
Max API
6.0.0

Cycling ’74

Tue Oct 11 2011 15:48:11

Chapter 1

Objects in C: A Roadmap

Max has an extensive API for developing new objects in C. Before you start learning
about it, however, we would like to save you time and make sure you learn the minimum
about the API for what you need to do. Therefore, we’ve made a brief list of application
areas for object development along with the sections of this document with which you’ll
probably want to become familiar.

1.1 Max Objects

For logic and arithmetic objects, such as new mathematical functions or more com-
plex conditional operations than what is offered in Max, it should be sufficient to read
the Anatomy of a Max Object section.

For objects that use Data Structures, you’ll want to read, in addition, the Atoms and
Messages section to learn about Max’s basic mechanisms for representing and com-
municating data.

If you are interested in writing interfaces to operating system services, you may need
to learn about Max’s Threading model and The Scheduler.

For objects that deal with time and timing you’ll want to learn about The Scheduler. If
you’re interested in tempo-based scheduling, you’ll want to read the section on ITM and
look at the delay2 example.

To create new user interface gadgets, you’ll want to read all of the above, plus the
section on Attributes and the Anatomy of a UI Object. The section on JGraphics will
also be helpful.

To create objects with editing windows, things are much more complicated than they
used to be. You’ll need to learn everything about UI objects, plus understand the scripto
example object project.

For patcher scripting and interrogation objects, the section on Scripting the Patcher, plus
a few of the examples will be very helpful. It is also helpful to have a clear conceptual
understanding of the patcher, which might be aided by reading the patcher scripting
sections of the js object documentation.

2 Objects in C: A Roadmap

Max 6 introduces support for passing structured data with the Dictionary Passing API.

1.2 MSP Objects

To create audio filters and signal generators, read the Anatomy of a Max Object,
then read the Anatomy of a MSP Object section. MSP objects make use of Creating
and Using Proxies when receiving multiple audio inputs, so familiarity with that concept
could be helpful.

For audio objects that output events (messages), you’ll need to use the services of The
Scheduler, so we suggest reading about that.

For UI objects for analyzing and controlling audio, you’ll need to learn about regular
MSP objects as well as Max UI objects.

Information on updating MSP objects from Max 5 or earlier for 64-bit audio in Max 6 is
located in Appendix: Updating MSP Externals for Max 6.

1.3 Jitter Objects

The Jitter Object Model outlines some important basic information about Jitter’s flexible
object model. Jitter Max Wrappers describes how to write Max wrapper objects that
contain Jitter objects for use in the Max patcher world. Matrix Operator QuickStart and
Matrix Operator Details describe how to create a particular type of Jitter object called
matrix operators, or MOPs. OB3D QuickStart and OB3D Details describe how to create
OB3D Jitter objects for use in rendering OpenGL scenes. Scheduler and Low Priority
Queue Issues covers important threading and timing issues when building Jitter objects.
Jitter Object Registration and Notification explains how Jitter objects can be registered
by name and notify clients as they change or important events occur. Using Jitter -
Objects in C provides some examples of how to instantiate and take advantage of Jitter
objects from C, just as one would from Java, Javascript, or the patcher. Finally, The JXF
File Specification and Jitter Networking Specification contain information relating to the
data formats involved in the JXF file format and Jitter networking protocols, respectively.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 2

Development System Information

2.1 Building

This SDK documentation is accompanied by a series of projects for compiling some ex-
ample Max external objects. The details of how to build these projects are documented
below in separate sections for the Mac and Windows.

When you build the example projects, the resulting Max external will be located in a
folder called "sdk-build" two folder-levels up from the project. If you leave the arrange-
ment of folders intact, sdk-build will be found in the MaxSDK folder.

We recommende that you add the sdk-build folder to your Max search path using the
File Preferences window. This permits you to put the MaxSDK folder wherever you like
and load the objects in Max after building them without copying them to your Cycling ’74
folder.

2.2 Mac

Max external objects for the Mac are Mach-O bundles (folders that appear to be files)
whose filenames must end with the .mxo extension. The example projects are in Xcode
3.x format. To download Xcode, you need to open a free Apple Developer account. For
more information, visit http://developer.apple.com/

2.2.1 XCode Project Setup

The example projects are set up to have Development and Deployment build configu-
rations. The Development configuration does not optimize and builds only for the target
platform you are using (i.e., PPC on a PPC machine, Intel on an Intel machine). The
Deployment configuration creates a universal binary and performs optimization.

The files required for this projects are included in the project folders with the except of
the following two files:

http://developer.apple.com/

4 Development System Information

• Info.plist

• maxmspsdk.xcconfig

These two files are located one folder-level up from the project folder, and are required
for the Xcode project to build the Max external.

2.2.2 Linking and Frameworks

External objects use dynamic linking to access the API functions provided by the Max
application. When an objects is loaded, calls to functions inside the application are
resolved by the operating system to the correct memory address. Each external object
Xcode project must reference MaxAPI.framework in order to link with the application.
Frameworks are libraries that define the functions in the Max API. Due to the fact that
"Max" could exist as an application, a standalone you create, or a library inside another
application, the MaxAPI.framework does not actually contain the code to implement the
functions of the Max API for external objects. It serves instead to isolate external objects
from the specific library or application implementation that contains the real code.

Audio objects will link against MaxAudioAPI.framework and Jitter objects link against
JitterAPI.framework. Unlike MaxAPI.framework, these frameworks are real libraries. -
The most recent version of all frameworks will be found inside the application you are
using (they are found inside the application bundle in Contents/Frameworks). In addi-
tion, there are versions inside the c74support folder provided with the SDK. These will
be used only to link your objects; they are never actually executed.

Xcode uses something called the Frameworks Search Path to locate frameworks when
linking. The example SDK projects use a frameworks search path with a c74support
folder two levels up from your the folder containing your Xcode project. If you rearrange
the SDK folders, projects may not find the frameworks and will fail to link properly. -
Furthermore, even though we specify the frameworks search path, Xcode seems to look
in /Library/Frameworks first. If you have installed a version of the Max SDK for version
4.6 or ealier, you may have older versions of MaxAPI.framework and MaxAudioAPI.-
framework in /Library/Frameworks. When you try to link objects that contain references
to functions only defined in the newest MaxAPI.framework, the link may fail because
the projects are using the old frameworks. To fix this, you’ll need to remove the Max
frameworks from /Library/Frameworks. If you want to develop objects for both the Max
4.6 and Max 5 SDKs on the same machine, you’ll need to modify your 4.6 projects to
specify a Frameworks Search Path, and relocate the 4.6 frameworks to the specified
location.

2.3 Windows

Max external objects for Windows are Dynamic Link Libraries (DLLs) whose filenames
must end with the .mxe extension. These DLLs will export a single function called
"main" which is called by max when the external object is first loaded. Generally these
DLLs will import functions of the Max API from the import library "MaxAPI.lib" which is
located in the c74support\max-includes\ folder. External objects that use audio func-

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

2.3 Windows 5

tionality will import functions from the import library "MaxAudio.lib" which is located in
c74support\msp-includes\.

The example projects are in Visual C++ 2008 format. A free version of Visual C++ can
be obtained from Microsoft at http://www.microsoft.com/express/. The
projects are set up to have both a Debug and a Release configuration. The Release
configuration is optimized whereas the Debug one is not. Note that for debugging pur-
poses you can exercise your object in the Max Runtime since the copy protection for the
Max Application will interfere when run under the debugger.

Another thing to note is that Max has a private build of the Microsoft C Runtime Library.
By linking with this version of the C runtime library you won’t have to worry about de-
ployment issues due to dependencies your external may have on Microsoft’s C Runtime.
When you include "ext.h" from the max API it will include ext_prefix.h which for the re-
lease build will automatically cause your project to use the max C runtime library. If you
prefer to use the Microsoft C Runtime you can do that by defining the C preprocessor
macro MAXAPI_USE_MSCRT before including ext.h.

2.3.1 Compiling with Cygwin

It is also possible to compile Max external objects on Windows using Cygwin. The
following steps show how to build the simplemax project from the Max SDK using -
Cygwin’s gcc (Gnu Compiler Collection). This provides access to a high quality, free C
compiler using the Cygwin Unix tools for Windows.

2.3.1.1 Requirements

Install the following Cygwin packages. Feel free to add on any other Cygwin packages
that strike your fancy. The Cygwin installer and more information can be found at http-
://www.cygwin.com/

• Base (ALL)

• Devel

– binutils

– gcc "GCC Compiler"

– gcc-mingw "Mingw32 support headers and libraries for GCC"

– gcc-mingw-core "Mingw32 support headers and libraries for GCC"

– mingw-runtime

2.3.1.2 Build Steps

STEP 0: cd to the directory containing the minimum SDK example project

STEP 1:

gcc -c -mno-cygwin -DWIN_VERSION -DWIN_EXT_VERSION -I../../c74support/
max-includes simplemax.c

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://www.microsoft.com/express/.
http://www.cygwin.com/
http://www.cygwin.com/

6 Development System Information

Description of gcc arguments:

"-c" means compile.

"-mnocygwin" means use the Microsoft standard C libraries, instead of Cygwin standard
C libraries. This step is important if you wish to distribute your extern to people that
might not have Cygwin installed.

"-DWIN_VERSION" and "-DWIN_EXT_VERSION" define these preprocessor defini-
tions on the command line to guarantee that the header files and source code know
it is being compiled for a Windows machine, instead of Macintosh.

"-I../../c74support/max-includes" specifies an additional directory where the necessary
headers files will be found.

"simplemax.c" is the compiler input.

STEP 2:

gcc -shared -mno-cygwin -o simplemax.mxe simplemax.o simplemax.def -L..
/../c74support/max-includes -lMaxAPI

Description of gcc arguments:

"-shared" means link files to make a DLL.

"-mnocygwin" means use the Microsoft standard C libraries, instead of Cygwin standard
C libraries. This step is important if you wish to distribute your extern to people that
might not have Cygwin installed.

"-o simplemax.mxe" specifies the name of the output file.

"simplemax.o" and "simplemax.def" are the linker input. The .def file is necessary to
ensure that the function main will be exported.

"-L../../c74support/max-includes" specifies an additional directory where library files will
be found.

"-lMaxAPI" means link to the MaxAPI.lib linker library for MaxAPI.dll.

STEP 3: copy your file to a directory in your search path. For example:

cp minimum.mxe c:\Program Files\Common Files\Cycling ’74\myexterns\

2.3.1.3 Additional Notes

You can ignore the warning that main() does not return int. This message is harmless,
and only relevant to applications, not shared libraries.

2.4 Important Project Settings

The easiest way to create a new external is to choose one of the existing SDK examples,
duplicate it, and then change only the settings that need to be changes (such as the
name of the project). This will help to guarantee that important project settings are
correct. Project settings of particular importance are noted below.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

2.5 Platform-specificity 7

2.4.1 Mac

Particularly important for Max externals on the Mac are that the Info.plist is correct set
up and that the "Force Package Info Generation" is set to true. Without these your object
may fail to load on some machines.

2.4.2 Windows

In the preprocessor definitions for the Visual Studio project it is important to define WI-
N_VERSION and EXT_WIN_VERSION to ensure that the headers are set up properly.

