
1

MAX

Max Topics
Version 4.6/7 August 2006

2

Copyright and Trademark Notices

This manual is copyright © 2000-2006 Cycling ’74.

Max is copyright © 1990-2006 Cycling ’74/IRCAM, l’Institut de Recherche et
Coördination Acoustique/Musique.

Credits

Original Max Documentation: Chris Dobrian

Max 4.6 Reference Manual: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno,
Richard Dudas, Ben Nevile

Max 4.6 Tutorial: David Zicarelli, Gregory Taylor, Jeremy Bernstein, Adam Schabtach,
Richard Dudas, R. Luke DuBois

Max 4.6 Topics: David Zicarelli, Gregory Taylor, Adam Schabtach

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Table of Contents

3

Copyright and Trademark Notices... 2
Credits .. 2

Introduction ...7
Tutorials and Topics in Max.. 7
Manual Conventions... 7

Arguments: $ and #, Changeable Arguments to Objects ...8
$ in a message box.. 8
$ in an object box ... 9
in object and message boxes ... 9

Collectives: Grouping Files into a Single Project .. 12
What is a Collective? ... 12
Making Your Own Program.. 12
Steps for Building a Collective... 13
Adding Non-Max Files to a Collective .. 16
Testing a Collective.. 16
Collective Formats ... 17
Building a Standalone Application... 17
Customizing Your Standalone .. 19
The standalone Object Inspector.. 20
The Search Path in Standalone Applications ... 24

Data Structures: Ways of Storing Data in Max ... 26
Storing Data .. 26
Arrays ... 26
Complex Data Structures ... 27

Debugging: Tips for Debugging Max Patches .. 30
Catching Your Own Bugs... 30
Planning Your Program ... 30
Test As You Go... 32
Viewing Messages .. 32
Message Order.. 34
Tracing Messages ... 36
Error Messages ... 38
Comment... 38

Table of Contents

4

Detonate: Graphic Editing of a MIDI Sequence .. 39
Uses of detonate ... 39
Recording Into detonate... 39
The detonate Editor Window.. 40
Changing the View in the Editor Window ... 43
Editing Shortcuts.. 45
Techniques for Using detonate ... 45
Using detonate in a Timeline .. 48

Editing: Templates, Clippings, Prototypes and Shortcuts ... 50
An Overview of Editing Features.. 50
Templates .. 50
Clippings.. 53
Prototypes.. 56
Patcher Selection of Text Objects ... 60

Efficiency: Issues of Programming Style ... 62
Program Size and Speed ... 62
Principles of Efficiency ... 62
Memory Usage.. 64

Encapsulation: How Much Should a Patch Do?... 65
Complex Patches.. 65
Modularity... 65
Encapsulation ... 65
Messages between Patches ... 66
Encapsulation and De-Encapsulation.. 66
Documenting Subpatches .. 68

Errors: Explanation of Error Messages .. 70
Error Reports in the Max Window... 70
Error Dialogs... 78

Files: How Max Handles Search Paths and Files ... 79
When Max Looks for a File.. 79
Speeding up file searches .. 80
What’s in the Cycling ’74 folder.. 80
File Path Syntax .. 81
File Types and Filename Extensions .. 82
Mapping Filename Extensions to File Types.. 84
External Object Name Mappings.. 86

Table of Contents

5

Graphics: Overview of Graphics Windows and Objects .. 87
Introduction.. 87
Graphics In a Graphics Window .. 87
Ways to Move Objects .. 88
QuickTime Movies .. 90
Graphics in a Patcher Window ... 90

Interfaces: Picture-based User Interface Objects ... 93
Getting the Picture... 93
Picture File Construction ... 93
Making Toggles .. 94
Inactive States ... 96
Image Masks ... 96

Loops: Ways to Perform Repeated Operations .. 100
Repeated Actions ...100
Timed Repetition ...102
Stack Overflow..102
Instantaneous Loops..103

Macintosh Externals .. 104
Executable Formats and Processor Architectures ...104
Libraries for Older External Objects ..105

Messages to Max: Controlling the Max Application.. 106
The ; max message..106
Messages Understood by Max...106
MIDI Configuration Messages..112
Examples..115

Punctuation: Special Characters in Objects and Messages .. 116
Punctuation in Object Boxes ...116
Punctuation in a Message Box...117

Quantile: Using a Table for Probability Distribution... 119
The quantile message..119
The fquantile message...119
Examples..120

Sequencing: Recording and Playing Back MIDI Performances ... 122
seq..122
follow..122
mtr...122
detonate..123
timeline ..124

Table of Contents

6

Shortcuts.. 125
Locked Patcher Window ..125
Unlocked Patcher Window..125
New Object List ..128
send, receive, and value...128
Table Editing Window..128
Any Window...129
Inspectors ..129
Text Macros...129

Timeline: Creating a Graphic Score of Max Messages.. 131
Introduction..131
Creating an Action...131
Creating a Timeline ...132
Creating Timeline Events...133
The edetonate Editor...135
The etable Editor..136
The efunc Editor...138
The emovie editor ..139
Features of the timeline Window..141
Using timeline in a patch..145

7

Introduction

Tutorials and Topics in Max

This manual contains discussions on issues of programming and using Max, including
discussions on tips and shortcuts for everyday use, data structures, loops, encapsulation,
debugging, graphics, and making standalone applications. They cover material that is
beyond the scope of the Max Tutorial, but of general interest to Max users.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in
bold type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type,
like this.
In the See Also sections, anything in regular type is a reference to a section of this manual,
the Max Tutorial, or the Max Reference manual.

8

Arguments: $ and #, Changeable Arguments to Objects

$ in a message box

The dollar sign ($) is a special character which can be used in a message box to indicate a
changeable argument. When the message box contains a $ and a number in the range 1-9
(such as $2) as one of its arguments, that argument will be replaced by the corresponding
argument in the incoming message before the message box sends out its own message.

In the left example above, the $1 argument in the message box is replaced by the number
received in the inlet (in this case 9) before the message is sent out. The message printed in
the Max window will read Received: Preset No. 9.

The right example shows that both symbols and numbers can replace changeable
arguments. It also shows that changeable arguments can be arranged in any order in the
message box, making it a powerful tool for rearranging messages. In the example, the
message assoc third 3 is sent to the coll object.

When a message box is triggered without receiving values for all of its changeable
arguments (for instance, when it is triggered by a bang), it uses the most recently received
values. The initial value of all changeable arguments is 0.

In the left example above, a message of 60 will initially send 60 0 to the makenote object.
After the 61 65 message has been received, however, the number 65 will be stored in the $2
argument, so a message of 60 will send 60 65 to makenote.

A message box will not be triggered by a word received in its inlet (except for bang), unless
the word is preceded by the word symbol. In such a case, the $1 argument will be replaced

Arguments $ and #, Changeable
Arguments to Objects

9

by the word, and not by symbol. In the right example, the $1 argument is replaced by either
set or append, and the message set 34 or append 34 is sent to the next message box.

To include a special character such as a dollar sign in a message without it having a
special meaning, precede the character with a backslash (\).

$ in an object box

A changeable $ argument can also be used in some object boxes, such as the expr and if
objects. In these objects, the $ must be followed immediately by the letter i, f, or s,
indicating whether the argument is to be replaced by an int, a float, or a symbol.

If the message received in the inlet does not match the type of the changeable argument
(for example, if an int is received to replace a $f argument), the object will try to convert
the input to the proper type. The object cannot convert symbols to numbers, however, so
an error message will be printed if a symbol is received to replace a $i or $f argument.
Other objects in which a $ argument is appropriate include sxformat and vexpr.

in object and message boxes

When you are editing a patcher which will be used as a subpatch within another Patcher,
message boxes and most object boxes in the subpatch can be given a changeable
argument by typing in a pound sign and a number (for example, #1) as an argument.
Then, when the subpatch is used inside another Patcher, an argument typed into the
object box in the Patcher replaces the # argument inside the subpatch.

In this way, patcher objects and your own objects can require typed in arguments to
supply them with information, just as many Max objects do. A symbol such as #1 is a
changeable argument, and is replaced by whatever number or symbol you type in as the
corresponding argument when you use the patch as an object inside another patch. A
changeable argument cannot be used to supply the name of an object itself, but can be
used as an argument anywhere inside your object.

Arguments $ and #, Changeable
Arguments to Objects

10

In the following example, arguments typed into the limitNotes object boxes supply values
to the objects inside limitNotes. When the hslider is moved, one limitNotes object plays a
note every 300 milliseconds on MIDI channel 5, and the other plays a note every 200ms
on MIDI channel 7.

These are Max objects limitNotes is a patch saved as a document

A pound sign and a number can even be part of a symbol argument, providing variations
on a name, provided that the changeable argument is the first part of the symbol. In the
example below, the #1 part of the changeable argument inside scale is replaced by the
argument in the patch that uses scale. The scale objects will each use a different pre-saved
table file, producing different results.

The same technique can be used to give unique names to send and receive objects in a
subpatch, making the exchange of messages between them private (local to that one
instance of the subpatch).

If these objects
exist in a patch
named private,

and the patch is used for
two subpatches like this,

the objects appear with
this name in one patch,

and with a unique name
in the other.

Arguments $ and #, Changeable
Arguments to Objects

11

When opening a patcher file automatically with the load message to a pcontrol object,
changeable # arguments inside the patch being loaded can be replaced by values that are
provided as additional arguments in the load message, as in the example below.

If these objects exist in a patch and this message is sent to a
pcontrol object,

the patch will open with objects
looking like this.

#0 has a special meaning. It can be put at the beginning of a symbol argument,
transforming that argument into an identifier unique to each patcher (and its
subpatchers) when the patcher is loaded. This allows you to open several copies of a
patcher containing objects such as send and receive without having the copies interfere
with each other.

See Also

expr Evaluate a mathematical expression
message Send any message
pcontrol Open and close subwindows within a patcher
Punctuation Special characters in objects and messages

12

Collectives: Grouping Files into a Single Project

What is a Collective?

When you open a Max patcher, you may need to open a number of other Max files—even
though it seems as if you are opening only one file:

• The patcher might require certain external objects.

• The patcher may contain subpatches (other Max documents used as objects within a
patcher).

• The patcher may load other files used by Max objects. This category would include
MIDI files, coll files, env script files, funbuff files, mtr files, preset files, seq files, table
files, timeline files, action patches, PICS files, PICT files, QuickTime movies, and so
on.

A program you write in Max may actually be divided up among a potentially large
number of different files, and the absence of any one of those files may prevent your
program from functioning properly. To avoid this problem, Max allows you to gather
most of the files necessary for a program that you write into a single group, called a
collective. Once you have done this, you can be assured that all the necessary subpatches
and data are available to your patch. You can also give your collective to someone else to
use, without worrying whether you’ve included all the necessary files. If the person you
give your collective to doesn’t own Max, you can give (but not sell!) them the MaxMSP
Runtime application along with your collective. This will allow them to run (but not edit)
your program.

In addition, you can combine a collective with a copy of MaxMSP Runtime to create a
standalone application, which requires neither Max nor MaxMSP Runtime in order to
run.

You can also make an audio plug-in (VST, RTAS, and AU) with Max/MSP. For details
and examples of building plug-ins with Max/MSP see the Pluggo Developer Materials
that are installed with Pluggo, which can be downloaded from www.cycling74.com.

Making Your Own Program

A program written in Max most commonly consists of one main patch—a Max
document— which contains other subpatches as objects inside it. Alternatively, you
might choose to design the program so that the user keeps two or more different patches
open at once for doing different tasks. In either case, at least one patcher window has to

Collectives Grouping Files into a
Single Project

13

be opened by the user, and this is referred to as a top-level patch. A collective can have
more than one top-level patch, and each one will be opened when the collective is opened.
Other patches used as objects within a top-level patch are called subpatches.

To make your own program into a collective, you’ll need to determine which patch (or
patches) will be the top level patch for the program. When you build a collective using
that patch, Max includes in the collective any external objects or subpatches that the top-
level patch requires to operate (unless you add the “excludeexternals true” command to
your collective script).

You may also need to include some other data files explicitly (data files used by objects
such as coll, seq, etc.) to complete the collective. You will then have a complete working
program that originally consisted of many diverse files, saved in a single file.

Once you have saved a collective, you can open it as you would any other Max document
by choosing the Open... command from the File menu or by double-clicking on the
collective in the Finder on Macintosh or the Windows Browser on Windows.

You cannot load it into another patch as a subpatch by typing its name into an object box
(nor can you load it into a bpatcher). If you make changes to any patch that is being used
as a subpatch in a collective, those changes will not be updated in the collective—the
subpatch in the collective remains just as it was at the moment you saved the collective.)

Steps for Building a Collective

1. With your top-level patch in the foreground, choose Build Collective / Application /
Plug-in … from the File menu.

You will be presented with a script window, in which you create a list of things Max
must do to create the collective. Max has already made the first entry in its
script—open thispatcher— instructing itself to load in your top-level patch. Any external
objects required by your patch, any subpatches used as objects in your top-level patch
(or used in a bpatcher), and any nested subpatches (sub-subpatches used in subpatches
of the top-level patch) will all be included automatically in the collective. In addition,
certain objects, such as js, fpic, and hi, copy files they use into the collective for you.
For the js object, the script text file is copied, but not files the script uses.

If you want your program to have more than one top-level patch, you can add other
patches to the script by clicking on the Toplevel Patcher... button and choosing
another patcher from the file dialog box. Max writes a new line into the script,
indicating that it will also open that newly selected file.

Collectives Grouping Files into a
Single Project

14

In the following example, a patch named Arpeggiator is being saved as the top- level
patch in a collective, and a second top-level patch named Controls has just been
added.

When the collective is opened by a user, top-level patchers will be opened in the order
in which they are listed in this window. If you want to change the order in which they
will be opened, you can edit the script.

Collectives Grouping Files into a
Single Project

15

2. Besides the externals and subpatches which are included automatically, there may be
other files used by your top-level patch(es). Add any other necessary files to your
collective by clicking on the Include File... button (or the Patcher... button if the file is
a Max patch) and choosing the appropriate file from the ensuing dialog box.

There are three reasons why you may need to include files explicitly in this way. First
of all, it’s frequently the case that some object in a patch loads in data from a separate
file. Consider the following example.

When this patch is loaded it looks for the table file volume.t, and the seq file Scene1.sc.
These files will not be included automatically because they are neither patchers nor
external objects, so you must list them in the script yourself. Some objects handle
inclusion of their files for you, as mentioned above.

Currently, QuickTime movies used by the movie and imovie objects (as
well as Jitter objects) cannot be included in collectives.

Second, it is possible that the program may load some additional patch(es)
dynamically (with a load message to the pcontrol object, for example). Because such a
patch does not appear as an object box in the top-level patcher, it is not included
automatically, and you must include it yourself. In the following example, the file
panic is not a subpatch of the top-level patch, but it could be needed, nevertheless,
and should be explicitly included in the collective. We added panic using the
Patcher… button, so that any external objects used in the patch would be included in
the collective. Likewise, the timeline file MultiTrack.ti should be included. The action
patches used by the timeline object will be included automatically.

If you have an entire folder of data files you want to include, you can include all the
files by clicking the Include Folder... button and selecting the folder from the ensuing

Collectives Grouping Files into a
Single Project

16

dialog box. Note that this will only include files in the folder itself; folders inside the
folder you select will not be included.

3. Once you have created a collective, you cannot easily make changes to it. So, before
you actually click on the Build button to construct your collective, you may want to
save your script as a separate Text file, by clicking on the Save Script... button. That
way, if you later make changes to some of the patches or files in your collective, and
therefore need to rebuild or modify the collective, you can simply open the original
script by clicking on the Open Script... button, and you’ll have a head start toward
rebuilding your collective.

4. Once you have added all the top-level patches you want (they appear with an open
instruction in the script) and have included all necessary files and/or folders (they
appear as include and folder instructions in the script), your collective is complete. Click
on the Build button and give your collective a unique name.

Adding Non-Max Files to a Collective

When you create a collective, you can include files of any type (which may have been
created with applications other than Max) by clicking the Include File... button in the
Collective Script dialog. This allows you to add, for example, graphics files to your
collective for use with the fpic object.

Note that you can leave externals out of your collective by adding the command
“excludeexternals true” at the top of your collective script. This must come before the
“open thispatcher” command. You may want to do this if you want to manage installing
the external objects separately from the collective. You can use this in conjunction with
the include command to only include a few specific external objects in your collective.
Note that when building a VST plug-in that externals are always excluded unless
explicitly added via an include command.

Testing a Collective

A collective can function as a complete program: one or more (top-level) Max patches
combined with all the other files they need to function correctly. Before you give your
collective to someone else to use, however, you should test it to be sure that it’s really
complete, and that you haven’t forgotten to include any essential files. The best way to do
that is to open the collective by choosing Open... from the File menu or by double-
clicking on the collective in the Finder on Macintosh or the Windows Browser on
Windows.

Collectives Grouping Files into a
Single Project

17

Collective Formats

On Macintosh, a pop-up menu when saving the collective allows you to choose the Max
collective format or the Old Format Collective. The only reason to use the Old Format
Collective is if you are building a plug-in to use with Pluggo, or wish to produce
something that can be used by older versions of Max. But note that for compatibility with
older versions, your collective cannot contain any external objects that are specific to
Max/MSP 4.6. These can be stripped out manually using a Macintosh resource editor
such as Resourcerer—simply delete all mAxL resources.

The “new” Max collective format is cross-platform; however, included external objects
are not cross-platform, so if your collective uses any non-standard external you will have
to supply these as separate files for each platform. If you are going be giving Macintosh-
created collectives to Windows XP users, you are strongly encouraged to use the .mxf file
extension. Otherwise, it won’t be possible for Windows XP users to open the files.

Building a Standalone Application

When you click on the Build button in the “Collective Editor” dialog, you are presented
with a standard Save As dialog allowing you to name your collective and save it to disk. In
the lower part of this dialog you are presented with a Format menu. By default this menu
is set to save a Max Collective file, but if you want to save your patch as a standalone
application, all you need to do is select Application from this menu. It’s as easy as
that—Max will automatically combine your collective with the MaxMSP Runtime appli-
cation and save the result as a single file (or folder on Windows) which appears and
functions as a standalone application, requiring neither Max nor MaxMSP Runtime. If
you have multiple versions of MaxMSP Runtime in your Max folder, Max will use the
application that has the word “Runtime” in its name, and the most recent creation date.
Building an audio plug-in is accomplished in a very similar fashion – just choose Plug-in
from the drop down menu.

Windows Standalone Format

A standalone application on Windows is actually a folder containing MaxMSP Runtime
executable plus a .mxf collective file containing your patches and files. In addition, the
standalone folder contains a support folder with files necessary to run your application.

Collectives Grouping Files into a
Single Project

18

The following list shows the arrangement of files and folders.

YourApplication [folder]
YourApplication.exe [modified MaxRT.exe – launch this to launch your app]
YourApplication.mxf [new format collective containing your patches]
msvcr70.dll

[Microsoft C Runtime Library used by MaxRT.exe and externals]
support [folder]

ad [folder containing MSP audio driver objects]
mididrivers [folder containing Max midi driver objects]
MaxAPI.dll [Max API for external objects]
MaxAudio.dll [MSP library]
MaxQuicktime.dll [Max QT interface]
YourApplication.rsr [Mac style Resources for your application]
asintppc.dll [Support DLL needed for Max]
asiport.rsr [Support resources needed for Max]
asifont.map [Support file needed for Max]

Macintosh Standalone Format

On Macintosh, Max builds universal binary standalone applications. The standalone is an
application package, which is also a folder that looks like a file in the Finder. Double-
clicking on the icon launches the application. You can peek into the package by control-
clicking on it and choosing Show Package Contents from the contextual menu. As with
the Windows standalone, inside the Contents/MacOS folder you will find a .mxf
collective, a runtime application, and a support folder.

YourApplication.app [note: the .app is not shown in the Finder]
Contents [folder]

Frameworks [folder] – needed for external object support
Info.plist [copied from your .plist if included in a collective]
YourApplication.mxf [collective containing your patches]
MacOS [folder]

YourApplication [actually Max/MSP Runtime]
support [folder] – audio and MIDI support filess
Resources [folder]

[custom icon file goes here]

Collectives Grouping Files into a
Single Project

19

Developers may wish to note is the behavior of the message sendapppath to the Max object.
This message now reports the file path of the application bundle rather than the
executable file inside the MacOS folder. Since this is typically what developers wanted in
the first place, we hope this change does not pose a problem.

When you use the standard save file dialog box to name your plug-in, collective or
standalone, the filename extension automatically changes when you choose a different
output type. Mach-O VST plug-ins must end in .vst. Applications must end in .app. And
it is always a good idea to name collectives to end in .mxf, particularly if you want to open
them on Windows.

Do not rename the .mxf file inside your standalone, otherwise it will not
load when the runtime executable is launched.

Customizing Your Standalone

You may want to customize some of the features of your standalone application, such as
the Overdrive setting, the application icon, or whether or not users will be allowed to
close the top level patcher(s). There are two mechanisms for doing this: first, there are
additional collective script messages that apply only to standalone applications, and
second, the standalone object can be added to your main top-level patcher to configure
certain options.

appsplash The word appsplash, followed by a full pathname of a PICT (Macintosh) or
BMP (Windows), specifies the image to be used as a splash screen in place
of the Max about box.

appicon The word appicon, followed by a full pathname of a platform-specific icon
file (Windows icon resource or Mac OS X icns resource), specifies the icon
to use for the application.

If you are not using Javascript or Jitter in your application, you can remove
MaxJSRef.framework and/or JitterAPI.framework from the Frameworks folder inside the
application package to reduce your app's download size. Do not remove the other
framework items found in the Frameworks folder.

If you do not want the user to see the dialog asking about installation of support for
external objects from older versions of Max, remove the MaxMSPCFMSupport.pkg file
from your standalone's Resources folder.

