
MAX

Javascript in Max
Version 4.6/7 August 2006

2

Table of Contents

Copyright and Trademark Notices.. 4
Credits ... 4

Basic Javascript programming for the js and jsui objects... 5
How Javascript Works in the js Object ... 5
Overview of js Object Extensions to Javascript... 6
Assigning a File to js and jsui... 8
Arguments ... 8
How Input to the js Object is Handled .. 9
Special Function Names ... 9
Reserved Words ... 12
Global Code ... 12
Private (Local) Functions ... 13
Universally Available Methods .. 13
jsthis Properties.. 14
jsthis Methods .. 16
Max Properties ... 20
Max Modifier Key Properties ... 21
Max Methods ... 22
Patcher Constructor.. 22
Patcher Properties .. 23
Patcher Methods... 24
Maxobj Properties .. 27
Maxobj Methods .. 29
Wind Properties ... 30
Wind Methods.. 31
Global Constructor ... 32
Global Properties.. 32
Global Methods.. 32
Accessing the Global Object from Max .. 32
Task Constructor .. 33
Task Properties... 34
Task Methods... 35
Folder Constructor ... 37
Folder Properties .. 37
Folder Methods .. 39
File Constructor ... 39
File Properties .. 39
File Methods .. 40
Controlling a Function’s Thread of Execution .. 43
What’s Permissible in the High-Priority Thread ... 45

3

jsui, Sketch and OpenGL...47
jsui Specific Properties... 49
jsui Specific Methods ... 49
jsui Event Handler methods.. 49
Sketch Constructor ... 51
Sketch Properties.. 51
Sketch Methods.. 51
Shape Methods... 53
Sketch Shape Attribute Methods .. 55
Sketch Text Methods.. 55
Sketch Pixel Methods... 56
Sketch Stroke Methods... 57
Basic 2D Stroke Style Parameters .. 58
Line Stroke Style Parameters.. 59
Sketch Setup Methods .. 60
Sketch OpenGL Methods ... 62
Image Constructor.. 65
Image Properties .. 65
Image Methods... 66

4

Copyright and Trademark Notices

This manual is copyright © 2000-2006 Cycling ’74.

Max is copyright © 1990-2006 Cycling ’74/IRCAM, l’Institut de Recherche et
Coördination Acoustique/Musique.

Credits

Javascript in Max Documentation: David Zicarelli and Joshua Kit Clayton

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

5

Basic Javascript programming for the js and jsui objects

Introduction

The js and jsui objects run Javascript version 1.5 inside of Max. This topic covers
information about the functions added to the Javascript language that are specific to the js
and jsui object implementation. This topic is not a general reference on Javascript
programming. A good on-line resource on Javascript is available here:

http://developer.mozilla.org/en/docs/JavaScript

The Javascript language used by the js and jsui objects does not include web browser-
specific functions and properties.

User interface functions and properties specific to the jsui object are covered in the
Javascript Graphics topic. In this topic, unless specifically noted, all information covers
both js and jsui even though we will refer only to the js object.

How Javascript Works in the js Object

Javascript is a textual language that is “compiled” into a script. Scripts have global code
and functions. Any Javascript expressions and statements that aren’t inside functions are
considered to be in global code.

Example:

var a = 2; // global code
function assign(x)
{

a = x; // statement in a function, not global code
}

Global code is executed immediately after a Javascript source file is compiled. This allows
you to initialize a global variable or property. Functions can be called by global code, but
they can also be called via messages sent to the js object. This makes implementing new
Max objects in Javascript very straightforward because the name you give to a function is
the same as the message name a Max user would use to invoke it.

6

For example, if the Javascript source above were compiled into a js object, we could click
on the message box in the patch shown below to invoke the assign() function with an
argument of 10.

The js object only uses Javascript saved in a text file. You can write Javascript code using a
separate editor, or use the text window built into Max. If you use the built-in window, the
js object will recompile its Javascript source each time you save the file. If you use another
text editor, you can recompile the source from the text file by sending the message compile
to the js object. Or you can send the message autowatch 1 to the js object, and every time the
file is saved, the object will recompile it automatically.

Overview of js Object Extensions to Javascript

Javascript is a language designed to control the software in which it is embedded. Put
another way, it is a language designed to script an application. Javascript code always
executes within a script context that can add new properties and functions — this is, for
example, how Netscape added browser-specific features familiar to Web developers.

In order to understand the script context in the Max js object, it is important to realize
that there is a Javascript model of the Max world that you will be manipulating. Perhaps
the most important aspect of this model is that there is a Javascript version of the Max js
object itself. This object, which we refer to in this documentation as the jsthis object, is the
“base” on which you build properties and methods when you write functions and global
code. Some examples should make this clear. Consider the Javascript we listed above
again:

var a = 2; // global code
function assign(x)
{

a = x; // statement in a function, not global code
}

7

The function assign() becomes a method of jsthis, and the variable a becomes its
property. In Javascript a method can be invoked by using a dot notation on an object. We
could rewrite the above example as follows using the optional Javascript this keyword to
make the object-oriented nature of the environment more apparent. We’ve also added a
new function provoke() that invokes assign().

this.a = 2; // global code
function assign(x)
{

this.a = x;
// statement in a function, not global code
}

function provoke()
{

this.assign(1000);
}

However, you shouldn’t really need to concern yourself with these semantic details if you
have an irrational hatred of object-oriented terminology and concepts.

The Javascript jsthis object has certain built-in properties and methods you will need to
use in order to work within the Max environment. For example, there is an outlet()
method to send data out an outlet. You can also access the Max js object’s typed-in
arguments, find out which inlet received a message, and define the number of inlets and
outlets the object has. These features are documented in the section on the jsthis object
below.

While the word this in generally optional, you may need to use it when passing the
current jsthis instance to functions. For example, you can send a reference to your jsthis
object out an outlet, or use it in creating a Task object (see below for more about Tasks).

In addition to jsthis, the notion of a Javascript Max model is completed with a series of
Javascript classes defined as part of the context. One of the primary reasons for the js
object was to provide a more powerful interface for the patcher scripting features where
you can create, connect and move new objects. The Max, Patcher, Wind, and Maxobj
classes are used in scripting and Max application control. The Task object provides a
convenient Javascript interface to the Max scheduler. The Folder class allows you to
enumerate files. And the Global class allows different js instances to communicate with
each other and share data, as well as interface to Max send and receive objects.

Before we enumerate the properties and functions for these Javascript classes, we’ll review
how you handle Javascript source text files for the js and jsui objects.

8

Assigning a File to js and jsui

Applies to the js object only: If you type js into an object box with no arguments, you will
get an object that can’t do anything and has a single inlet and outlet. The first argument to
the js object is a filename of some Javascript source. By convention, Javascript source files
end in the extension .js. In fact, if you like, you can name a file something like myscript.js
and type js myscript. Assuming the file myscript.js is in the Max search path, the js object
will find it.

Applies to the jsui object only: There are several ways to assign a Javascript source file to
the jsui object.

• Select the jsui object. Choose Get Info… from the Object menu to open the jsui
Inspector. Type the filename or use the Choose button to select it from a standard
open file dialog window.

• Right-click or control-click on a selected jsui object to see a contextual menu. You will
see several choices specific to the jsui object, including the names of Javascript source
files in the jsui-library folder inside the Cycling ’74 folder. Choose one of these files,
or choose Load New File… to select another file using a standard open file dialog
window.

• Right-click or control-click on a selected jsui object and click to see a contextual
menu. Choose Open Editor from the contextual menu. After typing some Javascript,
save the text window. The name you gave the file is now assigned to the jsui object and
will be recorded when the patcher containing the jsui is saved.

Basic Techniques

In this section, we describe some general information about writing Javascript code for
the js and jsui objects.

Arguments

After supplying a filename after the word js, you can type in additional arguments; these
are available to your script’s global code or any function in an array property called
jsarguments[]. jsarguments[0] is the filename of your script, jsarguments[1] is
the first typed-in argument. jsarguments.length is the number of typed-in
arguments plus one. In other words, if there are no typed-in arguments, the value of
jsarguments.length will be 1.

9

The jsui inspector contains an arguments field: enter the arguments you wish to use here.
The first argument you type into the field can be accessed as jsarguments[1].

How Input to the js Object is Handled

For most messages, a message received in an inlet of the Max js object will invoke a
method with the same name defined for the Javascript jsthis object, passing anything after
the beginning symbol as arguments to the function. Within Max, sending the message foo
1 2 3 to the js object invokes the foo() method of the jsthis object; in other words, it looks
for a function property of jsthis called foo, passing 1, 2, and 3 as arguments to the
function. If foo were defined as follows, the output in the Max window would be 1 2 3.

function foo(a,b,c)
{

post(a,b,c);
}

post() is a function of the js object that writes the value of one or more Javascript items
to the Max window, described in more detail in the jsthis Methods section below.

Special Function Names

msg_int, msg_float

To define a function to respond to a number, you need to name the function
msg_int or msg_float. Example:

function msg_int(a)
{

post(a);
}

If you define only msg_int(), any float received will be truncated and passed to
msg_int(). Similarly, if only msg_float() exists, an int received will be
passed to the msg_float() function.

10

list

To handle Max lists, i.e., a message that begins with a number, call your function
list. In implementing a list function, you’ll probably want to use the Javascript
arguments property, since otherwise you couldn’t handle input of varying
length. Example:

function list(a)
{
post("the list contains",arguments.length,
"elements");
}

You can define an anything() function that will run if no specific function is
found to match the message symbol received by the js object. If you want to know
the name of the message that invoked the function, use the messagename
property. If you want to know what inlet received the message, use the inlet
property. Both of these properties are discussed below in the jsthis Properties
section.

loadbang

To invoke a function when a patcher file containing the js or jsui object is loaded,
define a function called loadbang(). This function will not be called when you
instantiate a new js or jsui object and add it to a patcher; it will only be called when
a pre-existing patcher file containing a js object is loaded—in other words, at the
same time that loadbang objects in a patcher are sending out bangs. You may wish
to test the loadbangdisabled property of the max object and do nothing in your
loadbang function if it is true. See the section entitled The Max Object below for
more information.

getvalueof

Defining a function called getvalueof() permits pattr and related objects to
attach to and query an object's current value. The value of an object returned can
be a Number, a String, or an Array of numbers and/or Strings. Example:

var myvalue = 0.25;
function getvalueof()
{
 return myvalue;
}

setvalueof

Defining a function called setvalueof() permits pattr and related objects to
attach to and set an object's current value, passed as argument(s) to the function.