2.5 Platform-specificity

If you are writing a cross-platform object and you need to do something that is specific
to one platform, the Max API headers provide some predefined symbols you can use.

#ifdef MAC_VERSION
// do something specific to the Mac
#endif
#ifdef WIN_VERSION
// do something specific to Windows
#endif

Another reason for conditional compilation is to handle endianness on the Mac platform.
If you are still supporting PowerPC, you may have situations where the ordering of bytes
within a 16- or 32-bit word is important. ext_byteorder.h provides cross-platform tools
for manipulating memory in an endian-independent way.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

8 Development System Information

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 3

Anatomy of a Max Object

Max objects are written in the C language, and the Max API is C-based.

You could use C++ but we don’t support it at the API level. Writing a Max object in C,
you have five basic tasks:

1) including the right header files (usually ext.h and ext_obex.h)

2) declaring a C structure for your object

3) writing an initialization routine called main that defines the class

4) writing a new instance routine that creates a new instance of the class, when some-
one makes one or types its name into an object box

5) writing methods (or message handlers) that implement the behavior of the object

Let’s look at each of these in more detail. It’s useful to open the simplemax example
project as we will be citing examples from it.

3.1 Include Files

Most of the basic Max API is included in the files ext.h and ext_obex.h. These are
essentially required for any object. Beyond this there are specific include files for more
specialized objects.

The header files are cross-platform.

• jpatcher_api.h is required for any Max UI objects

• z_dsp.h is required for MSP audio objects

#include "ext.h" // should always be first, followed by ext_obex.h and any
other files.

10 Anatomy of a Max Object

3.2 The Object Declaration

Basic Max objects are declared as C structures. The first element of the structure is
a t_object, followed by whatever you want. The example below has one long structure
member.

typedef struct _simp
{

t_object s_obj; // t_object header
long s_value; // something else

} t_simp;

Your structure declaration will be used in the prototypes to functions you declare, so
you’ll need to place above these prototypes.

3.3 Initialization Routine

The initialization routine, which must be called main, is called when Max loads your
object for the first time. In the initialization routine, you define one or more classes.
Defining a class consists of the following:

1) telling Max about the size of your object’s structure and how to create and destroy
an instance 2) defining methods that implement the object’s behavior 3) in some cases,
defining attributes that describe the object’s data 4) registering the class in a name
space

Here is the simp class example initialization routine:

static t_class *s_simp_class; // global pointer to our class definition
that is setup in main()

int main()
{

t_class *c;

c = class_new("simp", (method)simp_new, (method)NULL, sizeof(t_simp), 0
L, 0);
class_addmethod(c, (method)simp_int, "int", A_LONG, 0);
class_addmethod(c, (method)simp_bang, "bang", 0);

class_register(CLASS_BOX, c);

s_simp_class = c;

return 0;
}

class_new() creates a class with the new instance routine (see below), a free function
(in this case there isn’t one, so we pass NULL), the size of the structure, a no-longer
used argument, and then a description of the arguments you type when creating an
instance (in this case, there are no arguments, so we pass 0).

class_addmethod() binds a C function to a text symbol. The two methods defined here
are int and bang.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

3.4 New Instance Routine 11

class_register() adds this class to the CLASS_BOX name space, meaning that it will be
searched when a user tries to type it into a box.

Finally, we assign the class we’ve created to a global variable so we can use it when
creating new instances.

More complex classes will declare more methods. In many cases, you’ll declare meth-
ods to implement certain API features. This is particularly true for UI objects.

3.4 New Instance Routine

The standard new instance routine allocates the memory to create an instance of your
class and then initializes this instance. It then returns a pointer to the newly created
object.

Here is the simp new instance routine

void *simp_new()
{

t_simp *x = (t_simp *)object_alloc(s_simp_class);

x->s_value = 0;

return x;
}

The first line uses the global variable s_simp_class we defined in the initialization routine
to create a new instance of the class. Essentially, the instance is a block of memory of
the size defined by the class, along with a pointer to the class that permits us to dispatch
messages correctly.

The next line initializes our data. More complex objects will do a lot more here, such
as creating inlets and outlets. By default, the object being created will appear with one
inlet and no outlets.

Finally, in the last line, we return a pointer to the newly created instance.

3.5 Message Handlers

We are now ready to define some actual behavior for our object by writing C functions
that will be called when our object is sent messages. For this simple example, we will
write only two functions. simp_int will be called when our object receives numbers. It
will store the received number in the s_value field. simp_bang will be called when our
object receives a bang. It will print the value in the Max window. So, yes, this object is
pretty useless!

The C functions you write will be declared according to the arguments the message
requires. All functions are passed a pointer to your object as the first argument. For a
function handling the int message, a single second argument that is a long is passed.
For a function handling the bang message, no additional arguments are passed.

Here is the int method:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

12 Anatomy of a Max Object

void simp_int(t_simp *x, long n)
{

x->s_value = n;
}

This simply copies the value of the argument to the internal storage within the instance.

Here is the bang method:

void simp_bang(t_simp *x)
{

post("value is %ld",x->s_value);
}

The post() function is similar to printf(), but puts the text in the Max window. post() is
very helpful for debugging, particularly when you cannot stop user interaction or real-
time computation to look at something in a debugger.

You can also add a float message, which is invoked when a floating-point number is
sent to your object. Add the following to your initialization routine:

class_addmethod(c, (method)simp_float, "float", A_FLOAT, 0);

Then write the method that receives the floating-point value as follows:

void simp_float(t_simp *x, double f)
{

post("got a float and it is %.2f", f);
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 4

Inlets and Outlets

You are familiar with inlets and outlets when connecting two objects together in a
patcher.

To receive data in your object or send data to other objects, you need to create the C
versions of inlets and outlets. In this section, we’ll explain what inlets and outlets are,
how to create them, and how to use them. We’ll also discuss a more advanced type of
inlet called a proxy that permits a message to be received in any of your object’s inlets.
Proxies are used by audio objects to permit inlets to handle both signals and normal
Max messages.

By default, every object shows one inlet. Additional inlets appear to the right of the
default inlet, with the rightmost inlet being created last.

Inlets are essentially message translators. For example, if you create an int inlet, your
object will receive the "in1" message instead of the "int" message when a number arrives
at this newly created inlet. You can use the different message name to define special
behavior for numbers arriving at each inlet. For example, a basic arithmetic object in
Max such as + stores the number to be added when it arrives in the right inlet, but
performs the computation and outputs the result when a number arrives in the left inlet.

Outlets define connections between objects and are used to send messages from your
object to the objects to which it is connected. What is not obvious about an outlet,
however, is that when you send a number out an outlet, the outlet-sending function
does not return until all computation "below" the outlet has completed. This stack-
based execution model is best illustrated by observing a patch with the Max debugger
window. To understand this stack-based model it may be helpful to use the breakpoint
and debugging features in Max and follow the stack display as you step through the
execution of a patch. Outlets, like inlets, appear in the order you create them from right-
to-left. In other words, the first inlet or outlet you create will be the visually farthest to
the right.

14 Inlets and Outlets

4.1 Creating and Using Inlets

Proper use of an inlet involves two steps: first, add a method that will respond to the
message sent via the inlet in your initialization routine, and second, create the inlet in
your new instance routine. (Creating inlets at any other time is not supported.)

There are three types of inlets: int, float, and custom. We’ll only describe int and float
inlets here because proxies are generally a better way to create an inlet that can respond
to any message. For int inlets, you’ll bind a function to a message "in1", "in2", "in3" etc.
depending on the inlet number you assign. Here’s how to create a single inlet using
"in1"...

In your initialization routine:

class_addmethod(c, (method)myobject_in1, "in1", A_LONG, 0);

In your new instance routine, after calling object_alloc() to create your instance:

intin(x, 1);

The method that will be called when an int is received in the right inlet:

void myobject_in1(t_myobject *x, long n)
{

// do something with n
}

Creating a single inlet in this way gives your object two inlets (remember that it always
has one by default). If you want to create multiple inlets, you’ll need to create them in
order from right to left, as shown below:

intin(x, 2); // creates an inlet (the right inlet) that will
send your object the "in2" message
intin(x, 1); // creates an inlet (the middle inlet) that will
send your object the "in1" message

Inlets that send float messages to your object are created with floatin() and translate the
float message into "ft1","ft2","ft3" etc. Example:

In initialization routine:

class_addmethod(c, (method)myobject_ft1, "ft1", A_FLOAT, 0);

In new instance routine:

floatin(x, 1);

Method:

void myobject_ft1(t_myobject *x, double f)
{

post("float %.2f received in right inlet,f);
}

Note that you can mix int and float inlets, but each inlet must have a unique number.
Example:

intin(x, 2);
floatin(x, 1);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

4.2 Creating and Using Outlets 15

4.2 Creating and Using Outlets

You create outlets in your new instance routine. Outlet creators return a pointer that you
should store for later use when you want to send a message. As with inlets, outlets are
created from right to left.

Here’s a simple example. First we’ll add two void pointers to our data structure to store
the outlets for each instance.

typedef struct _myobject
{

t_object m_ob;
void *m_outlet1;
void *m_outlet2;

} t_myobject;

Then we’ll create the outlets in our new instance routine.

x = (t_myobject *)object_alloc(s_myobject_class);
x->m_outlet2 = bangout((t_object *)x);
x->m_outlet1 = intout((t_object *)x);
return x;

These outlets are type-specific, meaning that we will always send the same type of
message through them. If you want to create outlets that can send any message, use
outlet_new(). Type-specific outlets execute faster, because they make a direct connec-
tion to the method handler that will be called at the time you send a message. When we
want to send messages out these outlets, say, in our bang method, we do the following:

void myobject_bang(t_myobject *x)
{

outlet_bang(x->m_outlet2);
outlet_int(x->m_outlet1, 74);

}

The bang method above sends the bang message out the m_outlet2 outlet first, then
sends the number 74 out the m_outlet1. This is consistent with the general design in
Max to send values out outlets from right to left. However, there is nothing enforcing this
design, and you could reverse the statements if you felt like it.

A more general message-sending routine, outlet_anything(), will be shown in the Atoms
and Messages section.

4.3 Creating and Using Proxies

A proxy is a small object that controls an inlet, but does not translate the message it
receives. Instead it sets a location inside your object’s data structure to a value you
associate with the inlet. If the message comes "directly" to your object via the left inlet,
the value will be 0. However, in order to be thread-safe, you should not read the value of
this "inlet number" directly. Instead, you’ll use the proxy_getinlet() routine to determine
the inlet that has received the message.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

16 Inlets and Outlets

The advantage of proxies over regular inlets is that your object can respond to any mes-
sage in all of its inlets, not just the left inlet. As a Max user, you may already appreciate
the proxy feature without knowing it. For example, the pack object can combine ints,
floats, lists, or symbols arriving in any of its inlets. It uses proxies to make this happen.
MSP audio objects that accept signals in more than one inlet use proxies as well. In fact,
the proxy capability is built into the way you create audio objects, as will be discussed
in the Anatomy of a MSP Object section.

If your object’s non-left inlets will only respond to ints or floats, implementing proxies is
usually overkill.