For your standalone's icons and other Finder-related customization, standalone
applications use the Info.plist file found in the Contents folder of the standalone, plus

Collectives Grouping Files into a
Single Project

20

.icns files in the Resources folder. Previous versions used BNDL, FREF, and icn#
resources. To learn more about the Info.plist file and creating and using .icns files, this
Apple documentation may be helpful:

http://developer.apple.com/documentation/Carbon/Conceptual/DesktopIcons/ch13.html

http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/Article
s/ConfigApplications.html

The standalone Object Inspector

To control other settings, add the standalone object to your main top-level patch, and
editing its parameters with its Inspector. Since the standalone object and its settings are
stored with your patch, you do not need to specify the settings each time you save a new
version of your standalone application.

Collectives Grouping Files into a
Single Project

21

Here is an overview of the various settings available in the standalone object’s inspector:

The Application Creator Code is a Macintosh only setting. It specifies a four character ID
that the Finder uses to distinguish your application from others (including Max and
MaxMSP Runtime). The default creator, ????, is assigned for generic files and
applications. You can change this to any combination of four characters you like, but if
you choose one already in use by another application, your application will run when you
double-click on a document for the application whose creator you used. For instance, if
you used max2 for a creator, double-clicking on a Max document would launch your
application instead of Max.

If you want to guarantee your character combination is unique, you will want to register
it with Apple at the following URL:

http://developer.apple.com/dev/cftype/

The File Options section lets you customize some aspects of how your standalone
application deals with files and the file system.

If some of the supporting files used by Max/MSP objects in your patch will not be
included in the collective itself, check the Search for Files Not in the Application's

Collectives Grouping Files into a
Single Project

22

Collective option. (It is checked by default.) Unchecking this option can be useful for
ensuring that you have included all necessary files in the collective that you are making
into a standalone application. If you create your application with this option turned off,
your application will not look outside the collective for any files it cannot find, such as
missing sequences or coll files that your application attempts to load. So, you can make
your application with Search for Files Not in the Application's Collective unchecked, and
then run it to see if it works properly. If your application is unable to find a file that it
needs, you will get an error message to that effect, and you will know that you have to
rebuild your standalone application.

In some cases, however, you may want your application to look for a file outside of the
collective. For example, you may want it to look for a MIDI file that can be supplied by
the user of your application. In that case, you will naturally want the Search for Files Not
in the Application's Collective option to be on. Please also note that this feature restricts
itself to looking in folders nested only three levels deep.

When your application searches for files outside the collective, you can control where it
looks with the Utilize Search Path in Preferences File option. If this option is on (which it
is by default), your application will use the search path settings stored in the Max 4
Preferences file instead of using the default search path.

You can instruct your application to use its own Preferences file instead of the default
Max 4 Preferences by supplying a preferences file name in this field. If the Utilize Search
Path in Preferences File is checked and you type in a name other than the default Max 4
Preferences, your application will make its own unique preferences file (in
~/Library/Preferences, where ~ represents your home directory) the first time it is run.
From then on, your application will use that preferences file to recall the settings for
options such as Overdrive and All Windows Active.

The Options section of the inspector lets you change the various user-related options for
your standalone application.

If the Status Window Visible at Startup option is unchecked, the Status window (the same
as the Max window in the regular Max application) will not be visible when the
application is opened. Unchecking this option can help give your application a particular
(perhaps less obviously Max- like) look. By default this option is enabled.

Normally, one can stop all loadbang objects from sending out their bang messages by
holding down the Shift and Command keys on Macintosh or Shift and Control keys on
Windows while the patch (or collective, or standalone) is loading. You can disable that
loadbang-defeating capability in a standalone application by checking the Prevent
loadbang Defeating with Cmd-Shift option. (This option is turned off by default.)

Collectives Grouping Files into a
Single Project

23

The Overdrive Enabled and All Windows Active Enabled options allow you to preset these
menu options to configure your application’s initial behavior. They are both off by
default.

If you check the User Can’t Close Toplevel Patcher Windows option, top-level patchers
will have no close box in their title bar, and the Close command in the File menu will be
disabled whenever a top-level patcher is the foreground window in your application.
Since closing the top-level patcher in most cases renders the application useless, this
option is checked by default.

The final two options allow you to include all the files necessary to see the MIDI Setup
and DSP Status windows, as well as all of the audio and MIDI driver objects. This option
does not include any non-Max files that might be necessary for MIDI and audio—for
example, checking Audio Support does not include the MSP ReWire driver. This driver
does not belong in the standalone folder; if you want to use it, you’ll have to instruct users
of your application to copy it to the correct location, or build you own installer that does
this.

Custom Icons for Mac OS X

In order to use a custom icon for your standalone application, follow these steps:

1. “Open” your standalone by control-clicking on it in the Finder and choosing Show
Package Contents from the pop-up menu that appears.

2. Place icon files created with Apple's Icon Composer tool or another application that
creates these files in the standalone's Resources folder.

3. Edit the Info.plist file in the standalone's Contents folder using Apple's Property List
Editor or a text editor (where you will edit the XML directly). Change the entry for
the CFBundleIconFile from Max.icns to the name of the icon file you added.

In some cases, you may need to log out and log back in again before the standalone’s icon
will show up.

Custom Icons and Splash Screens for Windows

In order to create a custom icon for your standalone application, follow these steps:

1. Create your ICON using the Windows .ico format.

Collectives Grouping Files into a
Single Project

24

2. Using the Collective Editor add a line to your Collective Script with the following
syntax: appicon filename

Hint: you can use the “Include File” button to choose the .ICO file and then change
the “include” command to “appicon”.

In order to create a custom splash screen for your standalone application, follow these
steps:

1. Create your splash screen using the Windows “.bmp” format.

2. Using the Collective Editor add a line to your Collective Script with the following
syntax:

appsplash filename

Hint: you can use the “Include File” button to choose the .ICO file and then change
the “include” command to “appsplash”.

The Search Path in Standalone Applications

It may be important for developers of standalones to know the order in which Max
searches for files; it is slightly different than the search order in the editing version of
Max/MSP. This information is relatively advanced and will probably not be of much
interest to users who are not developing standalone applications.

On Mac OS X the Utilize Search Path option, when checked, does the following for the
search path of a standalone:

1. Adds all of the folders inside of the folder containing the standalone application (i.e.,
the Contents folder and all of its subfolders)..

2. Adds the Cycling '74 folder. A Cycling '74 folder at the same location as the
application is used if it exists. If it does not, the location /Library/Application
Support/Cycling ’74 is used if it exists.

On Windows XP the Utilize Search Path option, when checked, does the following for the
search path of a standalone:

1. Adds all of the folders inside of the application folder (i.e. the folder containing
YourApplication.exe).

Collectives Grouping Files into a
Single Project

25

2. Adds the Cycling '74 folder. A Cycling '74 folder at the same location as the
application is used if it exists. If it does not, the location c:\Program Files\Common
Files\Cycling '74\ is used if it exists.

When Utilize Search Path is not checked, the only folder(s) added to the search path are
the support folder inside the standalone application’s folder, and any of its subfolders.

The order in which folders will be searched is as follows:

1. The collective file (and any other open collective files)

2. The support folder

3. The folder containing the application and its subfolders (optional, if Utilize Search
Path is checked)

4. The Cycling ’74 folder (optional, if Utilize Search Path is checked)

The Search for Files Not in the Application’s Collective option is different from the Utilize
Search Path option. It prevents Max from looking for any files that are not in open
collectives, including the support folder, which means that you cannot uncheck Search for
Missing Files and have either audio or MIDI support. This means that Search for Missing
Files is now of limited usefulness for standalones.

The former role of Search for Missing Files was for testing the collective to make sure you
were including all of the files you need. With the advent of the support folder and its
ability to contain audio and MIDI files, this testing role now falls mainly to the Utilize
Search Path option. Utilize Search Path specifically allows you to check whether any files
in the Cycling ’74 folder are needed by your standalone application: if, after turning off
Utilize Search Path, you see errors indicating “no such object” or “can’t find files” in the
Max window, you know you aren’t properly including all of the supporting files you need.

A tip that may help sort out path problems: Put ; max paths in a message box in your patch
so you can click on it when the standalone is running. The paths message prints out the file
paths currently in use.

See Also

Encapsulation How much should a patch do?
standalone Configure Parameters for a Standalone Application

26

Data Structures: Ways of Storing Data in Max

Storing Data

Max has objects specifically designed for storing and recalling information, ranging from
simple objects that store a single number to more powerful objects for storing any
combination of messages.

The simple int and float objects store a number and then output it in response to a bang.
They are comparable to a variable in traditional programming languages. The value object
allows a single value to be changed or recalled from different Patcher windows
(functioning like a global variable). The accum object stores a single number which can be
added to or multiplied.

A data structure stores a group of information together in a consistent format, so that a
particular item can be retrieved using the address (location) of the item.

Arrays

The table object is an array of numbers, where each number stored in the table has a
unique index number—its address. When an address is received in the left inlet, the value
stored at that address is sent out the left outlet. Storing numbers in an easily accessible
way is the main utility of such an array, but the table object has many powerful features
for modifying and using the numbers it stores.

The values in a table are displayed graphically in the table editing window, showing the
addresses on the x axis of a graph, and the values on the y axis. You can change the values
displayed in the table window by drawing in the graph with drawing tools, or by cutting
and pasting regions of the graph.

Other messages sent to a table can store new values, change its size, report the sum of all
its values, step forward or backward through different addresses, report the address of a
specific value, and provide statistical information about its values.

The funbuff object stores addresses and values, but unlike a table, the addresses can be any
number, and gaps can exist between addresses. If funbuff receives in its inlet an address
that does not actually exist (a number that falls in a gap between existing addresses), it
finds the next smallest address, and outputs the value at that address.

The bag object stores a collection of numbers without any addresses. Numbers can be
added to and deleted from the bag, and a bang in its inlet sends out all of the currently
stored numbers.

Data Structures Ways of Storing
Data in Max

27

Complex Data Structures

The preset object is also a kind of array, but each address in its array contains the settings
of other user interface objects in a Patcher window. When an address number is received
in the preset object’s inlet (or when you click on one of the preset object’s buttons), the
settings of those objects are changed to the values stored in the preset. In this way, every
user interface object in the same window as the preset object has its settings stored and
recalled. Alternatively, you can connect the outlet of a preset to some of the window’s user
interface objects, making them the only ones affected by that preset.

The coll object (short for collection) stores numbers, symbols, and lists. A single address
in coll can be either a number or a symbol. You can also modify stored data in a coll with
messages such as sub, which changes a single item in a stored location, or merge, which
appends additional data to a location. You can also access an individual item in a list
stored in a coll with the nth message.

A coll object is useful for recording and playing back a “score” that has lists of times,
pitches, and durations. Or you could use a coll to store a collection of text messages to be
shown to the user when certain numbers or symbols are received.

A method of using coll to play a list of notes Storing text messages in coll

You can edit the contents of a coll in a standard Max text editor window by double-
clicking on its object box when the Patcher window is locked. The standard Max text

Data Structures Ways of Storing
Data in Max

28

editor window will open. The text format used is discussed in the description of the coll
object.

The message box can be considered a kind of data structure, since it can hold up to 256
different items as arguments. The contents of a message can be modified using set and
append messages, and message boxes can include changeable arguments which are replaced
by the arguments of messages it receives in its inlet. Individual items in a message box can
be accessed by sending its contents to another message box with changeable arguments, as
shown in the example below.

The user interface object menu is essentially an array of symbols. When the number of a
menu item is received in the inlet, the item text is displayed and can also sent out the right
outlet if desired. Item text is changed with a setitem message. When you choose a menu
item with the mouse, you are specifying a symbol, causing the symbol’s address to be sent
out the left outlet.

Items can be accessed by index number or with the mouse

See Also

coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
menu Pop-up menu, to display and send commands
message Send any message

Data Structures Ways of Storing
Data in Max

29

table Store and graphically edit an array of numbers
Tables Graphic editing window for creating table files

30

Debugging: Tips for Debugging Max Patches

Catching Your Own Bugs

You might occasionally make mistakes when writing a program in Max, and you will then
have to figure out why your patch is not working as you intended. In some instances a
bug might come from an error in the conceptual design of your program; that is, you
might simply be mistaken about what you want the computer to do. Other bugs might be
errors of syntax specific to Max such as a misunderstanding of how an object works, a
mistake in predicting what messages an object will receive and send, or a mistaken
analysis of the order in which messages are being sent. Max does its best to prevent you
from making such syntactical errors and provides various means of analyzing and
debugging your programs. In this chapter we offer some advice (and a few tools) for
preventing or eradicating bugs in your Max patches.

Planning Your Program

One of the best aspects of Max is the fact that you can improvise a program, patching
objects together and trying things out, without a clear idea of what you want the results to
be. While this is a perfectly valid method of working and can result in some interesting
new ideas, it also often leads to the infamous Max spaghetti patch.

Patch cord spaghetti is often indicative of a lack of planning

This patch works just about as well as a neatly organized patch, but it’s certainly more
difficult to analyze what’s going on or find bugs in such a patch. If you want to ensure
that your patch works correctly, it’s best to plan it out conceptually before you begin to
implement it in Max.

Debugging Tips for Debugging
Max Patches

31

Even with careful planning, you may think you know exactly what you want your
program to do, begin to write a patch in Max, and then discover that the problem was
more complex than you at first thought. For example, you might discover that your plan
is appropriate for some cases but not for others. The following example is a (problematic)
patch for modifying the velocity of incoming MIDI notes, and sending them back out on
a different port. Superficially, it may seem like a reasonable patch, but it will malfunction
in many instances. Analyze its problems and see if you can think of good solutions.

This patch contains bugs

When the change is 0, of course, there is no problem. However, there are three ways this
patch can malfunction. The first problem is not serious, because the noteout object
automatically limits velocity values in its middle inlet to keep them in the valid range
from 0 to 127. The second problem is easily solved by limiting the values coming out of
the + object to be always greater than 0, with a maximum 1 object, for example. In fact, you
can limit both the minimum and maximum values by passing through a number box, and
setting its minimum and maximum values (by selecting it and choosing the Get Info...
command from the Object menu). This has the added advantage of showing you what
velocities you’re actually sending out.

This fixes bug No. 2 This fixes bugs Nos. 1 and 2

Debugging Tips for Debugging
Max Patches

32

The third problem arises because we neglected to consider a velocity of 0 as a special case,
which needs to be treated completely differently from all other velocity values. We
actually want to leave velocity values of 0 unchanged. The following example shows a
couple of possible ways to do that, by sending only the non-zero velocities to the + object.

Two possible correct versions of the program

The bugs we saw here did not have anything to do with misunderstanding how Max
works; they had to do with mistakenly formulating the task at hand. Max can’t really
protect you from making that sort of error. It just dutifully performs what you ask it to
do. The best way to protect against such bugs is just to plan your program carefully, try to
account for as many eventualities as possible, then constantly test the correctness of your
plan as you implement it in Max.

Test As You Go

It is infinitely easier to debug a small patch than it is to debug a big, complicated one. It is
also much easier to debug a large, complicated patch when you know for sure that certain
parts of it work correctly.

At every single stage in the development of a patch, test everything as you go along. Try
sending extreme and unusual messages to your patch, as well as normal, expected ones, to
make sure that your patch doesn’t malfunction in situations you haven’t considered.
Once you are sure that a portion of your program works properly, you may want to
encapsulate that portion by saving it in a separate file, and using it as a subpatch in a
larger patch.

Viewing Messages

There are several good ways to see exactly what messages are passing through the patch
cords of your program, so that you can be sure it’s doing what you want. The best way to

Debugging Tips for Debugging
Max Patches

33

view messages is to include extra objects in your patch temporarily, which “intercept” the
messages as they are sent.

For viewing numbers, the number box can be used as a kind of “wiretap” in any patch cord.
Numbers will pass through the number box unchanged, but they will also be displayed as
they go through.

The number box has several drawbacks as a debugging tool. It can only show a single int or
float value, not a list of different values. Numbers may pass through it too fast for your
eye to follow them. If the same number passes through several times in a row, you won’t
see any change in the display. And finally, there is no way to see previous numbers once a
new number is displayed.

The capture object solves all of these problems by handling both numbers and lists of
numbers, and by storing an arbitrary number of values at a time. Hook up a capture object
off to the side at the point where you want to look at some numbers, then double-click on
its object box to open a text editing window which displays the numbers that have
recently been received. The default number of values capture holds is 512, but this size can
be adjusted with a typed-in argument.

Another potential advantage of capture is that you can copy numbers from its editing
window and paste them into another file or into a table. Even though capture continues to
receive numbers, they do not automatically appear in the editing window, so you have to
re-open its editing window each time you want to view any newly received numbers.

Debugging Tips for Debugging
Max Patches

34

To see any kind of message—symbols, numbers, lists, whatever—you can use the Text
object. It works similarly to capture, although its memory capacity is somewhat more
limited. To see any message directly in the Max window, use print. The print object does
not try to understand the messages it receives, it just posts them verbatim in the Max
window. The Max window scrolls as each new message is printed, and you can scroll up
to see previous messages. The disadvantage of print is that the time needed to print the
messages and scroll the Max window is often greater than the time between messages, so
print may get behind, affecting the timing of your patch.

If all you need to do is verify that some message, any message, has been sent, use a button,
which will flash each time it receives any kind of message.

Message Order

Sending messages in incorrect order is a frequent cause of bugs. It’s important to
remember the basic rules of message order, which will help you write your patches
correctly.

Ignoring this right-to-left ordering can lead to bugs like the one in the following example.
Here the intent is to reduce the velocity of all notes from Middle C on up. In the patch on
the left, however, because the velocity value is sent out of notein before the pitch value,
and the / object is triggered by the message received in its left inlet, the pitch value gets to
the if object too late.

Debugging Tips for Debugging
Max Patches

35

Debugging Tips for Debugging
Max Patches

36

In the patch on the right, the velocity value is stored in the right inlet of the if object until
the pitch value arrives, so the patch works properly.

The positioning of objects on the screen affects the way the patch functions

In the patch on the left, the >> 4 object and the & 15 object are perfectly aligned vertically,
and therefore the >> 4 object receives its input first. As a result, the pack object gets
triggered before the number arrives in its right inlet. In the example on the right, the
patch has been debugged simply by moving the & 15 object a few pixels to the right.

If you’re not aware of the right-to-left (and bottom-to-top) order in which Max messages
are sent, you may be troubled by the fact that moving an object one pixel can potentially
change the way a patch works. However, if you remember these ordering principles, you
can tell at a glance the exact order in which messages will be sent.

Tracing Messages

When you’re working with a complex patch, it may be difficult to analyze the order of
messages at a glance (going into and out of subpatches, memorizing what has happened
so far, etc.). Fortunately, Max has a message tracing feature which displays the order of
messages to you by blinking the patch cord through which a message is about to be sent.

By choosing Enable command from the Trace menu, you enable Max’s message tracing
feature. (Note: You cannot enable message tracing if Overdrive is enabled in the Options
menu, and you cannot enable Overdrive if message tracing is on.) You then set the patch
into action (cause a message to be sent) by sending it a MIDI event, entering a keystroke

Debugging Tips for Debugging
Max Patches

37

on the computer’s keyboard, or clicking on a user interface object with the mouse. Max
will blink the patch cord through which the message is about to be sent, and will report
information in the Max window about the sending and receiving objects and the message
that is being sent.

From that point on, each time you choose Step from the Trace menu, Max moves on to
the next message to be sent, flashes the patch cord through which it will travel, and
reports about it in the Max window. In this way you can step through the workings of
your patch at your own pace.

In Trace mode, the patch cord flashes and the message is printed in the Max window

Alternatively, you can choose Auto Step from the Trace menu, and Max will step through
the different messages at a constant moderately fast rate, reporting as it goes. If you
choose Continue from the Trace menu, Max will go on tracing, but at full speed.

Before tracing messages, you can select one or more particular patch cords (when the
Patcher window is unlocked) and choose Set Breakpoint from the Trace menu. That will
cause message tracing to pause each time a message gets sent through one of those patch
cords. In that way, you can move through the messages at full speed with the Continue
command, and Max will pause when it reaches the patch cord you have designated as a
breakpoint, allowing you to examine the state of the patch at that moment.

Debugging Tips for Debugging
Max Patches

38

Error Messages

If you make a programming error, Max will often print an error message telling you
about the mistake in the Max window. Many errors are reported while you are editing in
the Patcher window (such as trying to put an object into your patch that doesn’t exist),
but other errors do not become evident until you actually run your program (such as
sending a certain message to an inlet that doesn’t understand that message). A list of error
messages, likely causes of each message, and possible solutions can be found in this
Tutorials and Topics Manual under Errors.

Comment

There is probably no known case of a programmer complaining because a program
contains too many comments. Explanatory notes in a comment object can help others
understand your patch, and can help you remember what you have done, when you go
back and look at it later. It is surprising how fast you can forget why you wrote a program
the way you did. You may even want to use a Text window to make notes to yourself or to
jot down ideas for future reference.

Using colors for patch cords and objects can also be a form of commenting your patch.
You could, for example, use a distinctive color to mark all the objects and connections
where MIDI information flows through a patch, distinguishing it from objects and
connections that handle the user interface. An easy way to set the color of a patch cord or
object is to control-click on it to get a contextual menu, then choose a color from the
Color submenu.

See Also

Efficiency Issues of programming style
Encapsulation How much should a patch do?
Errors Explanation of error messages

39

Detonate: Graphic Editing of a MIDI Sequence

Uses of detonate

The detonate object is a flexible sequencing, graphic editing, and score-following object. It
can record a list of notes tagged with time, duration, and other information. You can save
the note list as a single-track (format 0) or multi-track (format 1) MIDI file, and you can
read in any MIDI file that has been saved to disk by detonate, seq, or some other sequencer
such as Cubase. Double- clicking on a detonate object displays its contents in a graphic
editor window, allowing you to use the mouse to add or modify notes inside it. It is also
able to act as a “score-reader,” much like the follow object; it looks at incoming pitch
numbers and reports whenever an incoming pitch matches the current pitch in the stored
score.