11

Values passed will be of type Number or String. For a value that consists of more
than one Number or String, the setvalueof() method will receive multiple
arguments. The jsthis object’s arrayfromargs() method is useful to handle
values that can contain a variable number of elements. Example:

function setvalueof(v)
{
 myvalue = v;
}

save

Defining a function called save() allows your script to embed state in a patcher
file containing your js object. You can then restore the state when the patcher is
reloaded.

Saving your state consists of storing a set of messages that your script will receive
shortly after the js object containing it is recreated. These messages are stored
using a special method of jsthis called embedmessage that only works inside your
save function. An example will make this scheme clearer.

Suppose you have a message cowbells that sets the number of cowbells your object
currently has.

var numcowbells = 1;

function cowbells(a)
{

numcowbells = a;
}

When the patch containing the js object is saved, you would like to preserve the
current number of cowbells, so you define a save() function as follows:

function save()
{

embedmessage("cowbells",numcowbells);
}

Suppose the saved number of cowbells is 5. When it is reloaded, the js object will
call your cowbell function with an argument of 5.

The first argument to embedmessage is the name of the function you want to call
as a string. Additional arguments to embedmessage supply the arguments to this
function. These additional arguments will typically be the values of the state you
want to save.

See the description of the embedmessage message to the jsthis object below for
additional information.

12

Reserved Words

The Max js object also responds to special messages that control the object itself, such as
open, read, etc. Refer to the js and jsui pages in the Max Reference manual for details. If you
define, for example, a function named read inside your script, it can’t be executed directly
via a message sent to the js object. However, you can still name a function read and call
the function from another Javascript function you define.

Global Code

Global code, as we’ve mentioned before, consists of any Javascript statements that exist
outside of any function definition. Your global code is always executed when your script
is loaded or recompiled after you edit it. When a js or jsui object is being created, the
global code is executed before the object is completely created. It won’t have any inlets or
outlets, nor does it know about its context within a patcher. This means you can use the
global code to define how many inlets and/or outlets you’d like to have. However, it also
means that, since outlets don’t exist yet, you can’t use them. If you want to perform some
kind of initialization after your object has outlets, you’ll need to write a loadbang()
function mentioned in the previous section.

What to do in your global code:

• Set the number of inlets and outlets you would like (see js Object Properties)

• Access the arguments the user typed in with the jsarguments[] property

• Set up the assistance for your inlets and outlets

• Create and initialize global variables

• Use the Max object to access and control the global application environment

• Declare function properties local (see below) and immediate (discussed in the
Controlling a Function’s Thread of Execution section below).

What not to do:

• Send things out your outlets

• Refer to your object’s Patcher (see below for the capabilities of the Patcher object)

13

Private (Local) Functions

If you do not want a method to be invoked outside of Javascript via a message to js from
Max, you can set its local property to 1. For example, suppose the function foo() is not
something we wish to expose to the outside world.

foo.local = 1;
function foo()
{

post("what does Pd *really* stand for?");
}

Now, when we send the message foo to the js object, we see the following error in the Max
window:

error: js: function foo is private

Universally Available Methods

The following methods are defined in the global Javascript context and can be used anywhere, including global code.

messnamed (Max object name, message name, any arguments)

Sends a message to the named Max object. A named Max object is an object associated
with a global symbol (not an object with a patcher-specific name). For example, Max
receive objects are bound to global symbols. The following code would send the message
bang to the named object flower.

messnamed("flower","bang”);

cpost (any arguments)

Prints a message to the system console window. See post() below for further
details about arguments.

post (any arguments)

Prints a representation of the arguments in the Max window. If post() has no
arguments, it prints starting on the next line. Otherwise it prints the input on the
current line separated by spaces. Arrays are unrolled to one level as with outlet.

Example:

a = new Array(900,1000,1100);
post(1,2,3,"violet",a);
post();
post(4,5,6);

14

These statements produce the following output in the Max window:

1 2 3 violet 900 1000 1100

4 5 6

If you want a line break in the middle of a call to post() you can use "\n" within
a string (this is now a general feature of Max). Also, post() begins a new line if
the last person to write to the Max window was not the js object.

The jsthis Object

The jsthis object is the this within the context of any function you define that can be
invoked from Max as well as your global code. When you define functions, they become
methods of your extension of jsthis. When you use variables in your global code, they
become its properties. The jsthis object has certain built-in properties and methods that
facilitate interacting with and controlling the Max environment.

jsthis Properties

autowatch (Number, get/set)

Turns on the automatic file recompilation feature where a file is reloaded and
recompiled if it changes. This is particularly useful during development of your
Javascript code if you have several js instances using the same source file and you
want them all to update when the source changes. It can also be used to facilitate
the use of an external text editor. When the text editor saves the file, the js object
will notice and recompile it. By default, the value of autowatch is 0 (off). If you
want to turn on autowatch, it is best to do so in your global code.

box (Maxobj, get)

Returns the Maxobj containing the js object. This is most useful for the jsui object
to obtain the rectangle of the object’s box. See the Maxobj object section below for
more information on this object.

editfontsize (Number, get/set)

Controls the size of the font shown in the text editing window where you edit a
script in points. By assigning the editfontsize property in your global code, you
can override the default font size setting for text editing, which is the same size as
the text shown in the Max window.

15

inlet (Number, get)

During the execution of a function, the inlet property reports the inlet number
that received the message that triggered the function, starting at 0 for the leftmost
inlet. This property’s value is 0 within global code.

inlets (Number, get/set)

Specifies how many inlets an instance should have. The inlets property must be
set in the global code to have any effect. If it isn't set, an object with one inlet will
be created.

inspector (Number get/set)

Specific to the jsui object. The inspector property, if set to 1, causes Max to look
for an inspector patch specific to your script rather than the default jsui-insp.pat
file. The name used will be the name of your script (without the .js extension) plus
–insp.pat. For example, if your script is called foo.js, your inspector file should be
named foo-insp.pat. Inspector patches can be placed anywhere in the Max search
path.

jsarguments (Array, get)

Allows access to the arguments typed into your object when it was instantiated.
The filename is jsarguments[0], the first typed-in argument is
jsarguments[1]. The number of arguments plus one is
jsarguments.length. jsarguments[] is available in global code and any
function. It never changes after an object is instantiated, unless the Max js object
receives the jsargs message with new typed-in arguments.

Example:

Creating an object with a variable number of outlets based on an argument typed
into the js object:
// set a test default value, protects against
// a bad arg or no args
outlets = 0;
if (jsarguments.length >= 2)

outlets = jsarguments[1];
if (!outlets)

outlets = 1; // default value

max (Max, get)

Returns a Javascript representation of the "max" object (i.e., the recipient of ; max
preempt 1 in a message box). Lets you send any message to the object that controls
the Max application. In addition, the max object has js -specific properties listed in

16

the section on js Max Object Properties below. Here is an example of sending the
max object the preempt message to turn Overdrive on:
max.preempt(1);

maxclass (String, get)

Returns "js" (the standard Javascript class property returns "jsthis”)

messagename (String, get)

The name of the message to the js object that invoked the method currently
running. In global code, this is a nil value. This is generally useful only from
within an anything() function that will be called when no specific function
name matches the message sent to the js object. Here is an example of an
anything() function that adds a property to a variable declared in global code.
Note the use of the tricky Javascript bracket notation to specify a variable
property.

var stuff;
function anything(val)
{

if (arguments.length) // were there any arguments?
stuff[messagename] = val;

}

patcher (Patcher, get)

Access to the patcher containing the js object. See the Patcher object section below
for more information on this object.

outlets (Number, get/set)

The number of inlets an object should have. The outlets property must be set in
the global code to have any effect. If it isn’t set, and object with one outlet will be
created.

jsthis Methods

The important methods of the jsthis object are outlet() and post(). The others listed
here are typically for more advanced applications.

arrayfromargs (message, argument list)

A utility for writing functions that take a variable number of arguments, and/or
those that can be called using various messages (such as an anything function).
The Function object has an arguments property that can be numerically indexed
like an Array but is not an instance of Array. This means that you cannot call

17

Array functions such as sort() on the arguments property, or send the
arguments property out an outlet as a list of values. The arrayfromargs()
method will convert the arguments property to an Array, optionally with
message as the zeroth element of the array. This message usage is useful for
processing messages as though they are lists beginning with a symbol, as would be
typical in your anything function. Here is an example of a function that allows its
arguments to be sorted. Note that messagename is a property of the jsthis object
that returns the name of the message that invoked the function.

function anything()
{

var a = arrayfromargs(messagename,arguments);

a.sort();
outlet(0,a);

}

assist (any arguments)

Sets the patcher assist string for a designated inlet or outlet of a js object box

designed to be called from the assistance function specified as an argument to the
setinletassist() or setoutletassist() method (see example under
setoutletassist() below).

declareattribute (attributenamex, gettername, settername, embed)

Declare an attribute which can be set, queried, and optionally stored in the
patcher file. The attributename, argument is required, but the following
arguments are optional. If no getterr or setter methods are specified, default ones
will be used. These attributes can also be referenced by pattr. A few example uses
are below.

// default getter/setter

var foo=2;

declareattribute("foo"); //simple

// default getter/setter and embed on save

declareattribute("foo",null,null,1);

// explicit getter/setter

declareattribute("foo","getfoo","setfoo");

18

function setfoo(v)

{

foo = v;

}

function getfoo()

{

return foo;

}

function bang()

{

outlet(0,foo);

}

embedmessage (method_name as string, any arguments)

The embedmessage method works only inside of your save() function. You use it
to specify the name of a function you want to be called when the js object
containing your script is recreated. The function name must be given as a string,
followed by the arguments you wish to pass to the function. These arguments will
typically be numbers, arrays, or strings (Javascript objects cannot be used in this
context) and will reflect the current state of your object.

You may use the embedmessage method as many times as you want to specify
multiple functions you wish to invoke to restore object state. Here is an example
where functions we assume you’ve defined called numchairs(), numtables(), and
roomname() are used in separate embedmessage statements within a save
function.

function save()
{

embedmessage("numchairs",20);
embedmessage("numtables",2);
embedmessage("roomname","diningroom");

}

When the js object containing this script is recreated, the function numchairs will
be called with an argument of 20, followed by the numtables function with an
argument of 2. Finally, the roomname function will be called with an argument of
the String diningroom.

