of the
sampling rate), all numbers after that are folded back down from the
Nyquist rate. Another way to think of this is that these numbers represent
negative frequencies that are now ascending from the (negative) Nyquist
rate. Thus, the 258th number is the energy at the Nyquist rate minus 1/512 of
the sampling rate (which could also be thought of as -255/512 the sampling
rate). In our example, we see energy in the 11th frequency region (10/512 the
sampling rate) and the 503rd frequency region (-256/512 - -246/512 = -10/512 the
sampling rate).

Tutorial 25 Analysis:
Using the FFT

198

It appears that fft~ has correctly analyzed the signal. There’s just one problem...

Practical problems of the FFT

The FFT assumes that the samples being analyzed comprise one cycle of a periodic wave.
In our example, the cosine wave was the 10th harmonic of the FFT’s fundamental
frequency, so it worked fine. In most cases, though, the 512 samples of the FFT will not be
precisely one cycle of the wave. When that happens, the FFT still analyzes the 512 samples
as if they were one cycle of a waveform, and reports the spectrum of that wave. Such an
analysis will contain many spurious frequencies not actually present in the signal.

• Close the text window of capture~. With the audio still on, set the “Test Frequency”
number box to 1000. This also triggers the clear message in the upper left corner of the
patch to empty the capture~ object of its prior contents. Double-click once again on
capture~, and scroll ahead in the text window to see its new contents.

The analysis of the 1000 Hz tone does indeed show greater energy at 1000 Hz—in the
12th and 13th frequency regions if your MSP sampling rate is 44,100 Hz—but it also
shows energy in virtually every other region. That’s because the waveform it analyzed is
no longer a sinusoid. (An exact number of cycles does not fit precisely into the 512
samples.) All the other energy shown in this FFT is an artifact of the “incorrect”
interpretation of those 512 samples as one period of the correct waveform.

To resolve this problem, we can try to “taper” the ends of each time slice by applying an
amplitude envelope to it, and use overlapping time slices to compensate for the use of the
envelope.

Overlapping FFTs

The lower right portion of the tutorial patch takes this approach of using overlapping
time slices, and applies a triangular amplitude envelope to each slice before analyzing it.
(Other shapes of amplitude envelope are often used for this process.

Tutorial 25 Analysis:
Using the FFT

199

The triangular window is simple and quite effective.) In this way, the fft~ object is
viewing each time slice through a triangular window which tapers its ends down, thus
filtering out many of the false frequencies that would be introduced by discontinuities.

Overlapping triangular windows (envelopes) applied to a 100 Hz cosine wave

To accomplish this windowing and overlapping of time slices, we must perform two
FFTs, one of which is offset 256 samples later than the other. (Note that this part of the
patch will only work if your current MSP Signal Vector size is 256 or less, since fft~ can
only be offset by a multiple of the vector size.) The offset of an FFT can be given as a
(third) typed-in argument to fft~, as is done for the fft~ object on the right. This results in
overlapping time slices.

One FFT is taken 256 samples later than the other

The windowing is achieved by multiplying the signal by a triangular waveform (stored in
the buffer~ object) which recurs at the same frequency as the FFT—once every 512
samples. The window is offset by 1/2 cycle (256 samples) for the second fft~.

• Double-click on the buffer~ object to view its contents. Then close the buffer~ window
and double-click on the capture~ object that contains the FFT of the windowed signal.
Scroll past the first block or two of numbers until you see the FFT analysis of the
windowed 1000 Hz tone.

Tutorial 25 Analysis:
Using the FFT

200

As with the unwindowed FFT, the energy is greatest around 1000 Hz, but here the
(spurious) energy in all the other frequency regions is greatly reduced by comparison
with the unwindowed version.

Signal processing using the FFT

In this patch we have used the fft~ object to view and analyze a signal, and to demonstrate
the effectiveness of windowing the signal and using overlapping FFTs. However, one
could also write a patch that alters the values in the signal coming out of fft~, then sends
the altered analysis to ifft~ for resynthesis. An implementation of this frequency-domain
filtering scheme will be seen in a future tutorial.

Summary

The fast Fourier transform (FFT) is an algorithm for transforming a time-domain digital
signal into a frequency-domain representation of the relative amplitude of different
frequency regions in the signal. An FFT is computed using a relatively small excerpt of a
signal, usually a slice of time 512 or 1024 samples long. To analyze a longer signal, one
performs multiple FFTs using consecutive (or overlapping) time slices.

The fft~ object performs an FFT on the signal it receives, and sends out (also in the form
of a signal) a frequency-domain analysis of the received signal. The only object that
understands the output of fft~ is ifft~ which performs an inverse FFT to synthesize a
time-domain signal based on the frequency-domain information. One could alter the
signal as it goes from fft~ to ifft~, in order to change the spectrum.

The FFT only works perfectly when analyzing exactly one cycle (or exactly an integer
number of cycles) of a tone. To reduce the artifacts produced when this is not the case,
one can window the signal being analyzed by applying an amplitude envelope to taper the
ends of each time slice. The amplitude envelope can be applied by multiplying the signal
by using a cycle~ object to read a windowing function from a buffer~ repeatedly at the
same rate as the FFT itself (i.e., once per time slice).

See Also

buffer~ Store audio samples
capture~ Store a signal to view as text
fft~ Fast Fourier transform
ifft~ Inverse Fast Fourier transform

201

Tutorial 26: Frequency Domain Signal Processing with pfft~

Working in the Frequency Domain

Most digital signal processing of audio occurs in what is known as the time domain. As
the other MSP tutorials show you, many of the most common processes for manipulating
audio consist of varying samples (or groups of samples) in amplitude (ring modulation,
waveshaping, distortion) or time (filters and delays). The Fast Fourier Transform (FFT)
allows you to translate audio data from the time domain into the frequency domain,
where you can directly manipulate the spectrum of a sound (the component frequencies
of a slice of audio).

As we have seen in Tutorial 25, the MSP objects fft~ and ifft~ allow you to transform
signals into and out of the frequency domain. The fft~ object takes a a group of samples
(commonly called a frame) and transforms them into pairs of real and imaginary
numbers representing the amplitude and phase of as many frequencies as there are
samples in the frame. These are usually referred to as bins or frequency bins. (We will see
later that the real and imaginary numbers are not themselves the amplitude and phase,
but that the amplitude and phase can be derived from them.) The ifft~ object performs
the inverse operation, taking frames of frequency-domain samples and converting them
back into a time domain audio signal that you can listen to or process further. The num-
ber of samples in the frame is called the FFT size (or sometimes FFT point size). It must be
a power of 2 such as 512, 1024 or 2048 (to give a few commonly used values).

One of the shortcomings of the fft~ and ifft~ objects is that they work on successive
frames of samples without doing any overlapping or cross-fading between them. For
most practical musical uses of these objects, we usually need to construct such an overlap
and crossfade system around them. There are several reasons for needing to create such a
system when using the Fourier transform to process sound. In FFT analysis there is
always a trade-off between frequency resolution and timing resolution. For example, if
your FFT size is 2048 samples long, the FFT analysis gives you 2048 equally-spaced
frequency bins from 0 Hz. up to the sampling frequency (only 1024 of these bins are of
any use; see Tutorial 25 for details). However, any timing resolution that occurs within
those 2048 samples will be lost in the analysis, since all temporal changes are lumped
together in a single FFT frame. In addition, if you modify the spectral data after the FFT
analysis and before the IFFT resynthesis you can no longer guarantee that the time
domain signal output by the IFFT will match up in successive frames. If the output time
domain vectors don’t fit together you will get clicks in your output signal. By designing a
windowing function in MSP (see below), you can compensate for these artifacts by having
successive frames cross-fade into each other as they overlap. While this will not
compensate for the loss of time resolution, the overlapping of analysis data will help to
eliminate the clicks and pops that occurs at the edges of an IFFT frame after resynthesis.

Tutorial 26 Frequency domain signal
processing using pfft~

202

This analysis/resynthesis scheme (using overlapping, windowed slices of time with the
FFT and IFFT) is usually referred to as a Short Term (or Short Time) Fourier Transform
(STFT). An STFT can be designed in MSP by creating a patch that uses one or more pairs
of fft~/ifft~ objects with the input signal “windowed” into and out of the frequency
domain. While this approach works fairly well, it is somewhat cumbersome to program
since every operation performed in the frequency domain needs to be duplicated
correctly for each fft~/ifft~ pair. The following subpatch illustrates how one would
window incoming FFT data in this manner:

How to properly window audio for use with the fft~ object

In addition to the fact that this approach can often be a challenge to program, there is also
the difficulty of generalizing the patch for multiple combinations of FFT size and overlap.
Since the arguments to fft~/ifft~ for FFT frame size and overlap can’t be changed,

Tutorial 26 Frequency domain signal
processing using pfft~

203

multiple hand-tweaked versions of each subpatch must be created for different situations.
For example, a percussive sound would necessitate an analysis with at least four overlaps,
while a reasonably static, harmonically rich sound would call for a very large FFT size.