Unlike other sequencing objects such as seq, follow, mtr, and timeline, however, detonate
does not really run on an internal clock of its own. Timing and duration information
must be recorded into it from elsewhere in the patch, and the patch must also use that
information to determine the rhythm and speed at which notes will be played back from
detonate. Although this means you’ll be required to do some additional Max
programming to make it do exactly what you want, it also means that you can program
recording and playback options not available with the other sequencing objects, such as
non-realtime recording, continuously variable playback tempo, and triggering individual
events of the sequence in any desired rhythm.

Recording Into detonate

You can use detonate as a sequencer of MIDI notes, to store pitch, velocity, and MIDI
channel information. This basic MIDI information must be combined with timing
information telling when the note should occur, and how long it should last. The “when”
is established by recording a delta time in the left inlet for every note event. The delta time
is the number of milliseconds between the beginning of that note and the beginning of
the previous note. The “how long” is determined by the number most recently received in
the 4th (duration) inlet.

Recording delta time and note duration as part of the note event

Detonate Graphic Editing of
a MIDI Sequence

40

The duration can also be established by a later note-off message (a note with velocity of 0)
on the same pitch. When a note-off event is received after a corresponding note-on, the
delta time between the two events is used (actually, the sum of any delta times between
the two, if there were other intervening events) to set the duration of the note-on
message, and the note-off message does not actually get recorded as a separate event.

Letting detonate determine duration based on the delta time between note-on and note-off

A track number may be supplied in the 6th inlet, which is useful for separating recorded
note events into different streams to be saved as a multi-track MIDI file. Notes recorded
on different tracks show up as different colors in the graphic editor window, and the track
number can be used as a criterion for selectively muting notes in detonate or selectively
modifying them on playback.

The 7th and 8th inlets are for any additional information you may want to record as part
of a note event. For example, each note could be assigned its own vibrato depth and pan
position when recording, and those data would be sent out when the notes are played
back.

Additional data may be associated with each note event

The detonate Editor Window

Double-clicking on the detonate object in a locked Patcher opens a graphic editor window
for viewing and modifying its contents. The recorded notes are shown in the editor
window in a piano-roll-like view. Time is shown on the x axis, pitch is on the y axis, the

Detonate Graphic Editing of
a MIDI Sequence

41

duration of notes is proportional to their length, and the velocity of each note appears as a
number on it.

Detonate Graphic Editing of
a MIDI Sequence

42

Each track of a multi-track file is shown in a different color.

To select a specific note for editing, choose the selection tool from the palette in the upper
left corner of the window, then click on—or drag around—the note you want to edit. You
can select multiple notes by dragging around them or by Shift-clicking on them one at a
time.

You can change the starting time, pitch, or duration of the selected notes simply by
dragging on one of them with the selection tool (or the tweak tool for finer resolution
dragging). The cursor will change, depending on where you click on the note:

• If you click on the left side of the note you can drag horizontally to change the starting
time of the selected note(s).

• If you click on the right side of the note you can drag horizontally to change the
duration(s).

Detonate Graphic Editing of
a MIDI Sequence

43

• If you click in the middle of a note you can drag vertically to transpose the pitch(es).

You can also change the value of any of the parameters of the selected notes by dragging
on the number box objects at the top of the window.

If you want to add new notes to the score, you can simply draw them in with the pencil
tool. Where you draw determines the start time, pitch, and duration of the note; all other
parameters are determined by the values shown at the top of the window at the time you
draw the note.

Changing the View in the Editor Window

You can zoom in and out on the view of the score by clicking on the resizing arrows at the
bottom left corner of the window.

To zoom in on a particular spot in the score, choose the zoom tool and click on the spot
you want to enlarge. Option-click on Macintosh or Alt-click on Windows on the spot to
zoom back out.

Although the depiction of the note parameters is normally as described in this chapter,
you can change the depiction by reassigning the way each parameter is shown. When you
click on the icon to the left of a parameter name, the icon becomes a pop-up menu, letting
you choose how you would like that parameter to be depicted.

Detonate Graphic Editing of
a MIDI Sequence

44

So, for example, rather than showing velocity as a number on the note, you could choose
to show MIDI channel instead.

Icon becomes a pop-up menu for changing the display of a given parameter

As a matter of fact, by choosing Edit Parameter... from the pop-up menu, you can change
many other aspects of how the parameter is displayed.

Detonate Graphic Editing of
a MIDI Sequence

45

You can change the name of the parameter, its minimum and maximum possible values,
and the default value that will be used for that parameter in notes where it is left
unspecified. Graph Interval affects the view only if the parameter is displayed on the y
axis; it controls how often numbers will be shown along the y axis (every 12 semitones in
the above example). Default Scaling is a factor that determines the default zoom of the
axis on which the parameter is being displayed. 1 is maximum zoom, and larger numbers
are successively smaller scales. The values on the y axis can be displayed as MIDI notes
instead of decimal numbers only for parameter 1 (pitch); this option is disabled for all
other parameters. The start time (the leftmost parameter) is an exceptional case because it
can only be displayed on the x axis; so, for that parameter Graph Interval and Default
Scaling refer only to the x axis.

The fact that the name and characteristics of all the parameters can be so easily changed
suggests that detonate can actually be used as a collector of arbitrary lists of numbers. It is
designed for holding lists that represent note events, but the numbers can in fact mean
anything (as is true of almost all numbers in Max), so you can use it to store and recall
virtually any collection of lists of integers that you might want to represent and edit
graphically.

Editing Shortcuts

Certain keys on the computer’s keyboard are shortcuts for switching editing tools. If you
are currently using the pencil tool, holding down the Option key on Macintosh or the Alt
key on Windows switches you temporarily to the selection tool, and vice-versa. Holding
down the Command key on Macintosh or Control key on Windows temporarily switches
to the tweak tool, and the Control key on Macintosh or a Right-click on Windows
temporarily invokes the zoom tool.

Shift-clicking on a note adds it to, or removes it from, the current selection.

Techniques for Using detonate

To use detonate as a sequencer for timed playback of note events, you will need to a)
produce values for recording the duration and delta time parameters of each event and b)
use some sort of timing object to control the speed with which detonate sends out the note
data, presumably using the delta time value to determine the time between notes.

Detonate Graphic Editing of
a MIDI Sequence

46

The following example shows the simplest method for recording delta times and
durations directly from incoming MIDI note messages, in real time.

At the same time as we send the record message to detonate, we start the timer. Each note
message that comes in causes timer to report the elapsed time—which gets recorded along
with the pitch, velocity, and channel—and then restarts the timer. The duration value for
each note event is calculated by detonate itself. It measures the time elapsed between a
note-on and its corresponding note-off, uses the time difference as the duration value,
then throws away the note-off message.

It is noteworthy that detonate doesn’t have any sense of “real time.” It dutifully records the
received delta time, but it doesn’t really care how much time actually passes between
received messages. It simply stores note events in the order received. For that reason, it’s
very easy to record notes into detonate in non-real time, as with the “Step Record” feature
in many MIDI sequencing applications.

Using detonate as a non-real time “step” recorder

And, of course, just as the rhythm and note durations can be manufactured “artificially,”
all the other note parameters can likewise be generated algorithmically within Max, rather

Detonate Graphic Editing of
a MIDI Sequence

47

than being played in via MIDI. The following example composes and records a 1000-note
melody instantly at the click of a button, using mathematical expressions to calculate
different curves for pitch, velocity, panning, and rhythm. (You can examine and hear the
results in the example patch for Tutorial 44.)

When detonate receives a start message, it does nothing except send out the delta time of
its first note event. After that, each next message received causes detonate to send out the
rest of the data for the current note, and the delta time for the next note. So, the delta time
can simply be used as a delay time before sending the next next message, as shown in the
following example.

The delta time of the next note is used as the delay time before triggering the next note

When the very last note in the score gets triggered by a next message, there is no following
note, so detonate cannot possibly send out the next delta time. In place of a delta time, it
sends out -1, which is a signal that the last note has been played. Your patch can look for
that signal, and use it to trigger some process.

Detonate Graphic Editing of
a MIDI Sequence

48

In the following example, the end-of-score signal is used to restart detonate when the last
note has ended, in order to play the score in a loop.

A delta time of -1 signals that the last note has been played

Using detonate in a Timeline

A timeline event editor called edetonate can send list messages from a timeline. For any
timeline event that sends a list message to ticmd, an edetonate may be placed in the timeline
to represent that event. You can then double-click on it to open its own editor window,
draw in the note events, and when the timeline is played the notes will be sent out over
the period of time represented by the length of the edetonate in the timeline.

This means that the time units shown in the editor window of edetonate are actually
relative time units, because the real time in which they occur depends on the length of the

Detonate Graphic Editing of
a MIDI Sequence

49

event in the timeline. In the preceding example, for instance, each of the notes was drawn
into edetonate as a 1-second note, but because the event stretches out over precisely one
second in the timeline, the list messages will actually be sent to ticmd Notes every 1/6 of a
second when the timeline is played.

However, if you want the notes in edetonate to be played at exactly the same rate as they
were drawn in the graphic editor window, select the edetonate and choose Fix Width
from the Object menu. The length of the edetonate will be changed so that its notes play at
the same rate as they were drawn in edetonate’s editor window.

By selecting an edetonate editor and choosing Get Info... from the Object menu, you can
assign it a name. It will then share its contents with any other edetonate editors that have
the same name, or with a single detonate object that has the name as a typed-in argument
in a patcher.

You can also choose to have edetonate suppress note-off messages, by deselecting the Send
Note- Offs option. When Send Note-Offs is checked, edetonate uses the duration
information of the note events to decide when to send a corresponding note-off message
to ticmd.

See Also
detonate Graphic score of note events
follow Compare a live performance to a recorded performance
Sequencing Recording and playing back MIDI performances
Timeline Creating a graphic score of Max messages
Tutorial 44 Sequencing with detonate

50

Editing: Templates, Clippings, Prototypes and Shortcuts

An Overview of Editing Features

Starting with Version 4.5.5, Max includes a number of features in the patcher editing
environment that permit customization to make your everyday work with the software
more productive. This chart provides a brief description of these features, their purpose,
use and scope, and a listing of the location of the files.

Feature Useful For… How to Use Applies To… Location of files
Templates Creating common

starting points
Choose from File-
>New menu

Entire patcher
windows

:patches:templates

Clippings Adding commonly
used groups of objects
to patches

In an unlocked
patcher, control- or
Right-click on blank
space to get a menu,
then choose an item in
the Paste From…
submenu

Inserts a patcher’s
contents in another
patcher

:patches:clippings

Prototypes Creating pre-
configured user
interface elements

Select an object, then
choose Prototypes
from the Object menu

Individual user
interface objects

:patches:object-
prototypes

Shortcuts Reducing excessive
typing of object names
and arguments

Type shortcut then
press the Esc key

Text in object boxes Init folder in Cycling
’74 folder

Templates

Templates are probably the easiest to understand of the new editing features. The patches
folder inside the Max application folder contains a folder called templates. In this folder
you can place what some applications call “stationery.” In Max’s case, these are patcher
files you wish to use as a starting point for further work.

Editing Templates, Clippings,
Prototypes and Shortcuts

51

Here are the files you might see in a typical templates folder:

The New submenu of the File menu in Max reflects this organization as shown below.
Templates appear in the New menu below Patcher, Table, Text and Timeline.

Editing Templates, Clippings,
Prototypes and Shortcuts

52

When you choose one of these items in the New menu, the patcher file is opened, but the
window is untitled, unlocked, and not marked as modified. Here is the audiostart patcher
opened as a Template (we’ve made it smaller to fit on the page):

The idea of the audiostart template file is that pretty much every audio patch you make
will have a dac~ object, some gain~ sliders, a toggle to start audio etc. Why put them in
your patch manually each time?

Other templates might save particular sizes and shapes of patcher windows or include a
particular color background (that’s what the user did above with the colors folder). We’re
sure you’ll think of other Templates that will be useful starting points. For example, if you
write plug-ins, you could create a template with the plugin~, plugout~, and plugconfig
objects as well as the testing mechanisms you commonly use.

If you want to modify a template file, choose Open from the File menu and navigate to
the templates folder inside the patches folder inside the application folder. Only when
opened via the New menu do Template files behave differently.

Editing Templates, Clippings,
Prototypes and Shortcuts

53

Clippings

Many people end up patching the same little things every time they use Max. It doesn’t
help that much to use a subpatcher or abstraction for these “bits of code” because you
often want them in the same patcher that you’re working on. Abstractions have the
disadvantage that they can’t be modified easily. And both subpatchers and abstractions
put the commonly used group of objects in a different window where it’s hard to get to
them.

If you find yourself repeating the same patch over and over again, you might use the
clippings folder, located in the patches folder inside the Max application folder. The
contents of the clippings folder is added to submenus of the Paste From… item in the
patcher contextual menu. Perhaps you’ve never even used the patcher contextual menu,
but we think you should consider checking it out, because Paste From… could save you a
lot of time. Paste From… pastes the contents of a patcher file right into the patcher you’re
working on, with the top-left corner of the patcher window located at the current cursor
position (i.e., where you clicked to obtain the contextual menu).

To obtain the patcher contextual menu, control- (Mac) or right- (Windows) click in a
blank space in an unlocked patcher (i.e., not on an object or patch cord). Paste From… is
the last item and its submenu will list all of the patchers in the clippings folder.

Choose one of the items in the submenu. Its contents will be pasted at the location you
clicked to get the submenu.

Editing Templates, Clippings,
Prototypes and Shortcuts

54

For example, consider the following patcher window:

We saved the above window as a file called pasty in the clippings folder inside the patches
folder in the Max/MSP application folder.

Editing Templates, Clippings,
Prototypes and Shortcuts

55

Now we can use Paste From… to put this into another patcher, which could really use
some random notes.

Editing Templates, Clippings,
Prototypes and Shortcuts

56

Control- or right-click to obtain the Patcher Contextual Menu. Then choose pasty from
the Paste From… submenu. The objects in pasty appear where you clicked.

The Paste From… menu contents from the clippings folder contains some very basic
ideas to get you started. You can use the Other… item to open any patcher and paste its
contents into the patcher you’re working on.

Prototypes

Prototypes transform individual user interface objects with commonly used combinations
of settings.

Some Max user interface objects have a large amount of tweaky configurations you can
set in an Inspector window. In particular, you can make beautiful sliders and dials with
objects such as pictslider and pictctrl, but once you’ve made them, they’re probably sitting
in a patcher somewhere. You have to remember where the patcher is, copy the object out
of the file, and then paste it into the patcher you’re editing. Or, often as not, recreate the
object from scratch.

Editing Templates, Clippings,
Prototypes and Shortcuts

57

Prototypes turn retrieving pre-configured user interface objects into a one-step process.
Prototypes contain all of the settings for an object that you would otherwise set one at a
time in the object’s Inspector window.

Prototypes can be applied to all user interface objects except object boxes.

When you move the mouse over a user interface object’s icon in the patcher window
palette or scroll through the menu of icons to the right of the palette, you’ll see that some
objects have a number of prototypes listed in parentheses after the object description in
the assistance area of the patcher window. For example, the text below will tell you that
the pictctrl object has one prototype:

Picture Control (1 Prototype)

When you create a new pictctrl object, you’ll get a default object. It has a generic size, no
associated picture, and no behavioral settings. It’s pretty useless. But it can instantly be
made useful by selecting one of the object’s prototypes. Here’s how you do it:

When creating a new object, position the cursor where you want the object to go, then
click. But instead of releasing the button as you normally would do, hold it down for a
second or so. You’ll see a menu listing all of the available prototypes. Choose one and the
prototype will be applied instantly to the object.

Editing Templates, Clippings,
Prototypes and Shortcuts

58

• At any time after creating an object, select the object and choose an item from the
Prototypes submenu of the Object menu. The prototype you choose will be applied to
the selected object.

• Use the object contextual menu to obtain the Prototypes submenu when control- or
right-clicking on an object in a patcher. The prototype you choose is applied to the
object on which you clicked.

Applying a prototype is undo-able, but you can only apply a prototype to one object at a
time.

Editing Templates, Clippings,
Prototypes and Shortcuts

59

Saving Prototypes

Once you have a collection of object settings that you like, you can save it as a prototype
to use later. Select the object you want to save and choose Save Prototype… from the
Object menu.

Name the prototype in the window that appears, then click the Save button. Your
prototype is saved in a subfolder of the object-prototypes folder.

If you use an object with a prototype in a patcher you save, you don’t need to worry about
keeping the prototype around for the next time you open the patcher. The prototype
feature is really an editing tool, it merely replaces the object you have with a new object
that is created according to the instructions in the prototype file. In other words, unlike
an “abstraction” a prototype is not a reference to an object. If you save over an existing
prototype, all of the objects that were created with that prototype will be unaffected.

Prototypes and Object Data

A prototype can contain preset data from an object—check Include Data before saving
the prototype. The data in the existing object is always replaced, either by the preset data
in the prototype, or by the default data. In some cases, the “data” of an object is not
necessarily its preset data. For example, the text of menu items for the umenu and ubumenu
objects is saved with an object in a patcher, not in a preset (the current menu item
selected is saved in a preset).

Editing Templates, Clippings,
Prototypes and Shortcuts

60

An object’s connections, patcher scripting name (if any), and imageburger are preserved
when a prototype is applied.

Prototypes for the bpatcher Object

One of the most powerful uses of the Prototype feature is its ability to create a collection
of commonly used patcher elements using bpatcher objects. The prototype will save the
current settings of the bpatcher (for example, the visible area of its client patcher). This
could be useful if you are trying to create a catalog of visual “components” that you want
to patch together.

Patcher Selection of Text Objects

Storing data from objects in a patcher that you copy as text exposed an ambiguity about
selection in a patcher. When you click on an object box, message box, or a comment, have
you selected the box or the text inside the box? Here’s how Max works:

• When a box appears selected for text editing, and you copy or cut it, you copy the text
inside of the box to the clipboard, not the data for recreating the box.

• When the box is selected “as a whole” the box itself is copied to the clipboard (i.e., the
data for recreating the box) so you could paste a copy of the object somewhere else.

Max explicitly copies both the text inside the box and the box as a whole—when you have
clicked inside an text object to select the text for editing, the text from an object you
copied will be pasted. Otherwise the object as a whole will be pasted.

Clicking on a text object selects the text inside of it for editing. If you click and drag the
box somewhere before releasing the button, it will not be enabled for text editing (at least
visually).

Dragging around a box to select it does not select the text inside for editing (at least
visually).

For more information on setting options for selecting text in a patcher window, See the
description of the Text Selection... portion of the Option menu found in the Menus
section of the Max Fundamentals manual.

Editing Templates, Clippings,
Prototypes and Shortcuts

61

When the Typing Automatically Edits Selected Box option is on (which it is by default),
typing in an unlocked patch will route key presses to the selected text object and enable it
for editing even if it is selected as-a-whole. When it is off, the text must be visually selected
(as shown below) or there must be an insertion point in the text before you can edit it by
typing.

When the Select Text on Click option is on (which it is by default), clicking on a box
without moving it immediately selects the text for text editing. When it is off, clicking on
a box always selects it as-a-whole. Clicking on it again, selects all of the text, and clicking
on it yet again moves the insertion point to the place you clicked. This behavior is
consistent with the Mac OS X Finder.

A nice addition to all of this is the change to the role of the Enter key (on both Mac and
Windows). The Enter key now enters and exits text editing mode for a text object. Let’s
say you have an object selected as a whole…

Press Enter and the box’s contents are now ready to be edited as text.

Press Enter again and your changes (if any) are updated. The object is selected as a whole
again. Pressing Enter moves between the two selection modes.

Note that Windows XP machines only have an Enter key while Mac OS X
machines have separate Return and Enter keys. On Windows XP the
Enter key functions as the Mac OS X Return key and Shift+Enter
functions as the Mac OS X Enter key. So, on Windows XP pressing Enter
adds a new line while editing the text of a text object, and pressing
Shift+Enter toggles between text selection and box selection modes.

An Editing Options patcher has been added to the Options menu, for
changing the settings of Select Text on Click and Typing Automatically
Edits Selected Box,

62

Efficiency: Issues of Programming Style

Program Size and Speed

When you are writing very big, complicated patches, or are linking many subpatches
together inside one main patch, matters of program size and computational efficiency
come into play.

When you open a patcher file, each object in the patch is loaded into the internal memory
of the computer. A very large patch containing many objects and subpatches can take up
a considerable amount of memory and can take a long time to load. Therefore, you may
wish to consider how to build patches that avoid superfluous messages and objects.

There are usually several ways to accomplish the same programming task in Max, and
usually one way will be more efficient than another in terms of program size and speed.

There are three efficiency issues to consider:

1. The loaded size of a Max program is a function of the number of objects (and
subpatches), and the complexity of each one.

2. The load time of a complex program is also a function of the same two factors.

3. The “real-time” computational efficiency of a program is affected by the fact that
some objects are more efficient than others in operation and communication.

Principles of Efficiency

Since there are so many different kinds of messages that can be sent in Max, an object
often has to “look up” the meaning of the message it sends or receives. Computational
speed is achieved primarily by avoiding this message lookup. Look at the description of
the inlets and outlets of two connected objects in the Objects section to see if they share
the same message type. In this case, Max will not have to do any “interpretation” of a
message.

Efficiency Issues of Programming Style

63

gate, switch, Ggate, and Gswitch have no message lookup when a value is sent in a right inlet.
However, these objects always do a message lookup on output. Therefore, it’s better, for
integers, to use something like select or == if you’re looking for a specific number.

Message lookup is a factor in computation speed, and redrawing graphic objects takes time

If you’re not running in Overdrive mode, graphic objects slow you down because it takes
time to redraw the screen. If you are in Overdrive, they don’t slow you down, unless
there’s a message lookup involved. There is no message lookup with number box objects,
for example, because they handle only numbers.