19

notifyclients()

Notifies any clients (such as the pattr family of objects), that the object’s current
value has changed. Clients can then take appropriate action such as sending a js
instance the message getvalueof to invoke the getvalueof() method (if defined –
see the special function names section above for more information). The
notifyclients() method is useful for objects that define setvalueof() and
getvalueof() functions for pattr compatibility.

outlet (outlet_number, any arguments)

Sends the data after the first argument out the outlet specified by the
outlet_number. 0 refers to the leftmost outlet. If the outlet_number is greater than
the number of outlets, no output occurs.

Example:

outlet(0,"bang"); // sends a bang out the left outlet
outlet(1,4,5,6); // sends a list 4 5 6 out second-from-left

If the argument to outlet() is a Javascript object, it is passed as the Max
message jsobject <jsvalue> which is the address of the object. When jsobject followed
by a number is sent to a js object, it is parsed and checked to see if the number
specifies the address of a valid Javascript object. If so, the word jsobject disappears
and the function sees only the Javascript object reference.

If the argument to outlet is an array, it is unrolled (to one level only) and passed as
a Max message or list (depending on whether the first element of the array is a
number or string).

setinletassist (inlet_number, object)

Associates either a number, string, or function with the numbered inlet (starting
at 0 for the left inlet). If -1 is passed as the inlet number, the object argument is
used for all inlets. In order to produce any assistance text in the patcher window
the assistance function needs to call the assist() method described above. See
example at setoutletassist() below. The setinletassist() and
setoutletassist() functions are best called in global code but can be called at
any time. You can even replace the assistance function or string dynamically.

20

setoutletassist (number, object)

Associates either a number, string, or function with the numbered outlet (starting
at 0 for the left outlet). If -1 is passed as the outlet number, the object argument is
used for all outlets. In order to produce any assistance in the patcher, the
assistance function needs to call the assist() method described above.

Example:

// assistance function
function describe_it(num)
{

assist("this is outlet number",num);
}
// global code to set it up
setoutletassist(-1,describe_it);

The Max Object

The Max object can be accessed as a property of a jsthis object (see jsthis Properties
above). It is intended to provide control over the application environment.

Max Properties

apppath (String, get)

The pathname of the Max application

frontpatcher (Patcher, get)

The Patcher object of the frontmost patcher window, or a nil value if no patcher
window is visible. You can traverse the list of open patcher windows with the
next property of a Wind object.

isplugin (Number, get)

1 if the js object is within a plug-in; note that this would be 1 if the js object was
within a plug-in loaded into the vst~ object in Max.

isruntime (Number, get)

1 if the currently executing Max application environment does not allow editing, 0
if it does.

21

loadbangdisabled (Number, get)

1 if the user has disabled loadbang for the currently loading patch. If your object
implements a loadbang method, it can test this property and choose to do nothing
if it is true.

mainthread (Number, get)

1 if the function is currently executing in the main (low-priority) thread, 0 if the
function is executing in the timer (high-priority) thread. See the section entitled
Controlling a Function’s Thread of Execution below for more details.

os (String, get)

The name of the platform (e.g., “windows” or “macintosh”)

osversion (String, get)

The current OS version number.

time (Number, get)

The current scheduler time in milliseconds—will be a floating-point value.

version (String, get)

The version of the Max application, in the following form: "451"

Max Modifier Key Properties

cmdkeydown (Number, get)

1 if the command (Macintosh) or control (Windows) key is currently held down

ctrlkeydown (Number, get)

1 if the control key is currently held down

optionkeydown (Number, get)

1 if the option (Macintosh) or alt (Windows) key is currently held down

shiftkeydown (Number, get)

1 if the shift key is currently held down

22

Max Methods

The Max object can be accessed as a property of a jsthis object (see jsthis Properties
above). Any message you can send to the max object using the semicolon notation in a
message box can be invoked within Javascript using Javascript syntax. For example, the
following in a message box:

; max preempt 1

This can be expressed in Javascript as:

max.preempt(1);

For a list of current messages that can be sent to the Max object, refer to the Messages to
Max topic.

The Patcher Object

The Patcher object is a Javascript representation of a Max patcher. You can find, create,
modify, and iterate through objects within a patcher, send messages to a patcher that you
would use with the thispatcher object, etc.

There are currently three ways to get a Patcher, use the Constructor, access the patcher
property of a jsthis (accessed as this.patcher), or use the subpatcher() method of a
Maxobj object.

Patcher Constructor

var p = new Patcher(left,top,bottom,right);

left, top, bottom, right: global screen coordinates of the Patcher window

var p = new Patcher();

Uses 100,100,400,400 as default window coordinates

23

Patcher Properties

box (Maxobj, get)

If the patcher is a subpatcher, the box property returns the Maxobj that contains
it. To traverse up to the top-level patcher:

prev = 0;
owner = this.patcher.box;
while (owner) {

prev = owner;
owner = owner.patcher.box;

}
if (prev)

post("top patcher is",prev.name);

count (Number, get)

Number of objects in the patcher

filepath (String, get)

The patcher’s file path on disk

firstobject (Maxobj, get)

If the patcher contains objects, this is the first one in its list. You can iterate
through all objects in a patcher using the nextobject property of a Maxobj.

name (String, get/set)

The patcher's name (its window title, without any brackets that appear for
subpatchers)

locked (Boolean, get/set)

The patcher's locked state. This property is read-only in the runtime version of
Max.

maxclass (String, get)

Returns “patcher”

parentclass (String, get)

Returns the Max class name of the parent object if this is a subpatcher, or a nil
value if this is a top-level patcher.

24

parentpatcher (Patcher, get)

If the patcher is a subpatcher, this returns the parent patcher. Otherwise it returns
a nil value.

scrolloffset (Array, get/set)

X/Y coordinate array for the scroll offset of a patcher is window

scrollorigin (Array, get/set)

X/Y coordinate array for the patcher's fixed origin

wind (Wind, get)

A Javascript representation of the window associated with the patcher. See the
section on the Wind object below for more information.

Patcher Methods

Any message to a patcher that you can send in Max (via the thispatcher object) you can
send in Javascript in js.

Examples:

p = this.patcher;
p.fullscreen(1); // makes the patcher take up the whole
screen
p.dirty(); // make an editable patcher dirty

The Patcher methods listed below present a slighly more usable implementation of
patcher scripting. You can still script a patcher using the script message, since, as shown
above, a Javascript Patcher object can accept any message you can send to a thispatcher
object.

newobject (classname,params)

Creates a new object of Max class classname in a patcher using the specified
parameters and returns a Maxobj (see below) that represents it.

Example:

a = patcher.newobject("toggle",122,90,15,0);

newdefault (left,right,classname, additional arguments)

Creates a new object of class classname in a patcher using the specified parameters
and return a Maxobj (see below) that represents it.

25

Example:

a = patcher.newdefault(122,90,"toggle");

The newdefault() method also accepts additional arguments for non-user
interface objects that represent the created object’s typed-in arguments.

Example:

a = patcher.newdefault(122,90,"pack", "rgb", 255, 128, 64);

connect (from_object, outlet, to_object, inlet)

Connects two objects (of type Maxobj) in a patcher. Indices for the outlet and inlet
arguments start at 0 for the leftmost inlet or outlet.

Example:

p = this.patcher;
a = p.newobject("toggle",122,90,15,0);
b = p.newobject("toggle",122,140,15,0);
p.connect(a,0,b,0);

hiddenconnect (from_object, outlet, to_object, inlet)

Connects two objects (of type Maxobj) in a patcher with a hidden patch cord.
Arguments are the same as for the connect message above.

disconnect (from_object, outlet, to_object, inlet)

Disconnects an existing connection between two objects (of type Maxobj) in a
patcher. Indices for the outlet and inlet arguments start at 0 for the leftmost inlet
or outlet.

Example (assuming the connect() example above):
p.disconnect(a,0,b,0);

26

apply (function)

For all objects in a patcher, calls the function with the each object's Maxobj as an
argument. Does not recurse into subpatchers. The following example prints the
name of each object's class in the Max window:

function printobj(a)
{

post(a.maxclass);
post();
return true;

// iterfun must return true to continue
// iterating, else stops
}
this.patcher.apply(printobj);

applydeep (function)

Same as apply() except that applydeep() recurses into subpatchers (depth
first).

applyif (action_function, test_function)

For all objects in a patcher, run the test_function for each object's Maxobj as an
argument. If the test_function returns true, the action_function is executed with
the Maxobj as an argument.

applydeepif (action_function, test_function)

Same as applyif() except that applydeepif() recurses into subpatchers

remove (object)

Removes the object (a Maxobj passed as an argument) from a patcher

getnamed (name)

Returns the first object found in a patcher with the given name. The name is a
local name as specified by the Name... dialog in a patcher, not the name of a send
or receive object. You can also set an object's name using the varname property of
a Maxobj.

getlogical (function)

Calls the function on each object in a patcher, passing it as a Maxobj argument to
the function. If the function returns true, the iteration stops and the Maxobj object
is returned as the value of the getlogical() method. Otherwise
getlogical() returns a nil value.

27

Example:

// search for an object with a negative left coordinate
function neg_left(a)
{

r = a.rect;
// rect is a property that returns an array

if (r[0] < 0)
return 1;

else
return 0;

}
e = patcher.getlogical(neg_left);
if (e)

e.rect[0] = 0;

bringtofront (object)

Moves the object to the front of the current layer to which it is assigned (either
background or foreground). You can change the layer by setting the background
property of a Maxobj.

sendtoback (object)

Moves the object to the back of the current layer to which it is assigned (either
background or foreground). You can change the layer by setting the background
property of a Maxobj.

The Maxobj Object
A Maxobj is a Javascript representation of a Max object in a patcher. It is returned
by various methods of a Javascript Patcher object, such as newobject().One
important thing to keep in mind about a Maxobj is that it could eventually refer to
an object that no longer exists if the underlying Max object is freed. The valid
property can be used to test for this condition.

Maxobj Properties

rect (Array, get/set)

The location of an object in a patcher. When the object's rectangle is changed, it will
move on screen if it is visible. The coordinates are stored in the following order: left, top,
right, bottom.