4.4 Example

First, add a place in your object to store the proxy value. You shouldn’t access this
directly, but the proxy needs it. Second, you’ll need to store the proxy, because you
need to free it when your object goes away. If you create many proxies, you’ll need to
store pointers to all of them, but all proxies share the same long integer value field.

typedef struct _myobject
{

t_object m_obj;
long m_in; // space for the inlet number used by all the
proxies
void *m_proxy;

} t_myobject;

In your new instance routine, create the proxy, passing your object, a non-zero code
value associated with the proxy, and a pointer to your object’s inlet number location.

x->m_proxy = proxy_new((t_object *)x, 1, &x->m_in);

If you want to create regular inlets for your object, you can do so. Proxies and regular
inlets can be mixed, although such a design might confuse a user of your object.

Finally, here is a method that takes a different action depending on the value of x->m_in
that we check using proxy_getinlet().

void myobject_bang(t_myobject *x)
{

switch (proxy_getinlet((t_object *)x)) {
case 0:

post("bang received in left inlet");
break;

case 1:
post("bang received in right inlet");
break;

}
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 5

Atoms and Messages

When a Max object receives a message, it uses its class to look up the message selector
("int", "bang", "set" etc.) and invoke the associated C function (method).

This association is what you are creating when you use class_addmethod() in the ini-
tialization routine. If the lookup fails, you’ll see an "object doesn’t understand message"
error in the Max window.

Message selectors are not character strings, but a special data structure called a symbol
(t_symbol). A symbol holds a string and a value, but what is more important is that every
symbol in Max is unique. This permits you to compare two symbols for equivalence by
comparing pointers, rather than having to compare each character in two strings.

The "data" or argument part of a message, if it exists, is transmitted in the form of an
array of atoms (t_atom). The atom is a structure that can hold integers, floats, symbols,
or even pointers to other objects, identified by a tag. You’ll use symbols and atoms both
in sending messages and receiving them.

To illustrate the use of symbols and atoms, here is how you would send a message out
an outlet. Let’s say we want to send the message "green 43 crazy 8.34." This message
consists of a selector "green" plus an array of three atoms.

First, we’ll need to create a generic outlet with outlet_new in our new instance routine.

x->m_outlet = outlet_new((t_object *)x, NULL);

The second argument being NULL indicates that the outlet can be used to send any
message. If the second argument had been a character string such as "int" or "set" only
that specific message could be sent out the outlet. You’d be correct if you wondered
whether intout() is actually just outlet_new(x, "int").

Now that we have our generic outlet, we’ll call outlet_anything() on it in a method. The
first step, however, is to assemble our message, with a selector "green" plus an array of
atoms. Assigning ints and floats to an atom is relatively simple, but to assign a symbol,
we need to transform a character string into a symbol using gensym(). The gensym()
function returns a pointer to a symbol that is guaranteed to be unique for the string you
supply. This means the string is compared with other symbols to ensure its uniqueness.
If it already exists, gensym() will supply a pointer to the symbol. Otherwise it will create

18 Atoms and Messages

a new one and store it in a table so it can be found the next time someone asks for it.

void myobject_bang(t_object *x)
{

t_atom argv[3];

atom_setlong(argv, 43);
atom_setsym(argv + 1, gensym("crazy"));
atom_setfloat(argv + 2, 8.34);

outlet_anything(x->m_outlet, gensym("green"), 3, argv);
}

In the call to outlet_anything() above, gensym("green") represents the message se-
lector. The outlet_anything() function will try to find a message "green" in each of the
objects connected to the outlet. If outlet_anything() finds such a message, it will execute
it, passing it the array of atoms it received.

If it cannot find a match for the symbol green, it does one more thing, which allows
objects to handle messages generically. Your object can define a special method bound
to the symbol "anything" that will be invoked if no other match is found for a selector.
We’ll discuss the anything method in a moment, but first, we need to return to class_-
addmethod() and explain the final arguments it accepts.

To access atoms, you can use the functions atom_setlong(), atom_getlong() etc. or
you can access the t_atom structure directly. We recommend using the accessor func-
tions, as they lead to both cleaner code and will permit your source to work without
modifications when changes to the t_atom structure occur over time.

5.1 Argument Type Specifiers

In the simp example, you saw the int method defined as follows:

class_addmethod(c, (method)simp_int, "int", A_LONG, 0);

The A_LONG, 0 arguments to class_addmethod() specify the type of arguments ex-
pected by the C function you have written. A_LONG means that the C function accepts
a long integer argument. The 0 terminates the argument specifier list, so for the int
message, there is a single long integer argument.

The other options are A_FLOAT for doubles, A_SYM for symbols, and A_GIMME, which
passes the raw list of atoms that were originally used to send the Max message in the
first place. These argument type specifiers define what are known as "typed" methods in
Max. Typed methods are those where Max checks the type of each atom in a message
to ensure it is consistent with what the receiving object has said it expects for a given
selector.

If the atoms cannot be coerced into the format of the argument type specifier, a bad
arguments error is printed in the Max window.

There is a limit to the number of specifiers you can use, and in general, multiple A_FLO-
AT specifiers should be avoided due to the historically unpredictable nature of compiler

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

5.2 Writing A_GIMME Functions 19

implementations when passing floating-point values on the stack. Use A_GIMME for
more than four arguments or with multiple floating-point arguments.

You can also specify that missing arguments to a message be filled in with default values
before your C function receives them. A_DEFLONG will put a 0 in place of a missing
long argument, A_DEFFLOAT will put 0.0 in place of a missing float argument, and A_-
DEFSYM will put the empty symbol (equal to gensym("")) in place of a missing symbol
argument.

5.2 Writing A GIMME Functions

A method that uses A_GIMME is declared as follows:

void myobject_message(t_myobject *x, t_symbol *s, long argc, t_atom *argv);

The symbol argument s is the message selector. Ordinarily this might seem redundant,
but it is useful for the "anything" method as we’ll discuss below.

argc is the number of atoms in the argv array. It could be 0 if the message was sent
without arguments. argv is the array of atoms holding the arguments.

For typed messages, the atoms will be of type A_SYM, A_FLOAT, or A_LONG. Here is
an example of a method that merely prints all of the arguments.

void myobject_printargs(t_myobject *x, t_symbol *s, long argc, t_atom *argv
)

{
long i;
t_atom *ap;

post("message selector is %s",s->s_name);
post("there are %ld arguments",argc);

// increment ap each time to get to the next atom
for (i = 0, ap = argv; i < argc; i++, ap++) {

switch (atom_gettype(ap)) {
case A_LONG:

post("%ld: %ld",i+1,atom_getlong(ap));
break;

case A_FLOAT:
post("%ld: %.2f",i+1,atom_getfloat(ap));
break;

case A_SYM:
post("%ld: %s",i+1, atom_getsym(ap)->s_name);
break;

default:
post("%ld: unknown atom type (%ld)", i+1, atom_gettype(ap))

;
break;

}
}

}

You can interpret the arguments in whatever manner you wish. You cannot, however,
modify the arguments as they may be about to be passed to another object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

20 Atoms and Messages

5.3 Writing ”Anything” Methods

As previously mentioned, your object can define a special method bound to the symbol
"anything" that will be invoked if no other match is found for a selector. For example:

class_addmethod(c, (method)myobject_anything, "anything", A_GIMME, 0);

Your function definition for an anything method follows the same pattern as for all other
A_GIMME methods:

void myobject_anything(t_myobject *x, t_symbol *s, long argc, t_atom *argv)
{

object_post((t_object*)x,
"This method was invoked by sending the ’%s’ message to

this object.",
s->s_name);

// argc and argv are the arguments, as described in above.
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 6

The Scheduler

The Max scheduler permits operations to be delayed until a later time.

It keeps track of time in double-precision, but the resolution of the scheduler depends
on the user’s environment preferences. The scheduler also works in conjunction with
a low-priority queue, which permits time-consuming operations that might be initiated
inside the scheduler to be executed in a way that does not disrupt timing accuracy.

Most objects interface with the scheduler via a clock (t_clock) object. A clock is asso-
ciated with a task function that will execute when the scheduler’s current time reaches
the clock’s time. There is also a function called schedule() that can be used for one-off
delayed execution of a function. It creates a clock to do its job however, so if your object
is going to be using the scheduler repeatedly, it is more efficient to store references to
the clocks it creates so the clocks can be reused.

The scheduler is periodically polled to see if it needs to execute clock tasks. There are
numerous preferences Max users can set to determine when and how often this polling
occurs. Briefly:

• The Overdrive setting determines whether scheduler polling occurs in a high-
prority timer thread or the main thread

• The Interval setting determines the number of milliseconds elapse between
polling the scheduler

• The Throttle setting determines how many tasks can be executed in any particular
scheduler poll

Similar Throttle and Interval settings exist for the low-priority queue as well.

For more information refer to the Timing documentation. While the details might be
a little overwhelming on first glance, the important point is that the exact time your
scheduled task will execute is subject to variability. Max permits this level of user control
over the scheduler to balance all computational needs for a specific application.

22 The Scheduler

6.1 Creating and Using Clocks

There are five steps to using a clock in an external object.

1. Add a member to your object’s data structure to hold a pointer to the clock object

typedef struct _myobject
{

t_object m_obj;

void *m_clock;
} t_object;

2. Write a task function that will do something when the clock is executed. The function
has only a single argument, a pointer to your object. The example below gets the current
scheduler time and prints it.

void myobject_task(t_myobject *x)
{

double time;

sched_getftime(&time);
post("instance %lx is executing at time %.2f", x, time);

}

3. In your new instance routine, create the clock (passing a pointer to your object and
the task function) and store the result in your object’s data structure.

x->m_clock = clock_new((t_object *)x, (method)myobject_task);

4. Schedule your clock. Use clock_fdelay() to schedule the clock in terms of a delay
from the current time. Below we schedule the clock to execute 100 milliseconds from
now.

clock_fdelay(x->m_clock, 100.);

If you want to cancel the execution of a clock for some reason, you can use clock_-
unset().

clock_unset(x->m_clock);

5. In your object’s free routine, free the clock

object_free(x->m_clock);

Note that if you call clock_delay() on a clock that is already set, its execution time will be
changed. It won’t execute twice.

6.2 Creating and Using Qelems

A qelem ("queue element") is used to ensure that an operation occurs in the low-priority
thread. The task function associated with a t_qelem is executed when the low-priority

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

6.2 Creating and Using Qelems 23

queue is serviced, always in the main (user interface) thread. Any qelem that is "set"
belongs to the low-priority queue and will be executed as soon as it serviced.

There are two principal things you want to avoid in the high priority thread: first, time-
consuming or unpredictable operations such as file access, and second, anything that
will block execution for any length of time -- for example, showing a dialog box (including
a file dialog).

The procedure for using a qelem is analogous to that for using a clock.