A message lookup is always performed on the output of message boxes. Therefore, it’s
better to type a number into an object box—which creates an int object—if you want to
produce a constant value in an efficiency-conscious program. Of course you have to send
bang to such an object (whereas a message box can be triggered by a variety of messages in
its inlet), but if this can be arranged, it’s a bit more efficient than using a message box. In
the vast majority of cases, the difference in speed is negligible, but if enough instances like
this are added up, they can have a noticeable effect.

If you send the same message repeatedly through the same outlet of a message box or
other object whose outlets can send a variety of messages, a message lookup is generally
performed only the first time the message is sent (due to a feature called outlet caching).

Efficiency Issues of Programming Style

64

If you want to filter MIDI messages according to channel, it’s better to use a channel
argument in the MIDI receiving objects than it is to try and use the channel number
output to route information later.

Method A is the most compact and efficient, both in memory and speed

Memory Usage

If you have written a rather large program (and especially if you have a computer with
limited RAM) you will want to try and keep down the amount of memory your patch uses
when it is loaded. Doing so will also make your patch load faster.

Try to avoid doing similar tasks with many copies of a single subpatch, since copies of all
the objects contained within the subpatch are created for each instance of the subpatch
you use. It is better to design your subpatch to work with a variety of incoming values
than to use the #1-#9 argument feature to differentiate 50 copies of a subpatch.

There is a memory overhead of at least 100 bytes for every visible box on the screen,
though boxes in closed windows take up less space.

See Also

Encapsulation How much should a patch do?

65

Encapsulation: How Much Should a Patch Do?

Complex Patches

Once you start writing relatively complicated programs, try to build them out of different
parts, rather than one enormous, tangled patch in a single Patcher window. The way to do
this is to divide your program up into different Patcher files. The different files can be
subpatches of one main patch, so that they are all loaded when the main patch is opened.

Subpatches can communicate with each other via inlets and outlets, or via send and receive
objects, and they can share data by using coll, table, or value objects which have the same
name as an argument. There is no reason that a large and complicated program cannot be
composed of many smaller parts, and the advantages of this approach are considerable.

Modularity

There are several important reasons why it is a good idea to use a modular approach to
programming. One reason is that it makes it easier to verify that your program actually
works, especially in extreme or unusual cases. This becomes harder and harder to do as a
program grows in size and complexity. By building small modules and ensuring that each
one works as its supposed to in and of itself, you reduce the number of possible problem
spots when the modules are combined in a larger context.

A second reason is that many tasks in a program are used again in different contexts.
Once you have built a small module that performs a certain task, you can use that module
wherever the need for that task arises, rather than rewriting it each time.

Another reason is that many tasks in a program are similar to other tasks. By writing a
small, general-purpose module (usually one that takes arguments so that its exact
function can be modified by the argument), you can use that one module with different
inputs or arguments, to do many similar things.

Finally, by encapsulating different portions of the program, you make it easier for
yourself (or others) to see how the program works long after you develop it.

Encapsulation

The different modules of a program are best designed to encapsulate a single task. Name
the module for what it does, and reuse the module should you ever wish to perform the
task again in another program.

Encapsulation How Much Should
a Patch Do?

66

By keeping certain values in one place, you only have to change them once if you decide
they need to be modified. If the same values are distributed throughout your program,
you have to find every instance of that value, and change each one individually.

One way to keep values in a single place, yet still make them available to many different
objects is to store the values in a single file that can be accessed by any patch. For
example, many different patches can read in values from the same table file by using table
objects with the same filename as an argument. Changing the contents of that one file
then changes the values used by all the patches that share that file.

Messages between Patches

When designing small modules (patches) which will be combined in a larger program, it
is important to consider not only what the patch does internally, but also the context in
which it will be used. The context will determine what kind of messages you want each
patch to produce and accept. For example, you might wish to use a bang to trigger a
process, numbers to toggle something on and off or to provide values for calculation, or
symbols (such as start and stop) to control a more complex task such as a sequencer.

The simpler the messages that a patch receives and sends, and the simpler the function of
each patch, the greater the number of contexts in which that patch is likely to be effective.

Encapsulation and De-Encapsulation

You can use encapsulation to clean up a patch you are making by putting a group of
objects in a subpatcher.

Encapsulation How Much Should
a Patch Do?

67

• Simply choose the objects you wish to place in the subpatcher.

• Then, choose Encapsulate from the Edit menu.

The objects are swept into a newly created subpatcher, inlet and outlet objects are added
as appropriate. Don’t like what happened? You can undo it.

The inverse operation is also possible. Sometimes objects stuck in a subpatcher are
bothersome when trying to manage two windows to keep track of everything. You can
now bring objects in a subpatcher “home” to their parent patcher with the De-encapsulate
feature.

Encapsulation How Much Should
a Patch Do?

68

• Select a subpatcher

• Choose De-encapsulate from the Edit menu.

The subpatcher disappears and its contents are placed in the parent patcher, preserving
any existing connections. De-encapsulation can be undone too.

Documenting Subpatches

Here are three tips for documenting your own patches that will be used as subpatches:

1. Give your subpatches informative names, so you’ll remember what each one does.

Encapsulation How Much Should
a Patch Do?

69

2. Put Assistance text in each inlet and outlet object, to remind you of the inlet or outlet’s
purpose when using the patch.

3. If your subpatch is complicated, include comment boxes inside it to explain its
operation.

See Also

Debugging Techniques for debugging patches
Efficiency Issues of programming style

70

Errors: Explanation of Error Messages

Error Reports in the Max Window

Max prints an error report in the Max window when you make a programming mistake.
Below is a list of error messages you may encounter, along with likely causes of each
message.

“$” variable out of range
Occurs when you refer to an argument number out of the range $1-$9 in a message sent to
a message box.

<filename>: error opening file (and variations)
An error occurred opening a file that was properly located. Most likely the file or media
has a problem.

<objectname>: <filename>: can’t open
Occurs when a patch is loading or when an object is created that reads its data from a
separate file. The file that was to be read in automatically was not found in Max’s search
path or was not a type of file that the object is capable of opening. The erroneous filename
has usually been specified as an argument to an object such as coll, seq or table. Make sure
that the file is in Max’s search path.

<objectname>: bad argument
Occurs when creating a new object with typed-in arguments. There is something wrong
with what you typed after the name of an object. Usually the object is expecting a symbol,
and you typed in a number, or vice versa. Check the object’s argument specification list in
the Objects section.

<objectname>: bad arguments for message <message>
Occurs when an object receives a message that it understands, but one of the arguments
in the message is not what the receiving object expected. Usually the object was expecting
a symbol argument and got a number, or vice versa. Check the object’s input list in the
Objects section.

<objectname>: doesn’t understand <message selector>
Occurs when an object receives a message that it doesn’t expect. It is possible to make
patch cord connections that will result in improper messages being sent to an inlet. For
example, Max will let you connect the outlet of a message box to almost any inlet, because
there’s no way of knowing what message will come out of the outlet. In such a case, the
error does not become evident until you test the program and the message is actually sent.

Errors Explanation of
Error Messages

71

<objectname>: message too long <message>
A message was sent that contained more than 256 elements.

<objectname>: missing arguments for message <message>
Occurs when an object receives a message that it understands, but one or more of the
expected arguments in the message is missing. Check the object’s input description in the
Objects section.

<objectname>: No such object
Occurs when creating a new object or loading a document. When you are editing a
patcher, and you type the name of a nonexistent object into an object box (or the name of
an object or subpatch that is not in Max’s search path), Max produces this error message.

When you open a document that contains an object that Max cannot find (either because
it is not located in Max’s search path or because it just doesn’t exist), Max displays the
object as if it existed, except that the object name is surrounded by a dotted outline in the
object box, and an error message is printed in the Max window. This preserves the
connections to the object box in case you can retype the object to create it properly.

A similar box is created when a user interface object referenced inside a file cannot be
located.

<objectname>: fragment file not found
This error occurs when a collective references an external object that has been improperly
stored in the collective. It should not happen with the current version of Max.

<objectname>: <filename>: file not found
This error occurs when a file name is either passed to an object as the argument to a read
message or stored within an object saved within a patcher. The file cannot be located,
either within Max’s search path or with its full pathname.

<symbol>: bad arg types
Occurs when a patch is running and a symbol is received in the inlet of a bitwise operator
such as &, |, <<, or >>. Make sure that only number messages are sent to bitwise
operators.

<symbol>: no such object
Occurs when a message is sent to a send object, or to a message box that contains a

Errors Explanation of
Error Messages

72

semicolon followed by the name of a receiver, and there is no receive object with the name
specified in the send object or message box.

<number>: not a symbol
Occurs when the element that follows a semicolon in a message box (specifying a receiver
for the message) is not a symbol.

<filename>: bad magic number
<filename>: corrupt binary format file
The file you tried to open is corrupted or is not a properly formatted Max document.
Restore the file from a backup copy if available.

<filename>: error creating file
There was an error writing a file; the disk may be write-protected or full

<filename>: out of memory writing file
There is insufficient memory to write the file you’re trying to save. If possible, close other
files and windows that don’t relate to the file you’re saving.

ad: Floating point exceptions were caught <number of exceptions>
(Windows only) This message is sent to the max window when audio is stopped if
floating point exceptions were caught while processing audio. The tells you how many
exceptions were caught to give you an indication of the severity of the problem. This can
be triggered by underflow of floating point operations causing denormal numbers to be
generated. You may want to try modifying your patcher to cause the exceptions to stop as
it may impact the performance.

admme: unable to open wave input device.
admme: unable to open wave output device.
admme: unable to start output.
admme: unable to start input.
ad_mme: stopping due to error.
ad_mme: No MME input or output devices found.
(Windows only) Please check that you have the latest driver update for your audio device.
Please exit all other audio applications, reboot if necessary, and try again. Also, please
check your settings in the DSP Status window to insure appropriate choices are selected
for Input Device, Output Device, Sampling Rate, IO Vector Size, and Signal Vector Size.
If the problem persists, contact Cycling '74 support.

ad_directsound: can't create directsound object.
ad_directsound: can't create directsoundcapture object.
ad_directsound: Failed to set cooperative level to priority.

Errors Explanation of
Error Messages

73

ad_directsound: Failed to create primary buffer.
ad_directsound: Failed to set format of primary buffer.
ad_directsound: failed to create output DirectSoundBuffer.
ad_ds: No directsound input or output devices found.
ad_directsound: unable to Play output buffer.
ad_directsound: unable to Start input buffer.
ad_directsound: stopping due to error.
(Windows only) Please check that you have the latest driver update for your audio device.
Please exit all other audio applications, reboot if necessary, and try again. Also, please
check your settings in the DSP Status window to insure appropriate choices are selected
for Input Device, Output Device, Sampling Rate, IO Vector Size, and Signal Vector Size.
If the problem persists, contact Cycling '74 support.

ASIOCreateBuffers error
(Windows only) A problem was encountered initializing the ASIO device. Please check
that you have the latest driver update from your audio device manufacturer. Please also
try different settings for the device buffer sizes and latency in the control panel for your
audio device provided by your device manufacturer. Check that another audio
application is not using the audio device. Also check that the audio device is not the
default audio device for Windows System Sounds.

bad message
Same as <objectname>: doesn’t understand <message selector>.

bad receiver
Same as <objectname>: doesn’t understand <message selector>.

bag | float | int | pack | table: missing or incorrect arguments to send
Occurs when the patch is running and a bag, float, int, pack, or table object receives a send
message without an argument, or with an argument that is not a symbol or is not the
name of an existing receive object.

can’t connect <objectname> to <objectname>
Advisory message produced when you try to connect an outlet to an inlet that doesn’t
understand the message sent by the outlet. You will also notice that the inlet was not
highlighted when you dragged the mouse over it.

can’t fragload <objectname>: missing <libraryname>, err <number>
An external object that depends upon a particular shared library was not loaded because
the shared library is not available. You’ll see this error if you try to use an object for MSP
with the non- MSP version of Max (the missing library will be called MaxAudioLib in this
case) or if you try to use some external objects created for an earlier version of Max/MSP

Errors Explanation of
Error Messages

74

(e.g., attempting to load an OS 9 external in an OS X version of Max/MSP).Otherwise, to
solve this problem, you may need to relocate the shared library or update your system.

check failed: t_newptr in overdrive
This message occurs when an object attempts to allocate too much memory at interrupt
level. Unless it represents a bug in the object, it may mean that you’ll have to modify your
patch to use a defer object where memory is being allocated. One example would be
attempting to store large lists of data in a coll object. See the defer object page in the Max
Reference manual for more details.

check failed: <message>
Occurs when there is a bug in the Max application or in an external object. Please report
the con- tents and context of any such message to Cycling ‘74.

could not load QuickTime function:
(Windows only) A necessary QuickTime function was not found. Make sure you have
installed QuickTime for Windows and chosen a complete install of all optional
components.

Error loading external file <filename>
Occurs when Max is installing an external object in the startup folder. The external object
file is damaged. Try restoring a copy from the original disk.

funbuff: bad file type
funbuff: file not found
Occurs when a patch is loaded or when a funbuff object is created that reads in from a
separate file. There was an error in reading a file into a funbuff, either because the file was
not in the proper format (it must start with the word funbuff, followed by a space-separated
list of numbers) or because a Max or text file with that name could not be found. Ensure
that the file is in located in Max’s search path, and that it is in the proper format.

grab: can only connect to leftmost inlet
Occurs when you try to connect the right outlet of a grab object to the wrong inlet of
another object. The right outlet of grab should be connected only to the leftmost inlet of
other objects.

graphic: <name> already exists
Occurs when you create a graphic object with a name that has already been taken by
another object, such as a table or send/receive pair.

Errors Explanation of
Error Messages

75

inlet: wrong message or type
Occurs when a patch is running and an object receives a message that it doesn’t expect in
some inlet other than the left inlet.

midi_mme: unable to open midi input device
midi_mme: unable to open output device
(Windows only) Max was unable to open the midi input or output device. Please exit
from all other midi applications and try again.

MSP/ASIO: Unexpected error loading driver
MSP/ASIO: error loading ASIO driver for
MSP ASIO: Error loading driver
(Windows only) A problem was encountered loading the ASIO driver. Please check that
you have the latest driver update from your audio device manufacturer. Check that
another audio application is not using the audio device. Also check that the audio device
is not the default audio device for Windows System Sounds.

MSP ASIO: : initialization error
MSP/ASIO: : can't deal with bufsize
MSP/ASIO: : data format <format> not supported
MSP/ASIO: : driver start error
(Windows only) A problem was encountered initializing the ASIO device. Please check
that you have the latest driver update from your audio device manufacturer. Please also
try different settings for the device buffer sizes and latency in the control panel for your
audio device provided by your device manufacturer. Check that another audio
application is not using the audio device. Also check that the audio device is not the
default audio device for Windows System Sounds.

no inspector for <objectname>
The inspector patch for an object that expects to have an inspector cannot be found when
you choose Get Info… from the Object menu with the object selected. Inspector files are
normally in a folder called inspectors within the patches folder, and their names are of the
form <objectname>-insp.pat. But they can be located anywhere in the search path as long
as the name is properly constructed.

no resource <filename>
This error occurs when you are testing a standalone application and the Search for
Missing Files option has been turned off. The named object or file has not been included
in the collective from which the standalone was created, and since the runtime Max is not
going to look for the file, it declares it missing after it was not found inside the standalone
as a resource.

Errors Explanation of
Error Messages

76

not enough memory to open <filename>
<filename>: can’t load, out of memory
The file is too large to be opened. Note that to open a patcher file you need more memory
than would be required to actually use the file.

object box has comma or semicolon:
Indicates that you typed a comma or a semicolon character into an object box. If this
error occurs when reading in a patch, it’s like that the file is damaged.

offscreen buffer couldn’t be allocated
Insufficient memory available when working with objects in a graphic window

patcher: unknown script keyword <keyword>
A keyword argument to the script message to sent to the thispatcher object is not
recognized.

patcher connect: inlet <number> out of range
Occurs when editing the name or arguments of an object that has already been created in
a patcher, and patch cords that used to be connected to the object can no longer be
connected. Changing the contents of the object box may change an object’s number of
inlets or outlets, or Max may be unable to create the object at all if you type in the wrong
thing.

QT images not supported in 8 bit color mode
(Windows only) You are trying to load a QuickTime image but your display resolution is
set to 8- bit color depth. Change your Display Settings to increase your Color Depth,
preferably to 24 or 32 bits.

read failed
Occurs when a file is read into an object. Max encountered an error reading a file and
could not load in the data. Check to make sure that the file is in the proper format for the
object reading it in.

rescopy: failed to add XXXX N, error N
Occurs when installing an external object. This message (especially if you see a lot of
them) may indicate a problem with the Max Temp file used to store resources for external
objects. If you only see one or two of these errors, it may be a resource missing in the
object or a conflict between two or more objects attempting to use the same ID number.
If XXXX is STR#, this problem only affects the strings shown when getting assistance on
an object and should not be considered a major problem.

Errors Explanation of
Error Messages

77

rescopy: failed to get <resource type> <ID number>
Occurs when installing an external object. The external object file is corrupted. Restore a
new copy of the external object from your original disk.

script: <keyword>: variable <variablename> empty
Occurs when a script message to the thispatcher object references a variable that is no longer
assigned to an object.

script: <keyword>: no variable <variablename>
Occurs when a script message to the thispatcher object references a variable that has not yet
been defined or given a value.

script: instance <number> of <objectname> not found
Occurs when using the nth script message to the thispatcher object and the specified index
is greater than the number of objects of the specified class in the patcher.

script: name <variablename> already in use
Occurs when a script message to the thispatcher object attempts to assign an object to a
variable name that is already been used. This error will not occur if you choose Name…
window from the Object menu to assign a name to an object.

send: <symbol>: already exists
receive: <symbol>: already exists
Occurs when you type in a name as an argument to a send or send receive which is already
being used for a table or other object.

sxformat: illegal type in message
Occurs when the patch is running and some message other than an int is received in the
inlet of sxformat.

text: <filename>: file is protected
You’ve tried to open a Max binary patcher file protected against editing as text

textbox: bad args
Occurs when opening a Max document. The document has been damaged.

Unable to load MaxQuickTime.dll. Error code.
(Windows only) A required component of Max was missing. Try reinstalling to see if it
fixes the problem. If not please contact Cycling '74 support and provide the message and
that was reported.

Errors Explanation of
Error Messages

78

warning: extra arguments for message
Occurs when an object is given more typed-in arguments than it expects, or when too
many arguments are present in an incoming message. Usually this is just a warning of
something that’s not quite right but is basically harmless.

warning: <objectname>: no port <symbol>, using <default port>
Occurs when a port argument is typed into the object box of a MIDI object, and the port
name is not currently valid. The valid port names are listed in the MIDI Setup dialog box.
The default port is the first name in the device list in the MIDI Setup dialog.

Error Dialogs

When an error occurs that requires your immediate attention, the error is reported in a
dialog box. The following errors can appear in dialogs.

Choose Resume from the Edit menu to restart the Max scheduler…
It is possible to get Max working so hard it doesn’t have time to respond to your
commands (say, if you have a number of metro objects sending out bang messages as fast as
they can, or if you have created a loop that overloads Max, causing a Stack Overflow error).
Holding down the Command key on Windows or the Control key on Windows and
typing a period will stop Max’s scheduler, giving you time to turn off some of the
overloading processes. When Max’s timer is stopped, the above message is shown in a
dialog box. Choose Resume from the Edit menu to restart Max’s timer.

No help available for <objectname>.
A help file in the max-help folder can’t be located for the named object. Restore the help
file from your original Max disks.

Stack Overflow
Occurs when an object’s output is being fed back into its inlet in some type of loop. After
stopping the process that is causing the stack overflow, choose Resume from the Edit
menu to restart Max’s scheduler.

See Also

Debugging Techniques for debugging patches

79

Files: How Max Handles Search Paths and Files

When Max Looks for a File...

Max may look for a file at several different times. Here are some examples:

• When you open a patcher that contains an external object that has not been used yet,
Max will search for the file that corresponds to that object.

• When you open a patcher that contains a subpatcher that is a file (i.e., it doesn't begin
with the word “patcher” or “p”), Max will search for the patcher.

• When you send the message read with a file name argument to an object such as table
or coll, Max will search for the named file.

Here is how Max searches for files.

The first place Max looks for a file is the default location. If you have selected a patcher
file from an Open File dialog, the default location will be the folder containing that file. If
you have not loaded a file yet, the default location will be the folder containing the Max
application. The default location changes dynamically, as you open files in Max. The
default location is only a single folder—if you open a patcher file from folder A,
subfolders of A are not searched.

The next place Max looks for a file is what we call the search path. The search path is
partially configured using the File Preferences window. The search path includes files
inside the folder containing the Max application you are currently using, as well as the
entire contents of the Cycling ’74 folder, located at /Library/Application Support/Cycling
’74 on Macintosh and C:\Program Files\Common Files\Cycling ’74 on Windows. The
folders inside the Max application folder are searched before those in the Cycling ’74
folder.

The standard Max installation contains patcher and data files inside folders within the
Max application folder, and external objects inside the Cycling ’74 folder. See below for
more details about sub-folders of the Cycling ’74 folder.

More Details About Searching:

• When a folder is listed for searching in the File Preferences window, all subfolders of
that folder are added to the search path as well.

Files How Max Handles
Search Paths and Files

80

• Max searches for files in a depth-first order—if there is an entry called patches in the
search path followed by one called examples, Max will search all the subfolders of
patches before it looks at examples.

Speeding up file searches

It is possible that your max search path can contain many files. When max searches for a
file generally it looks for a file from a set of file types such as audio files, images, or max
patcher files. For example, a search may be done for an image file named “my_bg_image”.
If an exact match is not found for the base file name then an extended search is done
looking for the base name with matching file extensions such as ‘.pct’, ‘.jpg’, etc.

To speed up such searches a cache is used to speed up file searches by building a
representation of the search path in memory. If you prefer to use this memory for other
purposes you can disable the file cache by removing the file “pathcacheenabler.txt” from
the init folder in the Cycling ’74 folder.