28

maxclass (String, get)

The Max class (as opposed to the Javascript class, which is "Maxobj" and accessed
via the standard class property) of the object.

patcher (Patcher, get)

The Patcher object that contains the Maxobj

hidden (Boolean, get/set)

Is the object set to be hidden in a locked patcher?

colorindex (Number, set/get)

If the object is set to use one of the standard 16 colors, this property is the index of
the color

nextobject (Maxobj, get)

If there is another object after this one in the Patcher's list of objects, this property
returns it, otherwise it returns a nil value

varname (String, get/set)

The patcher-specific name of the object, as set with the Name... dialog

canhilite (Boolean, get)

Whether the object can be selected for text entry (a number box would be an
example of an object whose canhilite property returns true)

background (Boolean, get/set)

Whether the object is in the Patcher's background layer

ignoreclick (Boolean, get/set)

Whether the object ignores clicks

selected (Boolean, get)

Whether the object is selected in an unlocked patcher window.

js (jsthis, get)

If the Maxobj refers to an object is of Max class js, this returns the associated jsthis
object

29

valid (Boolean, get)

Returns whether the Maxobj refers to a valid Max object

Maxobj Methods

Perhaps the most powerful thing about a Maxobj is that you can send any message to a
Maxobj that you can send to a Max object in Max as if you were invoking a method on
the object in Javascript. For example, if you had a number box Maxobj and you wanted to
set its value to 23 without outputting the value, you could do this:

n.set(23);

Note that certain words such as int, float, and delete are keywords in Javascript, and
you will need to use either array notation or the message method for such reserved words.
For example:

n["int"] = 23;
//or
n.message("int", 23);

The following methods are common to all Maxobj objects.

message(string, …)

Sends the object the message specified by the string, followed by any additional
arguments provided. This is useful for sending messages to object which
dynamically dispatch messages with the “anything” message, as is the case for
instances of js, jsui, lcd, and others.

help ()

Opens a help file describing the object, if it exists

subpatcher (index)

If the object contains a patcher, this function returns a (Javascript) Patcher object.
The optional index is used for specifying an instance number, which only applies
to poly~ objects. If the object does not contain a subpatcher, a nil value is returned.

understands (string)

Returns a Boolean value if the object has an entry in its message list for the
message specified by the string. If the entry is not a message that can be sent by a
user within Max (i.e., it's a C-level “untyped” message), false is returned. This

30

doesn’t work for messages which are dynamically dispatched with the “anything”
message, as is the case for instances of js, jsui, lcd, and others.

The Wind Object

The Wind object is a property of a Patcher that represents its window. You cannot create
a new Wind or access other types of windows such as that of a Max table object.

Wind Properties

assoc (Patcher, get)

The Patcher object associated with the window.

assocclass (String, get)

The Max class of the object associated with the window.

dirty (Boolean, get/set)

Has the window’s contents been modified? This property is read-only in the
runtime version of Max.

hasgrow (Boolean, get/set)

Does the window have a grow area?

hashorizscroll (Boolean, get)

Does the window have a horizontal scroll bar?

hasvertscroll (Boolean, get)

Does the window have a vertical scroll bar?

haszoom (Boolean, get/set)

Does the window have a zoom box?

hastitlebar (Boolean, get/set)

Does the window have a window title bar?

location (Array, get/set)

An array of four coordinates (left, top, right, bottom) representing the window’s
location in global coordinates.

31

next (Wind, get)

The Wind object of the next patcher visible in the application’s list of windows
The first Wind object can be accessed using the frontpatcher property of the
Max object (as max.frontpatcher.wind).

size (Array, get/set)

An array of two coordinates (width, height) representing the window’s size.

title (String, get/set)

The window’s title.

visible (Boolean, get/set)

Can you see the window?

Wind Methods

bringtofront ()

Moves the window in front of all other windows

scrollto (x, y)

Scrolls the window so that x and y are at the top-left corner.

sendtoback ()

Moves the window behind all other windows

setlocation (left,top,bottom,right)

Set the global location of the window according to the coordinates passed in as
arguments

The Global Object

The Global object is a fairly generic Javascript object that allows you to share data among
js instances by adding and accessing properties. You can also access Global object
properties from Max messages completely outside of js. Executing methods stored in
Global objects from Max is not supported. However, methods are certainly among the
kinds of things you can store within a Global object.

32

Global Constructor

g = new Global(name);

name represents a String that uniquely identifies the Global.

A Global is basically a reference to a Javascript object that you can't access directly. The
object is connected to the Max symbol with the name you supplied as an argument (this
allows it to be accessed from Max, as we'll discuss below). Every time you access a Global,
it hands off the access to the secret hidden Javascript object. This means you can create
any number of Global objects in your code, in any number of js instances, and if they all
have the same name, they will all share the same data. In this way, a Global resembles a
namespace.

Example:
g = new Global("name");
g.bob = 12;
h = new Global("name");
post(h.bob); // will print 12

Global Properties

There are no fixed properties for a Global object. Instead, as described above, you assign
properties to a Global object so that they can be accessed by multiple js object instances.

Global Methods

sendnamed (receive_name, property_name)

Sends the value of the named property property_name to the named Max receive
object (or other Max object) bound to the specified receive_name symbol.

Example:

g = new Global("xyz");
g.ethyl = 1000;
g.sendnamed("fred","ethyl");

Any receive objects named fred will send 1000 out their outlets.

Accessing the Global Object from Max

To use Max to send a message to a named object, type a semicolon followed by the name
of the receiver and the message you want to send into a message box. To set a property of
a js Global object, send the property name followed by one or more values (multiple

33

values set the value of the property to an array). Assuming you have already created a
Global xyz object...

This sets the value of the george property to 30.

; xyz george 30

This sets the value of the frank property to an array of three strings containing "x" "y"
and "z"

; xyz frank x y z

You can also use the message sendnamed from Max to output property values to named
receive objects. This sends the current value of the frank property in the js Global object
xyz to any receive objects named hubert.

; xyz sendnamed hubert frank

Note a subtle distinction. When setting property values using Max, the Javascript
properties are changed but no further action happens. When using sendnamed(), receive
objects take action and output the property values.

The Task Object

A task is a function that can be scheduled or repeated. You can set the arguments to the
function as well as the object that will be this when the function is called.

Task Constructor

var tsk = new Task(function, object, arguments);

The object argument represents the this during the execution of the function. Use the
this keyword (referring to the jsthis object) to be able to use outlets and other js object
features. The function argument represents the function you want to execute, and
arguments (an array) represents the arguments to pass to the function. The object
and arguments arguments are optional. If not present, the parent of the function object
(typically jsthis) will be assumed, and there will be no arguments supplied to the function.

34

Example:

function ticker(a,b,c)
{

post("tick");
}
args = new Array(3);
args[0] = 1;
args[1] = 2;
args[2] = 3;
t = new Task(ticker,this,args);

Although the overall timing accuracy of a Task function is high, the latency between the
scheduled time and the actual execution time of a Task function is variable because the
function runs in a low-priority thread. Therefore you should avoid using a Task function
in a time-critical operation.

Task Properties

For convenience, a Task object is a property of the function executed in a Task. To access
the Task from within its function, use the following standard Javascript syntax:

arguments.callee.task

We'll show you an example of this syntax for a Task that changes its interval below.

arguments (Array, get/set)

The arguments passed to the task function. arguments[0] is the first argument.

function (Function, get/set)

The function that is executed in the Task. You can even change this within the
task function itself.

running (Boolean, get)

Whether the Task is running or not. Within a function executing within a task,
this will always be 1.

35

interval (Number, get/set)

The time in milliseconds between repeats of the task function. The default interval
is 500 ms. Here is an example of a Task with a function that causes the Task to run
10% more slowly each time the function is called, which uses the
arguments.callee.task syntax mentioned above:

function taskfun()
{

var intv = arguments.callee.task.interval;
arguments.callee.task.interval = intv + (intv * 0.1);

}

object (Object, get/set)

The object that is assigned to be the this in the task function. Most often this will
be your jsthis object, so you can, for example access the outlet() method. You
set up your jsthis object to be the this by creating a task with the keyword this
as the first argument.

Example:

 If the object property of a task is a js object, the following three lines of code are
identical from within a task function:

arguments.callee.task.object.outlet(1,"bang");
outlet(1,"bang");
this.outlet(1,"bang");

iterations (Number, get)

The number of times the task function has been called. Outside of a task function,
the value of iterations is always 0. The value resets each time the task is started
(using the repeat(), execute(), or schedule() methods described in the
Task Methods section).

Task Methods

repeat (number, initialdelay)

Repeat a task function. The optional number argument specifies the number of
repetitions. If the argument is not present or is negative, the task repeats until it is
cancelled. The optional initialdelay argument sets the delay in milliseconds until
the first iteration.

36

Example:

tsk = new Task(this,repeater_function);
tsk.interval = 1000; // every second
tsk.repeat(3); // do it 3 times

Here is a repeater function that posts its iteration count to the Max window:

function repeater_function()
{

post(arguments.callee.task.iterations);
}

In the above example, the Max window output would be:

1

2

3

execute ()

Run the task once, right now. Equivalent to calling the task function with its
arguments.

schedule (delay)

Run the task once, with a delay. The optional delay argument sets the time (in
milliseconds) before the task function will be executed.

cancel ()

If a task is scheduled or repeating, any future executions are cancelled. This
method can be used within a task function for a self-canceling Task. The following
example is a task function that will run only once, even if it is started using the
repeat() function.

function once()

{
arguments.callee.task.cancel();

}

The Folder Object

The Folder object is a js “external object” defined in the Max object called jsfolder. It is
used to iterate through files in a folder.

37

Folder Constructor

f = new Folder(pathname);

pathname can either be the name of a folder in the search path or a complete pathname
using Max path syntax.

Example:

f = new Folder("patches");
// would try to find the patches folder in the search path

f = new Folder("Disk:/folder1/folder2");
// uses an absolute path

After creating a Folder object, you'll probably want to restrict the files you see while
traversing it by setting the typelist property:

f.typelist = ["iLaF" , "maxb" , "TEXT"];
// typical max files

Check the file max-fileformats.txt inside the init folder in the Cycling ’74 folder for
filetype codes and their associated extensions.

As a Folder object traverses through the files, you can find out information about the
current file using its file properties. You can also determine whether you've looked at all
properties by testing the end property. The following code prints the names of all files
found in the folder.

while (!f.end) {
post(f.filename);
post();
f.next();

}

To finish with the Folder object, you can either delete it, or send it the close message if you
might want to reuse it.

f.close ();

Folder Properties

Two types of properties of a Folder are available: some refer to the current file within the
folder, and some refer to the Folder object’s state. Most of these properties are read-only.