Technical detail: Time vs. Frequency Resolution

The FFT size we use provides us with a tradeoff; because the Fourier
transform mathematically converts a small slice of time into a frozen
“snapshot” representing its spectrum, you might first think that it would
be beneficial to use small FFT sizes in order to avoid grouping temporal
changes together in one analysis spectrum. While this is true, an FFT size
with a smaller number of points also means that our spectrum will have a
smaller number of frequency bins, which means that the frequency
resolution will be lower. Smaller FFT sizes result in better temporal reso-
lution, but at the cost of lower frequency resolution when the sound is
modified in the frequency domain and resynthesized. Conversely, larger
FFT sizes give us finer frequency detail, but tend to “smear” temporal
changes in the sound. In practice, we therefore need to choose an
appropriate FFT size based on the kind of sound we want to process.

The pfft~ object addresses many of the shortcomings of the “old” fft~ and ifft~ objects,
allowing you to create and load special “spectral subpatches” that manipulate frequency-
domain signal data independently of windowing, overlap and FFT size. A single sub-
patch can therefore be suitable for multiple applications. Furthermore, the pfft~ object
manages the overlapping of FFT frames, handles the windowing functions for you, and
eliminates the redundant mirrored data in the spectrum, making it both more convenient
to use and more efficient than the traditional fft~ and ifft~ objects.

Tutorial 26 Frequency domain signal
processing using pfft~

204

The pfft~ object takes as its argument the name of a specially designed subpatch
containing the fftin~ and fftout~ objects (which will be discussed below), a number for the
FFT size in samples, and a number for the overlap factor (these must both be integers
which are a power of 2):

A simple use of pfft~.

The pfft~ subpatch fftbasic~ referenced above might look something like this:

The fftbasic~ subpatch used in the previous example

The fftbasic~ subpatch shown above takes a signal input, performs an FFT on that signal
with a Hanning window (see below), and performs an IFFT on the FFT’d signal, also with
a Hanning window. The pfft~ object communicates with its sub-patch using special
objects for inlets and outlets. The fftin~ object receives a time-domain signal from its
parent patch and transforms it via an FFT into the frequency domain. This time-domain

Tutorial 26 Frequency domain signal
processing using pfft~

205

signal has already been converted, by the pfft~ object into a sequence of frames which
overlap in time, and the signal that fftin~ outputs into the spectral subpatch represents the
spectrum of each of these incoming frames.

Technical detail: The signal vector size inside the spectral subpatch is equal
to half the FFT size specified as an argument to the pfft~. Here’s the reason
why: for efficiency’s sake, fftin~ and fftout~ perform what is known as a
real FFT, which is faster than the traditional complex FFT used by fft~ and
ifft~. This is possible because the time-domain signals we transform have
no imaginary part (or at least they have an imaginary part which is equal
to zero). A real FFT is a clever mathematical trick which re-arranges the
real-only time-domain input to the FFT as real and imaginary parts of a
complex FFT that is half the size of our real FFT. The result of this FFT is
then re-arranged into a complex spectrum representing half (from 0Hz to
half the sampling rate) of our original real-only signal. The smaller FFT
size means it is more efficient for our computer’s processor, and, because a
complex FFT produces a mirrored spectrum of which only half is really
useful to us, the real FFT contains all the data we need to define and
subsequently manipulate the signal’s spectrum.

The fftout~ object does the reverse, accepting frequency domain signals, converting them
back into a time domain signal, and passing it via an outlet to the parent patch. Both
objects take a numbered argument (to specify the inlet or outlet number), and a symbol
specifying the window function to use. The available window functions are Hanning (the
default if none is specified), Hamming, Blackman, Triangle, and Square. The nofft
argument to fftin~ and fftout~ creates a generic signal inlet or outlet for control data
where no FFT/IFFT or windowing is performed. In addition, the symbol can be the name
of a buffer~ object which holds a custom windowing function. Different window
functions have different bandwidths and stopband depths for each channel (or bin, as it is
sometimes called) of the FFT. A good reference on FFT analysis will help you select a
window based on the sound you are trying to analyze and what you want to do with it.
We recommend The Computer Music Tutorial by Curtis Roads or Computer Music by
Charles Dodge and Thomas Jerse.

For testing and debugging purposes, there is a handy nofft argument to fftin~ and fftout~
which allows the overlapping time-domain frames to and from the pfft~ to be passed
directly to and from the subpatch without applying a window function nor performing a
Fourier transform. In this case (because the signal vector size of the spectral subpatch is
half the FFT size), the time- domain signal is split between the real and imaginary outlets
of the fftin~ and fftout~ objects, which may be rather inconvenient when using an overlap
of 4 or more. Although the nofft option can be used to send signal data from the parent
patch into the spectral subpatch and may be useful for debugging subpatches, it is not
recommended for most practical uses of pfft~.

Tutorial 26 Frequency domain signal
processing using pfft~

206

A more complicated pfft~ subpatch might look something like this:

A simple type of spectral convolution

This subpatch takes two signal inputs (which would appear as inlets in the parent pfft~
object), converts them into the frequency domain, multiplies the real signals with one
another and multiplies the imaginary signals with one another and outputs the result to
an fftout~ object that converts the frequency domain data into a time domain signal.
Multiplication in the frequency domain is called convolution, and is the basic signal
processing procedure used in cross synthesis (morphing one sound into another). The
result of this algorithm is that frequencies from the two analyses with larger values will
reinforce one another, whereas weaker frequency values from one analysis will diminish
or cancel the value from the other, whether strong or weak. Frequency content that the
two incoming signals share will be retained, therefore, and disparate frequency content
(i.e. a pitch that exists in one signal and not the other) will be attenuated or eliminated.
This example is not a “true” convolution, however, as the multiplication of complex
numbers (see below) is not as straightforward as the multiplication performed in this
example. We’ll learn a couple ways of making a “correct” convolution patch later in this
tutorial.

You have probably already noticed that there are always two signals to connect when
connecting fftin~ and fftout~, as well as when processing the spectra in-between them.
This is because the FFT algorithm produces complex numbers — numbers that contain a
real and an imaginary part. The real part is sent out the leftmost outlet of fftin~, and the
imaginary part is sent out its second outlet. The two inlets of fftout~ also correspond to
real and imaginary, respectively. The easiest way to understand complex numbers is to
think of them as representing a point on a 2-dimensional plane, where the real part
represents the X-axis (horizontal distance from zero), and the imaginary part represents

Tutorial 26 Frequency domain signal
processing using pfft~

207

the Y-axis (vertical distance from zero). We’ll learn more about what we can do with the
real and imaginary parts of the complex numbers later on in this tutorial.

The fftin~ object has a third outlet that puts out a stream of samples corresponding to the
current frequency bin index whose data is being sent out the first two outlets (this is
analogous to the third outlet of the fft~ and ifft~ objects discussed in Tutorial 25). For
fftin~, this outlet outputs a number from 0 to half the FFT size minus 1. You can convert
these values into frequency values (representing the “center” frequency of each bin) by
multiplying the signal (called the sync signal) by the base frequency, or fundamental, of
the FFT. The fundamental of the FFT is the lowest frequency that the FFT can analyze,
and is inversely proportional to the size of the FFT (i.e. larger FFT sizes yield lower base
frequencies). The exact fundamental of the FFT can be obtained by dividing the FFT
frame size into the sampling rate. The fftinfo~ object, when placed into a pfft~ subpatch,
will give you the FFT frame size, the FFT half-frame size (i.e. the number of bins actually
used inside the pfft~ subpatch), and the FFT hop size (the number of samples of overlap
between the windowed frames). You can use this in conjunction with the dspstate~ object
or the adstatus object with the sr (sampling rate) argument to obtain the base frequency of
the FFT:

Finding the center frequency of the current analysis bin.

Note that in the above example the number~ object is used for the purposes of
demonstration only in this tutorial. When DSP is turned on, the number displayed in the
signal number box will not appear to change because the signal number box by default

Tutorial 26 Frequency domain signal
processing using pfft~

208

displays the first sample in the signal vector, which in this case will always be 0. To see the
center frequency values, you will need to use the capture~ object or record this signal into
a buffer~.

Once you know the frequency of the bins being streamed out of fftin~, you can perform
operations on the FFT data based on frequency. For example:

A simple spectral crossover.

The above pfft~ subpatch, called xover~, takes an input signal and sends the analysis data
to one of two fftout~ objects based on a crossover frequency. The crossover frequency is
sent to the pfft~ subpatch by using the in object, which passes max messages through
from the parent patch via the pfft~ object’s right inlet. The center frequency of the current
bin — determined by the sync outlet in conjunction with fftinfo~ and dspstate~ as we
mentioned above — is compared with the crossover frequency.