What’s in the Cycling ’74 folder

You can add folders to the Cycling ’74 folder and they will automatically be included in
the search path the next time you launch Max. But some folders have specific names that
cannot be changed without affecting the operation of the software.

The max-startup folder contains external objects that are loaded at startup. You can add
anything to this folder, including patchers, that you want loaded at startup. Note that the
contents of any folders inside the max-startup folder will not be loaded at startup.
Generally, the max-startup folder contains user interface external objects that need to be
shown in the patcher window’s palette.

The init folder also executes all of its items at startup, but it is generally not used for
external objects. Instead, it contains text files that configure how Max works. You can add
additional items to the init folder, but you shouldn’t modify the existing files unless you
know what you are doing. The init folder is handled before the max-startup folder, and it
is also used with the runtime version. The max-startup folder is not loaded by the
runtime version.

The ad folder, included with MSP, contains audio driver objects. See the MSP
documentation for more information.

The mididrivers folder contains one or more MIDI driver objects.

Files How Max Handles
Search Paths and Files

81

The externals folder contains all of the external objects not in any of the other folder. It
can be renamed if desired. Installers for collections of external objects, such as Cycling
‘74’s Jitter, may install additional folders inside the Cycling ’74 folder, or place folders
inside the externals folder.

File Path Syntax

A file path is a way to specify the location of a file. You’re probably familiar with these
specifiers in URLs used in web browsers. Here’s an example:

http://www.cycling74.com/products/dlmaxmsp.html

This specifies that the file dlmaxmsp.html is inside the products folder which is inside the
root level of the Cycling ’74 web site.

In a similar way, you may want to tell Max about a file or folder location on your hard
drive. Max has several options for specifying file locations. First, you can choose to use
the cross-platform slash (/), the Macintosh-native colon (:), or the Windows-native
backslash (\) to separate folder names. However, the backslash is used in Max as an
escape character and may lead to unexpected behavior, so we encourage you to use the
slash.

Here are some acceptable examples of file locations:

C:/MaxFolder/extras/mystuff/mypatcher.pat (cross-platform, using slashes)

Disk:MaxFolder:extras:mystuff:mypatcher.pat (Macintosh-specific using colons)

C:\MaxFolder\extras\mystuff\mypatcher.pat (Windows-specific, using backslashes)

Versions prior to 4.3 on the Macintosh used colons for separating path elements.

Max objects that accept paths as input will recognize slashes, colons, and backslashes, but
they will generally output file paths using the cross-platform pathstyle. The conformpath
object can be used to convert among different path location conventions.

In addition to the choice of separator characters, you can choose to specify a file or
folder’s location with:

• an absolute path, starting with a hard disk name as shown above

Files How Max Handles
Search Paths and Files

82

• a path relative to the Max application, starting with a ./(cross platform), : (Macintosh),
or .\ (Windows), for example: ./patches is the patches folder inside the Max application
folder

• a path relative to the Cycling ’74 folder, starting with c74:, for example,
c74:externals/buddy.mxe

• a path starting with the boot volume, starting with ^ (Macintosh, for use with the
colon syntax), / (cross-platform), or \ (Windows). For example
/Documents/mystuff/mypatcher.exe

• a file anywhere in the search path or default folder, which contains no path separator
characters at all

File Types and Filename Extensions

On Windows, Max uses filename extensions—a period, followed by a series of letters—as
the basis of the way the application knows what file format is associated with a given
application. If a file does not have an extension, Max can look at its contents and to try to
determine what kind of file format it might be. We refer to this as “sniffing” the file.

On Macintosh, Max classifies files first by checking their Mac OS-specific file type
information. In the absence of such information, Max looks at the file’s extension. If
neither of these are definitive, it will “sniff” the file to try to determine its format.

Cross-platform Filename Extensions

The following filename extensions are recognized on both Macintosh and Windows:

Extension Description

Files How Max Handles
Search Paths and Files

83

.pat Max patch file (in either Max binary or text format file)

.help Max help file (in either Max binary or text format file)

.txt Generic text file (Max patcher in text form or other Max text file)

.mxb Max binary patcher format

.mxt Max text format patcher file

.mxf Cross-platform Max collective format

Windows-only Filename Extensions

The following filename extension is recognized on Windows only:

Extension Description

.mxe Windows-only external object

Files How Max Handles
Search Paths and Files

84

Macintosh-only Filename Extensions

The following filename extensions are recognized on Macintosh:

Extension Description

.mxd Macintosh-only external object

.mxc Old format (pre-version 4.3) Macintosh-only collective

Mapping Filename Extensions to File Types

A file type (or file format) is a description of how information in a file is arranged. For
example, different audio file formats, such as WAV, are specified so that different
applications can read and write sound data. The file format tells the application where to
expect the sound data, the sampling rate, and other information. Just about every
application you use will store information in one or more file types or formats.

File extensions are associated with file types by using the fileformat message to max. The
standard set of associations, which you can modify if you want, is found in a file called
max-fileformats.txt in the init folder inside the Cycling ’74 folder. A second file for audio
file types, audio-fileformats.txt, is also present if MSP is installed.

These files consists of a series of messages that take the following form

max fileformat <extension> <filetype> [<description>];

For example, the entry max fileformat .txt TEXT; tells Max that files ending with .txt are text
files. These four-character filetype codes were originally used as Mac OS type
information, but they are used internally by Max on all platforms to specify file formats.

The <description> in square brackets above is optional and is used to provide a
description on Windows XP that is displayed in the file open and save dialog boxes. For
example, rather than displaying maxb to the user it could display Max Patcher.

Files How Max Handles
Search Paths and Files

85

Here is a list of the standard associations between filename extensions and file types.

Extension File Type Description

.pat maxb, TEXT Max patch file (in either Max binary or text format file)

.help maxb, TEXT Max help file (in either Max binary or text format file)

.txt TEXT Text file (Max patcher in text form or other Max text file)

.mxb maxb Cross-platform Max binary patcher format

.mxt TEXT Cross-platform Max text format patcher file

.mxf mx@c Cross-platform Max collective format

.mxd iLaF Macintosh-only external object

.mxc maxc Old format (pre-version 4.3) Macintosh-only collective

Note: Case is important: MAXB is an entirely different format than maxb. An extension can
be associated with more than one file type. In that case, Max will have to look at the file’s
contents to see if it can determine the type. For example, files ending in .pat could be either
text or Max binary format. Historically, on Macintosh, OS-specific file type information
determined the nature of the file, but when this is absent, the extension alone is
ambiguous.

However, most file extensions are not ambiguous, and map one-to-one to file formats.

Mapping file types and file extensions are important in several situations when working
with Max:

• Files with designated extensions that do not have type information in them will show
up in the Open File dialog where they might not otherwise appear. For example, if
you have an object that opens sound files of type AIFF. Without a file extension
mapping, files without AIFF type information stored in them would not appear in the
Open File dialog. If you map the extension .aiff to this type, a file with a name like
sound.aiff would be one that you could select.

• Files can be found without requiring the extension as part of the name. For example,
assuming that .pat file extensions have been mapped to Max binary file formats
(maxb). You can type foo into an object box to load a patcher file, and if there is a file

Files How Max Handles
Search Paths and Files

86

in the search path called foo.pat, it will be loaded. Note, however, that if there were a
file called foo anywhere in the search path with the proper Macintosh type
information or, on all platforms, was actually the right type of file (after Max
examined its contents), it would be found before foo.pat. This is because Max goes
through its entire search path looking for an exact match before it tries to match
based on filename extensions.

To associate a file name extension with a file type, within a patcher you can simply type
the message to Max into a message box, preceded with a semicolon (e.g., ; max fileformat .txt
TEXT.). This may be useful if you don’t want a file name extension and file type to be
automatically associated every time you launch Max.

External Object Name Mappings

There are other files in the init folder used to specify mappings between object names and
file names. On some operating systems, it is not possible to use certain characters in
filenames. However Max, has traditionally had object names with some of these
characters in them. In order to avoid problems with these objects, a mapping between an
object name and a filename can be established using the objectfile message to the max
object. For example:

max objectfile !- rminus;

specifies that when you type !- into an object box, Max will look for an external object file
called rminus. In addition, when you ask for help on the !- object, Max will look for a help
file called rminus.help, not one called !-.help.

Max-specific mappings are found in a file called max-objectmappings.txt. MSP-specific
mappings are in a file called audio-objectmappings.txt.

As with the fileformat message to max, the objectfile message can be sent within a message
box. But placing it in a file in the init folder ensures that mappings are available each time
you use Max.

Developers of third-party external objects can add their own files to the init folder with
object name mapping messages in them.

87

Graphics: Overview of Graphics Windows and Objects

Introduction

Max has several objects for color graphics and animation. These objects use the same
principles as objects that are used for music processing, so a single patcher can combine
user interface, music, and graphics functions. This allows you to experiment with various
ways of combining and synchronizing sound and image.

There are three ways you can present graphics in Max: in a Patcher window, in a
QuickTime movie window, or in a special graphics window. Most graphics objects draw
within special graphics windows, associated with a graphic object. Each graphic object is
given a name, and each object that draws something must have the name of a graphics
window as an argument.

When Max is in Overdrive mode, objects that draw graphics are de-prioritized, so that a
process that both plays music and displays graphics can run at any speed and the music
will not be affected by the speed of the display. For example, if an animation would
ordinarily fall behind the music, the animation automatically skips frames to keep up.
(User interface objects such as slider objects do this too, by the way.)

All the objects that draw graphics are external objects, and additional graphics objects can
be written by C programmers. Each object that draws in a graphics window is a sprite
associated with a particular window. Sprites allow objects to pass in front of or behind
each other according to a priority number. Higher-numbered sprites are drawn in front of
lower numbered sprites. The priority number of these graphics objects can be changed
with the priority message.

Graphics In a Graphics Window

You need a graphic object in your patch to open a graphics window. Once you have a
patch containing a graphic object, you need one or more drawing objects. There are three
basic objects included with Max for drawing in a graphics window: members of the oval
family (oval, rect, ring, and frame) which draw shapes and pict, which displays PICT files.
The first argument of any drawing object is the name of the graphic object whose window
will be used for drawing. The graphic object need not exist at the time the drawing object
is created, but the drawing object will do nothing until there is a valid (and visible)
graphics window with the same name specified as drawing object’s argument.

Here is a simple patch that draws a black oval within the rectangular pixel area
50,50,100,100 in the graphics window titled Display when the user clicks on the button.

Graphics Overview of Graphics
Windows and Objects

88

The oval has six inlets, for left, top, right, and bottom screen location, drawing mode, and
color (index into the graphics window’s palette). A list of four numbers sent to an oval
object causes it to draw within the pixel coordinates specified in the list: left, top, right,
and bottom.

 A graphics window titled Display appears when the graphic object is created. Below you
can see the result of clicking on the button in this patch.

If the oval is redrawn with different coordinates, the old oval is erased automatically,
because the oval acts as a sprite which has changed location (and possibly size).

Ways to Move Objects

Two useful objects which let you move a sprite-based object such as an oval across the
screen are line and mousestate. line can move the sprite smoothly in a trajectory, while
mousestate can be used to make a sprite follow the mouse.

Graphics Overview of Graphics
Windows and Objects

89

Here is a program that uses line to move an oval from one side of the window to the other.
Notice that only the left and right coordinates are being changed by the output of the line
object.

The next example uses mousestate to follow the mouse. When mousestate receives the poll
message with the name of a graphic object as an argument, it will begin polling the mouse
when the associated graphics window becomes the active window (or, if All Windows
Active is enabled in the Options menu, it polls all the time). The local coordinates of the
mouse in the graphics window are sent out the second (horizontal) and third (vertical)
outlets of mousestate.This patch draws an oval, centered at the mouse location, which
changes color each time the mouse is moved.

Any picture that is saved as a PICT file can be displayed in a graphics window with the
pict object. The PICT is displayed in the graphics window at full size, and the location of
its upper left corner is determined by the numbers received in the second and third inlets
of the pict object. (So in most cases you’ll want the area of your PICT to be only large
enough to contain the image you want to display, with no extraneous white space around
it.) Its placement in the window and its sprite priority can be controlled similarly to the
geometric shapes described above.

Graphics Overview of Graphics
Windows and Objects

90

QuickTime Movies

If you have QuickTime installed on your computer, you can play QuickTime movies in
Max using the objects movie and imovie. The two objects function very similarly. The movie
object displays the movie in a window of its own, and imovie is a user interface object
which displays the movie in a box inside a Patcher window.

The standard QuickTime controls are available in the form of a separate user interface
object called playbar, the outlet of which is to be connected to the inlet of a movie or imovie
object. You can also control movie and imovie directly with messages such as start and stop,
you can change its speed with the rate message, you can jump to any frame in the movie
immediately simply by specifying its location in the movie, and you can shuttle back and
forth with the prev and next messages.

Using the pitchbend wheel to shuttle
back and forth through the

movie

Using hslider to control the speed of the movie

Graphics in a Patcher Window

There are a number of ways to design the graphic appearance of a Patcher window. You
can copy a picture in PICT format from another application and place it in your Patcher
by choosing the Paste Picture command from the Edit menu in Max. You can also use
the fpic object to load a separate PICT file into your patch. Using pictures—in
combination with the transparent button object ubutton—and the various graphical user
interface objects provided, you can give your user interface any appearance you wish. You
can even change the appearance of a patcher automatically while it’s running by sending
an offset message to a bpatcher object, thus displaying a different portion of its embedded
patch.

The imovie and lcd objects allow you to build animation and drawing capabilities right into
your Patcher window. The lcd object understands messages similar to basic QuickDraw

Graphics Overview of Graphics
Windows and Objects

91

commands, such as moveto, lineto, paintoval, paintrect, frameoval, framerect, etc., so you can write a
patch that paints automatically directly into its own Patcher window. The messages move
and moveto are used to place the cursor, the messages color and penmode govern the way
pixels will be painted, and the other commands draw lines, shapes, or letters in the lcd
object.

Drawing with the pitchbend wheel in the lcd

The lcd object also responds to mouse movements in the manner of a color painting
program. When the user clicks or drags within it, lcd draws using the selected color (based
on the most recently received color message), and also reports the coordinates of the
mouse—with respect to the upper left corner of the lcd—out its outlet. Thus, the drawing
motions can be used to generate music, as well, as demonstrated in the following
example.

Drawing in lcd to play notes with the mouse

The imovie object lets you embed a QuickTime movie directly into your Patcher. It
displays the movie in the same way as the movie object (see QuickTime Movies above),
and reports the mouse location whenever the mouse is clicked within it.

Graphics Overview of Graphics
Windows and Objects

92

See Also

graphic Open a graphics window
imovie Play a QuickTime movie in a Patcher window
lcd Draw QuickDraw graphics in a Patcher window
mousestate Report the status and location of the mouse
movie Play a QuickTime movie in a window
oval Draw solid oval in graphics window
pict Draw picture in graphics window
Tutorial 42 Graphics
Tutorial 43 Graphics in a patcher

93

Interfaces: Picture-based User Interface Objects

Getting the Picture

The pictctrl, pictslider, and matrixctrl objects are user-interface object for creating buttons,
sliders, switches, knobs, and other controls. These objects can open PICT files and, if
QuickTime is installed, other picture file formats that are listed in the QuickTime
appendix found in the Max Reference Manual. Since the these objects use images from
picture files for their appearance, you can create these files using any graphics program
(such as Photoshop™ or Canvas™) with whatever appearance you desire

Each picture-based control expects the picture file to be in a particular layout. The layouts
vary somewhat depending on the control, but they have some common characteristics:

• Each picture file contains a rectangular array of one or more images. Each image
represents one state of the control. The state of a control includes its current value,
whether the user is clicking it with the mouse, and so on. At any given time, the user
sees only one image from the array contained in the picture file.

• All images in the array are the same size. This size may correspond to the size of the
object as it appears in the Max patcher, or the object may alter the image’s size.

• Some parts of the array are optional. For example, the controls can optionally display
a different image when the user clicks them. You do not need to create blank images
in the array for optional images that your control doesn’t use. Just leave the row or
column out of the array altogether.

• The manner in which the control chooses what portions of the picture file to display
is determined by the object’s attributes that you set with its Inspector and by the
overall dimensions of the picture in the file.

Picture File Construction

The easiest way to understand how picture files must be constructed, and how the
corresponding object attributes must be set, is to look at some examples.

We’ll look at several examples using pictctrl. The pictctrl objects use only one picture file, so
it’s the simplest to work with.

A simple button control has only two states: either the user is clicking on it, or not. Thus,
a pictctrl being used as a button needs a picture file with two distinct images—one for the
clicked state, and one for the idle state.

Interfaces Picture-based
User Interface Objects

94

Our pictctrl-based button will look like this when it is idle:

and look like this when it is clicked:

Yes, it’s just a boring grey rectangle with a square inside it, which turns yellow and red
when you click it.

The picture file for this pictctrl would look like this:

The image for the idle state is on the left, and the image for the clicked state is on the
right. The appropriate image is shown based on the state of the control, and the other
image is hidden. We’ve included this file, called boring button.pct, within the picts folder
inside the patches folder. By default this folder is in the Max search path.

To use this picture in a Max patcher, you would add a new pictctrl object to your patcher
and then choose Get Info... from the Object menu to open the object’s Inspector. Click
the Open... button near the bottom of the pictctrl Inspector to choose this picture file.
That’s all you have to do, since the default mode of pictctrl is button mode.

Making Toggles

Next we’ll look at a picture file for a pictctrl that uses the toggle mode. The pictctrl object’s
toggle mode emulates “push-on push-off” buttons found on some hardware: you push
and release them once to turn something on, and push and release them again to turn the
same thing off again. They “toggle” between two states, off and on. In a more general
sense, they toggle between two values, zero and one. The standard checkbox you’re used
to using in dialog boxes works this way too.

Interfaces Picture-based
User Interface Objects

95

Since the control can have two values, and the mouse button can either be idle or clicked,
the pictctrl object’s toggle mode has four states. We might draw a chart to represent these
four states:

Mouse Button
Idle Clicked

Control
Value

0

1

Idle
0

Idle
1

Clicked
0

Clicked
1

Each of the four quadrants in the chart represents one state of the control—a
combination of its current value and the position of the mouse button.

This chart is arranged the same as the layout required for picture files for the toggle mode
of the pictctrl object. The picture is divided into four equal-sized quadrants, each of which
contains the image displayed for the corresponding state of the control.

Here’s an example picture which implements a toggle-mode pictctrl that resembles the
pushbuttons with embedded lights found on some hardware synthesizers:

The images in the left column will be used to draw the control when it is idle, and the
images on the right will be used when the user is clicking the control with the mouse. The
top row of images will be used when the control’s value is zero, and the lower row will be
used when the control’s value is one. So, for example, the upper-right image will be
displayed when the control’s value is zero and the user is clicking it.

This picture is in the file LED button.pct in the picts folder. To use it in a control, add a
new pictctrl to your Max patcher and set its mode to Toggle by clicking the radio button
near the top of its Inspector. Notice that the control doesn’t display the correct portion of
the picture until after you’ve set its mode. This is because pictctrl uses different regions of
the picture file based on which mode it’s using, and how you have the various properties
set, using the checkboxes in the Inspector.

Interfaces Picture-based
User Interface Objects

96

Inactive States

Controls created with pictctrl can have a separate set of images for their inactive state. You
can use these images to indicate that the control won’t respond to mouse clicks, similar to
how the Macintosh “greys out” inactive controls.

In pictures for pictctrl, the inactive images appear below the regular images. In the
following picture (found in the file LED button w/ inactive.pct, we’ve added inactive
images to our light-up button:

The images are blurred to indicate that the control is inactive. Notice that there are two
inactive images, one for the control when its value is zero and one for when the value is
one. To use this picture with the pictctrl object’s toggle mode, you would check Has
Inactive Images in the Inspector.

Image Masks

All Max objects have a rectangular “bounding box” which defines their location and size.
You can create controls that have a non-rectangular appearance by using a feature called
masks. Masks are special images within picture files that define which portions of the
images are visible, and which portions are transparent or invisible. Black pixels in the
image define visible areas, and white pixels define transparent areas.

Interfaces Picture-based
User Interface Objects

97

The following illustration shows how rectangular images and masks combine to create a
non-rectangular image:

To demonstrate a Max control that uses masks, we’ll create a toggle button that looks like
an octagonal STOP sign when its value is zero, and a circular GO sign when its value is
one. To add a little visual interest, we’ll make its shape—but not its color—change when it
is clicked with the mouse. Its picture file looks like this:

This picture is in the file stop-go.pct. To try it out, create a new pictctrl, open its Inspector,
choose the stop-go.pct file as its picture file, and set its mode to Toggle. After locking the
patcher, click the control a few times. Notice that it switches from the red octagon to the
red circle first—switching from the value=0, not-clicked image to the value=0, clicked
image. When you release the button, it displays the green circle, the value=1, not-clicked
image.

Interfaces Picture-based
User Interface Objects

98

Everything looks fine as long as the control is placed only upon a blank, white window.
But suppose we want to put the control on top of a colored panel object, or a picture of a
faux brushed- aluminum surface. We see the white areas of our images:

The solution to this aesthetic problem is to use masks to define which parts of our image
should be drawn, and which parts should be transparent, allowing whatever is
underneath the control to be visible. For our stop/go control, we need masks that have the
same outline as the colored areas. This will make the white areas transparent. The picture
file with masks added, called stop-go mask.pct, looks like this:

The masks are placed below the images, in the same relative positions. (In many cases you
can create masks for your images simply by duplicating the images and using a “paint
bucket” tool to fill the duplicates with black.) Try this picture by choosing stop-go
mask.pct as your control’s picture file.

Interfaces Picture-based
User Interface Objects

99

Check the Has Image Mask checkbox in the Inspector. Now the white areas of the control
won’t be drawn:

Picture files for the pictslider and matrixctrl objects are constructed in much the same
manner. Refer to pictslider and matrixctrl manual pages in the Max Reference Manual for
the layouts needed for arranging their images. Remember that not all of the images in the
layout charts are necessary, so that you can start by working with simple picture files and
later add images to create more elaborate controls.