38

Folder State Properties:

end (Boolean, get)

Non-zero (true) if there are no more files to examine in the folder, or if the
pathname argument to the Folder object didn’t find a folder.

count (Number, get)

The total number of files of the specified type(s) contained in the folder.

pathname (String, get)

The full pathname of the folder

typelist (Array of Strings, get/set)

The list of file types that will be used to find files in the folder. To search for all
files (the default), set the typelist property to an empty array.

Current File Properties:

filename (String, get)

The name of the current file.

moddate (Array, get)

An array containing the values year, month, day, hour, minute, and second with
the last modified date of the current file. These values can be used to create a
Javascript Date object.

filetype (String, get)

The four-character code associated with the current file's filetype. These codes are
listed in the file max-fileformats.txt, which is located at /Library/Application
Support/Cycling ’74 on Macintosh and C:\Program Files\Common Files\Cycling
’74 on Windows. If there is no mapping for the file's extension, a nil value is
returned.

extension (String, get)

The extension of the current file's name, including the period. If there are no
characters after the period, a nil value is returned.

39

Folder Methods

reset ()

Start iterating at the beginning of the list of files. Re-opens the folder if it was
previously closed with the close() function.

next ()

Moves to the next file.

close ()

Closes the folder. To start using it again, call the reset() function.

The File Object

The File object provides a means of reading and writing files from Javasccript.

File Constructor

f = new File(filename, access, typelist);

filename can be a file in the Max search path, an absolute path, or a relative path.
Acceptable values for access can be "read", "write", or "readwrite". The default value for
access is "read". Acceptable values for typelist are four character filetype codes listed in the
file max-fileformats.txt, which is located at /Library/Application Support/Cycling ’74 on
Macintosh and C:\Program Files\Common Files\Cycling ’74 on Windows. By default,
typelist is empty. If able to, the File constructor opens the file specified by filename,
provided it is one of the types in typelist.

File Properties

access (String, get/set)

File access permissions: "read", "write", or "readwrite". By default, this value is
"read".

byteorder (String, get/set)

The assumed file byteorder (endianness): "big", "little", or "native". By default, this
value is "native".

eof (Number, get/set)

The location of the end of file, in bytes.

40

filename (String, get/set)

The current filename.

filetype (String, get/set)

The four-character code associated. See c74:/init/max-fileformats.txt for possible
values.

foldername (String, get)

The absolute path to parent folder.

isopen (Boolean, get)

Is file open? A useful test to determine if the File constructor was successful in
finding and opening the file.

linebreak (String, get/set)

The line break convention to use when writing lines: "dos", "mac", "unix", or
"native". By default, this value is "native".

position (Number, get/set)

The current file position, in bytes.

typelist (Array, get/set)

An array file type codes to filter by when opening a file. By default, this is the
empty array.

File Methods

open (filename)

Opens the file specified by the filename argument. If no argument is specified, it
will open the last opened file.

close ()

Closes the currently open file.

writeline (string)

Writes the characters contained in the string argument as characters to the file,
starting at the current file position, and inserts a line break appropriate to the
linebreak property. The file position is updated accordingly.

41

readline (maximum_count)

Reads and returns a string containing up to maximum_count characters or up to
the first line break as read from the file, starting at the current file position. The
file position is updated accordingly.

writestring (string)

Writes the characters contained in the string argument as characters to the file,
starting at the current file position. Unlike writeline(), no line break is inserted.
The file position is updated accordingly.

readstring (char_count)

Reads and returns a string containing up to char_count characters as read from
the file, starting at the current file position. Unlike readline(), line breaks are not
considered. The file position is updated accordingly.

writebytes (byte_array)

Writes the numbers contained in the byte_array argument as bytes to the file,
starting at the current file position. The file position is updated accordingly.

readbytes (byte_count)

Reads and returns an array containing up to byte_count numbers, read as bytes
from the file, starting at the current file position. The file position is updated
accordingly.

writechars (char_array)

Writes the single character strings contained in the char_array argument as
characters to the file, starting at the current file position. The file position is
updated accordingly.

readchars (char_count)

Reads and returns an array containing the single character strings, read as
characters from the file, starting at the current file position. The file position is
updated accordingly.

writeint16 (int16_array)

Writes the numbers contained in the int16_array argument as signed 16-bit
integers to the file, starting at the current file position. The byteorder property is
taken into account when writing these values. The file position is updated
accordingly.

42

readint16 (int16_count)

Reads and returns an array containing the numbers read as signed 16-bit integers
from the file starting at the current file position. The byteorder property is taken
into account when reading these values. The file position is updated accordingly.

writeint32 (int32_array)

Writes the numbers contained in the int32_array argument as signed 32-bit
integers to the file, starting at the current file position. The byteorder property is
taken into account when writing these values. The file position is updated
accordingly.

readint32 (int32_count)

Reads and returns an array containing the numbers read as signed 32-bit integers
from the file starting at the current file position. The byteorder property is taken
into account when reading these values. The file position is updated accordingly.

writefloat32 (float32_array)

Writes the numbers contained in the float32_array argument as 32-bit floating
point numbers to the file, starting at the current file position. The byteorder
property is taken into account when writing these values. The file position is
updated accordingly.

readfloat32 (float32_count)

Reads and returns an array containing the numbers read as 32-bit floating point
numbers from the file starting at the current file position. The byteorder property
is taken into account when reading these values. The file position is updated
accordingly.

writefloat64 (float64_array)

Writes the numbers contained in the float64_array argument as 64-bit floating
point numbers to the file, starting at the current file position. The byteorder
property is taken into account when writing these values. The file position is
updated accordingly.

readfloat64 (float64_count)

Reads and returns an array containing the numbers read as 64-bit floating point
numbers from the file starting at the current file position. The byteorder property
is taken into account when reading these values. The file position is updated
accordingly.

43

Controlling a Function’s Thread of Execution

A thread is akin a continuously executing program running on a computer. Threads are
managed by the computer’s operating system: the system is constantly pausing and
resuming threads to create the effect of many simultaneous activities running on a single
processor. For example, you can be downloading a song from the internet in one thread
while reading your e-mail in another. When the Overdrive option is turned on, Max uses
two threads and asks the operating system to ensure that one of the threads, which we call
the high-priority thread, runs as regularly as possible (usually every millisecond). In
exchange, Max tries to ensure that what happens in this thread uses as little of the
computer’s time as possible. Time-consuming and user-interaction tasks are assigned to
the low-priority thread.

The two threads allow you to use Max to do things that require high timing accuracy
(such as MIDI) at the same time as you do things that are computationally expensive
(such as decompress video) or involve user input.

Now, how does js fit into this multi-threaded scenario? By default, the js object executes
all Javascript code in the low-priority thread. In particular, if it finds itself running in the
high-priority thread, it will defer execution of whatever it was supposed to do to the low-
priority thread. You can, however, tell js not to do this by setting the immediate property
of a function.

Let’s say you have a function bang that you intend to run when someone hooks up your js
object to a metro, as follows:

44

Your bang function does something simple such as sending the value of a number out its
outlet.

var value = 1;
function bang()
{

outlet(0,value);
}

The timing accuracy of this function will be improved if you execute it immediately when
the bang is received, rather than deferring it to the low-priority thread, where it will
execute at some unspecified later time. In order to do this, you place the following
statement in your global code.

bang.immediate = 1;

However, just because a function’s immediate property is set does not mean that it will
always execute at high-priority. This depends on the context in which the js object
received a request to execute your function. For example, if I click on a bang button
connected to the js object described above, the bang function will run in the low-priority
thread, because mouse clicks are always handled at low priority.

Another example that is a bit more subtle: let’s say I write a function slowbang that does
not have its immediate property set. It merely calls the bang function I wrote above.

function slowbang()
{

bang();
}

Suppose we make a new patch in which the metro is hooked up to the slowbang message,
as shown here:

Now the bang function will no longer execute in the high-priority thread, because
slowbang was deferred to the low-priority thread before bang is executed.

45

You can determine the current thread of execution for your Javascript code by testing the
mainthread property of the max object. The mainthread property will be 1 if the code is
running in the low-priority thread.

In summary, a function will execute at in the high-priority thread…

• if the function’s immediate property is set

and

• the js receives a message to invoke the function at high-priority

or

• the function is executing via a js Task object

What’s Permissible in the High-Priority Thread

The immediate property is generally intended for functions that will perform brief
computational actions that participate in the logic in your Max patch. In other words, you
would use it where the js object is somewhere in the middle of the computational
sequence, where preserving execution order or timing accuracy is important. The
immediate property is not appropriate (and indeed, not allowed) for end-point actions
such as drawing or scripting a Patcher.

The high-priority thread can be used for the following actions:

• Sending messages using the outlet function

• Posting messages to the Max window using post (although the order in which the
messages appear is not guaranteed)

• Calling other Javascript functions you defined

• Accessing or controlling a js Task object

• Performing mathematical, string, or logical computation

• Accessing standard properties of the jsthis or max objects

The following actions are not guaranteed to work if you attempt to perform them in the
high-priority thread. In most cases, there is no protection against doing any of these
things, which may result in unexpected behavior, including Max crashing (although if
you find such cases, we will do our best to prevent them).

46

• Any use of jsui features such as creating a Sketch or Image object or invoking
methods of those objects

• Accessing files or folders using the File or Folder class

• Using the scripting or application control features in the Patcher, Maxobj, or Wind
objects and their methods.

47

jsui, Sketch and OpenGL

Javascript files loaded by the jsui object have access to the Sketch object, which may be
used for drawing graphics. We will refer to the Sketch object and the methods it exposes
as the Sketch API. The Sketch API is built upon the cross platform OpenGL API, and
can be divided into two categories: "OpenGL Methods" and "High Level Methods". The
"OpenGL Methods" are a direct binding for a large portion of the low level OpenGL API,
and the "High Level Methods" are extensions built upon lower level OpenGL calls.

An example of a high level method would be sketch.sphere(0.1) which calculates all
of the geometry and associated information for lighting and color, and based on the
current state of the sketch object, issues many OpenGL calls to render a sphere. The
sketch.sphere() method is much simpler to use than the underlying OpenGL calls it
makes use of. We consider "high level" to be that which isolates the programmer from the
intricate details of OpenGL.