The result of this comparison flips a gate that sends the FFT data to one of the two fftout~
objects: the part of the spectrum that is lower in pitch than the crossover frequency is sent

Tutorial 26 Frequency domain signal
processing using pfft~

209

out the left outlet of the pfft~ and the part that is higher than the crossover frequency is
sent out the right. Here is how this subpatcher might be used with pfft~ in a patch

:
One way of using the xover~ subpatch

Note that we can send integers, floats, and any other Max message to and from a subpatch
loaded by pfft~ by using the in and out objects. (See Tutorial 21, Using the poly~ object for
details. Keep in mind, however, that the signal objects in~ and out~ currently do not
function inside a pfft~.)

As we have already learned, the first two outlets of fftin~ put out a stream of real and
imaginary numbers for the bin response for each sample of the FFT analysis (similarly,
fftout~ expects these numbers). These are not the amplitude and phase of each bin, but
should be thought of instead as pairs of Cartesian coordinates, where x is the real part and
y is the imaginary, representing points on a 2-dimensional plane.

Tutorial 26 Frequency domain signal
processing using pfft~

210

The amplitude and phase of each frequency bin are the polar coordinates of these points,
where the distance from the origin is the bin amplitude and the angle around the origin is
the bin phase:

Unit-circle diagram showing the relationship of FFT real and imaginary values to
amplitude and phase

Tutorial 26 Frequency domain signal
processing using pfft~

211

You can easily convert between real/imaginary pairs and amplitude/phase pairs using the
objects cartopol~ and poltocar~:

Cartesian to polar conversion

Technical detail: The amplitude values output by the left outlet of cartopol~
depend on the amplitude of the signal you send to the pfft~ object. Due to
the way fftin~ and fftout~ automatically scale their window functions (in
order to maintain the same output amplitude after overlap-adding), the
maximum amplitude value for a constant signal of 1.0 will be

(FFT size / (sqrt(sum of points in the window/hop size))

So, when using a 512-point FFT with a square window with an overlap of
2, the maximum possible amplitude value will be roughly 362, with 4-
overlap it will be 256. When using a hanning or hamming window and 2
overlap, it will be approximately 325 or 341, and with 4-overlap, it will be
230 or 241, respectively. Generally, however, the peak amplitudes in a
spectral frame will most likely be only one-fourth to half this high for non-
periodic or semi-periodic “real-world” sounds normalized between -1.0
and 1.0.

The phase values output by the right outlet of cartopol~ will always be
between -π and π.

Tutorial 26 Frequency domain signal
processing using pfft~

212

You can use this information to create signal processing routines based on
amplitude/phase data. A spectral noise gate would look something like this:

A spectral noise gate

By comparing the amplitude output of cartopol~ with the threshold signal sent into inlet 2
of the pfft~, each bin is either passed or zeroed by the *~ objects. This way only frequency
bins that exceed a certain amplitude are retained in the resynthesis (For information on
amplitude values inside a spectral subpatch, see the Technical note above.).

Convolution and cross-synthesis effects commonly use amplitude and phase data for
their processing. One of the most basic cross-synthesis effects we could make would use
the amplitude spectrum of one sound with the phase spectrum of another. Since the
phase spectrum is related to information about the sound’s frequency content, this kind
of cross synthesis can give us the harmonic content of one sound being “played” by the
spectral envelope of another sound. Naturally, the success of this type of effect depends
heavily on the choice of the two sounds used.

Tutorial 26 Frequency domain signal
processing using pfft~

213

Here is an example of a spectral subpatch which makes use of cartopol~ and poltocar~ to
perform this type of cross-synthesis:

Simple cross-synthesis

The following subpatch example shows two ways of convolving the amplitude of one
input with the amplitude of another:

Amplitude-only convolution

Tutorial 26 Frequency domain signal
processing using pfft~

214

You can readily see on the left-hand side of this subpatch that the amplitude values of the
input signals are multiplied together. This reinforces amplitudes which are prominent in
both sounds while attenuating those which are not. The phase response of the first signal
is unaffected by complex- real multiplication; the phase response of the second signal
input is ignored. You will also notice that the right-hand side of the subpatch is
mathematically equivalent to the left, even though it uses only one cartopol~ object.

Toward the beginning of this tutorial, we saw an example of the multiplication of two
real/imaginary signals to perform a convolution. That example was kept simple for the
purposes of explanation but was, in fact, incorrect. If you wondered what a “correct”
multiplication of two complex numbers would entail, heres one way to do it:

The correct method for doing complex convolution

Here’s a second and somewhat more clever approach to the same goal:

Tutorial 26 Frequency domain signal
processing using pfft~

215

A correct and clever way of doing complex convolution

Subpatchers created for use with pfft~ can use the full range of MSP objects, including
objects that access data stored in a buffer~ object. (Although some objects which were
designed to deal with timing issues may not always behave as initially expected when used
inside a pfft~.)

Tutorial 26 Frequency domain signal
processing using pfft~

216

The following example records spectral analysis data into two channels of a stereo buffer~
and then allows you to resynthesize the recording at a different speed.

Recording and playback in a pfft~ subpatch

Tutorial 26 Frequency domain signal
processing using pfft~

217

The example subpatcher records spectral data into a buffer~, and the second reads data
from that buffer~. In the recording portion of the subpatch you will notice that we don’t
just record the amplitude and phase as output from cartopol~, but instead use the
framedelta~ object to compute the phase difference (sometimes referred to as the phase
deviation, or phase derivative). The phase difference is quite simply the difference in
phase between equivalent bin locations in successive FFT frames. The output of
framedelta~ is then fed into a phasewrap~ object to ensure that the data is properly
constrained between -� and �. Messages can be sent to the record~ object from the parent
patch via the send object in order to start and stop recording and turn on looping.

In the playback part of the subpatch we use a non-signal inlet to specify the frame
number for the resynthesis. This number is multiplied by the spectral frame size and
added to the output of a count~ object which counts from 0 to the spectral frame size
minus 1 in order to be able to recall each frequency bin in the given frame successively
using index~ to read both channels of our buffer~. (We could also have used the sync
outlet of the fftin~ object in place of count~, but are using the current method for the sake
of visually separating the recording and playback parts of our subpatch, as well as to give
an example of how to make use of count~ in the context of a spectral subpatch.) You’ll
notice that we reconstruct the phase using the frameaccum~ object, which accumulates a
“running phase” value by performing the inverse of framedelta~. We need to do this
because we might not be reading the analysis frames successively at the original rate in
which they were recorded. The signals are then converted back into real and imaginary
values for fftout~ by the poltocar~ object.

This is a simple example of what is known as a phase vocoder. Phase vocoders allow you
to time- stretch and compress signals independently of their pitch by manipulating FFT
data rather than time-domain segments. If you think of each frame of an FFT analysis as a
single frame in a film, you can easily see how moving through the individual frames at
different rates can change the apparent speed at which things happen. This is more or less
what a phase vocoder does.

Note that because pfft~ does window overlapping, the amount of data that can be stored
in the buffer~ is dependent on the settings of the pfft~ object. This can make setting the
buffer size correctly a rather tricky matter, especially since the spectral frame size (i.e. the
signal vector size) inside a pfft~ is half the FFT size indicated as its second argument, and
because the spectral subpatch is processing samples at a different rate to its parent patch!
If we create a stereo buffer~ with 1000 milliseconds of sample memory, we will have 44100
samples available for our analysis data. If our FFT size is 1024 then each spectral frame
will take up 512 samples of our buffer’s memory, which amounts to 86 frames of analysis
data(44100 / 512 = 86.13). Those 86 frames do not represent one second of sound,
however! If we are using 4-times overlap, we are processing one spectral frame every 256
samples, so 86 frames means roughly 22050 samples, or a half second’s worth of time with
respect to the parent patch. As you can see this all can get rather complicated...

Tutorial 26 Frequency domain signal
processing using pfft~

218

Let’s take a look at the parent patch for the above phase vocoder subpatch (called
mypvoc~):

Wrapper for mypvoc

Notice that we’re using a phasor~ object with a snapshot~ object in order to generate a
ramp specifying the read location inside our subpatch. We could also use a line object, or
even a slider, if we wanted to “scrub” our analysis frames by hand. Our main patch allows
us to change the playback rate for a loop of our analysis data. We can also specify the loop
size and an offset into our collection of analysis frames in order to loop a given section of
analysis data at a given playback rate. You’ll notice that changing the playback rate does

Tutorial 26 Frequency domain signal
processing using pfft~

219

not affect the pitch of the sound, only the speed. You may also notice that at very slow
playback rates, certain parts of your sound (usually note attacks, consonants in speech or
other percussive sounds) become rather “smeared” and gain an artificial sound quality.