Note: The picture’s dimensions must be exactly the size of the array of images, and no
more, since the picture-based controls use the overall dimensions of the graphics file to
calculate the size of the images. Some graphics applications are known to add a one-pixel
wide strip of blank pixels to the lower and right edges of all graphics files it creates, which
causes the control images to appear to move slightly when they change state, since the
control has been given inaccurate information about the size of the images. If you see this
problem, try using another graphics application to create the artwork.

See Also
matrixctrl Matrix switch control
pictctrl Picture-based control
pictslider Picture-based slider control

100

Loops: Ways to Perform Repeated Operations

Repeated Actions

Many aspects of music-making involve repeated actions. For example, we might count 25
measures of rests, hit a gong 4 times in succession, repeat the whole section a total of 3
times, etc. In programming, repeated actions are called loops, because conceptually we
think of the computer completing an action, then looping back to the place in its stored
program where it started and performing the action again. A loop generally involves
some sort of a check before or after each repetition, to see whether the action should be
performed again (without the check, the process would continue endlessly).

In Max, a bang message can be used to signal that an event has occurred. In the example
below, a bang is sent each time the sustain pedal (controller number 64) is pressed down,
or each time the note Middle C (key number 60) is released.

Since bang is the generic indicator that something has happened, there is an object
designed to count bang messages, called counter. It counts the bang messages it receives in
its inlet, and sends the count out its outlet. You can set minimum and maximum output
values for counter, and set it to count up, down, or up and down. In the following
example, counter counts from 1 up to 5, then starts again at 1. The right outlet reports how
many times the maximum (5) has been reached.

It can be useful just to send out a succession of numbers from a counter. For example, the
numbers could be used as addresses to get values from a table. Other times, in order to
make the loop useful, there needs to be a unique event when a certain condition is met.
Actually, counter has its own built-in conditions and reactions, such as “when the
maximum is reached, send the number of times it has been reached out the right outlet,

Loops Ways to Perform
Repeated Operations

101

send the number 1 out the right-middle outlet, and go back to the minimum,” but
sometimes we may want another condition to cause a certain result.

In the example below, a bang is sent to random every time the letter r is typed on the
computer’s keyboard. When random produces the number 0, a sequence is played.

In this case, we aren’t counting the number of times something happens (we might have
to type the letter r any number of times before a 0 is chosen at random), we’re just
repeating until a certain condition is met.

When the condition we are testing for is met, something should happen as a result—a
gate opened, a process started, a note played, etc.—and, if the repetitions are being
supplied by a timed process (such as a metro sending a bang every 100 milliseconds), the
repetitions should be stopped.

Loops Ways to Perform
Repeated Operations

102

Timed Repetition

Since time is such an important factor in music, you’ll want to have repeated actions
occur at a specific speed. The metro, clocker, and tempo objects are used for producing
output at regular intervals—bang in the case of metro, numbers in the case of clocker and
tempo. (Of course, metro can also produce a succession of numbers when its output is sent
to a counter.)

Stack Overflow

Automatic timed repetitions must be separated by at least a millisecond or two, otherwise
Max will generate a Stack Overflow, which stops Max’s internal scheduler until you shut
off the repetitions. Below are a couple of examples of what not to do, because you will
cause a stack overflow.

These programs contain bugs!

The patches in this example attempt to increment a count as fast as possible. Each
solution has two flaws, however. The first problem is that there is no stopping condition;
the numbers will increase indefinitely. The second problem is that each patch feeds an
object’s output back into its triggering inlet with no time delay. Max keeps trying to do

Loops Ways to Perform
Repeated Operations

103

more and more things, without being given any more time in which to do them, and
quickly complains that its “to do” stack is overflowing.

Instantaneous Loops

When you want to use a loop that completes all its repetitions as fast as possible—that is,
you want to send out a series of events “at the same time”—you must use an object that is
designed to send out multiple messages. The message box can contain multiple messages
separated by commas, and sends them all out in immediate succession. In the same spirit,
the uzi object is designed to send out a succession of bang messages as fast as possible. This
series of bang messages can be sent to a counter object to convert them to a series of
numbers. uzi itself counts the bang messages as it goes and sends the count out its right
outlet, so it can be used to send a sequence of numbers as fast as possible. The following
example shows two ways to send sixteen different MIDI messages as fast as possible.

Multiple messages sent in immediate succession

See Also

clocker Report the elapsed time, at regular intervals
counter Count the bang messages received, output the count
metro Output bang, at regular intervals
tempo Output numbers at a metronomic tempo
uzi Send a specific number of bang messages

104

Macintosh Externals

Executable Formats and Processor Architectures

An executable format describes how machine code is stored in files on your computer's
hard drive. There are two executable formats on the Mac OS, Mach-O and CFM. CFM,
which was originally introduced for the PowerPC prior to the introduction of Mac OS X,
is no longer supported by Apple, and is not implemented for native Intel applications.
Thus, we changed MaxMSP 4.6 to use the Mach-O executable format for both the Max
application and all external objects.

The executable format is different from your computer's processor architecture. Apple
uses the term Universal Binary to refer to Mach-O format files that contain machine code
for both the PowerPC and Intel Pentium processors.

MaxMSP 4.6—running on a PowerPC processor only—can load objects written for the
older CFM format, if you install the Max CFM Adaptor support for it. You are asked
when MaxMSP is launched for the first time if you want to install support for older Max
objects.

MaxMSP 4.5 can run on an Intel processor and use its older CFM objects (although some
objects, such as mxj, do not work). However, the limitations of Apple's Rosetta
technology are such that if the host application is native Intel, it cannot load plug-ins
written only for the PowerPC, even if they use the Mach-O executable format

The chart below summarizes executable format and processor architecture compatibility
issues:

Processor MaxMSP
Version

Compatible Object Executable Formats

Intel 4.6 Universal Binary Mach-O
PowerPC 4.6 Universal Binary Mach-O

CFM objects written for PowerPC (with CFM Adaptor
libraries installed)

Intel 4.5 Most CFM objects written for PowerPC
PowerPC 4.5 CFM objects written for PowerPC

Mach-O objects written for PowerPC (see note below)
Mach-O Universal Binary objects with OS 10.3.9 or later

Macintosh Externals

105

 Libraries for Older External Objects

When Max/MSP 4.6 starts up for the first time on the PowerPC machine, it will ask you if
you want to install support libraries for older external objects. These libraries allow you to
use third-party external objects written for Max/MSP 4.5 or earlier version inside
Max/MSP 4.6. These libraries also can enhance audio processing performance in
Max/MSP 4.6.

However, these libraries may conflict with the use of older Max/MSP plug-ins (such as
those included with Pluggo, Mode, and Hipno as well as certain third-party plug-ins) in
other host applications. If you experience problems using plug-ins, you may want to
uninstall these support libraries:

• Delete /Library/CFMSupport/MaxCFMAdaptor.shlb

• Delete /Library/CFMSupport/MaxAudioCFMAdaptor.shlb

• Look in /Library/Application Support/C74 Plug-In Support for
MaxPlugLibCarbon.shlb, MaxAudioPlugLibCarbon.shlb, and VstPlugLib.shlb. If
these files are present, move them to /Library/CFMSupport

106

Messages to Max: Controlling the Max Application

The ; max message

Using a message box, you can control the Max application. All such messages begin with; max
(as if there were a receive object named max). Here is a list of messages the Max application
understands.

Messages Understood by Max

#SM see the section MIDI Configuration Messages at the end of this chapter.

boxcolor Sets one of the 15 default object colors in the Color submenu. boxcolor is
followed by five arguments. The first is the index (between 1 and 15), followed
by three values in the range 0-255 that specify the color for this index, and a
final value that specifies whether this change overwrites the user preferences
(1) or not (0).

buildcollective The word buildcollective, followed by a reference name symbol and an output
filename, builds a collective using the patcher associated with the symbol. The
collective is named with the output filename.

buildplugin The word buildcollective, followed by a reference name symbol and an output
filename, builds a VST plug-in using the patcher associated with the symbol.
The plug-in is named with the output filename.

checkpreempt The word checkpreempt, followed by a symbol, sends the current Overdrive
mode to the receive object named by the symbol.

clean Causes Max not to display a Save Changes dialog when you close a window or
quit, even if there are windows that have been modified. This is useful in
conjunction with the quit message below.

closefile The word closefile, followed by a symbol, closes the patcher file previously
opened with the openfile message to Max associated with the symbol.

debug The word debug, followed by a zero or one, toggles the sending of Max’s
internal debugging output to the Max window. Debug information may be of
limited use for anyone who isn’t debugging Max itself.

enablepathcache The word enablepathcache, followed by a zero or one, turns on (or off) Max’s
search path cache. This should only be done if you noticed unusual behavior
when opening files.

Messages to Max Controlling the
Max Application

107

enablerefresh (Macintosh only) The word enablerefresh, followed by a zero or one, toggles an
alternative to the standard way in which the screen contents are updated,
resulting in better “visual performance. This feature is enabled by default. The
rate at which refresh is done can be set by using the setrefreshrate message.

externs List all of the external objects currently loaded in the Max window.

fileformat The word fileformat, followed by two symbols that specify a file extension and a
four-character file type, tells Max to associate a filename extension with a
particular filetype. The message max fileformat .tx TEXT associates the extension .tx
with TEXT (text) files. This allows a user to send a message read george and
locate a file with the name "george.tx" It also ensures that files with the
extension .tx will appear in a standard open file dialog where text files can be
chosen.

fixwidthratio The word fixwidthratio, followed by a floating-point number, sets the ratio of
the box to the width of the text when the user chooses Fix Width from the
Object menu. The default value is 1.0. A value of 1.1 would make boxes wider
than they needed to be, and a value of 0.9 would make boxes narrower than
they need to be.

getboxcolor The word getboxcolor, followed by an number between 1 and 15 and a symbol,
sends the RGB values for the default object colors at the specified index as a
list to the receive object named by the symbol.

getdefaultpatcherheight

The word getdefaultpatcherheight followed by a symbol used as the name of a
receive object, causes Max to report the current default patcher height in pixels
to the named receive object (See also the setdefaultpatcherheight message to Max.)

getdefaultpatcherwidth

The word getdefaultpatcherwidth followed by a symbol used as the name of a
receive object, causes Max to report the current default patcher width in pixels
to the named receive object (See also the setdefaultpatcherwidth message to Max.)

getenablepathcache

Messages to Max Controlling the
Max Application

108

The word getenablepathcache, followed by a symbol used as the name of a receive
object, will report whether the path cache is enabled to the named receive
object. (See also the enablepathcache message to Max.)

getenablerefresh (Macintosh only.) The word getenablerefresh, followed by a symbol used as the
name of a receive object, will report whether enhanced refresh is enabled to the
named receive object. (See also the enablerefresh message to Max.)

geteventinterval The word geteventinterval, followed by a symbol used as the name of a receive
object, will report the event interval to the named receive object. (See also the
seteventinterval message to Max.)

getfixwidthratio The word getfixwidthratio followed by a symbol used as the name of a receive
object, reports the current fix with ratio value to the named receive object. (See
also the fixwidthratio message to Max.)

getpollthrottle The word getpollthrottle followed by a symbol used as the name of a receive
object, reports the current poll throttle value to the named receive object. (See
also the setpollthrottle message to Max.)

getqueuethrottle The word getqueuethrottle followed by a symbol used as the name of a receive
object, causes Max to report the current queue throttle value to the named
receive object. (See also the setqueuethrottle message to Max.)

getrefreshrate (Macintosh only) The word getrefreshrate followed by a symbol used as the
name of a receive object, causes Max to report the current refresh rate in Hertz
to the named receive object. (See also the setrefreshrate message to Max.)

getruntime The word getruntime followed by a symbol used as the name of a receive
object,sends a 1 to the named receive object if the current version of Max is a
runtime version, and a 0 if not.

getsleep The word getsleep followed by a symbol used as the name of a receive object,
causes Max to report the sleep time to the named receive object. (See also the
setsleep message to Max.)

getslop The word getslop followed by a symbol used as the name of a receive object,
reports the scheduler slop value to the named receive object. (See also the setslop
message to Max.)

Messages to Max Controlling the
Max Application

109

getsystem The word getsystem, followed by a symbol used as the name of a receive object,
will report the name of the system (macintosh or windows) to the named receive
object.

hidecursor Hides the cursor if it is visible.

hideglobal Hides the floating inspector window.

hidemenubar Hides the menu bar. Although the pull-down menus are not available when
the menu bar is hidden, menu shortcut (accelerator) keys continue to work.

htmlref The word htmlref, followed by an object name as a symbol, looks for a file called
<object-name>.html in the search path. If found, a web browser is opened to
view the page.

interval The word interval, followed by a number from 1 to 20, sets the timing interval
of Max’s internal scheduler in milliseconds. The default value is 1. This
message only affects the scheduler when Overdrive is on and scheduler in
audio interrupt (available with MSP) is off. (When using scheduler in audio
interrupt mode the signal vector size determines the scheduler interval.)
Larger scheduler intervals can improve CPU efficiency on slower computer
models at the expense of timing accuracy.

launchbrowser The word launchbrowser, followed by a URL as a symbol, opens a web browser to
view the URL. For example:
; max launchbrowser http://www.cycling74.com

maxinwmenu When using the runtime version of Max, maxinwmenu followed by the number 1
will place an item called Status in the Windows menu, allowing users to see
the Max window (labeled Status in the runtime version). When maxinwmenu is
followed by 0 the menu item is not present. The default is for the Status item
to be present in the Windows menu.

midi The word midi, followed by a variable-length message, allows messages to be
sent to configure the system MIDI object. The following is a list of the
available options:

autosetup

Duplicates the action of clicking on the Auto Setup button in the MIDI Setup
window

portabbrev <innum / outnum> <portname> <abbrev>

Messages to Max Controlling the
Max Application

110

innum specifies an input port, outnum specifies an output port, portname is
the name of the port as a single symbol (i.e. It is necessary to use double
quotes). An abbrev value is 0 for no abbrev (- in menu), 1 for 'a' and 26 for 'z'

portenable <portname> <0/1>

Enables (1) or disables (0) the port specified by portname. All ports are
enabled by default.

portoffset <innum / outnum> <portname> <offset>

Similar to portabbrev, but offset is the channel offset added to identify input or
output ports when a MIDI object can send to or receive from multiple ports
by channel number. Must be a multiple of 16 (e.g. max midi portoffset innum PortA 16
sets the channel offset for PortA device to 16).

midilist Prints the names of all current MIDI devices in the Max window. (See also
MIDI Messages to Max, above.)

notypeinfo (Macintosh) The word notypeinfo followed by 0 or 1, sets whether Max saves
files with traditional Mac OS four-character type information. By default, Max
does save this information in files.

objectfile The word objectfile followed by two symbols that specify an object name and a
file name, creates a mapping between the external object and its filename. For
example, the *~ object is in a file called times~ so at startup Max executes the
command max objectfile *~ times~.

openfile The word openfile followed by two symbols that specify an reference name and
a file name or path name, attempts to open the patcher with the specified
name. If successful, the patcher is associated with the reference symbol, which
can be passed as argument to the buildcollective, buildplugin, and closefile messages to
Max. The openfile message is intended for batch plug-in or collective building.

paths List the current search paths in the Max window. There is a button in the File
Preferences window that does this.

preempt The word preempt, followed by a 1 (on) or 0 (off), toggles Overdrive mode.

pupdate The word pupdate, followed bytwo integer values that specify horizontal and
vertical position, moves the mouse-cursor to that global location.

Messages to Max Controlling the
Max Application

111

quit Quits the Max application; equivalent to choosing Quit from the File menu. If
there are unsaved changes to open files, and you haven’t sent Max the clean
message, Max will ask whether to save changes.

refresh Causes all Max windows to be updated.

runtime The word runtime, followed by a zero or one and a message, executes the
message if the current version of Max is a runtime version (1) or non-runtime
(0).

sendinterval The word sendinterval, followed by a symbol, sends the current scheduler
interval to the receive object named by the symbol.

sendapppath The word sendapppath, followed by a symbol, sends a symbol with the path of
the Max application to the receive object named by the symbol.

setdefaultpatcherheight

The word setdefaultpatcherheight, followed by an integer value greater than 100,
sets the default patcher height in pixels.

setdefaultpatcherwidth

The word setdefaultpatcherwidth, followed by an integer value greater than 100,
sets the default patcher width in pixels.

seteventinterval The word seteventinterval, followed by an integer value, sets the time between
invocations of the event-level timer (The default value is 2 milliseconds). The
event- level timer handles low-priority tasks like drawing user-interface
updates and playing movies.

setrefreshrate (Macintosh only) The word setrefreshrate, followed by a number, sets the rate, in
frames per second, at which the visual display is updated. On Macintosh
systems, the rate at which the screen is refreshed is unrelated to the rate at
which you change its contents. Better “visual performance” can be
acheived—at the cost of a slight performance decrease in Jitter, and little or no
performance decrease for audio processing—by specifying a higher frame rate.
When enabled using the enablerefresh 1 message, the default rate is 28.57 FPS.
Refresh enable is off by default.

setsleep The word setsleep, followed by a number, sets the time between calls to get the
next system event, in 60ths of a second. The default value is 2.

Messages to Max Controlling the
Max Application

112

setpollthrottle The word setpollthrottle, followed by an integer, sets the maximum number of
events the scheduler executes each time it is called (The default value is 20).
Setting this value lower may decrease accuracy of timing at the expense of
efficiency.

setqueuethrottle The word setqueuethrottle, followed by an integer value, sets the maximum
number of events handled at low-priority each time the low-priority queue
handler is called (The default value is 2). Changing this value may affect the
responsiveness of the user interface.

setslop The word setslop, followed by a floating-point value, sets the scheduler slop
value—the amount of time a scheduled event can be earlier than the current
time before the time of the event is adjusted to match the current time. The
default value is 25 milliseconds.

shortcut The word shortcut, followed by a symbol and some additional text, will replace
the symbol by the text when the symbol is typed into an object or message box
and the escape key is pressed. Typically, shortcuts are added to files in the init
folder in the Cycling ’74 folder. Default shortcuts are in the files max-
shortcuts.txt and audio-shortcuts.txt.

showcursor Shows the cursor if it is hidden.

showglobal Shows the floating inspector window.

showmenubar Shows the menu bar after it has been hidden with hidemenubar.

size Prints the number of symbols in the symbol table in the Max window.

system The word system, followed by the name of an Operating System (windows or
macintosh) and a message, will execute the message if Max is running on the
named OS.

MIDI Configuration Messages

The following messages are used to configure MIDI on your system and to access the built-in
DLS (Downloadable Soundfont) synthesizer for MIDI playback: By default, a single augraph
(on Mac OS X) or midi_dm (on Windows) port is created. However, you can create
additional MIDI synthesizer ports and assign new DLS sound bank files to each one.
Addressing the DLS synthesizers currently requires the use of the message box technique
where you send messages to named objects by typing a semicolon followed by the message
text into a message box, then click the message box.

Messages to Max Controlling the
Max Application

113

Here is a list of messages that you can use to access the DLS synthesizer:

Creating a DLS Port:

;#SM createoutport <portname> <drivername>

where drivername is midi_dm on Windows and augraph on the Macintosh. portname is the
name you assign to the port. For example:

; #SM createoutport myOtherSynth midi_dm

; #SM createoutport myOtherSynth augraph

Deleting a DLS Port:

;#SM deleteoutport <portname> <drivername>

where drivername is midi_dm on Windows and augraph on the Macintosh. portname is the
name of your choice. For example:

; #SM deleteoutport myOtherSynth midi_dm

; #SM createoutport myOtherSynth augraph

Loading a DLS Bank (type 1 or 2)

;#SM driver loadbank <filename> <portname>

where filename is the name of an existing DLS bank file, and portname is the name of the port
that will use this bank. If portname is omitted, all DLS ports will use the bank. On Mac OS X,
the folder /Library/Audio/Sounds/Banks is added to the search path when looking for a DLS
bank file.

Loading the DLS Default GM Bank

;#SM driver loadbank 0 <portname>

Turning Reverb On and Off

;#SM driver reverb 1/0 <portname>

By default reverb is off in both augraph and midi_dm.

Messages to Max Controlling the
Max Application

114

Setting MIDI Output Latency (midi_dm only)

;#SM driver latency <time> <portname>

where time is a value in milliseconds and portname is the port that is set to this value. For
example, the following message would set the latency to 10 milliseconds:

;#SM driver latency 10 portname

Getting Information About Ports

;#SM inportinfo <portname> <receive name>

;#SM outportinfo <portname> <receive name>

The inportinfo and outportinfo messages send information about MIDI ports to named receive
objects. The information is contained in an infolist message with the following arguments:

the port’s name (symbol)
the port’s driver name (symbol)
the port’s unique ID (int)
the port’s abbreviation (int)
the port’s channel offset (int)
whether the port is enabled or disabled (1 if enabled, 0 if disabled)
whether the port was created dynamically (1 if yes, 0 if no)

Adding Virtual MIDI Ports (Macintosh only)

By default, Max creates two “virtual” MIDI ports for both input and output. If you wish to
add additional virtual ports to your MIDI system, you can use the same message box
technique described above to send the createoutport and createinport messages.

;#SM createoutport <portname> <drivername>

;#SM createinport <portname> <drivername>

where portname is the name you assign to the port, and drivername is the driver to be used
(currently, only CoreMIDI is supported). For example, the following two messages:

;#SM createoutport myvirtualport CoreMIDI

;#SM createinport myvirtualport CoreMIDI

Messages to Max Controlling the
Max Application

115

Would create a virtual MIDI input and output port, each named “myvirtualport”. These
virtual ports are not saved as part of the Max/MSP setup, so they will have to be recreated
each time you restart Max.

Examples

Control the behavior of Max from within a patch

See Also

pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher

116

Punctuation: Special Characters in Objects and Messages

Punctuation in Object Boxes

Many non-alphabetic characters have a special meaning in Max when included in objects
and messages.