OpenGL Conventions and Differences

All OpenGL methods begin with prefix, "gl". While we will provide a listing of supported
OpenGL methods in this document, for more in-depth coverage of OpenGL we
recommend that you consult either online or printed documentation concerning the
OpenGL API. The www.opengl.org website is the official online resource for OpenGL,
and is a good starting point for online documentation, tutorials, links, news and other
information pertaining to OpenGL. There are a few important differences between the
OpenGL API, and the methods which the Sketch object exposes:

1. The Sketch methods are all lowercase, and only exist within the context of a sketch
object. For example, this means that glBegin() will be sketch.glbegin(), and
glClearColor() will be sketch.glclearcolor(). Javascript's "with" statement may
be used to avoid having to type "sketch." for every method call.

2. All symbolic constants are lowercase Javascript strings, and have no "GL_" prefix. For
example the constant GL_LIGHTING will be the Javascript string "lighting", and
GL_LINE_STRIP is replaced with "line_strip".

3. There are no special versions of vector calls. Only floating point values are supported,
and sketch will fill in extra values with defaults. For example glColorv4fv(),
glColorv3fv(), etc. will simply be sketch.glcolor().

4. Sketch supports passing Javascript arrays in place of individual arguments. So
glColor3f(0.,0.,1.) can be replaced with either sketch.glcolor(0.,0.,1.), or
sketch.glcolor(frgb), where frgb is the array [0.,0.,1.].

48

Colors and Coordinates

As is the convention in OpenGL, color values should be specified with each component as
a floating point number in the range of 0.-1., as opposed to an integer in the range 0-255.
For example red would be (1.,0.,0.), rather than (255,0,0). OpenGL also supports the use
of an alpha channel for transparency and other types of blending modes. Colors with
alpha channel values may be specified as RGBA, for example, green with 25% opacity
would be (0.,1.,0.,0.25). If there is no alpha channel value present, it is assumed to be 1.--
i.e. 100% opaque. By default, alpha blending is enabled. To turn off blending, use
sketch.gldisable("blend"). When working in 3D, depth buffering is turned on by
default, and will typically interfere with attempts to blend transparent objects. To turn off
depth buffering, use sketch.gldisable("depth_test").

Unlike some graphics APIs, the OpenGL API does not distinguish between 2D and 3D
drawing. Conventional 2D drawing is simply a subset of 3D drawing calls with specific
graphics state--e.g. no lighting, no depth testing, orthorgraphic projection, et cetera. High
level utility methods are provided as a convenience to setup up the OpenGL graphics state
to something typically used for 2D or 3D graphics. If assuming 2D drawing conventions,
one can ordinarily use z coordinates of zero for all methods that require them.

Coordinates in OpenGL are also given in terms of floating point relative world
coordinates, rather than absolute pixel coordinates. The scale of these world coordinates
will change depending on the current graphics transformation--i.e. translation, rotation,
scaling, projection mode, viewport, etc. However, our default mapping is that Y
coordinates are in the range -1. to 1 from bottom to top, and X coordinates are in the
range -aspect to aspect from left to right, where aspect is equal to the ratio of
width/height. In the default case, (0,0) will be center of your object, (-aspect,1.) will be the
upper left corner, and (aspect,-1.) will be the lower right corner.

Note that user events are typically provided in terms of absolute screen coordinates.
Please see the sketch.screentoworld() and sketch.worldtoscreen() methods
for converting between absolute screen coordinates and relative world coordinates.

The jsui Object

The following section describes properties and methods that are specific to jsui. See the js
Object section for properties and methods that are common to both the js and jsui object.

49

jsui Specific Properties

sketch (Sketch, get)

An instance of Sketch which may be drawn into. A simple example is below. See
the Sketch reference section for a complete description of the properites and
methods of the Sketch object.

function bang()
{

sketch.glclear();
sketch.glcolor(0.5,0.7,0.3);
sketch.moveto(0.25,-0.25);
sketch.circle(0.3);
refresh();

}

jsui Specific Methods

refresh ()

copies the contents of this.sketch to the screen.

jsui Event Handler methods

Since the jsui object is a user interface object, it can receive and process user interface
events. Currently the only user interface events which are supported are related to mouse
activity and resizing off the jsui object. If the following methods are defined by your
Javascript code, they will be called to handle these user interface events. All mouse events
handlers should be defined with have a standard form of

function on<eventname> (x, y, button, modifier1, shift,
capslock, option, modifier2)
{

// do something
}

The modifier1 argument is the command key state on Macintosh, and the control key
state on PC, and the modifier2 argument is the control key state on Macintosh, and the
right button state on PC. Modifier state is 1 if down/held, or 0 if not. If your event
handler is not concerned with any trailing arguments, they can be omitted.

One potentially confusing thing is that mouse events are in absolute screen coordinates,
with (0,0) as left top, and (width, height) as right bottom corners of the jsui object, while
Sketch's drawing coordinates are in relative world coordinates, with (0,0) as the center, +1

50

top, -1 bottom, and x coordinates using a uniform scale based on the y coordinates. To
convert between screen and world coordinates, use sketch.screentoworld(x,y)
and sketch.worldtoscreen(x,y,z). For example,

function onclick (x, y)
{

sketch.glmoveto(sketch.screentoworld(x,y));
sketch.framecircle(0.1);
refresh();

}

onclick (x, y, button, mod1, shift, caps, opt, mod2)

If defined, will receive all initial click events. The button argument will always be
on.

ondblclick (x, y, button, mod1, shift, caps, opt, mod2)

If defined, will receive all double click events. The button argument will always be
on.

ondrag (x, y, button, mod1, shift, caps, opt, mod2)

If defined, will receive all dragging events. The button argument will be on while
dragging, and off when the dragging has stopped.

onidle (x, y, button, mod1, shift, caps, opt, mod2)

If defined, will receive all idle mouse events while the mouse is over the rectangle
occupied by jsui object. The button argument will always be off.

onidleout (x, y, button, mod1, shift, caps, opt, mod2)

If defined, will receive the first idle mouse event as the mouse leaves the rectangle
occupied by the jsui object. The button argument will always be off.

onresize (width, height)

If defined, will receive any resize events with the new width and height.

The Sketch Object

Every instance of jsui has an instance of Sketch bound to the variable "sketch". This is
often the only instance of Sketch you will need to use. However, if you want to do things
like render sprites, have multiple layers of images, or use drawing commands to create
alpha channels for images, then you can create additional instances to render in. By
default, when any function in your jsui object has been called the context is already set for
the instance of Sketch bound to the variable "sketch".

51

Sketch Constructor

var mysketch = new Sketch(); // create a new instance of
Sketch with default width and height
var mysketch = new Sketch(width,height); // create a new
instance of sketch with specified width and height

Sketch Properties

size (Array[2], get/set)

size[0] is width size[1] is height.

fsaa (Boolean, get/set)

Turns on/off full scene antialiasing.

Sketch Methods

Sketch Simple Line and Polygon Methods

move (delta_x, delta_y, delta_z)

Moves the drawing position to the location specified by the sum of the current
drawing position and the delta x, y, and z arguments.

moveto (x, y, z)

Moves the drawing position to the location specified by the x, y, and z arguments.

point (x, y, z)

Draws a point at the location specified by the x, y, and z arguments. After this
method has been called, the drawing position is updated to the location specified
by the x, y, and z arguments.

line (delta_x, delta_y, delta_z)

Draws a line from the current drawing position to the location specified the sum
of the current drawing position and the delta x, y, and z arguments. After this
method has been called, the drawing position is updated to the location specified
by the sum of the current drawing position and the delta x, y, and z arguments.

52

lineto (x, y, z)

Draws a line from the current drawing position to the location specified by the x,
y, and z arguments. After this method has been called, the drawing position is
updated to the location specified by the x, y, and z arguments.

linesegment (x1, y1, z1, x2, y2, z2)

Draws a line from the location specified by the x1, y1, and z1 arguments to the
location specified by the x2, y2, and z2 arguments. After this method has been
called, the drawing position is updated to the location specified by the x2, y2, and
z2 arguments.

tri (x1, y1, z1, x2, y2, z2, x3, y3, z3)

Draws a filled triangle with three corners specified by the x1, y1, z1, x2, y2, z2, x3,
y3, and z3 arguments. After this method has been called, the drawing position is
updated to the location specified by the x3, y3, and z3 arguments.

frametri (x1, y1, z1, x2, y2, z2, x3, y3, z3)

Draws a framed triangle with three corners specified by the x1, y1, z1, x2, y2, z2,
x3, y3, and z3 arguments. After this method has been called, the drawing position
is updated to the location specified by the x3, y3, and z3 arguments.

quad (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)

Draws a filled quadrilateral with four corners specified by the x1, y1, z1, x2, y2, z2,
x3, y3, z3, x4, y4, and z4 arguments. After this method has been called, the
drawing position is updated to the location specified by the x4, y4, and z4
arguments.

framequad (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)

Draws a framed quadrilateral with four corners specified by the x1, y1, z1, x2, y2,
z2, x3, y3, z3, x4, y4, and z4 arguments. After this method has been called, the
drawing position is updated to the location specified by the x4, y4, and z4
arguments.

53

Shape Methods

circle (radius, theta_start, theta_end)

Draws a filled circle with radius specified by the radius argument. If theta_start
and theta_end are specified, then an arc will be drawn instead of a full circle. The
theta_start and theta_end arguments are in terms of degrees(0-360). The current
shapeorient, shapeslice, and shapeprim values will also affect the drawing.

cube (scale_x, scale_y, scale_z)

Draws a cube with width 2*scale_x, height 2*scale_y, depth 2*scale_z, and center
point at the current drawing position. If the scale_y and scale_z arguments are not
specified, they will assume the same value as scale_x. The current shapeorient,
shapeslice, and shapeprim values will also affect the drawing.

cylinder (radius1, radius2, mag, theta_start, theta_end)

Draws a cylinder with top radius specified by the radius1 argument, bottom
radius specified by the radius2 argument, length specified by the mag argument,
and center point at the current drawing position. If the theta_start and theta_end
arguments are specified, then a patch will be drawn instead of a full cylinder. The
theta_start and theta_end arguments are in terms of degrees(0-360). The current
shapeorient, shapeslice, and shapeprim values will also affect the drawing.

ellipse (radius1, radius2, theta_start, theta_end)

Draws a filled ellipse with radii specified by the radius1 and radius2 arguments. If
theta_start and theta_end are specified, then an arc will be drawn instead of a full
ellipse. The theta_start and theta_end arguments are in terms of degrees(0-360).
The current shapeorient, shapeslice, and shapeprim values will also affect the
drawing.

framecircle (radius, theta_start, theta_end)

Draws a framed circle with radius specified by the radius argument. If theta_start
and theta_end are specified, then an arc will be drawn instead of a full circle. The
theta_start and theta_end arguments are in terms of degrees(0-360). The current
shapeorient, shapeslice, and shapeprim values will also affect the drawing.