Summary

Using pfft~ to perform spectral-domain signal processing is generally easier and visually
clearer than using the traditional fft~ and ifft~ objects, and lets you design patches that
can be used at varying FFT sizes and overlaps. There are myriad applications of pfft~ for
musical signal processing, including filtering, cross synthesis and time stretching.

See Also

adstatus Access audio driver output channels
cartopol~ Signal Cartesian to Polar coordinate conversion
dspstate~ Report current DSP setting
fftin~ Input for a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
framedelta~ Compute phase deviation between successive FFT frames
pfft~ Spectral processing manager for patchers
phasewrap~ Wrap a signal between -� and �
poltocar~ Signal Polar to Cartesian coordinate conversion

220

Tutorial 27: Processing—Delay lines

Effects achieved with delayed signals

One of the most basic yet versatile techniques of audio processing is to delay a signal and
mix the delayed version with the original signal. The delay time can range from a few
milliseconds to several seconds, limited only by the amount of RAM you have available to
store the delayed signal.

When the delay time is just a few milliseconds, the original and delayed signals interfere
and create a subtle filtering effect but not a discrete echo. When the delay time is about
100 ms we hear a “slapback” echo effect in which the delayed copy follows closely behind
the original. With longer delay times, we hear the two signals as discrete events, as if the
delayed version were reflecting off a distant mountain.

This tutorial patch delays each channel of a stereo signal independently, and allows you to
adjust the delay times and the balance between direct signal and delayed signal.

Creating a delay line: tapin~ and tapout~

The MSP object tapin~ is a buffer that is continuously updated so that it always stores the
most recently received signal. The amount of signal it stores is determined by a typed-in
argument. For example, a tapin~ object with a typed-in argument of 1000 stores the most
recent one second of signal received in its inlet.

A 1-second delay buffer tapped 500 and 1000 ms in the past

The only object to which the outlet of tapin~ should be connected is a tapout~ object. This
connection links the tapout~ object to the buffer stored by tapin~. The tapout~ object “taps
into” the delayed signal at certain points in the past. In the above example, tapout~ gets
the signal from tapin~ that occurred 500 ms ago and sends it out the left outlet; it also gets
the signal delayed by 1000 ms and sends that out its right outlet. It should be obvious that
tapout~ can’t get signal delayed beyond the length of time stored in tapin~.

Tutorial 27 Processing:
Delay lines

221

A patch for mixing original and delayed signals

The tutorial patch sends the sound coming into the computer to two places: directly to
the output of the computer and to a tapin~-tapout~ delay pair. You can control how much
signal you hear from each place for each of the stereo channels, mixing original and
delayed signal in whatever proportion you want.

• Turn audio on and send some sound in the input jacks of your computer. Set the
number box marked “Output Level” to a comfortable listening level. Set the “Left Delay
Time” number box to 500 and the “Right Delay Time” to 1000.

At this point you don’t hear any delayed signal because the “Direct Level” for each
channel is set at 1 and the “Delay Level” for each channel is set at 0. The signal is being
delayed, but you simply don’t hear it because its amplitude is scaled to 0.

Direct signal is on full; delayed signal is turned down to 0

The hslider in the left part of the Patcher window serves as a balance fader between a
“Dry” (all direct) output signal and a “Wet” (fully processed) output signal.

• Drag the hslider to the halfway point so that both the direct and delayed signal
amplitudes are at 0.5. You hear the original signal in both channels, mixed with a half-
second delay in the left channel and a one-second delay in the right channel.

Tutorial 27 Processing:
Delay lines

222

Equal balance between direct signal and delayed signal

• You can try a variety of different delay time combinations and wet-dry levels. Try very
short delay times for subtle comb filtering effects. Try creating rhythms with the two
delay times (with, for example, delay times of 375 and 500 ms).

Changing the parameters while the sound is playing can result in clicks in the sound
because this patch does not protect against discontinuities. You could create a version of
this patch that avoids this problem by interpolating between parameter values with line~
or number~ objects.

In future tutorial chapters, you will see how to create delay feedback, how to use
continuously variable delay times for flanging and pitch effects, and other ways of altering
sound using delays, filters, and other processing techniques.

Summary

The tapin~ object is a continuously updated buffer which always stores the most recently
received signal. Any connected tapout~ object can use the signal stored in tapin~, and
access the signal from any time in the past (up to the limits of the tapin~ object’s storage).
A signal delayed with tapin~ and tapout~ can be mixed with the undelayed signal to create
discrete echoes, early reflections, or comb filtering effects.

See Also

tapin~ Input to a delay line
tapout~ Output from a delay line

223

Tutorial 28: Processing—Delay lines with feedback

Delay emulates reflection

You can delay a signal for a specific amount of time using the tapin~ and tapout~ objects.
The tapin~ object is a continually updated buffer that stores the most recent signal it has
received, and tapout~ accesses that buffer at one or more specific points in the past.

Delaying a signal with tapin~ and tapout~

Combining a sound with a delayed version of itself is a simple way of emulating a sound
wave reflecting off of a wall before reaching our ears; we hear the direct sound followed
closely by the reflected sound. In the real world some of the sound energy is actually
absorbed by the reflecting wall, and we can emulate that fact by reducing the amplitude of
the delayed sound, as shown in the following example.

Scaling the amplitude of a delayed signal, to emulate absorption

Technical detail: Different materials absorb sound to varying degrees, and
most materials absorb sound in a way that is frequency-dependent. In
general, high frequencies get absorbed more than low frequencies. That
fact is being ignored here.

Tutorial 28 Processing:
Delay lines with feedback

224

Delaying the delayed signal

Also, in the real world there’s usually more than one surface that reflects sound. In a
room, for example, sound reflects off of the walls, ceiling, floor, and objects in the room
in myriad ways, and the reflections are in turn reflected off of other surfaces. One simple
way to model this “reflection of reflections” is to feed the delayed signal back into the
delay line (after first “absorbing” some of it).

Delay with feedback

A single feedback delay line like the one above is too simplistic to sound much like any
real world acoustical situation, but it can generate a number of interesting effects. Stereo
delay with feedback is implemented in the example patch for this tutorial. Each channel
of audio input is delayed, scaled, and fed back into the delay line.

Stereo delay with individual delay times and feedback amounts

Tutorial 28 Processing:
Delay lines with feedback

225

• Set the number box marked “Output Level” to 1., and move the hslider to its middle
position so that the “Direct Level” and “Delay Level” number box objects read 0.5. Turn
audio on, and send some sound into the audio input of the computer. Experiment
with different delay times and feedback amounts. For example, you can use the
settings shown above to achieve a blurring effect. Increase the feedback amounts for a
greater resonant ringing at the rate of feedback (1000 divided by the delay time).
Increase the delay times to achieve discrete echoes. You can vary the Dry/Wet mix
with the hslider.

Note that any time you feed audio signal back into a system, you have a potential for
overloading the system. That’s why it’s important to scale the signal by some factor less
than 1.0 (with the *~ objects and the “Feedback” number box objects) before feeding it back
into the delay line. Otherwise the delayed sound will continue indefinitely and even
increase as it is added to the new incoming audio.

Controlling amplitude: normalize~

Since this patch contains user-variable level settings (notably the feedback levels) and
since we don’t know what sound will be coming into the patch, we can’t really predict
how we will need to scale the final output level. If we had used a *~ object just before the
ezdac~ to scale the output amplitude, we could set the output level, but if we later increase
the feedback levels, the output amplitude could become excessive. The normalize~ object is
good for handling such unpredictable situations.

The normalize~ object allows you to specify a peak (maximum) amplitude that you want
sent out its outlet. It looks at the peak amplitude of its input, and calculates the factor by
which it must scale the signal in order to keep the peak amplitude at the specified
maximum. So, with normalize~ the peak amplitude of the output will never exceed the
specified maximum.

normalize~ sends out the current input * peak output / peak input

One potential drawback of normalize~ is that a single loud peak in the input signal can
cause normalize~ to scale the entire signal way down, even if the rest of the input signal is

Tutorial 28 Processing:
Delay lines with feedback

226

very soft. You can give normalize~ a new peak input value to use, by sending a number or
a reset message in the left inlet.

• Turn audio off and close the Patcher window before proceeding to the next chapter.

Summary

One way to make multiple delayed versions of a signal is to feed the output of tapout~
back into the input of tapin~, in addition to sending it to the DAC. Because the fed back
delayed signal will be added to the current incoming signal at the inlet of tapin~, it’s a
good idea to reduce the output of tapout~ before feeding it back to tapin~.

In a patch involving addition of signals with varying amplitudes, it’s often difficult to
predict the amplitude of the summed signal that will go to the DAC. One way to control
the amplitude of a signal is with normalize~, which uses the peak amplitude of an
incoming signal to calculate how much it should reduce the amplitude before sending the
signal out.