1. Add a member to your object’s data structure to hold a pointer to the qelem

typedef struct _myobject
{

t_object m_obj;

void *m_qelem
} t_myobject;

2. Write a task function that will do something when the qelem is executed. The function
has only a single argument, a pointer to your object.

void myobject_qtask(t_myobject *x)
{

post("I am being executed a low priority!"
}

3. In your new instance routine, create the qelem (passing a pointer to your object and
the task function) and store the result in your object’s data structure.

x->m_qelem = qelem_new((t_object *)x, (method)myobject_qtask);

4. Set the qelem by using qelem_set(). You could, for example, call qelem_set() in a
clock task function or in direct response to a message such as bang or int.

qelem_set(x->m_qelem);

If you want to cancel the execution of a qelem for some reason, you can use qelem_-
unset().

qelem_unset(x->m_qelem);

5. In your object’s free routine, call qelem_free(). Do not call object_free() or freeobject()
-- unlike the clock, the qelem is not an object.

qelem_free(x->m_qelem);

Note that if you call qelem_set() on a qelem that is already set, it won’t execute twice.
This is a feature, not a bug, as it permits you to execute a low-priority task only as
fast as the low-priority queue operates, not at the high-priority rate that the task might
be triggered. An example would be that a number box will redraw more slowly than a
counter that changes its value. This is not something you need to worry about, even if
you are writing UI objects, as Max handles it internally (using a qelem).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

24 The Scheduler

6.3 Defer

The defer function and its variants use a qelem to ensure that a function executes at
low-priority. There are three variants: defer(), defer_low(), and defer_medium(). The dif-
ference between using defer() and a qelem is that defer() is a one-shot deal -- it creates
a qelem, sets it, and then gets rid of it when the task function has executed. The effect
of this is that if you have some rapid high-priority event that needs to trigger something
to happen at low-priority, defer() will ensure that this low-priority task happens every
time the high-priority event occurs (in a 1:1 ratio), whereas using a qelem will only run
the task at a rate that corresponds to the service interval of the low-priority queue. If you
repeatedly defer() something too rapidly, the low-priority queue will become backlogged
and the responsiveness of the UI will suffer.

A typical use of defer() is if your object implements a read message to ask the user for
a file. Opening the dialog in the timer thread and waiting for user input will likely crash,
but even if it didn’t, the scheduler would effectively stop.

To use defer(), you write a deferred task function that will execute at low priority. The
function will be passed a pointer to your object, plus a symbol and atom list modeled on
the prototype for an anything method. You need not pass any arguments to the deferred
task if you don’t need them, however.

void myobject_deferredtask(t_myobject *x, t_symbol *s, long argc, t_atom *
argv)

{
post("I am deferred");

}

To call the task, use defer() as shown below. The first example passes no arguments.
The second passes a couple of long atoms.

defer((t_object *)x, (method)myobject_deferredtask, NULL, 0, NULL);

t_atom av[2];

atom_setlong(av, 1);
atom_setlong(av+ 2, 74);

defer((t_object *)x, (method)myobject_deferredtask, NULL, 2, av);

Defer copies any atoms you pass to newly allocated memory, which it frees when the
deferred task has executed.

6.3.1 Defer Variants

defer has two variants, defer_low() and defer_medium(). Here is a comparison:

defer()

If executing at high priority, defer() puts the deferred task at the front of the low-priority
queue. If not executing at highpriority, defer() calls the deferred task immediately.

defer_low()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

6.4 Schedule 25

At all priority levels, defer_low() puts the deferred task at the back of the low-priority
queue.

defer_medium()

If executing at high priority, defer_medium() puts the deferred task at the back of the
low-priority queue. If not executing at high priority, defer_medium() calls the deferred
task immediately.

6.4 Schedule

The schedule() function is to clocks as defer() is to qelems. Schedule creates a clock
for a task function you specify and calls clock_fdelay() on it to make the task execute at
a desired time. As with defer(), schedule() can copy arguments to be delivered to the
task when it executes.

A schedule() variant, schedule_defer(), executes the task function at low priority after a
specified delay.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

26 The Scheduler

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 7

Memory Allocation

The Max API offers cross-platform calls memory management.

There are two types of calls, those for pointers and those for handles. Handles are
pointers to pointers, and were used in the early Mac OS to permit memory to be relo-
cated without changing a reference, and many Mac OS API calls used handle. There
are a few legacy Max API calls that use handles as well, but in general, unless the OS
or Max requires the use of a handle, you’re probably better off using the simpler pointer.

Longtime Max object programmers may have used memory calls getbytes() and free-
bytes() in the past, but all memory calls now use same underlying OS mechanisms, so
while getbytes() and freebytes() are still supported, they are restricted to 32K of memory
or less due to the arguments they use, and we recommend the use of sysmem_newptr()
and sysmem_freeptr() instead.

Here are some examples of allocating and freeing pointers and handles.

char *ptr;
char **hand;

ptr = sysmem_newptr(2000);
post("I have a pointer %lx and it is %ld bytes in size",ptr,

sysmem_ptrsize(ptr));
ptr = sysmem_resizeptrclear(ptr, 3000);
post("Now I have a pointer %lx and it is %ld bytes in size",ptr,

sysmem_ptrsize(ptr));
sysmem_freeptr(ptr);

hand = sysmem_newhandle(2000);
post("I have a handle %lx and it is %ld bytes in size",hand,

sysmem_handlesize(hand));
sysmem_resizehandle(hand, 3000);
post("Now the handle %lx is %ld bytes in size",hand, sysmem_ptrsize(

hand));
sysmem_freehandle(hand);

28 Memory Allocation

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 8

Anatomy of a MSP Object

An MSP object that handles audio signals is a regular Max object with a few extras.

Refer to the simplemsp∼ example project source as we detail these additions.
simplemsp∼ is simply an object that adds a number to a signal, identical in func-
tion to the regular MSP +∼ object if you were to give it an argument of 1.

Here is an enumeration of the basic tasks:

8.1 Additional Header Files

After including ext.h and ext_obex.h, include z_dsp.h

#include "z_dsp.h"

8.2 C Structure Declaration

The C structure declaration must begin with a t_pxobject, not a t_object:

typedef struct _mydspobject
{

t_pxobject m_obj;
// rest of the structure’s fields

} t_mydspobject;

8.3 Initialization Routine

When creating the class with class_new(), you must have a free function. If you have
nothing special to do, use dsp_free(), which is defined for this purpose. If you write your
own free function, the first thing it should do is call dsp_free(). This is essential to avoid
crashes when freeing your object when audio processing is turned on.

c = class_new("mydspobject", (method)mydspobject_new, (method)dsp_free,
sizeof(t_mydspobject), NULL, 0);

30 Anatomy of a MSP Object

After creating your class with class_new(), you must call class_dspinit(), which will add
some standard method handlers for internal messages used by all signal objects.

class_dspinit(c);

Your signal object needs a method that is bound to the symbol "dsp" -- we’ll detail what
this method does below, but the following line needs to be added while initializing the
class:

class_addmethod(c, (method)mydspobject_dsp, "dsp", A_CANT, 0);

8.4 New Instance Routine

The new instance routine must call dsp_setup(), passing a pointer to the newly allocated
object pointer plus a number of signal inlets the object will have. If the object has no
signal inlets, you may pass 0. The simplemsp∼ object (as an example) has a single
signal inlet:

dsp_setup((t_pxobject *)x, 1);

dsp_setup() will make the signal inlets (as proxies) so you need not make them yourself.

If your object will have audio signal outputs, they need to be created in the new instance
routine with outlet_new(). However, you will never access them directly, so you don’t
need to store pointers to them as you do with regular outlets. Here is an example of
creating two signal outlets:

outlet_new((t_object *)x, "signal");
outlet_new((t_object *)x, "signal");

8.5 The DSP Method and Perform Routine

The dsp method specifies the signal processing function your object defines along with
its arguments. Your object’s dsp method will be called when the MSP signal compiler is
building a sequence of operations (known as the DSP Chain) that will be performed on
each set of audio samples. The operation sequence consists of a pointers to functions
(called perform routines) followed by arguments to those functions.

The dsp method is declared as follows:

void mydspobject_dsp(t_mydspobject *x, t_signal **sp, short *count);

To add an entry to the DSP chain, your dsp method uses dsp_add(). The dsp method
is passed an array of signals (t_signal pointers), which contain pointers to the actual
sample memory your object’s perform routine will be using for input and output. The
array of signals starts with the inputs (from left to right), followed by the outputs. For
example, if your object has two inputs (because your new instance routine called dsp_-
setup(x, 2)) and three outputs (because your new instance created three signal outlets),
the signal array sp would contain five items as follows:

sp[0] // left input
sp[1] // right input
sp[2] // left output
sp[3] // middle output
sp[4] // right output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

8.5 The DSP Method and Perform Routine 31

The t_signal data structure (defined in z_dsp.h), contains two important elements: the
s_n field, which is the size of the signal vector, and s_vec, which is a pointer to an array
of 32-bit floats containing the signal data. All t_signals your object will receive have the
same size. This size is not necessarily the same as the global MSP signal vector size,
because your object might be inside a patcher within a poly∼ object that defines its own
size. Therefore it is important to use the s_n field of a signal passed to your object’s dsp
method.

You can use a variety of strategies to pass arguments to your perform routine via dsp_-
add(). For simple unit generators that don’t store any internal state between computing
vectors, it is sufficient to pass the inputs, outputs, and vector size. For objects that need
to store internal state between computing vectors such as filters or ramp generators,
you will pass a pointer to your object, whose data structure should contain space to
store this state. The plus1∼ object does not need to store internal state. It passes the
input, output, and vector size to its perform routine. The plus1∼ dsp method is shown
below:

void plus1_dsp(t_plus1 *x, t_signal **sp, short *count)
{

dsp_add(plus1_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

The first argument to dsp_add() is your perform routine, followed by the number of
additional arguments you wish to copy to the DSP chain, and then the arguments.

The perform routine is not a "method" in the traditional sense. It will be called within
the callback of an audio driver, which, unless the user is employing the Non-Real -
Time audio driver, will typically be in a high-priority thread. Thread protection inside
the perform routine is minimal. You can use a clock, but you cannot use qelems or
outlets. The design of the perform routine is somewhat unlike other Max methods. It
receives a pointer to a piece of the DSP chain and it is expected to return the location
of the next perform routine on the chain. The next location is determined by the number
of arguments you specified for your perform routine with your call to dsp_add(). For
example, if you will pass three arguments, you need to return w + 4.

Here is the plus1 perform routine:

t_int *plus1_perform(t_int *w)
{

t_float *in, *out;
int n;

in = (t_float *)w[1]; // get input signal vector
out = (t_float *)w[2]; // get output signal vector
n = (int)w[3]; // vector size

while (n--) // perform calculation on all samples

*out++ = *in++ + 1.;

return w + 4; // must return next DSP chain location
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

32 Anatomy of a MSP Object

8.6 Free Function

The free function for the class must either be dsp_free() or it must be written to call
dsp_free() as shown in the example below:

void mydspobject_free(t_mydspobject *x)
{

dsp_free((t_pxobject *)x);

// can do other stuff here
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 9

Advanced Signal Object Topics

Here are some techniques for implementing additional features found in most signal
objects.