54

frameellipse (radius1, radius2, theta_start, theta_end)

Draws a framed ellipse with radii specified by the radius1 and radius2 arguments.
If theta_start and theta_end are specified, then an arc will be drawn instead of a
full ellipse. The theta_start and theta_end arguments are in terms of degrees(0-
360). The current shapeorient, shapeslice, and shapeprim values will also affect the
drawing.

plane (scale_x1, scale_y1, scale_x2, scale_y2)

Draws a plane with top width 2*scale_x1, left height 2*scale_y1, bottom width
2*scale_x2, right height 2*scale_y2, and center point at the current drawing
position. If scale_y1 is not specified, it will assume the same value as scale_x1. If
scale_x2 and scale_y2 are not specified, they will assume the same values as
scale_x1 and scale_y1 respectively. The current shapeorient, shapeslice, and
shapeprim values will also affect the drawing.

roundedplane (round_amount, scale_x, scale_y)

Draws a rounded plane with width 2*scale_x, and height 2*scale_y and center
point at the current drawing position. The size of the rounded portion of the
plane is determined by the round_amount argument. If scale_y is not specified, it
will assume the same value as scale_x. The current shapeorient, shapeslice, and
shapeprim values will also affect the drawing.

sphere (radius, theta1_start, theta1_end, theta2_start, theta2_end)

Draws a sphere with radius specified by the radius argument and center point at
the current drawing position. If the theta1_start, theta1_end, theta2_start, and
theta2_end arguments are specified, then a patch will be drawn instead of a full
sphere. The theta1_start, theta1_end, theta2_start, and theta2_end arguments are
in terms of degrees(0-360). The current shapeorient, shapeslice, and shapeprim values
will also affect the drawing.

torus (radius1, radius2, theta1_start, theta1_end, theta2_start, theta2_end)

Draws a torus with major radius specified by the radius1 argument, minor radius
specified by the radius2 argument, and center point at the current drawing
position. If theta1_start, theta1_end, theta2_start, and theta2_end are specified,
then a patch will be drawn instead of a full torus. The theta1_start, theta1_end,
theta2_start, and theta2_end arguments are in terms of degrees(0-360). The
current shapeorient, shapeslice, and shapeprim values will also affect the drawing.

55

Sketch Shape Attribute Methods

shapeorient (rotation_x, rotation_y, rotation_z)

Sets the rotation for drawing internal to any of the "shape" drawing methods to
the rotation specified by the x_rot, y_rot, and rotation_x, rotation_y, and
rotation_z arguments. Its use internal to a given shape method such as torus(0.1)
would essentially be equivalent to the following set of OpenGL calls.

with (sketch) {
glmatrixmode("modelview");
glpushmatrix();
glrotate(rotation_x,1.,0.,0.);
glrotate(rotation_y,1.,1.,0.);
glrotate(rotation_z,0.,0.,1.);
torus(0.5,0.2);
glpopmatrix();

}

shapeslice (slice_a, slice_b)

Sets the number of slices to use when rendering any of the "shape" drawing
methods. Increasing the slice_a and slice_b arguments will increase the quality at
which the shape is rendered, while decreasing these values will improve
performance.

shapeprim (draw_prim)

Sets the OpenGL drawing primitive to use within any of the "shape" drawing
methods. Acceptable values for the draw_prim argument are the following strings:
lines, line_loop, line_strip, points, polygon, quads, quad_grid, quad_strip,
triangles, tri_grid, tri_fan, tri_strip.

Sketch Text Methods

font (fontname)

Sets the current font to the fontname specified by the fontname argument.

fontsize (points)

Sets the fontsize to the size specified by the points argument. Note that this size is
an absolute, rather than relative value.

gettextinfo (string)

Returns an array containing the width and height of the given string in absolute
screen coordinates, taking into account the current font and fontsize.

56

text (string)

Draws the text specified by the string argument at the current drawing position,
taking into account the current font, fontsize, and text alignment. Text is strictly
2D, and does not take into account any world transformations. After calling the
text method, if the x axis text alignment is set to "left", the current drawing
position will be updated to reflect the world position associated with the end of
the string. If the x axis text alignment is set to "right", the current drawing position
will be updated to reflect the world position associated with the end of the string.
If the x axis text alignment is set to "center", the current drawing position will
remain unchanged.

textalign (align_x, align_y)

Sets the alignment of text to be drawn with respect to the current drawing
position. Acceptable values for the x axis alignment are: "left", "right", or "center".
Acceptable values for the y axis alignment are: "bottom", "top", or "center". The
default alignment is "left", "bottom".

Sketch Pixel Methods

copypixels (source_object, destination_x, destination_y, source_x, source_y, width, height)

Copies pixels from the source object to the location specified by the destination_x
and destination_y arguments. The initial x and y offset into the source and size of
the rectangle copied can be speified by the source_x, source_y, width and height
arguments. If these are not present an x and y offset of zero and width and height
equal to the source image is assumed. No scaling of pixels is supported. The
source object can either be an instance of Image, or Sketch. If blending is enabled
in the destination sketch object, alpha blending will be performed and the current
alpha color will also be applied globally. The copypixels method is much faster
than obtaining the equivalent result using glbindtexture() to texture a plane, and
is the recommended means of drawing images when scaling and rotation is not
required.

depthatpixel (x, y)

Returns the depth value associated with the currently rendered pixel at a given
absolute screen coordinate.

freepeer ()

Frees the image data from the native c peer, which is not considered by the
JavaScript garbage collector, and may consume lots of memory until the garbage

57

collector decides to run based on JS allocated memory. Once called, the Sketch
object is not available for any other use.

getpixel (x, y)

Returns an array containing the pixel value at the specified location. This array is
ordered RGBA, i.e. array element 0 is red, 1, green, 2, blue, 3 alpha. Color values
are floating point numbers in the range 0.-1.

setpixel (x, y, red, green, blue, alpha)

Sets the pixel value at the specified location. Color values are floating point
numbers in the range 0.-1.

screentoworld (x,y)

Returns an array containing the x, y, and z world coordinates associated with a
given screen pixel using the same the depth from the camera as 0,0,0. Optionally a
third depth arg may be specified, which may be useful for hit detection and other
applications. The depth value is typically specified in the range 0.-1. where 0 is the
near clipping plane, and 1. is the far clipping plane. The worldtoscreen method
can be used to determine the depth value of a given world coordinate, and the
depthatpixel method can be used to determine the depth value associated with the
currently rendered pixel at a given absolute screen coordinate.

worldtoscreen (x, y, z)

Returns an array containing the x, y, and depth screen coordinates associated with
a given world coordinate. The depth value is typically specified in the range 0.-1.
where 0 is the near clipping plane, and 1. is the far clipping plane.

Sketch Stroke Methods

beginstroke (stroke_style)

Begin definition of a stroked path of the style specified by the stroke_style
argument. Currently supported stroke styles are "basic2d" and "line".

endstroke ()

End definition of a stroked path, and render the path.

58

strokeparam (parameter_name, parameter_values, ...)

Set the current value of the parameter specified by the parameter_name argument
to be the value specified by parameter_values argument(s). Some parameters are
global for the extent of a stroked path definition, while others may vary on a point
by point basis.

strokepoint (x, y, z)

Defines an anchor point at the location specified by the x, y, and z arguments.
Some stroke styles such as "basic2d" will ignore the z coordinate.

Basic 2D Stroke Style Parameters

alpha

May vary point to point. Value is specified as an alpha value. Useful if alpha is the
only color channel which will vary throughout the path.

color

May vary point to point. Values are specified as red, green, blue, and alpha values.

order

Global. Value is specified as interpolation order. The default order is 3, or bi-cubic
interpolation.

outline

Global. Value is specified as on/off (0/1). The default is 1.

outcolor

May vary point to point. Values are specified as red, green, blue, and alpha values.
If no outcolor has been specified, then the current color is assumed.

scale

May vary point to point. Value is specified as an width value. This value controls
how wide the stroked path is.

slices

Global. Value is specified as number of slices per curve section. The default is 20.

59

Line Stroke Style Parameters

alpha

May vary point to point. Value is specified as an alpha value. Useful if alpha is the
only color channel which will vary throughout the path.

color

May vary point to point. Values are specified as red, green, blue, and alpha values.

order

Global. Value is specified as interpolation order. The default order is 3, or bi-cubic
interpolation.

slices

Global. Value is specified as number of slices per curve section. The default is 20.

60

Sketch Setup Methods

default2d ()

The default2d method is a simple way to set the graphics state to default
properties useful for 2D graphics. It is called everytime your object is resized if
default2d() has been called more recently than default3d(). It is essentially
equivalent to the following set of calls:

with (sketch) {
glpolygonmode("front_and_back","fill");
glpointsize(1.);
gllinewidth(1.);
gldisable("depth_test");
gldisable("fog");
glcolor(0.,0.,0.,1.);
glshademodel("smooth");
gldisable("lighting");
gldisable("normalize");
gldisable("texture");
glmatrixmode("projection");
glloadidentity();
glortho(-aspect, aspect, -1, 1, -1,100.);
glmatrixmode("modelview");
glloadidentity();
glulookat(0.,0.,2.,0.,0.,0.,0.,0.,1.);
glclearcolor(1., 1., 1., 1.);
glclear();
glenable("blend");
glblendfunc("src_alpha","one_minus_src_alpha");

}

61

default3d ()

The default3d method is a simple way to set the graphics state to default
properties useful for 3D graphics. It is called everytime the jsui object is resized if
default3d() has been called more recently than default2d().