See Also

normalize~ Scale on the basis of maximum amplitude
tapin~ Input to a delay line
tapout~ Output from a delay line

227

Tutorial 29: Processing—Flange

Variable delay time

So far, we have been delaying signals for a fixed amount of time using tapin~ and tapout~.
You can change the delay time of any tap in the tapout~ object by sending a new number
in the proper inlet; however, this will cause a discontinuity in the output signal at the
instant when then new delay time is received, because tapout~ suddenly begins tapping a
new location in the tapin~ buffer.

Changing the delay time creates a discontinuity in the output signal

On the other hand, it’s possible to provide a new delay time to tapout~ using a continuous
signal instead of a discrete Max message. We can use the line~ object to make a
continuous transition between two delay times (just as we did to make continuous
changes in amplitude in Tutorial 2).

Providing delay time in the form of a signal

Technical detail: Note that when the delay time is being changed by a
continuous signal, tapout~ has to interpolate between the old delay time
and the new delay time for every sample of output. Therefore, a tapout~
object has to do much more computation whenever a signal is connected
to one of its inlets.

Tutorial 29 Processing:
Flange

228

While this avoids the click that could be caused by a sudden discontinuity, it does mean
that the pitch of the output signal will change while the delay time is being changed,
emulating the Doppler effect

Technical detail: The Doppler effect occurs when a sound source is
moving toward or away from the listener. The moving sound source is, to
some extent, outrunning the wavefronts of the sound it is producing. That
changes the frequency at which the listener receives the wavefronts, thus
changing the perceived pitch. If the sound source is moving toward the
listener, wavefronts arrive at the listener with a slightly greater frequency
than they are actually being produced by the source. Conversely, if the
sound source is moving away from the listener, the wavefronts arrive at
the listener slightly less frequently than they are actually being produced.
The classic case of Doppler effect is the sound of an ambulance siren. As
the ambulance passes you, it changes from moving toward you (producing
an increase in received frequency) to moving away from you (producing a
decrease in received frequency). You perceive this as a swift drop in the
perceived pitch of the siren.

A delayed signal emulates a reflection of the sound wave. As the delay time
decreases, it is as if the (virtual) reflecting wall were moving toward you.
The source of the delayed sound (the reflecting wall) is “moving toward
you”, causing an increase in the received frequency of the sound. As the
delay time increases, the reverse is true; the source of the delayed sound is
effectively moving away from you. That is why, during the time when the
delay time is actually changing, the perceived pitch of the output sound
changes.

A delayed signal emulates a reflection of the sound wave. As the delay time decreases, it is
as if the (virtual) reflecting wall were moving toward you. The source of the delayed
sound (the reflecting wall) is “moving toward you”, causing an increase in the received
frequency of the sound. As the delay time increases, the reverse is true; the source of the
delayed sound is effectively moving away from you. That is why, during the time when
the delay time is actually changing, the perceived pitch of the output sound changes.

A pitch shift due to Doppler effect is usually less disruptive than a click that’s caused by
discontinuity of amplitude. More importantly, the pitch variance that results from
continuously varying the delay time can be used to create some interesting effects.

Tutorial 29 Processing:
Flange

229

Flanging: Modulating the delay time

Since the delay time can be provided by any signal, one possibility is to use a time-varying
signal like a low-frequency cosine wave to modulate the delay time. In the example below,
a cycle~ object is used to vary the delay time.

Modulating the delay time with a low-frequency oscillator

The output of cycle~ is multiplied by 0.25 to scale its amplitude. That signal is multiplied
by the basic delay time of 100 ms, to create a signal with an amplitude ±25. When that
signal is added to the basic delay time, the result is a signal that varies sinusoidally around
the basic delay time of 100, going as low as 75 and as high as 125. This is used to express
the delay time in milliseconds to the tapout~ object.

When a signal with a time-varying delay (especially a very short delay) is added together
with the original undelayed signal, the result is a continually varying comb filter effect
known as flanging. Flanging can create both subtle and extreme effects, depending on the
rate and depth of the modulation.

Stereo flange with feedback

This tutorial patch is very similar to that of the preceding chapter. The primary difference
here is that the delay times of the two channels are being modulated by a cosine wave, as
was described on the previous page. This patch gives you the opportunity to try a wide
variety of flanging effects, just by modifying the different parameters: the wet/dry mix
between delayed and undelayed signal, the left and right channel delay times, the rate and
depth of the delay time modulation, and the amount of delayed signal that is fed back into
the delay line of each channel.

• Send some sound into the audio input of the computer, and click on the buttons of
the preset object to hear different effects. Using the example settings as starting points,
experiment with different values for the various parameters. Notice that the
modulation depth can also be controlled by the mod wheel of your synth,

Tutorial 29 Processing:
Flange

230

demonstrating how MIDI can be used for realtime control of audio processing
parameters.

The different examples stored in the preset object are characterized below.

1. Simple thru of the audio input to the audio output. This is just to allow you to test the
input and output.

2. The input signal is combined equally with delayed versions of itself, using short
(mutually prime) delay times for each channel. The rate of modulation is set for 0.2
Hz (one sinusoid every 5 seconds), but the depth of modulation is initially 0. Use the
mod wheel of your synth (or drag on the “Mod Wheel” number box) to introduce some
slow flanging.

3. The same as before, but now the modulation rate is 6 Hz. The modulation depth is set
very low for a subtle vibrato effect, but you can increase it to obtain a decidedly un-
subtle wide vibrato.

4. A faster vibrato, with greater depth, and with the delayed signal fed back into the
delay line, creates a complex warbling flange effect.

5. The right channel is delayed a short time for a flange effect and the left channel is
delayed a longer time for an echo effect. Both delay times change sinusoidally over a
two second period, and each delayed signal is fed back into its own delay line (causing
a ringing resonance in the right channel and repeated echoes in the left channel).

6. Both delay times are set long with considerable feedback to create repeated echoes.
The rate (and pitch) of the echoes is changed up and down by a very slow modulating
frequency—one cycle every 10 seconds.

7. A similar effect, but modulated sinusoidally every 2 seconds.

8. Similar to example 5, but with flanging occurring at an audio rate of 55 Hz, and no
original sound in the mix. The source sound is completely distorted, but the
modulation rate gives the distortion its fundamental frequency.

Summary

You can provide a continuously varying delay time to tapout~ by sending a signal in its
inlet. As the delay time varies, the pitch of the delayed sound shifts oppositely. You can
use a repeating low frequency wave to modulate the delay time, achieving either subtle or
extreme pitch-variation effects. When a sound with a varying delay time is mixed with the
original undelayed sound, the result is a variable comb filtering effect known as flanging.

Tutorial 29 Processing:
Flange

231

The depth (strength) of the flanging effect depends primarily on the amplitude of the
signal that is modulating the delay time.

See Also

noise~ White noise generator
rand~ Band-limited random signal
tapin~ Input to a delay line
tapout~ Output from a delay line

232

Tutorial 30: Processing—Chorus

The chorus effect

Why does a chorus of singers sound different from a single singer? No matter how well
trained a group of singers may be, they don’t sing identically. They’re not all singing
precisely the same pitch in impeccable unison, so the random, unpredictable phase
cancellations that occur as a result of these slight pitch differences are thought to be the
source of the chorus effect.

We’ve already seen in the preceding chapter how slight pitch shifts can be introduced by
varying the delay time of a signal. When we mix this signal with its original undelayed
version, we create interference between the two signals, resulting in a constantly varying
filtering effect known as flanging. A less predictable effect called chorusing can be
achieved by substituting a random fluctuation of the delay time in place of the sinusoidal
fluctuation we used for flanging.

Low-frequency noise: rand~

The noise~ object (introduced in Tutorial 3) produces a signal in which every sample has
a randomly chosen value between -1 and 1; the result is white noise, with roughly equal
energy at every frequency. This white noise is not an appropriate signal to use for
modulating the delay time, though, because it would randomly change the delay time so
fast (every sample, in fact) that it would just sound like added noise. What we really want
is a modulating signal that changes more gradually, but still unpredictably.

The rand~ object chooses random numbers between -1 and 1, but does so less frequently
than every sample. You can specify the frequency at which it chooses a new random
value. In between those randomly chosen samples, rand~ interpolates linearly from one
value to the next to produce an unpredictable but more contiguous signal.

Random values chosen every sample Choosing values less frequently

Tutorial 30 Processing:
Chorus

233

The output of rand~ is therefore still noise, but its spectral energy is concentrated most
strongly in the frequency region below the frequency at which it chooses its random
numbers. This “low-frequency noise” is a suitable signal to use to modulate the delay time
for a chorusing effect.

Unpredictable variations using rand~

The tutorial patch for this chapter is substantially similar to the flanging patch in the
previous chapter. The main difference between the two signal networks is that the cycle~
object for flanging has been replaced by a rand~ object for chorusing. The scope~ object in
this patch is just for visualizing the modulating effect of the rand~ object.