9.1 Saving Internal State

To implement unit generators such as filters and ramp generators, you need to save
internal state between calls to your object’s perform routine. Here is a very simple low-
pass filter (it just averages successive samples) that saves the value of the last sample
in a vector to be averaged with the first sample of the next vector. First we add a field to
our data structure to hold the value:

typedef struct _myfilter
{

t_pxobject f_obj;
t_float f_sample;

} t_myfilter;

Then, in our dsp method (which has one input and one output), we pass a pointer to the
object as one of the DSP chain arguments. The dsp method also initializes the value of
the internal state, to avoid any noise when the audio starts.

void myfilter_dsp(t_myfilter *x, t_signal **sp, short *count)
{

dsp_add(myfilter_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n)
;

x->f_sample = 0;
}

Here is the perform routine, which obtains the internal state before entering the pro-
cessing loop, then stores the most recent value after the loop is finished.

t_int *myfilter_perform(t_int *w)

34 Advanced Signal Object Topics

{
t_myfilter *x = (t_myfilter *)w[1];
t_float *in = (t_float *)w[2];
t_float *out = (t_float *)w[3];
int n = (int)w[4];
t_float samp = x->f_sample; // read from internal state
t_float val;

while (n--) {
val = *in++;

*out++ = (val + samp) * 0.5;
samp = val;

}
x->f_sample = samp; // save to internal state

return w + 5;
}

9.2 Observing Patcher Muting

The enable message to the pcontrol object, as well as the MSP mute∼ object, can be
used to disable a subpatcher. If your object is at all computationally expensive in its
perform routine, it should check to see whether it has been disabled. To do this, you’ll
need to pass a pointer to your object as one of the DSP chain arguments when calling
dsp_add(). Here is a simple modification of our filter object’s perform routine that checks
to see if the object has been disabled.

t_int *myfilter_perform(t_int *w)
{

t_myfilter *x = (t_myfilter *)w[1];
t_float *in = (t_float *)w[2];
t_float *out = (t_float *)w[3];
int n = (int)w[4];
t_float samp = x->f_sample; // read from internal state
t_float val;

if (x->f_obj.z_disabled) // check for object being disabled
return w + 5;

while (n--) {
val = *in++;

*out++ = (val + samp) * 0.5;
samp = val;

}
x->f_sample = samp; // save to internal state

return w + 5;
}

9.3 Using Connection Information

The third argument to the dsp method is an array of numbers that enumerate the num-
ber of objects connected to each of your objects inputs and outputs. This array follows
the same organization as the signal information as discussed in The DSP Method and

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

9.3 Using Connection Information 35

Perform Routine. More advanced dsp methods can use this information for optimization
purposes. For example, if you find that your object has no inputs or outputs, you could
avoid calling dsp_add() altogether. The MSP signal operator objects (such as +∼ and
∗∼) to implement a basic polymorphism: they look at the connections count to deter-
mine whether the perform routine should use scalar or signal inputs. For example, if the
right input has no connected signals, the user can add a scalar value sent to the right
inlet.

To implement this behavior, you have a few different options. The first option is to write
two different perform methods, one which handles the two-signal case, and one which
handles the scalar case. The dsp method looks at the count array and passes a
different function to dsp_add(). The example below assumes that the second element
in the signal (sp[1]) and count (count[1]) arrays refer to the right input:

if (count[1]) // signal connected to second inlet
dsp_add(mydspobject_twosigperform, 5, x, sp[0]->s_vec, sp[1]->s_vec

, sp[2]->s_vec, sp[0]->s_n);
else

dsp_add(mydspobject_scalarperform, 4, x, sp[0]->s_vec, sp[2]->s_vec
, sp[0]->s_n);

The second option is to pass the value of the count array for a particular signal to the
perform method, which can make the decision whether to use the signal value or a
scalar value that has been stored inside the object. In this case, many objects use a
single sample value from the signal as a substitute for the scalar. Using the first sample
(i.e., the value at index 0) is a technique that works for any vector size, since vector
sizes could be as small as a single sample. Here is an example of this technique for
an object that has two inputs and one output. The connection count for the right input
signal is passed as the second argument on the DSP chain, and the right input signal
vector is passed even if it not connected:

dsp_add(mydspobject_perform, 6, x, count[1], sp[0]->s_vec, sp[1]->s_vec
, sp[2]->s_vec, sp[0]->s_n);

Here is a perform routine that uses the connection count information as passed in the
format shown above:

t_int mydspobject_perform(t_int *w)
{

t_mydspobject *x = (t_mydspobject *)w[1];
int connected = (int)w[2];
t_float *in = (t_float *)w[3];
t_float *in2 = (t_float *)w[4];
t_float *out = (t_float *)w[5];
int n = (int)w[6];

double in2value;

// get scalar sample or use signal depending on whether signal is
connected

in2value = connected? *in2 : x->m_scalarvalue;

// do calculation here

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

36 Advanced Signal Object Topics

return w + 7;
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 10

Sending Messages, Calling Methods

Max objects, such as the one you write, are C data structures in which methods are
dynamically bound to functions.

Your object’s methods are called by Max, but your object can also call methods itself.
When you call a method, it is essential to know whether the method you are calling is
typed or not.

Calling a typed method requires passing arguments as an array of atoms. Calling an
untyped method requires that you know the exact arguments of the C function imple-
menting the method. In both cases, you supply a symbol that names the method.

In the typed method case, Max will take the array of atoms and pass the arguments to
the object according to the method’s argument type specifier list. For example, if the
method is declared to have an argument type specifier list of A_LONG, 0, the first atom
in the array you pass will be converted to an int and passed to the function on the stack.
If there are no arguments supplied, invoking a typed method that has A_LONG, 0 as
an argument type specifier will fail. To make typed method calls, use object_method_-
typed() or typedmess().

In the untyped method case, Max merely does a lookup of the symbol in the object, and,
if a matching function is found, calls the function with the arguments you pass.

Certain methods you write for your object, such as the assist method for describing your
object and the DSP method in audio objects, are declared as untyped using the A_CA-
NT argument type specifier. This means that Max will not typecheck the arguments you
pass to these methods, but, most importantly, a user cannot hook up a message box to
your object and send it a message to invoke an untyped method. (Try this for yourself --
send the assist message to a standard Max object.)

When you use an outlet, you’re effectively making a typed method call on any objects
connected to the outlet.

38 Sending Messages, Calling Methods

10.1 Attributes

Attributes are descriptions of data in your object. The standardization of these descrip-
tions permits Max to provide a rich interface to object data, including the pattr system,
inspectors, the quick reference menu, @ arguments, etc.

It is essential that you have some understanding of attributes if you are going to write
a UI object. But non-UI objects can make use of attributes as well. The discussion
below is not specific to UI objects. It does however, use the recently introduced system
of macros in ext_obex_util.h (included in ext_obex.h) for defining attributes, as well as
describing them using attributes of attributes (attr attrs). You can read more detailed
descriptions of the underlying attribute definition mechanisms on a per-function basis in
the Attributes reference.

10.1.1 Attribute Basics

While attributes can be defined for a specific instance of an object, it’s much more
common to define an attribute for a class. In such a case, each instance of the class
will have the attribute description, but the value will be instance specific. The discussion
here focuses only on class attributes.

When an attribute is declared and is made user-settable, a user can send a message
to your object consisting of the attribute name and arguments that represent the new
value of the attribute. For example, if you declare an attribute called trackcount, the
message trackcount 20 will set it to 20. You don’t need to do anything special to obtain
this behavior. In addition, user-settable attributes will appear when the user opens the
inspector on your object.

If you define your attribute as an offset attribute, you describe its location (and size)
within your object’s C data structure. Max can then read and write the data directly. You
can also define custom getter and setter routines if the attribute’s value is more complex
than simply a stored number. As a theoretical example, you could have an object with
an attribute representing the Earth’s population. If this value was not able to be stored
inside your object, your custom getter routine could initiate a global census before re-
turning the result. A custom setter for the earth’s population might do something nasty
if the value was set to zero. If you are not a misanthrope, you can take advantage of the
ability to set such an attribute to be read-only.

10.1.2 Defining Attributes

Attributes are defined when you are defining methods in your initialization routine. You
can define your attributes before your methods if you like, but by convention, they are
typically defined after the methods. For each definition, you’ll specify the name, size,
and offset of the corresponding member in your object’s data structure that will hold the
data. For example, let’s say we have an object defined as follows:

typedef struct _myobject {
t_object m_ob;
long m_targetaddress;
t_symbol *m_shipname;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

10.1 Attributes 39

char m_compatmode;
} t_myobject;

We want to create attributes for m_targetaddress, m_shipname, and m_compatmode.
For each data type (and a few others), there are macros in ext_obex_util.h that will save
a fair amount of typing. So, for example, we can define an attribute for m_targetaddress
that uses CLASS_ATTR_LONG. Here are attribute definitions for all of the members of
our data structure above.

CLASS_ATTR_LONG(c, "targetaddress", 0, t_myobject, m_targetaddress);
CLASS_ATTR_SYM(c, "shipname", 0, t_myobject, m_shipname);
CLASS_ATTR_CHAR(c, "compatibilitymode", 0, t_myobject, m_compatmode);

10.1.3 Attributes With Custom Getters and Setters

In some cases, it is not enough to have Max read and write data in your object directly.
In some cases (as in the world population example above) you may have data you need
to calculate before it can be returned as a value. In other cases, you may need to do
something to update other object state when an attribute value changes. To handle
these challenges, you can define custom attribute getter and setter routines. The getter
will be called when the value of your attribute is accessed. The setter will be called
when someone changes the value of your attribute.

As an example, suppose we have an object that holds onto an array of numbers, and
we want to create an attribute for the size of the array. Since we’ll want to resize the
array when the attribute value changes, we will define a custom setter for our attribute.
The default getter is adequate if we store the array size in our object, but since we want
to illustrate how to write an attribute getter, we’ll write the code so that the array size is
computed from the size of the memory pointer we allocate. First, here is our object’s
data structure:

typedef struct _myobject {
t_object m_ob;
long *m_data;

} t_myobject;

We also have prototypes for our custom attribute setter and getter:

t_max_err myobject_size_get(t_myobject *x, t_object *attr, long *argc,
t_atom **argv);

t_max_err myobject_size_set(t_myobject *x, t_object *attr, long argc, t_atom

*argv);

Here is how we define our attribute using CLASS_ATTR_ACCESSORS macro to define
the custom setter and getter. Because we aren’t really using an "offset" due to the
custom setter and getter, we can pass any data structure member as a dummy. (Only
the default attribute getter and setter will use this offset, and they are out of the picture.)