It is essentially equivalent to the following set of calls:

with (sketch) {
glpolygonmode("front_and_back","fill");
glpointsize(1.);
gllinewidth(1.);
glenable("depth_test");
glenable("fog");
glcolor(0.,0.,0.,1.);
glshademodel("smooth");
gllightmodel("two_side", "true");
glenable("lighting");
glenable("light0");
glenable("normalize");
gldisable("texture");
glmatrixmode("projection");
glloadidentity();
gluperspective(default_lens_angle, aspect, 0.1, 100.);
glmatrixmode("modelview");
glloadidentity();
glulookat(0.,0.,2.,0.,0.,0.,0.,0.,1.);
glclearcolor(1., 1., 1., 1.);
glclear();
glenable("blend");
glblendfunc("src_alpha","one_minus_src_alpha");

}

62

ortho3d ()

The orth3d method is a simple way to set the graphics state to default properties
useful for 3D graphics, using an orthographic projection (i.e. object scale is not
affected by distance from the camera). It is called every time the jsui object is
resized if ortho3d() has been called more recently than default2d(), or
default3d().

It is essentially equivalent to the following set of calls:

with (sketch) {
glpolygonmode("front_and_back","fill");
glpointsize(1.);
gllinewidth(1.);
glenable("depth_test");
glenable("fog");
glcolor(0.,0.,0.,1.);
glshademodel("smooth");
gllightmodel("two_side", "true");
glenable("lighting");
glenable("light0");
glenable("normalize");
gldisable("texture");
glmatrixmode("projection");
glloadidentity();
glortho(-aspect, aspect, -1, 1, -1,100.);
glmatrixmode("modelview");
glloadidentity();
glulookat(0.,0.,2.,0.,0.,0.,0.,0.,1.);
glclearcolor(1., 1., 1., 1.);
glclear();
glenable("blend");
glblendfunc("src_alpha","one_minus_src_alpha");

}

Sketch OpenGL Methods

glbegin (draw_prim)

glbindtexture (image_object) Note: this method also calls glenable(texture)

glblendfunc (src_function, dst_function)

glclear ()

glclearcolor (red, green, blue, alpha)

glcleardepth (depth)

63

glclipplane (plane, coeff1, coeff2, coeff3, coeff4)

glcolor (red, green, blue, alpha)

glcolormask (red, green, blue, alpha)

glcolormaterial (face, mode)

glcullface (face)

gldepthmask (on)

gldepthrange (near, far)

gldisable (capability)

gldrawpixels (image)

gledgeflag (on)

glenable (capability)

glend ()

glfinish ()

glflush ()

glfog (parameter_name, value)

glfrustum (left, right, bottom, top, near, far)

glhint (target, mode)

gllight (light, parameter_name, value)

gllightmodel (parameter_name, value)

gllinestipple (factor, bit-pattern)

gllinewidth (width)

glloadidentity ()

64

glloadmatrix (matrix_array)

gllogicop (opcode)

glmaterial

glmatrixmode (mode)

glmultmatrix (matrix_array)

glnormal (x, y, z)

glortho (left, right, bottom, top, near, far)

glpointsize (size)

glpolygonmode (face, mode)

glpolygonoffset (factor, units)

glpopattrib ()

glpopmatrix ()

glpushattrib ()

glpushmatrix ()

glrect (x1, y1, x2, y2)

glrotate (angle, x, y, z)

glscale (x_scale, y_scale, z_scale)

glscissor (x, y, width, height)

glshademodel (mode)

gltexcoord (s, t)

gltexenv (parameter_name, val1, val2, val3, val4)

gltexgen (coord, parameter_name, val1, val2, val3, val4)

65

gltexparameter (parameter_name, val1, val2, val3, val4)

gltranslate (delta_x, delta_y, delta_z)

glulookat (eye_x, eye_y, eye_z, center_x, center_y, center_z, up_x, up_y, up_z)

gluortho2d (left, right, bottom, top)

gluperspective (fovy, aspect, near, far)

glvertex (x, y, z)

glviewport (x, y, width, height)

The Image Object

The Image object can be used to draw images in an instance of the Sketch. It is possible to
load image files from disk, create images from instances of Sketch, or generate them
manually. The Image object has several methods to assist in manipulating images once
generated. Note that alphablending is on by default in sketch. Certain file formats which
contain alpha channels such as PICT or TIFF may have their alpha channel set all off. File
formats which do not contain an alpha channel such as JPEG, by default have an alpha
channel of all on. If you are having trouble seeing an image when attempting to draw in
an instance of Sketch, you may want to either turn off blending with
gldisable("blend"), or set the alpha channel to be all on with
clearchannel("alpha",1.).

Image Constructor

var myimg = new Image(); // create a new Image instance
with default width + height
var myimg = new Image(width,height); // create a new Image
instance with the specified witdth + height
var myimg = new Image(filename); // create a new Image
instance from a file from disk
var myimg = new Image(imageobject); // create a new Image
instance from another instance of Image
var myimg = new Image(sketchobject); // create a new Image
instance from an instance of Sketch

Image Properties

size(Array[2], get/set)

size[0] is width size[1] is height.

66

Image Methods

adjustchannel (channel, scale, bias)

Adjusts all channel values in the image channel specified by the channel
argument, by multiplying the channel value by the value specified by the scale
argument and then adding the value specified by the bias argument. The resulting
channel is clipped to the range 0.-1. Acceptable values for the channel argument
are the strings: "red", "green", "blue", or "alpha".

alphachroma (red, green, blue, tolerance, fade, minkey, maxkey)

Generates an alpha channel based on the chromatic distance from the specified
RGB target color. If no tolerance, fade or minkey arguments are specified they are
assumed to be 0. If no maxkey argument is specified, it is assumed to be 1.

blendchannel (source_object, alpha, source_channel, destination_channel)

Similar to the copychannel method, except supports a blend amount specified by
the alpha argument. The source object can only be an instance of Image (not
Sketch). If the source object is not the same size as the destination object, then
rectangle composed of the minimum width and height of each, is the rectangle of
values which will be blended. Acceptable values for the channel arguments are the
strings: "red", "green", "blue", or "alpha".

blendpixels (source_object, alpha, destination_x, destination_y, source_x, source_y, width,
height)

Similar to the copypixels method, except supports alpha blending, including a
global alpha value specified by the alpha argument. This global alpha value is
multiplied by the source object's alpha channel at each pixel. Instances of Sketch
do not contain an alpha channel, which is assumed to be all on. The source object
can either be an instance of Image, or Sketch.

clear (red, green, blue, alpha)

Sets all pixels in the image to be the value specified by the red, green, blue, and
alpha arguments. If no arguments are specified, these values are assumed to be (0,
0, 0, 1) respectively.

clearchannel (channel, value)

Sets all channel values in the image channel specified by the channel argument to
be the value specified by the value argument. If no value argument is specified, it
is assumed to be 0. Acceptable values for the channel argument are the strings:
"red", "green", "blue", or "alpha".

67

copychannel (source_object, source_channel, destination_channel)

Copies the channel values from the source object's channel specified by the
source_channel argument to the destination object's channel specified by the
destination_channel argument. The source object can only be an instance of
Image (not Sketch). If the source object is not the same size as the destination
object, then rectangle composed of the minimum width and height of each, is the
rectangle of values which will be copied. Acceptable values for the channel
arguments are the strings: "red", "green", "blue", or "alpha".

copypixels (source_object, destination_x, destination_y, source_x, source_y, width, height)

Copies pixels from the source object to the location specified by the destination_x
and destination_y arguments. The initial x and y offset into the source and size of
the rectangle copied can be speified by the source_x, source_y, width and height
arguments. If these are not present an x and y offset of zero and width and height
equal to the source image is assumed. No scaling of pixels is supported. The
source object can either be an instance of Image, or Sketch.

flip (horizontal_flip, vertical_flip)

Flips the image horizontally and or vertically. Arguments can be 0 or 1, where 0 is
no flip, and 1 is flip.

freepeer ()

Frees the image data from the native c peer, which is not considered by the
JavaScript garbage collector, and may consume lots of memory until the garbage
collector decides to run based on JS allocated memory. Once called, the Image
object is not available for any other use.

fromnamedmatrix (matrixname)

Copies the pixels from the jit.matrix specified by matrixname to the image.

getpixel (x, y)

Returns an array containing the pixel value at the specified location. This array is
ordered RGBA, i.e. array element 0 is red, 1, green, 2, blue, 3 alpha. Color values
are floating point numbers in the range 0.-1.

setpixel (x, y, red, green, blue, alpha)

Sets the pixel value at the specified location. Color values are floating point
numbers in the range 0.-1.

68

swapxy ()

Swaps the axes of the image so that width becomes height and vice versa. The
effective result is that the image is rotated 90 degrees counter clockwise, and then
flipped vertically.

tonamedmatrix (matrixname)

Copy the pixels from the image to the jit.matrix specified by matrixname.

	Table of Contents
	Copyright and Trademark Notices
	Credits

	Basic Javascript programming for the js and jsui objects
	Introduction
	How Javascript Works in the js Object
	Overview of js Object Extensions to Javascript
	Assigning a File to js and jsui

	Basic Techniques
	Arguments
	How Input to the js Object is Handled
	Special Function Names
	Reserved Words
	Global Code
	Private (Local) Functions

	Universally Available Methods
	The jsthis Object
	jsthis Properties
	jsthis Methods

	The Max Object
	Max Properties
	Max Modifier Key Properties
	Max Methods

	The Patcher Object
	Patcher Constructor
	Patcher Properties
	Patcher Methods

	The Maxobj Object
	Maxobj Properties
	Maxobj Methods

	The Wind Object
	Wind Properties
	Wind Methods

	The Global Object
	Global Constructor
	Global Properties
	Global Methods
	Accessing the Global Object from Max

	The Task Object
	Task Constructor
	Task Properties
	Task Methods

	The Folder Object
	Folder Constructor
	Folder Properties
	Folder Methods

	The File Object
	File Constructor
	File Properties
	File Methods

	Controlling a Function’s Thread of Execution
	What’s Permissible in the High-Priority Thread

	jsui, Sketch and OpenGL
	OpenGL Conventions and Differences
	Colors and Coordinates
	The jsui Object
	jsui Specific Properties
	jsui Specific Methods
	jsui Event Handler methods

	The Sketch Object
	Sketch Constructor
	Sketch Properties
	Sketch Methods
	Shape Methods
	Sketch Shape Attribute Methods
	Sketch Text Methods
	Sketch Pixel Methods
	Sketch Stroke Methods
	Basic 2D Stroke Style Parameters
	Line Stroke Style Parameters
	Sketch Setup Methods
	Sketch OpenGL Methods

	The Image Object
	Image Constructor
	Image Properties
	Image Methods