Tutorial 30 Processing:
Chorus

234

Multiple delays for improved chorus effect

We can improve this chorus effect by increasing the number of slightly different signals
we combine. One way to do this —as we have done in this patch— is to feed the
randomly delayed signal back into the delay line, where it’s combined with new incoming
signal. The output of tapout~ will thus be a combination of the new variably delayed (and
variably pitch shifted) signal and the previously (but differently) delayed/shifted signal.

Increasing the number of “voices” using feedback to the delay line

The balance between these signals is determined by the settings for “LFeedback” and
“RFeedback”, and the combination of these signals and the undelayed signal is balanced
by the “DryWetMix” value. To obtain the fullest “choir” with this patch, we chose delay
times (17 ms and 23 ms) and a modulation rate (8 Hz, a period of 125 ms) that are all
mutually prime numbers, so that they are never in sync with each other.

Technical detail: One can obtain an even richer chorus effect by increasing
the number of different delay taps in tapout~, and applying a different
random modulation to each delay time.

• Click on the toggle to turn audio on. Send some sound into the audio input of the
computer to hear the chorusing effect. Experiment by changing the values for the
different parameters. For a radically different effect, try some extreme values (longer
delay times, more feedback, much greater chorus depth, very slow and very fast
modulation rates, etc.).

Summary

The chorus effect is achieved by combining multiple copies of a sound—each one delayed
and pitch shifted slightly differently—with the original undelayed sound. This can be
done by continual slight random modulation of the delay time of two or more different
delay taps. The rand~ object sends out a signal of linear interpolation between random

Tutorial 30 Processing:
Chorus

235

values (in the range -1 to 1) chosen at a specified rate; this signal is appropriate for the
type of modulation required for chorusing. Feeding the delayed signal back into the delay
line increases the complexity and richness of the chorus effect. As with most processing
effects, interesting results can also be obtained by choosing “outrageous” extreme values
for the different parameters of the signal network.

See Also

rand~ Band-limited random signal
tapout~ Output from a delay line

236

Tutorial 31: Processing—Comb filter

Comb filter: comb~

The minimum delay time that can be used for feedback into a delay line using tapin~ and
tapout~ is determined by the signal vector size. However, many interesting filtering
formulae require feedback using delay times of only a sample or two. Such filtering
processes have to be programmed within a single MSP object.

An example of such an object is comb~, which implements a formula for comb filtering.
Generally speaking, an audio filter is a frequency-dependent amplifier; it boosts the
amplitude of some frequency components of a signal while reducing other frequencies. A
comb filter accentuates and attenuates the input signal at regularly spaced frequency
intervals—that is, at integer multiples of some fundamental frequency.

Technical detail: The fundamental frequency of a comb filter is the inverse
of the delay time. For example, if the delay time is 2 milliseconds (1/500 of a
second), the accentuation occurs at intervals of 500 Hz (500, 1000, 1500,
etc.), and the attenuation occurs between those frequencies. The extremity
of the filtering effect depends on the factor (between 0 and 1) by which the
feedback is scaled. As the scaling factor approaches 1, the accentuation and
attenuation become more extreme. This causes the sonic effect of
resonance (a “ringing” sound) at the harmonics of the fundamental
frequency.

The comb~ object sends out a signal that is a combination of a) the input signal, b) the
input signal it received a certain time ago, and c) the output signal it sent that same
amount of time ago (which would have included prior delays). In the inlets of comb~ we
can specify the desired amount of each of these three (a, b, and c), as well as the delay
time (we’ll call it d).

You can adjust all the parameters of the comb filter

Tutorial 31 Processing:
Comb filter

237

Technical detail: At any given moment in time (we’ll call that moment t),
comb~ uses the value of the input signal (xt), to calculate the output yt in
the following manner.

yt = axt + bx(t-d) + cy(t-d)

The fundamental frequency of the comb filter depends on the delay time, and the
intensity of the filtering depends on the other three parameters. Note that the scaling
factor for the feedback (the right inlet) should usually not exceed 1, since that would
cause the output of the filter to increase steadily as a greater and greater signal is fed back.

Trying out the comb filter

The tutorial patch enables you to try out the comb filter by applying it to different sounds.
The patch provides you with three possible sound sources for filtering—the audio input
of your computer, a band-limited pulse wave, or white noise—and three filtering
options—unfiltered, comb filter with parameters adjusted manually, or comb filter with
parameters continuously modulated by other signals.

Choose a sound source and route it to the desired filtering using the pop-up menus

• Click on the buttons of the preset to try out some different combinations, with
example parameter settings. Listen to the effect of the filter, then experiment by
changing parameters yourself. You can use MIDI note messages from your synth to
provide pitch and velocity (frequency and amplitude) information for the pulse wave,
and you can use the mod wheel to change the delay time of the filter.

A comb filter has a characteristic harmonic resonance because of the equally spaced
frequencies of its peaks and valleys of amplification. This trait is particularly effective
when the comb is swept up and down in frequency, thus emphasizing different parts of
the source sound. We can cause this frequency sweep simply by varying the delay time.

Tutorial 31 Processing:
Comb filter

238

Band-limited pulse

The effects of a filter are most noticeable when there are many different frequencies in the
source sound, which can be altered by the filter. If we want to apply a comb filter to a
pitched sound with a harmonic spectrum, it makes most sense to use a sound that has
many partials such as a sawtooth wave or a square wave.

These mathematically ideal waves may be too “perfect” for use as computer sound waves

The problem with such mathematically derived waveforms, though, is that they may
actually be too rich in high partials. They may have partials above the Nyquist rate that
are sufficiently strong to cause inharmonic aliasing. (This issue is discussed in more detail
in Tutorial 5.)

For this tutorial we’re using a waveform called a band-limited pulse. A band-limited pulse
has a harmonic spectrum with equal energy at all harmonics, but has a limited number of
harmonics in order to prevent aliasing. The waveform used in this tutorial patch has ten
harmonics of equal energy, so its highest frequency component has ten times the
frequency of the fundamental. That means that we can use it to play fundamental
frequencies up to 2,205 Hz if our sampling rate is 44,100 Hz. (Its highest harmonic would
have a frequency of 22, 050 Hz, which is equal to the Nyquist rate.) Since the highest key
of a 61-key MIDI keyboard plays a frequency of 2,093 Hz, this waveform will not cause
aliasing if we use that as an upper limit.

Playing a band-limited pulse wave with MIDI

Tutorial 31 Processing:
Comb filter

239

Technical detail: In an idealized (optimally narrow) pulse wave, each cycle
of the waveform would consist of a single sample with a value of 1,
followed by all samples at 0. This would create a harmonic spectrum with
all harmonics at equal amplitude, continuing upward infinitely. It’s pos-
sible to make an MSP signal network that calculates—based on the
fundamental frequency and the sampling rate—a band-limited pulse signal
containing the maximum number of possible harmonics without foldover.
In this case, though, we have chosen just to use a stored waveform con-
taining ten partials.

Velocity-to-amplitude conversion: gain~

The subpatch p Pulse_Wave contains a simple but effective way to play a sound in MSP via
MIDI. It uses a poly object to implement voice stealing, limiting the incoming MIDI notes
to one note at a time. (It turns off the previous note by sending it out with a velocity of 0
before it plays the incoming note.) It then uses mtof to convert the MIDI note number to
the correct frequency value for MSP, and it uses the MSP object gain~ to scale the
amplitude of the signal according to the MIDI velocity.

Converting MIDI pitch and velocity data to frequency and amplitude information for MSP

The gain~ object takes both a signal and a number in its left inlet. The number is used as
an amplitude factor by which to scale the signal before sending it out. One special feature
of gain~ (aside from its utility as a user interface object for scaling a signal) is that it can
convert the incoming numbers from a linear progression to a logarithmic or exponential
curve. This is very appropriate in this instance, since we want to convert the linear
velocity range (0 to 127) into an exponential amplitude curve (0 to 1) that corresponds
roughly to the way that we hear loudness. Each change of velocity by 10 corresponds to a
change of amplitude by 6 dB. The other useful feature of gain~ is that, rather than

Tutorial 31 Processing:
Comb filter

240

changing amplitude abruptly when it receives a new number in its left inlet, it takes a few
milliseconds to progress gradually to the new amplitude factor. The time it takes to make
this progression can be specified by sending a time, in milliseconds, in the right inlet. In
this patch, we simply use the default time of 20 ms.

• Choose one of the preset example settings, and choose “Pulse Wave” from the “Sound
Source” pop-up menu. Play long notes with the MIDI keyboard. You can also obtain a
continuous sound at any amplitude and frequency by sending numbers from the
pitch and velocity number box objects (first velocity, then pitch) into the inlets of the p
Pulse_Wave subpatch.

Varying parameters to the filter

As illustrated in this patch, it’s usually best to change the parameters of a filter by using a
gradually changing signal instead of making an abrupt change with single number. So
parameter changes made to the “Adjusted By Hand” comb~ object are sent first to a line~
object for interpolation over a time of 25 ms.