Many characters are object names in their own right, signifying arithmetic, relational, and
bitwise operators for numerical calculations. These object names are +, -, *, /, %
(arithmetic operators), <, <=, ==, !=, >=, >, &&, || (relational operators), and &, |, <<, >>
(bitwise operators). See the descriptions for these objects at the end of the Objects section
for more information.

The dollar sign ($) and the pound sign (#) are used in object boxes to indicate changeable
arguments. A changeable argument is replaced by a value supplied either in the inlet (in
the case of $) or as typed-in arguments to a patch that contains the object (in the case of
#). The Arguments chapter has detailed information about $ and # in object boxes.

The semicolon (;) indicates the end of a message, and is not allowed in object boxes.
Semicolons are also a way of forcing a carriage return in a comment object (except in two-
byte compatible mode).

The semicolon indicates the end of a line in text files containing the contents of coll, mtr,
and seq objects and in text files which contain a script for the lib object.

A comma (,) is generally another character to avoid using in object boxes, but may be
used in an expr or if object, to separate items within a function in a mathematical
expression, as in the example below. Note that a comma in an object box should always
be preceded by a backslash (\), so that Max does not try to interpret it as a special
character.

Use a backslash when you want to use a special character, but don’t want Max to interpret
it as such. In the example above, the comma is needed to separate arguments to the pow
function.

Punctuation Special Characters in
Objects and Messages

117

Punctuation in a Message Box

The dollar sign ($) can be used in a message box to indicate a changeable argument. When
the message box contains a $ and a number (such as $2) as one of its arguments, that
argument will be replaced by the corresponding argument in the incoming message
before the message box sends out its own message.

The pound sign, followed by a number (such as #2), in a message box has the same
meaning as in an argument of an object box. When the patch containing a # argument is
used as a subpatch inside another Patcher, the # argument is replaced by the
corresponding argument typed into the subpatch object box in the main Patcher. See the
Arguments chapter for examples.

A comma (,) in a message box is used to send a series of separate messages. The comma
indicates the end of one message and the beginning of the next message.

In the above example, the message box on the left sends out a single message, 60 64 1 as a
list. The message box on the right sends out three separate messages—first 144, then 60, then
64.

A semicolon (;) in a message box is used to send messages to remote receive objects. When
a semicolon is present in a message box, the first item after the semicolon is a symbol
indicating the name of a receive object, and the rest of the message (or up to the next
semicolon) is sent to all receive objects with that name, rather than out the message box’s
outlet.

As in an object box, the backslash (\) in a message negates the special characteristics of the
character it immediately precedes.

The number-letter combination 0x (zero-x) allows numbers to be typed into object and
message boxes in hexadecimal form (useful for people who think of MIDI bytes in hex).
For example, the message 0x9F 0x3C 0x40 is equivalent to the message 159 60 64.

Punctuation Special Characters in
Objects and Messages

118

See Also

Arguments $ and #, changeable arguments to objects

119

Quantile: Using a Table for Probability Distribution

The quantile message

One of the messages understood by the table object is the word quantile, followed by a
number. If you have read the description of this message, under table, you may have
wondered what utility this complicated calculation might have. This section provides
some examples. Here is the description of what quantile does.

quantile In left inlet: The word quantile, followed by a number, multiplies the
number by the sum of all the values in the table. This result is then divided
by 215 (32,768). Then, table sends out the address at which the sum of all
values up to that address is greater than or equal to the result.

As the argument of the quantile message progresses from 0 to 32,768, each address in the
table occupies a portion (quantile) of the 0 to 32,768 range, proportional to the “weight”
given by the value stored at that address. Repeated quantile messages using random
numbers cause each address to be sent out with a frequency roughly proportional to the
value at that address.

The fquantile message

The fquantile message does the same thing as the quantile message, but it accepts a float
argument between 0 and 1. Rather than require you to calculate the proportion of 32,768
that represents a fraction of the table length, fquantile allows you to specify it as a decimal
number. For example, fquantile 0.5 is the same as quantile 16384, and fquantile 1.0 is equivalent to
quantile 32768.

Quantile Using a Table for
Probability Distribution

120

Examples

Suppose we have a table of 128 numbers, all set to 10.

Here are the results of some quantile messages on this table. Note that the total sum is 128
* 10 or 1280.

quantile 0 Always causes an output of 0.

quantile 16384 Returns the index up to which the sum of the values is half of the total
sum. In this case, this would be 63, since 64 * 10 = 640 which is half of
1280.

bang A bang is equivalent to a quantile message with a random number between 0
and 32768 as its argument, or an fquantile message with an argument
randomly chosen between 0 and 1. Repeated bangs to a table will return
table indices which contain higher values more often than indices which
contain lower values. In the quantile example above, all indices are equally
likely to be returned by bang, because all the values in the table are the
same. However, if one of the values were 1000, the index at which the
value was 1000 would occur far more frequently than any other table
index. Exactly how frequently? This is determined by first taking the sum
of all values in the table, which, for a table with 127 indices set to 10 and
one at 1000 would be 2270. For the one index set to 1000, we divide 1000
by the sum 2270 and get a probability of 44 percent. For any of the other

Quantile Using a Table for
Probability Distribution

121

127 indices set to 10, the probability is .44 percent that any one will be
chosen. So, the index set to 1000 will occur about 100 times more
frequently than an index set to 10.

See Also

histo Make a histogram of the numbers received
table Store and edit an array of numbers
Tutorial 33 Probability tables

122

Sequencing: Recording and Playing Back MIDI
Performances

seq

Max has four objects for recording and playing back MIDI performances: seq, follow, mtr,
and detonate. The “performance” can come from outside Max—from a MIDI controller,
or another MIDI application using the IAC Bus—or can be generated algorithmically
within Max.

The basic sequencer in Max is seq, which records raw MIDI data received in its inlet from
midiin or midiformat, and can play the data back at any speed. The recording and playback
process is controlled with messages such as record, start, and stop.

Sequences recorded by seq can be written into a separate file to be used again later. Under
OSX, “Max text file” and “Max binary file” are the two options for Save As... Under
Windows, the options are “maxb Files (*.mxb, *.pat, *.help)” and “TEXT Files (*.txt, *.pat,
*.help, *.mxt)” When seq receives a write message, it calls up the standard Save As dialog box.
If the file is saved as text (by choosing Max Format Text File from the Format pop-up
menu in the Save As dialog box), it can be edited by hand by choosing Open As Text…
from the File menu. MIDI files can also be loaded into seq with a read message.

follow

The follow object functions exactly like seq, but has the added ability to compare a live
performance to the performance it has recorded earlier. follow can record not only raw
MIDI data, but also individual numbers such as note-on pitch values. You can step
through the set of recorded notes (or numbers) using the next message. Most interestingly,
follow contains a score following algorithm, activated by the follow message. follow will
compare incoming numbers to those stored in its recorded sequence. If an incoming
number matches the next number in the recorded sequence (or a nearby number, just in
case the live performer makes a mistake), follow reports the index of the matched note.
The index can then be used to read other numbers from a table or coll (providing an
accompaniment to the live performer), or can be used to trigger any other process.

mtr

The mtr object is a multi-track sequencer that can record up to 32 individual tracks of
numbers, lists of numbers, or symbols. With such versatility, it is easy to record not only
MIDI events, but a wide variety of other messages. Tracks can be recorded, played, or

Sequencing Recording and Playing
Back MIDI Performances

123

stepped through using the next message, either individually or collectively, and some
tracks can be muted while other tracks continue to play. The contents of mtr can be
written to and read in from separate files, either as individual tracks or as an entire set of
tracks:

Sample patch using mtr

For editing complete MIDI messages as text, seq is perhaps more appropriate since it
arranges raw MIDI data into a standard MIDI file format. However, raw MIDI data can
be filtered with midiparse before being sent to mtr. Also, a sequence recorded in seq can
easily be cut out and pasted into an mtr file, using Max’s text editor.

detonate

The detonate object is a flexible sequencing, graphic editing, and score-following object. It
can record a list of notes tagged with time, duration, and other information. You can save
the note list as a single-track (format 0) or multi-track (format 1) MIDI file, and you can
read in any MIDI file that has been saved to disk by detonate, seq, or some other
sequencer. Double-clicking on a detonate object displays its contents in a graphic editor
window, allowing you to use the mouse to add or modify notes inside it. It is also able to
act as a “score-reader,” much like the follow object; it looks at incoming pitch numbers
and reports whenever an incoming pitch matches the current pitch in the stored score.

But unlike other sequencing objects such as seq, follow, mtr, and timeline, however, detonate
does not really run on an internal clock of its own. Timing and duration information
must be recorded into it from elsewhere in the patch, and the patch must also use that

Sequencing Recording and Playing
Back MIDI Performances

124

information to determine the rhythm and speed at which notes will be played back from
detonate—allowing for recording and playback options not available with the other
sequencing objects, such as non-realtime recording, continuously variable playback
tempo, and triggering individual events of the sequence in any desired rhythm.

timeline

The timeline object is designed for graphically editing a multi-track sequence of Max
messages to be sent to specific objects at specific times. The timeline object does not
record MIDI data in real time; it is for placing predetermined events in non-real time.
However, once you have entered messages in the timeline—which the timeline could
send to a patch containing MIDI output objects—the timeline object allows you great
flexibility of playback of those stored messages. See the Timeline chapter for details.

See Also

follow Compare a live performance to a recorded performance
mtr Multi-track sequencer
seq Sequencer for recording and playing MIDI
timeline Time-based score of Max messages
Timeline Creating a graphic score of Max messages
Tutorial 35 Sequencing

125

Shortcuts

Locked Patcher Window

• If Help from Locked Patchers in the Options menu is checked, Option-clicking on
Macintosh or Alt-clicking on Windows on any object’s box opens a help file for that
object.

• Command-clicking on Macintosh or Control-clicking on Windows in any white
space unlocks the Patcher window (if it’s editable).

• Option-clicking on Macintosh or Alt-clicking on Windows on a window’s close box
closes all windows except the Max window.

• Option-clicking on Macintosh or Alt-clicking on Windows on the title bar of a
subpatch window pops up a menu that allows you to bring any parent windows of the
subpatcher to the front. If the subpatcher is an “edit-only” Patcher window (produced
by double-clicking on a Patcher object which was read from a Max document), the
top item in the list opens the Max document for editing.

• Typing Command-period on Macintosh or Control-period on Windows stops the
Max scheduler, allowing you to recover from a runaway process which might be
taking up too much CPU time to stop by normal methods. After you have remedied
the situation which caused the process to get out of hand, choose Resume from the
Edit menu to restart the scheduler.

• Holding down both the Command and Shift keys on Macintosh or the Control and
Shift keys on Windows while a patch is loading prevents loadbang objects in that patch
from sending any output.

Unlocked Patcher Window

Contextual Menus

• Control-clicking on Macintosh or Right-clicking on Windows in a Patcher window
brings up a menu of useful editing commands. For more information about the
Patcher window contextual menus, see the Menus topic.

• Option-Control-clicking on Macintosh or Alt-Right-clicking on Windows on any
object displays a menu of all the messages you can send to an object. For more
information on this menu, see the Menus topic.

Shortcuts

126

Selecting and Moving Objects

• Option-clicking on Macintosh or Alt-clicking on Windows on any object’s box opens
a help file for that object.

• Shift-clicking on an object box reverses the selected state of the object without
changing the selected state of other objects.

• Shift-dragging an object box helps constrain the dragging of the object in the
horizontal or vertical dimension.

• Option-clicking on Macintosh or Alt-clicking on Windows on one or more objects
and dragging will duplicate the object(s).

• Hold down the shift key when clicking to place an object. Except for the object box,
the cursor will remain the same, so you can make multiple copies of the same object.

• The arrow keys move the selected boxes by 1 pixel in any direction.

• Option-dragging a rectangle around a set of objects and patch cords or Alt-dragging
on Windows selects both the patch cords and the objects.

• To drag a text object which has been selected for editing, move the cursor to the top
or bottom edge of the box, then drag, as shown below. This is a handy way to move an
object after duplicating it.

Click at the top or bottom edge of a selected text box to drag it

• Command-clicking on Macintosh or Control-clicking on Windows on any user
interface object, such as a slider or number box, operates the object as if the Patcher
window were locked.

• Command double-clicking on Macintosh or Control double-clicking on Windows
edits objects such as patcher, table, and coll that open when you double-click them in a
locked Patcher window.

• Command-clicking on Macintosh or Control-clicking on Windows in any white
space locks or unlocks the Patcher window.

Shortcuts

127

• With no objects selected, holding down the Option key on Macintosh or the Alt key
on Windows and choosing Send to Back from the Object menu sends all comment
objects to the background so they will not appear in front of other objects when the
Patcher is locked. This may be helpful for updating files from previous versions of
Max in which comment objects appear in front of other objects.

• After typing into an object or message box, Option-clicking on Macintosh or Alt-
clicking on Windows outside the box prevents Auto Fix Width from changing the
box’s size. Option- clicking on Macintosh or Alt-clicking on Windows outside a
comment box invokes Auto Fix Width on the comment, where it is normally
disabled.

Patch Cord Shortcuts

• If Segmented Patch Cords is not checked in the Options menu, shift-clicking on an
outlet of an object uses Segmented Patch Cords mode, in which subsequent clicks
define the “corners” of the patch cord.

• Shift-clicking on an inlet of an object when making a connection lets you make
multiple connections from a single outlet; another patch cord will be created
immediately for the next connection.

• If Segmented Patch Cords is checked in the Options menu, shift-clicking uses the
normal mode of dragging from outlet to inlet to make a straight patch cord.

• Hold down the control key if you are making a segmented patch cord and want to
make a corner over an object—the normal auto-connection feature will be disabled.

• Command-clicking on Macintosh or Control-clicking on Windows while making a
segmented patch cord gets rid of the patch cord and cancels the operation.

• Option-clicking on Macintosh or Alt-clicking on Windows while making a
segmented patch cord gets rid of the last segment.

Creating Objects

• Option-clicking on Macintosh or Alt-clicking on Windows after selecting the Object
Box tool in the palette places the object box without showing the New Object List
window.

• Pressing the Delete (Backspace) key after selecting a tool from the palette cancels the
operation and returns to the normal cursor.

Shortcuts

128

• Clicking on the white area at the far left of the palette also cancels the selected palette
tool.

New Object List

• Option-clicking on Macintosh or Alt-clicking on Windows on an empty object box
opens the New Object List window.

• Delete (Backspace) hides the New Object List window.

• The Space bar enters the text of the selected item in the New Object List into the
object box and adds a space afterwards for typing in any arguments.

• Return or Enter enters the text of the selected item in the New Object List into the
object box.

• The Up and Down Arrow Keys scroll the selected item up and down.

• Tab switches which column of items is affected by typing.

• Holding the Option key on Macintosh or the Alt key on Windows down while
double-clicking or typing Return, Space, or Enter opens a help file on the selected
item.

You can add your own shortcuts to the New Object List. See the Text Macros section
below.

send, receive, and value

• Double-clicking on a send, receive, or value object provides a contextual menu with a
list of instances of these objects.

Table Editing Window

• Command-clicking on Macintosh or Control-clicking on Windows with the Pencil
tool magnifies the area around where you clicked. If you are at 8:1 x 8:1 zoom,
Command-clicking on Macintosh or Control-clicking on Windows returns to 1:1 x
1:1 magnification, or the minimum allowed zoom above 1:1.

Shortcuts

129

Any Window

• Command-clicking on Macintosh or Control-clicking on Windows in any window
while All Windows Active is enabled brings that window to the front (if the window
is not already in front).

Option-clicking on Macintosh or Alt-clicking on Windows on the close box of a
window closes all windows except the Max window.

Inspectors

• The Cut, Copy, and Paste keyboard shortcuts using the Command keys on Macintosh
or the Control keys on Windows work in the text fields of any object’s Inspector
window.

Text Macros

Once upon a time, Max power-user Jasch was tired of typing “prepend set” all the time, so
he created an object called _ (underscore) that did exactly what the prepend object did
with “set” as an argument. Inspired by his efforts to reduce repetetive stress injury (RSI)
among users, Max includes the ability to set up text macros for things you type into object
boxes—including Jasch’s underscore shortcut.

To try it out, create a new object box, then type the underscore character followed by the
Escape key (ESC). The underscore will be replaced by “prepend set” and the insertion
point will be after the word set (in the unlikely event you want to type something else).

Another example: let’s say you do a lot of work with multichannel audio I/O. Now you
can type d6 <ESC> instead of dac~ 1 2 3 4 5 6.

To add your own shortcuts, you place a message to the max object in a text file in the init
folder as follows:

max shortcut <shortcut-text> <replacement-text>;

The shortcut text must be a single symbol, which means if you want to include a space in
the shortcut, you will need to put all of the text in double quotes. The replacement text
does not need quotes around spaces. For example, to replace underscore with prepend set,
you would add the following message to a text file in the init folder:

Shortcuts

130

max shortcut _ prepend set;

Examine the files max-shortcuts.txt and audio-shortcuts.txt in the init folder for examples
and inspiration.

131

Timeline: Creating a Graphic Score of Max Messages

Introduction

 A timeline is a graphic editor for creating a score (like a musical score) of Max messages.
When you tell the timeline to play that score, it sends its specified messages to the
specified patches at the specified times.

There are three basic steps in creating a timeline.

1. Create (or modify) at least one patch to communicate with the timeline. This patch
must contain at least one ticmd object. Just as you would use an inlet object in a patch
to receive messages from a parent patch, you use ticmd to receive messages from the
timeline. Such a patch, which communicates with a timeline via the ticmd object, is
called an action.

2. Create a timeline, and create at least one track within that timeline. A track
corresponds to, and communicates with, a specific action (patch) you have created.

3. Place events in the timeline’s track(s), specifying messages to be sent to the ticmd
objects in the track’s action.

Creating an Action

Any patch that receives messages from an inlet can easily be converted to receive
messages from a timeline track. For example, the patch shown below receives a symbol,
an int, and a float in its inlets, and prints them in the Max window.

Timeline Creating a Graphic
Score of Max Messages

132

But in order for this patch to receive messages from a timeline, the inlets must be replaced
with ticmd objects, as shown below.

The ticmd object requires two or more arguments. The first argument is a command name
by which the timeline can refer to the ticmd object. The remaining arguments indicate the
type of message ticmd is expecting, and determine the number of outlets it will have. Each
argument after the command name creates an outlet, and specifies the type of
information to be sent out of that outlet: i for int, f for float, l for list, s for symbol, b for
bang, and a for any message. (You will notice that there is an additional outlet on each
end of the ticmd objects; these outlets will be explained later.)

Any patch that contains at least one ticmd object is ready to be used as an action. You may
save it anywhere, but if you save it in the Timeline Action Folder (as specified by the File

Preferences... command in the Edit menu) it will automatically appear on timeline’s pop-
up Track menu. When you first install Max, the Timeline Action Folder is a folder named
tiAction inside the Max application folder.

Creating a Timeline

To create a new timeline, choose Timeline from the New menu. It is also possible to
create a new timeline by typing timeline into a new object box. Either way, a graphic
timeline editor window will be opened for you.

When you first open a timeline editor window, it contains no tracks. To create a new
track in the window (and thus load a specific action), click the Track button and select an
action file by name from the pop-up menu. The pop-up menu will show all the patches
contained in Timeline Action Folder. If you don’t see the name of the action patch you
want, choose Other… from the pop-up Track menu and you will be able to load the
action with a standard open file dialog.

Timeline Creating a Graphic
Score of Max Messages

133

Once you have created a track, you can view and edit the action by double-clicking on the
little Max icon in the leftmost portion of the track.

Creating Timeline Events

An event is an object you place in a timeline track; the event sends one or more messages
to a particular ticmd object in that track’s action. You place an event onto the timeline by
Option-clicking on Macintosh or Alt-clicking on Windows in the right side of the track.
This reveals a pop-up menu of names corresponding to the names of ticmd objects within
the action. You can also place an event in a timeline track simply by clicking in the event
portion of the track and holding the mouse down until the pop-up menu of possible
events appears, then choosing the event.

When you choose a command name from this menu, you are actually specifying which
ticmd object you want to send a message to. Based on the b, i, f, l, s, or a arguments in that

Timeline Creating a Graphic
Score of Max Messages

134

ticmd object in the action, the timeline knows what kind of message is appropriate for that
event, and places an object (known as an editor) for that message in the track.

When you place an event that sends a bang, a symbol, or a list, Max will give you an
editor known as the messenger. The messenger looks just like the message object, except that
it has a label showing the command name of the ticmd object to which its message will be
sent.

To place a single number as an event, you will use the int and float editors, which look just
like the number box object.

Once you have placed an event in the track, you can edit the event’s contents (change the
message it will send to the ticmd object) or drag it to a new location in the track (change
the time at which its message will be sent). You can also cut or copy events from one track
and paste them into another track, provided they are appropriate events to be placed in
that other track.

Timeline Creating a Graphic
Score of Max Messages

135

If the action contains different ticmd objects (as is the case with our example
PrintThreeThings action), then a track can contain different kinds of event editors. In the
following example, when the timeline is played it will send an int 60 to be printed at time
0, a float 3.14 to be printed at time 1000 milliseconds (1 second), and the symbol start to be
printed at time 2000 (2 seconds).

You can choose the format in which you want time to be displayed by clicking on the
Display button and choosing Time Units from the pop-up menu. You can choose to
display time in milliseconds rather than the minutes, seconds, and frames (for film or
video) shown in this example.

Once you have completed the three steps of creating a timeline—creating an action,
creating a timeline, and creating timeline events—you can play the timeline using the tape
recorder-like controls in the upper left corner of the timeline window.

The edetonate Editor

An event editor called edetonate, which works just like the graphic editor window of a
detonate object, can be used in a timeline for sending list messages to ticmd. Once you have
placed it in a timeline track, you can double-click on it to open its graphic note event
editing window. For details of this graphic editor window, see the Detonate Topic.