CLASS_ATTR_LONG(c, "size", 0, t_myobject, m_ob);
CLASS_ATTR_ACCESSORS(c, "size", myobject_size_get, myobject_size_set);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

40 Sending Messages, Calling Methods

Now, here is an implementation of the custom setter for the array size. For the setter,
we use the handy Max API function sysmem_resizeptr so we can effectively "resize" our
array and copy the data into it in one step. The setter uses atoms, so we have to obtain
the value from the first item in the argv array.

t_max_err myobject_size_set(t_myobject *x, t_object *attr, long argc, t_atom

*argv)
{

long size = atom_getlong(argv);

if (size < 0) // bad size, don’t change anything
return 0;

if (x->m_data)
x->m_data = (long *)sysmem_resizeptr((char *)x->m_data, size *

sizeof(long));
else // first time alloc

x->m_data = (long *)sysmem_newptr(size * sizeof(long));
return 0;

}

The getter also uses atoms for access, but we are returning a pointer to an array of
atoms. The caller of the getter has the option to pre-allocate the memory (passing in
the length in argc and the pointer to the memory in argv) or pass in 0 for argc and set
the contents of argv to NULL and have the getter allocate the memory. The easiest way
to handle this case is to call the utility function atom_alloc, which will figure out what
was passed in and allocate memory for a returned atom if necessary.

t_max_err myobject_size_get(t_myobject *x, t_object *attr, long *argc,
t_atom **argv)

{
char alloc;
long size = 0;

atom_alloc(argc, argv, &alloc); // allocate return atom

if (x->m_data)
size = sysmem_ptrsize((char *)x->m_data) / sizeof(long); //

calculate array size based on ptr size

atom_setlong(*argv, size);
return 0;

}

10.2 Receiving Notifications

As an alternative to writing a custom setter, you can take advantage of the fact that
objects receive a "notify" message whenever one of their attributes is changed. The
prototype for a notify method is as follows:

t_max_err myobject_notify(t_myobject *x, t_symbol *s, t_symbol *msg, void *
sender, void *data);

Add the following to your class initialization so your notification method will be called:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

10.2 Receiving Notifications 41

class_addmethod(c, (method)myobject_notify, "notify", A_CANT, 0);

The notify method can handle a variety of notifications (more documentation on this is
coming soon!), but the one we’re interested in is "attr_modified" -- the notification type
is passed to the notify method in the msg argument. Here is an example of a notify
method that prints out the name of the attribute that has been modified. You could
take any action instead. To obtain the name, we interpret the data argument to the
notify method as an attribute object. As an attribute is a regular Max object, we can use
object_method to send it a message. In the case we are sending the message getname
to the attribute object to obtain its name.

t_max_err myobject_notify(t_myobject *x, t_symbol *s, t_symbol *msg, void *
sender, void *data)

{
t_symbol *attrname;

if (msg == gensym("attr_modified")) { // check notification type
attrname = (t_symbol *)object_method((t_object *)data, gensym("

getname")); // ask attribute object for name
object_post((t_object *)x, "changed attr name is %s",attrname->

s_name);
}
return 0;

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

42 Sending Messages, Calling Methods

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 11

Anatomy of a UI Object

Max user interface objects are more complex than normal non-user-interface objects.

If you have nothing in particular to display, or do not need to create a unique interface
for user interaction or editing, it would be better to avoid writing one. However, if you
want the details, we have them for you!

In order to create a user interface object, you’ll need to be familiar with Attributes, as
they are used extensively. If you examine a toggle object in the inspector in Max, you
will see a few attributes that have been defined as belonging to the toggle class, namely:

• Background Color

• Check Color

• Border Color

We’ll show how attributes are defined and described so that the inspector can edit them
properly.

In addition to attributes, user interface objects draw in a box and respond to user events
such as mouse clicks and keyboard events. We’ll show how to implement drawing
an object’s paint method as well user interaction in the mousedown, mousedrag, and
mouseup methods.

This chapter only covers basic drawing of lines and filled rectangles. But you can take
advantage of a complete graphics API called jgraphics, intended to be used in a user
interface object’s paint method. We discuss JGraphics in more detail in a separate
chapter. You may also find the jgraphics.h header file descriptions of the set of functions
helpful.

The SDK examples contain two user interface projects -- the one we’ll discuss in this
chapter is called uisimp and is a version of the toggle object with a more complicated
check box and user interaction. The second project is called pictmeter∼, a more
advanced object that uses audio as well as image files.

The uisimp object differs from the toggle object in a couple of ways:

pictmeter~_8c-source.html

44 Anatomy of a UI Object

• it tracks the mouse even when it isn’t down and "looks excited" when the mouse
passes over it

• it tracks the mouse while the user is holding the mouse down to show a sort of
"depressed" appearance when turning the toggle on

• the new toggle state value is sent out when the mouse is released rather than
when the mouse is down. In addition, the uisimp object tracks the mouse and
does not change the state if the mouse is released outside of the object’s box

• it doesn’t have rounded corners

• it has a solid square for a "checked state" instead of an X

Otherwise, it acts largely as the toggle does.

The first thing we suggest you do is build the uisimp object and test it out. Once the
object is properly building, type "uisimp" into an object box and you can try it out.

11.1 Required Headers

UI objects require that you include two header files, jpatcher_api.h and jgraphics.h:

#include "jpatcher_api.h"
#include "jgraphics.h"

The header file jpatcher_api.h includes data structures and accessor functions required
by UI objects. The header file jgraphics.h includes data structures and functions for
drawing.

11.2 UI Object Data Structure

The first part of a UI object is a t_jbox, not a t_object. You should generally avoid direct
access to fields of a t_jbox, particularly when changing values, and use the accessor
functions defined in jpatcher_api.h. For example, if you change the rectangle of a box
without using the accessor function jbox_set_rect(), the patcher will not be notified prop-
erly and the screen will not update.

Following the t_jbox, you can add other fields for storing the internal state of your object.
In particular, if you are going to be drawing something using color, you will want to create
attributes that reference fields holding colors in your object. We’ll show you how to do
this below. Here is the declaration of the t_uisimp data structure.

typedef struct _uisimp
{

t_jbox u_box; // header for UI objects
void *u_out; // outlet pointer
long u_state; // state (1 or 0)
char u_mouseover; // is mouse over the object
char u_mousedowninside; // is mouse down within the object

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.3 Initialization Routine for UI Objects 45

char u_trackmouse; // if non-zero, track mouse when
button not down
t_jrgba u_outline; // outline color
t_jrgba u_check; // check (square) color
t_jrgba u_background; // background color
t_jrgba u_hilite; // highlight color (when mouse is
over and when clicking to check box)

} t_uisimp;

The t_jrgba structure defines a color with four doubles for red, green, blue, and alpha.
Each component ranges from 0-1. When red, green, and blue are all 0, the color is
black; when red, green, and blue are 1, the color is white. By defining color attributes
using t_jrgba structures, you will permit the user to use the standard color picker from
the inspector to configure colors for your object.

The structure members u_mouseover and u_mousedowninside are used to signal the
code that paints the toggle from the code that handles mouse interaction. We’ll discuss
this more in the "interaction strategy" section below.

11.3 Initialization Routine for UI Objects

Once you’ve declared your object’s struct, you’ll write your initialization (main) routine to
set up the class, declaring methods and attributes used by UI objects.

The first addition to the class initialization of a normal Max object you need to make is
a call to jbox_initclass(). This adds standard methods and attributes common to all UI
objects. Here’s how you should to it:

c = class_new("uisimp", (method)uisimp_new, (method)uisimp_free, sizeof(
t_uisimp), 0L, A_GIMME, 0);

c->c_flags |= CLASS_FLAG_NEWDICTIONARY;
jbox_initclass(c, JBOX_FIXWIDTH | JBOX_COLOR);

The line c->c_flags |= CLASS_FLAG_NEWDICTIONARY is required, but the flags
passed to jbox_initclass -- JBOX_FIXWIDTH and JBOX_COLOR -- are optional. JB-
OX_FIXWIDTH means that when your object is selected in a patcher, the Fix Width
menu item will be enabled to resize your object to its class’s default dimensions. We’ll
specify the default dimensions in a moment. JBOX_COLOR means that your object will
be given a color attribute so that it can be edited with the color picked shown by the
Color... menu item. This is a way to edit a "basic" color of your object without opening
the inspector. If neither of these behaviors apply to your object, feel free to pass 0 for
the flags argument to jbox_initclass().

11.4 UI Object Methods

Next we need to bind a few standard methods. The only required method for UI objects
is paint, which draws the your object’s content when its box is visible and needs to be
redrawn.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

46 Anatomy of a UI Object

class_addmethod(c, (method)uisimp_paint, "paint", A_CANT, 0);

We’ll discuss the paint method in detail below. It makes use of the JGraphics API, which
is described in more detail in its own chapter.

Our uisimp toggle will respond to mouse gestures, so we will define a set of mouse
handling methods.

class_addmethod(c, (method)uisimp_mousedown, "mousedown", A_CANT, 0);
class_addmethod(c, (method)uisimp_mousedrag, "mousedrag", A_CANT, 0);
class_addmethod(c, (method)uisimp_mouseup, "mouseup", A_CANT, 0);
class_addmethod(c, (method)uisimp_mouseenter, "mouseenter", A_CANT, 0);
class_addmethod(c, (method)uisimp_mouseleave, "mouseleave", A_CANT, 0);
class_addmethod(c, (method)uisimp_mousemove, "mousemove", A_CANT, 0);
class_addmethod(c, (method)uisimp_mousewheel, "mousewheel", A_CANT, 0);

mousedown is sent to your object when the user clicks on your object -- in other words,
when the mouse is moved over the object and the primary mouse button is depressed.
mousedrag is sent after an initial mousedown when the mouse moves and the button
is still held down from the click. mouseup is sent when the mouse button is released
after a mousedown is sent. mouseenter is sent when the mouse button is not down and
the mouse moves into your object’s box. mousemove is sent -- after a mouseenter --
when the mouse button is not down but the mouse position changes inside your object’s
box. mouseleave is sent when the mouse button is not down and the mouse position
moves from being over your object’s box to being outside of it. mousewheel is sent
when information about the scrollwheel on the mouse (or scrolling from another source
such as a trackpad) is transmitted while the cursor is hovering over your object.

You are not obligated to respond to any of these messages. You could, for example,
only respond to mousedown and ignore the other messages.

It might be helpful to summarize mouse messages in the following "rules" (although
normally it’s not necessary to think about them explicitly):

• mousedown will always be followed by mouseup, but not necessarily by mouse-
drag if the button press is rapid and there is no movement while the mouse button
is pressed.

• mouseenter will always be followed by mouseleave, but

• mouseenter will always precede mousemove

• mouseleave will be sent only after a mouseenter is sent

• You cannot count on any particular relationship between the mousedown / mouse-
drag / mouseup sequence and the mouseenter / mousemove / mouseleave se-
quence.

We’ll look at the actual implementation of mouse handling methods below.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.5 Defining Attributes 47

11.5 Defining Attributes

After the declaration of standard methods, your object will define its own attributes. By
using what we call "attribute attributes" you can further describe attributes so that they
can be appropriately displayed and edited in the inspector as well as saved in a patcher
(or not). You can also set default values for attributes that are automatically copied to
your object when it is instantiated, and mark an attribute so that your object is redrawn
when its value changes.

As a convenience, we’ve defined a series of macros in ext_obex_util.h (which is in-
cluded when your object includes ext_obex.h) that reduce the amount of typing needed
to define attributes and attribute attributes.

Most UI object attributes are offset attributes; that is, they reference a location in your
object’s data structure by offset and size. As an example, uisimp has a char offset
attribute called trackmouse that specifies whether the object will change the object’s
appearance when the mouse moves over it. Here’s how this is defined:

CLASS_ATTR_CHAR(c, "trackmouse", 0, t_uisimp, u_trackmouse);
CLASS_ATTR_STYLE_LABEL(c, "trackmouse", 0, "onoff", "Track Mouse");
CLASS_ATTR_SAVE(c, "trackmouse", 0);

The first line, CLASS_ATTR_CHAR, defines a char-sized offset attribute. If you look at
the declaration of t_uisimp, you can see that the u_trackmouse field is declared to be a
char. The CLASS_ATTR_CHAR macro take five arguments.