The “Modulated” comb~ object has its delay time varied at low frequency according to the
shape of the band-limited pulse wave (just because it’s a more interesting shape than a
simple sinusoid). The modulation could actually be done by a varying signal of any shape.
You can vary the rate of this modulation using the mod wheel of your synth (or just by
dragging on the number box). The gain of the x and y delays (the two rightmost inlets) is
modulated by a sine wave ranging between 0.01 and 0.99 (for the feedback gain) and a
cosine wave ranging from 0.01 to 0.49 (for the feedforward gain). As the amplitude of one
increases, the other decreases.

• Experimenting with different combinations of parameter values may give you ideas
for other types of modulation you might want to design in your own patches.

Summary

The comb~ object allows you to use very short feedback delay times to comb filter a signal.
A comb filter creates frequency-dependent increases and decreases of amplitude in the
signal that passes through it, at regularly spaced (i.e., harmonically related) frequency
intervals. The frequency interval is determined by the inverse of the delay time. The comb
filter is particularly effective when the delay time (and thus the frequency interval)
changes over time, emphasizing different frequency regions in the filtered signal.

The user interface object gain~ is useful for scaling the amplitude of a signal according to
a specific logarithmic or exponential curve. Changes in amplitude caused by gain~ take
place gradually over a certain time (20 ms by default), so that there are no unwanted
sudden discontinuities in the output signal.

Tutorial 31 Processing:
Comb filter

241

See Also

comb~ Comb filter
gain~ Exponential scaling volume slider

242

The dsp Object—Controlling and Automating MSP
In order to provide low-level control over the MSP environment from within Max, a
special object named dsp has been defined. This object is similar to the object max that can
accept messages to change various options in the Max application environment. Sending
a message to the dsp object is done by placing a semicolon in a message box, followed by
dsp and then the message and arguments (if any). An example is shown below.

Turn the audio on or off without a dac~ or adc~ object

You need not connect the message box to anything, although you may want to connect
something to the inlet of the message box to supply a message argument or trigger it from
a loadbang object to configure MSP signal processing parameters when your patcher file is
opened.

Here is a list of messages the dsp object understands:

Message Parameters
; dsp start Start Audio
; dsp stop Stop Audio
; dsp set N N = 1, Start Audio;

N = 0, Stop Audio
; dsp status Open DSP Status Window
; dsp open Open DSP Status Window
; dsp sr N N = New Sampling Rate in Hz
; dsp iovs N N = New I/O Vector Size
; dsp sigvs N N = New Signal Vector Size
; dsp debug N N = 1, Internal debugging on;

N = 0, Internal debugging off
; dsp takeover N N = 1, Scheduler in Audio Interrupt On;

N = 0, Scheduler in Audio Interrupt Off
; dsp wclose Close DSP Status window
; dsp inremap X Y Maps physical device input channel Y to logical input X
; dsp outremap X Y Maps logical output X to physical device output channel Y

The dsp object Controlling and automating MSP

243

; dsp setdriver D S If D is a number starting at 0, a new audio driver is chosen based
on its index into the currently generated menu of driverrs created
by the adstatus driver object.
If D is a symbol, a new driver is selected by name (if D names a
valid driver). The second argument S is optional and names the
“subdriver.” For instance, with ASIO drivers, ASIO is the name of
the driver and PCI-324 is an example of a subdriver name.

; dsp timecode N N = 1 or 0 to start/stop timecode reading by the audio driver (only
supported currently by ASIO 2 drivers).

; dsp optimize N N = 1 or 0 to turn Altivec optimization on/off
; dsp cpulimit N Sets a utilization limit for the CPU, above this limit, MSP will not

process audio vectors until the utilization comes back down,
causing a click. N is a number between 0 and 100. If N is 0 or 100,
there is no limit checking.

Certain audio drivers can be controlled with the ; dsp driver message. Refer to the Audio
Input and Output section for more information on drivers that support this capability.

Index

244

*~... 62
absorption of sound waves................... 223
access the hard disk 139
adc~ .. 124
adding signals together 71
additive synthesis28, 99
Adjustable oscillator................................ 62
aliasing .. 23, 86, 238
amplitude...14, 185
amplitude adjustment 62
amplitude envelope19, 95, 100, 143
amplitude modulation104, 108, 190
analog-to-digital conversion..........22, 124
ASCII.. 141
ASIO... 38
ASIO drivers, controlling with messages

... 54
AtodB subpatch.. 78
attack, velocity control of..................... 157
audio driver selection.............................. 37
audio driver settings override................ 39
audio processing off for some objects.. 87
audio sampling rate, setting................... 39
balance between stereo channels 178
band-limited pulse................................. 238
beats ..75, 194
begin~... 87
bell-like tone ... 102
buffer~..68, 125
capture~... 190
carrier oscillator 105
Chorus .. 232
clipping ..27, 62
clock source for audio hardware.....39, 54
comb filter 222, 236
comb~ .. 236
complex tone.......................................15, 99
composite instrument sound................. 72
control rate .. 31
convolution ... 104
cosine wave.. 59
count~ .. 127

CPU limit option......................................42
CPU utilization indicator39
critical band...106
crossfade...72

constant intensity181
linear...180
speaker-to-speaker.............................183

Csound ...10
cue sample for playback........................140
current file for playback........................140
cycle~..59
dBtoA subpatch151
DC offset ..109
decibels ..21, 77, 151
default values...65
delay ..220
Delay line...220
delay line with feedback...... 224, 234, 236
Delay lines with feedback223
delay time modulation229
difference frequency76, 106, 193
digital audio overview13
digital-to-analog converter.............. 22, 58
diminuendo...98
disable audio of a subpatch90
disk, soundfiles on..................................139
display signal graphically......................192
display the value of a signal..................185
Dodge, Charles..205
Doppler effect..228
DSP Status window36
dspstate~ ..192
echo...220
envelope ...70
envelope generator100
exponent in a power function..............147
exponential curve 151, 152, 159
ezadc~...124
ezdac~...68
fade volume in or out66
feedback in a delay line 224, 234, 236

The dsp object Controlling and automating MSP

245

fft~... 195
file, record AIFF 139
Flange ... 227
flanging .. 229
FM.. 112, 114
foldover 23, 86, 238
Fourier transform18, 195
Freqeuency modulation........................ 114
frequency ...14, 59
frequency domain......................... 104, 195
frequency modulation.................. 112, 114
function object.. 100
G4 vector optimization........................... 42
gain~... 239
gate~ ... 75
groove~130, 143, 162
hard disk, soundfiles on........................ 139
harmonically related sinusoids........18, 91
harmonicity ratio 114
hertz.. 15
I/O mappings in MSP 42
ifft~ ... 196
index~ .. 127
info~ ... 132
input source .. 124
interference between waves75, 193
interpolation59, 69, 127, 188
inverse fast Fourier transform............. 196
Jerse, Thomas.. 205
key region .. 162
LED display... 185
level of a signal.. 62
LFO... 153
line segment function.............................. 69
line~.. 63
linear crossfade....................................... 180
linear mapping 150
localization .. 178
logarithmic scale21, 77
logical I/O channels...........................42, 43
lookup table.................................... 119, 135
lookup~.. 120
loop an audio sample 130

loudness... 20, 151
low-frequency oscillator153
map subpatch..151
mapping a range of numbers150
Mapping MIDI to MSP.........................148
Max messages..60
meter~ ..185
MIDI ..10, 148, 154
MIDI panning...178
MIDI-to-amplitude conversion .. 230, 239
MIDI-to-frequency conversion...........156
millisecond scheduler of Max......... 31, 57
mixing...71
modulation

amplitude ..108
delay time ..229
frequency.................................... 112, 114
ring..104

modulation index...................................114
modulation wheel.......................... 149, 154
modulator ..105
MSP audio I/O overview.........................36
MSP overview ..30
mtof...156
multiply one signal by another104
mute audio of a subpatch........................88
mute~..89
noise ...19, 71, 233
noise~ ...71
non real-time mode38
non-real time and MSP55
normalize~...225
number~ ..185
Nyquist rate23, 86, 135
Nyquist rate ...238
oscillator...59
Oscilloscope ..192
overdrive, turning off and on.................41
Panning...178
partial... 17, 99
Patcher, audio on in one.........................84
pcontrol to mute a subpatch90