Because of the edetonate object’s orientation as a sequencer of note events, it is especially
well suited to sending list messages that will be used as note events in the action patch.
When the timeline is played, edetonate sends out the note-on events that you have drawn

Timeline Creating a Graphic
Score of Max Messages

136

into it, and also sends out corresponding note-off messages after the amount of time
specified by each note’s duration value.

You can suppress the note-off messages by selecting the edetonate editor, choosing Get
Info... from the Object menu, and unchecking the Send Note-Offs option. In the same
dialog box, you can type a name for the editor in the Explode Label box. All edetonate
editors that share the same name also share the same data. They can also share their data
with a single detonate object that has the name typed in as an argument.

A single detonate object with a typed-in argument
shares data with any edetonate editors with the same name in the timeline

Note that the horizontal length of an edetonate on the timeline determines its real
duration. The time and duration values in the edetonate editor window are actually
relative times, which will be scaled when the timeline is played, to fit in the time occupied
by edetonate in the timeline. Selecting an edetonate editor and choosing the Fix Width
command from the Object menu makes the length of the edetonate equal to the length of
the sequence it contains. If you make any subsequent changes to the contents of the
edetonate (or its associated detonate object in a patcher), you will have to adjust it once
again with the Fix Width command in order for it to play without its time being scaled.

The etable Editor

There are actually three different possible event editors for sending messages to ticmd
objects that expect a single integer: int (like the number box) etable, and efunc.

When you create an etable editor, it appears as a shaded box in the event area of the track.
The command name of the corresponding ticmd object is displayed in its upper left
corner.

Timeline Creating a Graphic
Score of Max Messages

137

Double clicking on this box will display the familiar table editor.

Any changes you make in the table editor will appear in the etable. When you play the
timeline, the etable will send its stored values to the corresponding ticmd object in order
from left to right. The values from the etable being played by the timeline are sent out the
ticmd object’s middle outlet.

By clicking and dragging the lower right corner of the etable, you can resize it. Resizing
the etable horizontally will change its duration on the timeline, causing its values to be
sent out at a different rate. (Resizing the etable vertically has no effect on the data sent to
ticmd.)

When the timeline is being played, and reaches the left edge of the etable, a bang is sent out
the corresponding ticmd object’s left outlet.

The contents of an etable will ordinarily be saved with the timeline that contains it. You
can also link an etable to an existing table object. By clicking on an etable and choosing
Get Info... from the Object menu, you can enter a label for the etable. Once labeled, it will
share the data of a loaded table object bearing the same name. This table object may be in
an open patch, or in an action within the timeline. Once an etable his been labeled, you

Timeline Creating a Graphic
Score of Max Messages

138

can still edit it graphically by double-clicking on it (which will also alter contents of the
table to which it is linked).

The efunc Editor

When you create an efunc editor, a shaded box similar to the etable editor appears. By
clicking in the efunc editor box, you specify a point to be stored as an x,y pair of numbers.
When you click in efunc, the actual values of x and y for the point where you click are
shown at the top of the timeline window. Each time you click at a different point, you
create a new x,y pair of numbers, and efunc connects all the points with lines segments
from left to right.

You can move any existing point simply by dragging it. The coordinates of the point are
displayed as you drag it.

When timeline plays back the data in an efunc editor, it sends the y (vertical) value of each
x,y pair out of the middle outlet of the appropriate ticmd object, at a time corresponding
to the value of x. By default, efunc does not interpolate between points; that is, it does not
supply intermediate points along the connecting line segments. In order to make timeline
interpolate the values between points (fill in the “ramps” between points), select the efunc,
choose Get Info... from the Object menu, and enter a nonzero value for Interpolation
Time Grain. This number will determine the resolution of the interpolation. A value of 1
will provide the highest resolution interpolation, causing efunc to report its current value
to the ticmd object every millisecond. A value of 100 will cause efunc to report every tenth
of a second, and so on.

Timeline Creating a Graphic
Score of Max Messages

139

Choosing Get Info... from the Object menu also allows you to set the range of the x,y
graph by specifying maximum x and y values for efunc coordinates. You can also enter a
label which will link the efunc editor to a funbuff object of the same name. Once an efunc
editor is linked to a funbuff object, you can still edit the funbuff through the efunc editor,
and changes will be reflected in all funbuff objects sharing its label.

Horizontal resizing of the efunc editor has the same effect as resizing the etable
editor—changing the total duration in which the numbers are sent out when the timeline
is played—but does not change the time grain of the interpolated output.

The emovie editor

As explained earlier, when you create a new timeline track—and thus assign it a particular
action—the command name of each ticmd object in that action becomes available as an
event which can be placed in the event portion of that timeline track. Additionally,
whenever one of the actions used in your timeline contains a movie object, into which a
QuickTime movie has been read (either with a typed-in argument specifying a movie file,
or via a read message), the movie window will be opened and a new type of event editor
will become available in that action track. The new event editor is called emovie. It allows
you to place a start event in the track, which will be sent directly to the movie object
(without having to go through ticmd).

Timeline Creating a Graphic
Score of Max Messages

140

When you place an emovie event in the track, a “thumbnail” miniature frame of the movie
is shown in the track to remind you what movie will be started at that time.

Of course, it is also possible to send messages to a movie object in an action just the same
way you would send any other messages: via a ticmd object.

Timeline Creating a Graphic
Score of Max Messages

141

For example you could send a message to load a movie (the word read followed by the
name of a movie file), set the volume, and start the movie, all from within a timeline, via
ticmd.

Features of the timeline Window

In the upper left corner of the timeline window there are tape recorder-like controls for
playing the timeline. Next to the controls there is a clock icon and a digital readout of the
“current time” as recognized by the timeline (the current point of the timeline’s progress).
The current time is also indicated by the little arrow indicator on the timeline itself.

Timeline Creating a Graphic
Score of Max Messages

142

Next to the current time, the current cursor position is displayed. This is useful as a
reference for placing events accurately in a track with the mouse.

You create a new track by choosing an action from the pop-up menu labeled Track. In
the left part of the track you are shown the track number and the track name. The track
name is initially set to be the same as the name of the track’s action, but you can change
the track name to something else (just by clicking on the name and editing it) without
affecting the action assigned to that track.

To select an entire track, click on the track number. To select multiple tracks, select one
track, then shift-click on the track number of the other tracks. Once you have selected
one or more tracks, you can edit them with the commands in the Edit menu: cut, copy,
and paste them, clear out all their events, etc. To relocate a track, select it, choose Cut
from the Edit menu, then select the track after which you want to place the cut track, and

Timeline Creating a Graphic
Score of Max Messages

143

choose Paste from the Edit menu. Whenever you create a new track, it will become track
number 1 if no track is currently selected; if any tracks are currently selected, though, the
new track will be placed after the highest-numbered selected track. You can also adjust
the visual height of a track—to allow you more vertical space for placing events—just by
dragging up or down on the bottom edge of the track.

By double-clicking on the little Max icon next to the track name, you can view and even
edit the action patch for that track. If you have more than one track using the same
action, any changes you make (and save) in that action patch will immediately affect all of
those tracks.

You can save the entire contents of an individual track in a separate file—its track name,
action name, and all its events—then reload that track into a timeline at a later time. If
you click once on the little Max icon in a track and hold the mouse button down, you will
be presented with a pop- up menu which gives you two choices—Open Track File... and
Save Track As...—for saving and reloading an individual track.

The Display pop-up menu lets you alter the look of your timeline window to suit your
needs. You can display the Time Units in one of several different formats: Milliseconds,
Midi Clock, or SMPTE format of Minutes:Seconds:Frames (24fps, 25fps, or 30fps). You
can collapse tracks down to a single line of vertical space, thus allowing you to see many
tracks at once, or you can expand them back out to their full height to see all of their
contents. You can choose to Show Mute Buttons in the left part of the tracks; these
buttons are useful for suppressing the events on individual tracks. And, with the
Autoscroll While Playing option, you can choose whether the timeline display should
follow the progress of time or remain stationary when the timeline is being played. All
settings you specify in the Display menu are saved as part of the timeline file.

Timeline Creating a Graphic
Score of Max Messages

144

The timeline’s clock can be synced to any setclock object in any currently loaded patch.
Double- clicking on the little clock icon at the top of the timeline window displays a pop-
up menu containing the names of all currently loaded setclock objects.

Choosing one of those names from the pop-up menu syncs the timeline to that setclock
object. Choosing Internal from the pop-up menu returns the timeline to following Max’s
internal millisecond clock.

Holding down the Command key on Macintosh or Control key on Windows and clicking
on an event sends that event’s message to the ticmd object(s) in the action patch, allowing
you test the effects of the message as you edit the timeline. You can play through a
segment of the timeline in a repeated loop (also useful for testing a timeline as you edit it)
by selecting a segment of time in the time selection area just under the ruler at the top of
the timeline window, then clicking on the Loop button.

There is an additional event editor called a marker, which functions similarly to a comment
object in a patch. The marker allows you to type in comments and notes about events in
the timeline, or (more importantly) to mark a specific point on the timeline. When a
timeline object in a patch receives the message search, followed by the first word of one of
the markers in the timeline, the current time pointer of the timeline moves to the location
of that marker. (See Tutorial 41 for an example of searching for a marker.) You can even
create a Marker Track in a timeline window: a track that does nothing but contain marker
events.

When a timeline object receives the message markers, followed by the number of one of its
outlets, it sends the first word of each marker contained in its tracks out the specified
outlet, to be stored in a menu object. This menu can then be used to move the timeline’s
current time pointer to the location of a particular marker (by prepending the word search
to the text output of the menu).

Timeline Creating a Graphic
Score of Max Messages

145

Using timeline in a patch

So far we have only discussed the use of the timeline editor window. Once you have
created a score consisting of action tracks and messages to be sent to those actions, you
will no doubt want to save your score for later use. Choose Save from the Edit menu, and
save your timeline. Max recognizes timeline files as being different from patches, and
when you reopen the file it will be displayed once again in the timeline editor window,
and you can play or further edit your score. Once you have saved your timeline as a file,
you can also load it automatically into a patch.

When you create a timeline object in a patch, without typing in an argument, a new
timeline editor window is automatically opened for you. However, if you type in a
timeline filename (that is located in Max’s file search path) as an argument to timeline,
that timeline file will be automatically loaded in, and you can then play that timeline score
by sending a play message to the timeline object.

With the read message, you can load a different timeline file into the same timeline object
(replacing any timeline score that was there previously) and play it.

Note that for this to work effectively, the timeline file(s) must be in Max’s file search path
(as specified by the File Preferences... command in the Edit menu, or in the same folder as
the patch that is trying to load them) and the action patches used by those timelines must
also be locatable (in the Timeline Action Folder specified in the File Preferences dialog, or
in the same folder as the patch that contains the timeline). The timeline object understands
a great many other messages for controlling it or altering its parameters. See the timeline
page in the Objects section for details.

Playing a timeline from within a patch can seem a little mysterious since, once the
messages are sent from the timeline, all the action takes place in the action patches, which
in most cases are out of sight. However, you can create interaction between a timeline and
the patch that contains it. Messages (which are sent to ticmd objects in actions) from the
timeline event tracks can be redirected out outlets of the timeline object. In fact, actions

Timeline Creating a Graphic
Score of Max Messages

146

can themselves send messages out outlets of the timeline object. This type of interaction is
achieved by using the tiout object in an action patch, and by creating outlets in the timeline
object itself.

A second argument typed into a timeline object specifies the number of outlets the object
will have (the first argument is a timeline filename to be read in automatically).

For messages to come out of those outlets, at least one of the actions used in the timeline
must contain a tiout object. Any message that goes into a tiout object in the action will
come out of the appropriate outlet of the timeline object using that action. Here is an
action that is specially designed to send integers out the left outlet of the timeline object
that uses it, and symbols out the second outlet.

The actual messages to be sent out the outlets of timeline need not originate in the
timeline event editor; they may be generated within the action patch itself. Below is an
example of an action which understands a “countseconds” event.

Timeline Creating a Graphic
Score of Max Messages

147

When the timeline messenger event countseconds start occurs, the action begins to send
integers out the left outlet of the timeline object, until the countseconds stop event occurs.

So, in this case, the timeline sends symbols (start and stop) to ticmd, and the action itself
sends ints (the count of the number of elapsed seconds since a start message was received)
to tiout, which sends them out the outlet of the timeline object.

As you have seen, a timeline can be controlled either with the buttons in the timeline
window or by messages received in the inlet of a timeline object in a patch. There is a third
way that a timeline can be controlled: it can control itself. An action patch can contain an
object called thistimeline, which sends messages back to the timeline that is using that
action. A message received in the inlet of thistimeline in an action is sent to the timeline
itself, allowing an action to control the timeline that is using it.

In this example action, a “goto” event in the track will cause the timeline to relocate to
whatever time location it gives itself. (Here it is telling itself to go to a point five seconds
into the timeline.) In the example, a conditional clause has been built into the action so
that the “goto” event will only be enacted by the action if the space bar is currently being
held down. The interaction between a timeline, the patch that contains it, and the actions

Timeline Creating a Graphic
Score of Max Messages

148

it employs can be as complex as you care to make it. You will need to plan your program
very carefully to be sure that you understand which object is actually acting at any given
moment: the patch containing a timeline object, the timeline itself, or the action(s) being
used by the timeline.

See Also

mtr Multi-track sequencer
setclock Modify clock rate of timing objects
thistimeline Send messages from a timeline to itself
ticmd Receive messages from a timeline
timeline Time-based score of Max messages
tiout Send messages out of a timeline object
Tutorial 41 Timeline of Max messages

Index

149

$
in a message box, 8
in an object box, 9

\, 9
0x, hexadecimal indicator, 117
absolute path, 81
action, timeline, 131
All Windows Active, 129
Any Window

shortcuts, 129
append

received in a message object, 9
argument

changeable argument, 8, 116
array, 26

of symbols, 28
Auto Step, 37
autoscroll while playing a timeline, 143
backslash, 9, 116
bang, 100

received in a table, 120
boot path, 82
boxcolor, 106
breakpoint, 37
bug

debugging, 30, 34
error message, 70

button
as a debugging tool, 34

C74 path, 82
capture

debugging with, 33
changeable argument, 8, 116
characters, special, 116
checkpreempt, 106
clean, 106
coll, 27
collective, 12

comma
in a mathematical function, 116
in a message box, 117

command-period, 125
commenting, 38
computational efficiency, 62
constant value, 63
Continue, 37
conversion of message type, 62
correctness checking, 30, 34
counter, 100
data structure, 26

coll, 27
debug, 106
debugging, 30, 34
decrementing, 100
default scaling, 45
delta time, 39
detonate, 39

in a timeline, 48, 135
dialog

error, 78
DLS synthesizer, 112
documenting patches, 68
dollar sign, 8, 116
edetonate, 48, 135
editing a sequence graphically, 40
editor for events in a timeline, 134
efficiency, 62
efunc, 138
emovie, 139
Enable Trace, 36
enablerefresh, 106, 107
encapsulation, 65
error dialog, 78

stack overflow, 102
error message, 38, 70
etable, 136

Index

150

event in a timeline, 131
externs, 107
file type, 84
filename extensions, 82
filtering MIDI messages, 64
funbuff, 26, 139
getruntime, 108
getsleep, 108
getslop, 108
getsystem, 109
graph interval, 45
hexadecimal number

entering, 117
hideglobal, 109
hidemenubar, 109
incrementing, 100
Inspector

Edit menu commands, 129
Inspectors, 129
interpolate between points, 138
interval, 109
interval of timing resolution, 109
loadbang

disable defeating, 22
loading a patch, 62
loop, 100
looping in a timeline, 144
main patch, 65
marker in a timeline track, 144
Max Preferences, 22
Max, messages to, 106
MaxMSP Runtime application, 12
memory usage, 64
menu bar

hiding and showing, 109
menu object, 28
message

tracing, 36
viewing, 30, 34

message lookup, 62
message object

as a data structure, 28
changeable argument, 8
punctuation in, 117

message type, 62
messenger, 134
MIDI channel

filtering by, 64
MIDI file, 39, 123
modular programming, 65
multi-track MIDI file, 39, 123
mute a timeline track, 143
New Object List, 128
Number box

as a debugging tool, 33
object box

punctuation in, 116
objects

nonexistent, 71
Open Track File..., 143
outlet caching, 63
Overdrive, 63
patch cord

wiretap in, 33
patcher object

argument to, 9
Patcher window

shortcuts, 125
paths, 110
pcontrol, 11
pound sign, 116
preempt, 110
preset, 27
print

as a debugging tool, 34
probability, 119
punctuation

in a message object, 117
in an object, 116

quantile, 119
QuickTime movie, 139

Index

151

quit, 111
random number

weighted randomness, 119
receive

double-clicking on, 128
recording in non-real time, 46
refresh, 111
relative path, 82
repeat actions, 100
Resume, 78
runtime, 111
Save Track As..., 143
scheduler, 78, 109
score of timed messages, 131
search path, 145
segmented patch cords

cancelling, 127
semicolon, 116

in a message, 117
semicolon for remote messages, 106
send

double-clicking on, 128
sendapppath, 111
sendinterval, 111
sequencing

graphic editing, 39
set

received in a message object, 9
Set Breakpoint, 37
setboxcolor, 107
seteventinterval, 111
setpollthrottle, 112
setqueuethrottle, 112
setrefreshrate, 111
setsleep, 111
setslop, 112
showglobal, 112
showmenubar, 112
size, 112

of a loaded patch, 62

special character, 116
speed of computation, 62
stack overflow, 78, 102
standalone application, 12
Step, 37
step recording, 46
subpatch

argument to, 9
in a collective, 13

symbol
received in a message object, 8

system, 112
table, 26

linked to an etable editor, 137
quantile message, 119

Table window
shortcuts, 128

testing a patch, 30, 34
thistimeline, 147
tiAction folder, 132
tiCmd, 131
timed repetition, 102
timeline, 131
Timeline Action Folder, 132
timeline editor window, 132
tiOut, 146
top-level patch, 13
top-level Patcher, 23
Trace

Enable/Disable, 36
Trace menu, 36
track in a timeline, 131
type of message, 62
Unlocked Patcher Window

shortcuts, 125
uzi, 103
value

double-clicking on, 128
varispeed playback of sequences, 39, 124

Index

152

	Unknown
	Copyright and Trademark Notices
	Credits

	Introduction
	Tutorials and Topics in Max
	Manual Conventions

	Arguments: $ and #, Changeable Arguments to Objects
	$ in a message box
	$ in an object box
	# in object and message boxes
	See Also

	Collectives: Grouping Files into a Single Project
	What is a Collective?
	Making Your Own Program
	Steps for Building a Collective
	Adding Non-Max Files to a Collective
	Testing a Collective
	Collective Formats
	Building a Standalone Application
	Customizing Your Standalone
	The standalone Object Inspector
	The Search Path in Standalone Applications
	See Also

	Data Structures: Ways of Storing Data in Max
	Storing Data
	Arrays
	Complex Data Structures
	See Also

	Debugging: Tips for Debugging Max Patches
	Catching Your Own Bugs
	Planning Your Program
	Test As You Go
	Viewing Messages
	Message Order
	Tracing Messages
	Messages
	Comment
	See Also

	Detonate: Graphic Editing of a MIDI Sequence
	Uses of detonate
	Recording Into detonate
	The detonate Editor Window
	Changing the View in the Editor Window
	Editing Shortcuts
	Techniques for Using detonate
	Using detonate in a Timeline
	See Also

	Editing: Templates, Clippings, Prototypes and Shortcuts
	An Overview of Editing Features
	Templates
	Clippings
	Prototypes
	Saving Prototypes
	Prototypes and Object Data
	Prototypes for the bpatcher Object

	Patcher Selection of Text Objects

	Efficiency: Issues of Programming Style
	Program Size and Speed
	Principles of Efficiency
	Memory Usage
	See Also

	Encapsulation: How Much Should a Patch Do?
	Complex Patches
	Modularity
	Encapsulation
	Messages between Patches
	Encapsulation and De-Encapsulation
	Documenting Subpatches
	See Also

	Errors: Explanation of Error Messages
	Error Reports in the Max Window
	Error Dialogs
	See Also

	Files: How Max Handles Search Paths and Files
	When Max Looks for a File...
	Speeding up file searches
	What’s in the Cycling ’74 folder
	File Path Syntax
	File Types and Filename Extensions
	Mapping Filename Extensions to File Types
	External Object Name Mappings

	Graphics: Overview of Graphics Windows and Objects
	Introduction
	Graphics In a Graphics Window
	Ways to Move Objects
	QuickTime Movies
	Graphics in a Patcher Window
	See Also

	Interfaces: Picture-based User Interface Objects
	Getting the Picture
	Picture File Construction
	Making Toggles
	Inactive States
	Image Masks
	See Also

	Loops: Ways to Perform Repeated Operations
	Repeated Actions
	Timed Repetition
	Stack Overflow
	Instantaneous Loops
	See Also

	Macintosh Externals
	Executable Formats and Processor Architectures
	Libraries for Older External Objects

	Messages to Max: Controlling the Max Application
	The ; max message
	Messages Understood by Max
	MIDI Configuration Messages
	Examples
	See Also

	Punctuation: Special Characters in Objects and Messages
	Punctuation in Object Boxes
	Punctuation in a Message Box
	See Also

	Quantile: Using a Table for Probability Distribution
	The quantile message
	The fquantile message
	Examples
	See Also

	Sequencing: Recording and Playing Back MIDI
	Performances
	seq
	follow
	mtr
	detonate
	timeline
	See Also

	Shortcuts
	Locked Patcher Window
	Unlocked Patcher Window
	New Object List
	send, receive, and value
	Table Editing Window
	Any Window
	Inspectors
	Text Macros

	Timeline: Creating a Graphic Score of Max Messages
	Introduction
	Creating an Action
	Creating a Timeline
	Creating Timeline Events
	The edetonate Editor
	The etable Editor
	The efunc Editor
	The emovie editor
	Features of the timeline Window
	Using timeline in a patch
	See Also

	Index