• The first argument is the class for which the attribute is being declared.

• The second argument is the name of the attribute. You can use send a message
to your object with this name and a value and set the attribute.

• The third argument is a collection of attribute flags. For the attributes (and at-
tribute attributes) we’ll be defining in the uisimp object, the flags will be 0, but you
can use them to make attributes read-only with ATTR_SET_OPAQUE_USER.

• The fourth argument is the name of your object’s structure containing the field you
want to use for the attribute

• The fifth argument is the field name you want to use for the attribute

The fourth and fifth arguments are used to calculate the offset of the beginning of the
field from the beginning of the structure. This allows the attribute to read and write the
memory occupied by the field directly.

The second line, CLASS_ATTR_STYLE_LABEL, defines some attribute attributes for
the trackmouse attribute. THis macro takes five arguments as well:

• The first argument is the class for which the attribute attributes are being declared.

• The second argument is the name of the attribute, which should have already
been defined by a CLASS_ATTR_CHAR or similar attribute declaration

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

48 Anatomy of a UI Object

• The third argument is usually 0 -- it is an attribute flags argument for the attribute
attributes

• The fourth argument is the style of the attribute. "onoff" is used here for a setting
in your object that will be a toggle. By using the onoff style the trackmouse at-
tribute will appear with a checkbox in the inspector window. Effectively, this macro
defines an attribute called "style" that is attached to the "trackmouse" attribute and
set its value to the symbol "onoff" in one step.

• The fifth argument is a string used as a descriptive label for the attribute that
appears in the inspector and other places in the Max user interface. If you don’t
supply a label, the attribute name will be shown. The string is used as the value
of a newly created "label" attribute attribute.

The category attribute attribute is used to organize your object’s attributes in the inspec-
tor window. For the trackmouse attribute, we use the "Behavior" category, and for the
color attributes discussed below, we use "Color" -- look at the inspector category tabs
for a few UI objects that come with Max for suggested standard category names. You’re
free to create your own.

To define a category for a single attribute, you can use the CLASS_ATTR_CATEGORY
macro:

CLASS_ATTR_CATEGORY(c, "trackmouse", 0, "Behavior");

To define a category for a series of attributes, you can use CLASS_STICKY_ATTR,
which applies the current value of a specified attribute attribute to any attributes subse-
quently defined, until a CLASS_STICKY_ATTR_CLEAR is set for an attribute attribute
name. CLASS_STICKY_ATTR is used in uisimp to apply the "Color" category to a set
of three color attributes.

CLASS_STICKY_ATTR(c, "category", 0, "Color");

Color attributes are defined using CLASS_ATTR_RGBA. The uisimp object defines four
color attributes. Here is the first, called bgcolor:

CLASS_ATTR_RGBA(c, "bgcolor", 0, t_uisimp, u_background);
CLASS_ATTR_DEFAULTNAME_SAVE_PAINT(c, "bgcolor", 0, "1. 1. 1. 1.");
CLASS_ATTR_STYLE_LABEL(c,"bgcolor",0,"rgba","Background Color");

The difference between CLASS_ATTR_RGBA and CLASS_ATTR_CHAR for defining
an attribute is that CLASS_ATTR_RGBA expects the name of a structure member de-
clared of type t_jrgba rather than type char. When set, the attribute will assign values to
the four doubles that make up the components of the color.

The next line uses the CLASS_ATTR_DEFAULTNAME_SAVE_PAINT macro. This
sets three things about the bgcolor attribute. First it says that the color attribute bg-
color can be assigned a default value via the object defaults window. So, if you don’t
like the standard white defined by the object, you can assign you own color for the back-
ground color of all newly created uisimp objects. The four values 1 1 1 1 supplied as the
last argument to CLASS_ATTR_DEFAULTNAME_SAVE_PAINT specify the "standard"

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.5 Defining Attributes 49

default value that will be used for the bgcolor attribute in the absence of any overrides
from the user.

The SAVE aspect of this macro specifies that this attribute’s values should be saved with
the object in a patcher. A patcher file saves an object’s class, location and connections,
but it can also save the object’s appearance or any other attribute value you specify, by
using the "save" attribute attribute.

The PAINT aspect of this macro provides the ability to have your object redrawn when-
ever this attribute (bgcolor) changes. However, to implement auto-repainting on attribute
changes, you’ll need to add the following code when initializing your class:

class_addmethod(c, (method)jbox_notify, "notify", A_CANT, 0);

The function jbox_notify() will determine whether an attribute that has caused a change
notification to be sent has its paint attribute attribute set, and if so, will call jbox_redraw().
If you write your own notify method because you want to respond to changes in at-
tributes or other environment changes, you ∗must∗ call jbox_notify() inside of it.

11.5.1 Standard Color Attribute

At the beginning of our initialization routine, we passed JBOX_COLOR as a flag to
jbox_initclass(). This adds an attribute to our object called color, which uses storage
provided in the t_jbox to keep track of a color for us. The color attribute is a standard
name for the "most basic" color your object uses, and if you define it, the Color menu
item in the Object menu will be enabled when your object is selected, permitting the
user to change the color without opening the inspector.

If you use JBOX_COLOR, you don’t need to define the color attribute using CLASS-
_ATTR_RGBA -- jbox_initclass() will do it for you. However, the color attribute comes
unadorned, so you are free to enhance it with attribute attributes. Here’s what uisimp
does:

CLASS_ATTR_DEFAULTNAME_SAVE_PAINT(c, "color", 0, "0. 0. 0. 1.");
CLASS_ATTR_STYLE_LABEL(c,"color",0,"rgba","Check Color");

11.5.2 Setting a Default Size

Another attribute defined for your object by jbox_initclass() is called patching_rect. It
holds the dimensions of your object’s box. If you want to set a standard size for new
instances of your object, you can give the patching_rect a set of default values. Use
0 0 for the first two values (x and y position) and use the next two values to define
the width and height. We want a small square to be the default size for uisimp, so we
use CLASS_ATTR_DEFAULT to assign a default value to the patching_rect attribute as
follows:

CLASS_ATTR_DEFAULT(c,"patching_rect",0, "0. 0. 20. 20.");

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

50 Anatomy of a UI Object

11.6 New Instance Routine

The UI object new instance routine is more complicated than that of a normal Max
object. Each UI object is passed a t_dictionary (a hierarchically structured collection of
data accessed by symbolic names) containing the information needed to instantiate an
instance. For UI objects, data elements in the dictionary correspond to attribute values.
For example, if your object saved an attribute called "bgcolor" you will be able to access
the saved value in your new instance routine from the dictionary using the same name
bgcolor.

If the instance is being created from the object palette or by the typing the name of
your object into an object box, the dictionary will be filled in with default values. If the
object is being created by reading a patcher file, the dictionary will be filled in with
the saved attributes stored in the file. In most cases, you don’t need to work with the
dictionary directly, unless you’ve added proprietary non-attribute information to your
object’s dictionary that you want to look for and extract. However, you do need to pass
the dictionary to some standard routines, and initialize everything in the right order.

Let’s take a look at the pattern you should follow for your object’s new instance routine.

First, the new instance routine is declared as follows:

void *uisimp_new(t_symbol *s, long argc, t_atom *argv);

We will get the dictionary that defines the object out of the arguments passed in argc,
argv. (The symbol argument s is the name of the object.) If obtaining the dictionary fails,
we should return NULL to indicate we didn’t make an instance.

void *uisimp_new(t_symbol *s, long argc, t_atom *argv);
{

t_uisimp *x = NULL;
t_dictionary *d = NULL;
long boxflags;

if (!(d = object_dictionaryarg(argc,argv)))
return NULL;

Next, we allocate a new instance of the object’s class:

x = (t_uisimp *)object_alloc(s_uisimp_class);

Then we need to initialize the options for our box. Our object uses the options that are
not commented out.

boxflags = 0
| JBOX_DRAWFIRSTIN
| JBOX_NODRAWBOX
| JBOX_DRAWINLAST
| JBOX_TRANSPARENT

// | JBOX_NOGROW
| JBOX_GROWY

// | JBOX_GROWBOTH
// | JBOX_HILITE

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.6 New Instance Routine 51

// | JBOX_BACKGROUND
| JBOX_DRAWBACKGROUND

// | JBOX_NOFLOATINSPECTOR
// | JBOX_MOUSEDRAGDELTA
// | JBOX_TEXTFIELD

;

Here is some more detail about each of the box flags.

We pass the flags along with a pointer to our newly created instance and the argc, argv
arguments to jbox_new(). The name is a little misleading. jbox_new() does not instan-
tiate your box. As we explained above, your UI object has a t_jbox at the beginning.
jbox_new() just initializes the t_jbox for you. jbox_new() doesn’t know about the other
stuff in your object’s data structure that comes after the t_jbox. You’ll have to initialize
the extra items yourself.

jbox_new((t_jbox *)x, boxflags, argc, argv);

Once jbox_new() has been called, you then assign the b_firstin pointer of your t_jbox
header to point to your object. Essentially this assigns the object that will receive mes-
sages from objects connected to your leftmost inlet (as well as other inlets via inlets or
proxies you create). This step is easily forgotten and will cause most things not to work
until you remember it. jbox_new() will obtain the attributes common to all boxes such as
the patching_rect, and assign them to your object for you.

x->u_box.b_firstin = (void *)x;

Next, you are free to initialize any members of your object’s data structure, as well as
declare inlets. These steps are the same for UI objects as for non-UI objects.

x->u_mousedowninside = x->u_mouseover = x->u_state = 0;
x->u_out = intout((t_object *)x);

Once your object is in a safe initialized state, call attr_dictionary_process() if you’ve
defined any attributes. This will find the attributes in the dictionary your object received,
then set them to the values stored in the dictionary. There is no way to guarantee the
order in which the attributes will be set. If this a problem, you can obtain the attribute
values "by hand" and assign them to your object.

Note that you do not need to call attr_dictionary_process() if you have not defined any
attributes. jbox_new() will take care of setting all attributes common to all UI objects.

attr_dictionary_process(x,d);

As the last thing to do before returning your newly created UI object, and more specif-
ically after you’ve initialized everything to finalize the appearance of your object, call
jbox_ready(). jbox_ready() will paint your object, calculate the positions of the inlets and
outlets, and perform other initialization tasks to ensure that your box is a proper member
of the visible patcher.

If your object does not appear when you instantiate it, you should check whether you do
not have a jbox_ready() call.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

52 Anatomy of a UI Object

jbox_ready((t_jbox *)x);

Finally, as with any instance creation routine, the newly created object will be returned.

return x;

11.7 Dynamic Updating

Drawing anything to the screen must be limited to your paint method (this was not the
case with the previous UI object API in Max). If you want to redraw something, you need
to call jbox_redraw() to cause the screen to be redrawn. This is necessary because your
object is part of a compositing user interface that must be managed by the patcher as
a whole to avoid screen artifacts. The jbox_redraw() routine calculates the area of the
screen that needs to be redrawn, then informs the Mac or Windows "window manager"
to mark this area as invalid. At some later point in time, the OS will invoke the patcher’s
paint routine, which will dispatch to all of the boxes inside the invalid area according to
the current Z-order of all the boxes. Boxes that are in the background are drawn first,
so that any transparent or semi-transparent boxes can be drawn on top of them. In
addition, unless you specify otherwise, the last drawn image of a box is cached in a
buffer, so that your paint method will only be called when you explicitly invalidate your
object’s content with jbox_redraw(). In other words, you can’t count on "global patcher
drawing" to invoke your paint method.