The dsp object Controlling and automating MSP

246

peak amplitude14, 189, 225
period of a wave 14
phase offset.. 80
phasor~ .. 70
pitch bend....................................... 152, 154
pitch-to-frequency conversion... 144, 152
play audio sample 127, 130
play~... 127
Playback with loops 130
poly~... 169
polyphony...............................154, 162, 169
pow~... 147
PowerPC .. 34
precision of floating point numbers..... 95
prioritize MIDI I/O over audio I/O 39
RAM ... 139
rand~ .. 232
random signal ... 71
receive~.. 74
Record and play sound files................. 139
record audio.. 125
record soundfile...................................... 139
record~... 125
Recording and playback 124
reflection of sound waves 223
Review ...93, 143
ring modulation 104
Roads, Curtis.....................................13, 205
Routing signals74, 75
sample and hold 22
Sampler .. 162
sampling rate22, 31

of AIFF file.. 165
save a sound file...................................... 126
sawtooth wave70, 86
scheduler in audio interrupt 41
scope~ .. 192
selector~... 85
semitone... 144
send~ .. 74
sidebands106, 111, 114

sig~..79
signal network..............................10, 30, 57
Signal vector size41
simple harmonic motion14
sine wave ... 14, 80
slapback echo ..220
snapshot~...189
sound ..13
sound input ...124
Sound Manager and MSP.......................46
spectrum....................................17, 104, 196
subpatch, mute audio of..........................88
switch..85
synthesis techniques99
synthesis, additive99
Synthesizer ..154
tapin~..220
tapout~ ...220
Test tone...57
timbre ...17
transfer function.....................................119
tremolo 106, 110, 190
Tremolo and ring modulation.............104
turning audio off and on.........................37
Turning signals on and off84
Using the FFT ...195
variable speed sample playback..127, 130
Variable-length wavetable....................133
velocity sensitivity 154, 239
vibrato.............................106, 112, 144, 153
Vibrato and FM112
Viewing signal data185
wave~..133
Waveshaping ...119
waveshaping synthesis.................. 119, 137
Wavetable oscillator.................................68
wavetable synthesis59, 68, 133
white noise.. 19, 71
windowing ...199

	Introduction
	Signal processing in Max
	How To Use This Manual
	Reading the manual online
	Other Resources for MSP Users

	How Digital Audio Works
	Sound
	Summary
	Digital representation of sound
	Limitations of digital audio
	Advantages of digital audio
	Summary

	How MSP Works: Max Patches and the MSP Signal Network
	Introduction
	Audio rate and control rate
	The link between Max and MSP
	Limitations of MSP
	Advantages of MSP
	See Also

	Audio I/O: Audio input and output with MSP
	The DSP Status Window
	About Logical Input and Output Channels
	Using Core Audio on Macintosh
	Using MME Audio and DirectSound on Windows
	Using ReWire with MSP
	Advanced ad_rewire Features
	Using ASIO on Windows
	Controlling ASIO Drivers with Messages to the dsp Object on Windows
	Working in Non-Real Time with MSP
	See Also

	Tutorial 1: Fundamentals—Test tone
	MSP objects are pretty much like Max objects
	...but they’re a little different
	...so they look a little different
	Digital-to-analog converter: dac~
	Wavetable synthesis: cycle~
	Starting and stopping signal processing
	Listening to the Test Tone
	Troubleshooting
	Summary
	See Also

	Tutorial 2: Fundamentals—Adjustable oscillator
	Amplifier: *~
	Line segment generator: line~
	Adjustable oscillator
	Fade In and Fade Out
	Summary
	See Also

	Tutorial 3: Fundamentals—Wavetable oscillator
	Audio on/off switch: ezdac~
	A stored sound: buffer~
	Create a breakpoint line segment function with line~
	Other signal generators: phasor~ and noise~
	Add signals to produce a composite sound
	Summary
	See Also

	Tutorial 4: Fundamentals—Routing signals
	Remote signal connections: send~ and receive~
	Routing a signal: gate~
	Wave interference
	Amplitude and relative amplitude
	Constant signal value: sig~
	Changing the phase of a waveform
	Receiving a different signal
	Summary
	See Also

	Tutorial 5: Fundamentals—Turning signals on and off
	Turning audio on and off selectively
	Selecting one of several signals: selector~
	Turning off part of a signal network: begin~
	Disabling audio in a Patcher: mute~ and pcontrol
	Summary
	See Also

	Tutorial 6: A Review of Fundamentals
	Exercises in the fundamentals of MSP
	Solution to Exercise 2
	Solution to Exercise 3

	Tutorial 7: Synthesis—Additive synthesis
	Combining tones
	Envelope generator: function
	A variety of complex tones
	Experiment with complex tones
	Summary
	See Also

	Tutorial 8: Synthesis—Tremolo and ring modulation
	Multiplying signals
	Tremolo
	Sidebands
	Summary

	Tutorial 9: Synthesis—Amplitude modulation
	Ring modulation and amplitude modulation
	Implementing AM in MSP
	Achieving different AM effects
	Summary

	Tutorial 10: Synthesis—Vibrato and FM
	Basic FM in MSP
	Summary

	Tutorial 11: Synthesis—Frequency modulation
	Elements of FM synthesis
	An FM subpatch: simpleFM~
	Producing different FM tones
	Summary

	Tutorial 12: Synthesis—Waveshaping
	Using a stored wavetable
	Table lookup: lookup~
	Varying timbre with waveshaping
	Summary
	See Also

	Tutorial 13: Sampling—Recording and playback
	Sound input: adc~
	Recording a sound: record~
	Reading through a buffer~: index~
	Variable speed playback: play~
	Summary
	See Also

	Tutorial 14: Sampling—Playback with loops
	Playing samples with groove~
	Summary
	See Also

	Tutorial 15: Sampling—Variable-length wavetable
	Use any part of a buffer~ as a wavetable: wave~
	Synthesis with a segment of sampled sound
	Using wave~ as a transfer function
	Play the segment as a note
	Changing the wavetable dynamically
	Summary
	See Also

	Tutorial 16: Sampling—Record and play audio files
	Playing from memory vs. playing from disk
	Record audio files: sfrecord~
	Play audio files: sfplay~
	Play excerpts on cue
	Try different file excerpts
	Trigger an event at the end of a file
	Summary
	See Also

	Tutorial 17: Sampling: Review
	A sampling exercise
	Hints
	Solution

	Tutorial 18: MIDI control—Mapping MIDI to MSP
	MIDI range vs. MSP range
	Controlling synthesis parameters with MIDI
	Linear mapping
	Mapping MIDI to amplitude
	Mapping MIDI to frequency
	Mapping MIDI to modulation index
	Mapping MIDI to vibrato
	Summary

	Tutorial 19: MIDI control—Synthesizer
	Implementing standard MIDI messages
	Polyphony
	Pitch bend
	Mod wheel
	The FM synthesizer
	MIDI-to-frequency conversion
	Velocity control of amplitude envelope
	MIDI control of timbre
	Summary
	See Also

	Tutorial 20: MIDI control—Sampler
	Basic sampler features
	Playing a sample: the samplervoice~ subpatch
	MSP sample rate vs. audio file sample rate
	Playing samples with MIDI
	Summary
	See Also

	Tutorial 21: MIDI control—Using the poly~ object
	A different approach to polyphony
	The poly~ object
	Summary
	See Also

	Tutorial 22—MIDI control: Panning
	Panning for localization and distance effects
	Patch for testing panning methods
	Linear crossfade
	Equal distance crossfade
	Speaker-to-speaker crossfade
	Summary
	See Also

	Tutorial 23: Analysis—Viewing signal data
	Display the value of a signal: number~
	Interpolation with number~
	Peak amplitude: meter~
	Use a signal to generate Max messages: snapshot~
	Amplitude modulation
	View a signal excerpt: capture~
	Summary
	See Also

	Tutorial 24: Analysis—Oscilloscope
	Graph of a signal over time
	A patch to view different waveforms
	Summary
	See Also

	Tutorial 25: Analysis—Using the FFT
	Fourier’s theorem
	Spectrum of a signal: fft~
	Practical problems of the FFT
	Overlapping FFTs
	Signal processing using the FFT
	Summary
	See Also

	Tutorial 26: Frequency Domain Signal Processing with pfft~
	Working in the Frequency Domain
	Summary
	See Also

	Tutorial 27: Processing—Delay lines
	Effects achieved with delayed signals
	Creating a delay line: tapin~ and tapout~
	A patch for mixing original and delayed signals
	Summary
	See Also

	Tutorial 28: Processing—Delay lines with feedback
	Delay emulates reflection
	Delaying the delayed signal
	Controlling amplitude: normalize~
	Summary
	See Also

	Tutorial 29: Processing—Flange
	Variable delay time
	Flanging: Modulating the delay time
	Stereo flange with feedback
	Summary
	See Also

	Tutorial 30: Processing—Chorus
	The chorus effect
	Low-frequency noise: rand~
	Multiple delays for improved chorus effect
	Summary
	See Also

	Tutorial 31: Processing—Comb filter
	Comb filter: comb~
	Trying out the comb filter
	Band-limited pulse
	Velocity-to-amplitude conversion: gain~
	Varying parameters to the filter
	Summary
	See Also

	The dsp Object—Controlling and Automating MSP