The basic strategy you’ll want to use in thinking about redrawing is that you will set
internal state in other methods, then call jbox_redraw(). The paint method will read the
internal state and adjust its drawing appropriately. You’ll see this strategy used in the
uisimp object as it tracks the mouse.

11.8 The Paint Method

Your object’s paint method uses the jgraphics API to draw. The header file, jgraphics.-
h, provides a description of each of the routines in the API. Here we will only discuss
general principles and features of drawing with uisimp’s relatively simple paint method.
There is also a jgraphics example UI object that contains a number of functions showing
how various drawing tasks can be performed.

Drawing in Max is resolution-independent. The "size" of your object’s rectangle is always
the pixel size when the patcher is scaled to 100% regardless of the zoom level, and any
magnification or size reduction to the actual screen is automatically handled by matrix
transforms. Another thing that is handled automatically for you is drawing to multiple
views. If a patcher is invisible (i.e., a subpatcher that has not been double-clicked), it
does not have any views. But if it is visible, a patcher can have many patcherviews. If
your UI object box is in a patcher with multiple views open, your paint method will be
called once for each view, and will be passed different a patcherview object each time.
For most objects, this will pose few problems, but for objects to work properly when
there are anywhere from zero to ten views open, they cannot change their internal state
in the paint method, they can only read it. As an example, if your object had a boolean

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.8 The Paint Method 53

"painted" field in its structure that would be set when the paint method had finished, it
would not work properly in the cases where the box was invisible or where it was shown
in multiple patcher views, because it would either be set zero or more than once.

The first step for any paint method is to obtain the t_jgraphics object from the
patcherview object passed to the paint method. The patcherview is an opaque t_object
that you will use to access information about your box’s rectangle and its graphics con-
text. A patcherview is not the same thing as a patcher; as mentioned above, there could
be more than one patcherview for a patcher if it has multiple views open.

void uisimp_paint(t_uisimp *x, t_object *patcherview)
{

t_rect rect;

t_jgraphics *g = (t_jgraphics*) patcherview_get_jgraphics(patcherview);
// obtain graphics context

After obtaining the t_jgraphics object, the next thing that you’ll need to do is determine
the rectangle of your box. A view of a patcher may be in either patching or presen-
tation mode. Since each mode can have its own rectangle, it is necessary to use the
patcherview to obtain the rectangle for your object.

jbox_get_rect_for_view((t_object *)x, patcherview, &rect);

The t_rect structure specifies a rectangle using the x and y coordinates of the top left
corner, along with the width and height. However, the coordinates of the t_jgraphics
you’ll be using to draw into always begin at 0 for the top left corner, so you’ll only care
about the width and height, at least for drawing.

The first thing we’ll draw is just an outline of our box using the value of the outline color
attribute. First we’ll set the color we want to use, then make a rectangular path, then
finally we’ll stroke the path we’ve made.

With calls such as jgraphics_rectangle(), the rectangular shape is added to the existing
path. The initial path is empty, and after calling jgraphics_stroke() or jgraphics_fill(), the
path is again cleared. (If you want to retain the path, you can use the jgraphics_stroke-
_preserve() and jgraphics_fill_preserve variants().)

jgraphics_set_source_jrgba(g, &x->u_outline);
jgraphics_set_line_width(g, 1.);
jgraphics_rectangle(g, 0., 0., rect.width, rect.height);
jgraphics_stroke(g);

You do not need to destroy the path before your paint method is finished. This will
be done for you, but the fact that the path does not survive after the paint method is
finished means you can’t make a path and then store it without copying it first. Such a
strategy is not recommended in any case, since your object’s rectangle might change
unpredictably from one paint method invocation to the next, which will likely cause your
path to be the wrong shape or size.

The next feature of the paint method is to draw an inner outline if the mouse is moved
over the box. Detecting the mouse’s presence over the box happens in the mouseenter

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

54 Anatomy of a UI Object

/ mouseleave methods described below -- but essentially, we know that the mouse is
over our object if the u_mouseover has been set by these mouse tracking methods.

To draw a rectangle that is inset by one pixel from the box rectangle, we use the rect-
angle starting at 1, 1 with a width of the box width - 2 and a height of the box height -
2.

// paint "inner highlight" to indicate mouseover
if (x->u_mouseover && !x->u_mousedowninside) {

jgraphics_set_source_jrgba(g, &x->u_hilite);
jgraphics_set_line_width(g, 1.);
jgraphics_rectangle(g, 1., 1., rect.width - 2, rect.height - 2);
jgraphics_stroke(g);

}

Some similar code provides the ability to show the highlight color when the user is about
to check (turn on) the toggle:

if (x->u_mousedowninside && !x->u_state) { // paint hilite color
jgraphics_set_source_jrgba(g, &x->u_hilite);
jgraphics_rectangle(g, 1., 1., rect.width - 2, rect.height - 2);
jgraphics_fill(g);

}

Finally, we paint a square in the middle of the object if the toggle state is non-zero to
indicate that the box has been checked. Here we are filling a path instead of stroking it.
Note also that we use the call jbox_get_color() to get the "standard" color of our object
that is stored inside the t_jbox. As we’ve specified by using the JBOX_COLOR flag
for jbox_initclass() in our initialization routine, the color obtained by jbox_get_color() for
the "check" (really just a square of solid color) is the one the user can change with the
Color... item in the Object menu.

if (x->u_state) {
t_jrgba col;

jbox_get_color((t_object *)x, &col);
jgraphics_set_source_jrgba(g, &col);
if (x->u_mousedowninside) // make rect bigger if mouse is down
and we are unchecking

jgraphics_rectangle(g, 3., 3., rect.width - 6, rect.height - 6);
else

jgraphics_rectangle(g, 4., 4., rect.width - 8, rect.height - 8);
jgraphics_fill(g);

}

Clearly, a quick perusal of the jgraphics.h header file will demonstrate that there is much
more to drawing than we’ve discussed here. But the main purpose of the uisimp paint
method is to show how to implement "dynamic" graphics that follow the mouse. Now
we’ll see the mouse tracking side of the story.

11.9 Handling Mouse Gestures

When the mouse is clicked, dragged, released, or moved inside its box, your object will
receive messages. In the uisimp example we’ve defined methods for most of the mouse

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.9 Handling Mouse Gestures 55

gesture messages available, and we’ve implemented them to change internal state in
the object, then call jbox_redraw() to repaint the object to reflect the new state. This
strategy produces a "dynamic" appearance of a gadget users associate with a typical
graphical interface -- in this case a toggle checkbox.

All mouse gesture methods are declared in the same way:

void myobect_mouse(t_myobject *x, t_object *patcherview, t_pt pt, long
modifiers);

Let’s first look at the most commonly implemented mouse gesture handler, the mouse-
down method that responds to an initial click on the object. As you can see, it is very
simple; it merely sets u_mousedowninside to true, then calls jbox_redraw(), causing the
box to be repainted. We’ve defined this toggle not to change the actual state until the
mouse is released (unlike the standard Max toggle object), but we do want to give the
user some feedback on the initial mouse down that something is going to happen. If you
look back at the paint method, you can see that u_mousedowninside is used to change
the way the object is painted to give it a "pending state change" appearance that will be
finalized when the mouse is released inside the box.

void uisimp_mousedown(t_uisimp *x, t_object *patcherview, t_pt pt, long
modifiers)

{
x->u_mousedowninside = true; // wouldn’t get a click unless it was
inside the box
jbox_redraw((t_jbox *)x);

}

If we test the mouse position to ensure that it is inside the box when it is released, we
provide the opportunity for the user to cancel the act of toggling the state of the object by
moving the cursor outside of the box before releasing the button. To provide feedback
to the user that this is going to happen, we’ve implemented a mousedrag method that
performs this test and redraws the object if the "mouse inside" condition has changed
from its previous state. The mousedrag message will be sent to your object as long as
the mouse button is still down after an initial click and the cursor has moved, even if the
cursor moves outside of the boundaries of your object’s box.

Note that, as with the paint method, we use the patcherview to get the current box
rectangle. We can then test the point we are given to see if it is inside or outside the
box.

void uisimp_mousedrag(t_uisimp *x, t_object *patcherview, t_pt pt, long
modifiers)

{
t_rect rect;

// test to see if mouse is still inside the object
jbox_get_rect_for_view((t_object *)x, patcherview, &rect);

// redraw if changed
if (pt.x >= 0 && pt.x <= rect.width && pt.y >= 0 && pt.y <= rect.height

) {
if (!x->u_mousedowninside) {

x->u_mousedowninside = true;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

56 Anatomy of a UI Object

jbox_redraw((t_jbox *)x);
}

} else {
if (x->u_mousedowninside) {

x->u_mousedowninside = false;
jbox_redraw((t_jbox *)x);

}
}

}

Our mouseup method uses the last value of u_mousedowninside as the determining
factor for whether to toggle the object’s internal state. If u_mousedowninside is false,
no state change happens. But if it is true, the state changes and the new state value is
sent out the object’s outlet (inside uisimp_bang()).

if (x->u_mousedowninside) {
x->u_state = !x->u_state;
uisimp_bang(x);
x->u_mousedowninside = false;
jbox_redraw((t_jbox *)x);

}

Finally, we’ve implemented mouseenter, mousemove, and mouseleave methods to pro-
vide another level of "mouse over" style highlighting for the object. Rather than changing
u_mousedowninside, a u_mouseover field is set when the mouseenter message is re-
ceived, and cleared when the mouseleave method is received. And again, after this
variable is manipulated, we repaint the box with jbox_redraw().

void uisimp_mouseenter(t_uisimp *x, t_object *patcherview, t_pt pt, long
modifiers)

{
x->u_mouseover = true;
jbox_redraw((t_jbox *)x);

}

void uisimp_mouseleave(t_uisimp *x, t_object *patcherview, t_pt pt, long
modifiers)

{
x->u_mouseover = false;
jbox_redraw((t_jbox *)x);

}

11.10 Freeing a UI Object

If your object has created any clocks or otherwise allocated memory that should be
freed when the object goes away, you should handle this in the free routine. But, most
importantly, you must call the function jbox_free(). If your UI object doesn’t need to
do anything special in its free routine, you can pass jbox_free() as the free routine
argument to class_new() in your initialization routine. We chose not to do this, since
having an actual function permits easy modification should some memory need to be
freed at some point in the future evolution of the object.

void uisimp_free(t_uisimp *x)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

11.10 Freeing a UI Object 57

{
jbox_free((t_jbox *)x);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

58 Anatomy of a UI Object

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 12

File Handling

Max contains a cross-platform set of routines for handling files.

These routines permit you to search for files, show file open and save dialogs, as well
as open, read, write, and close them. The file API is based around a "path identifier"
-- a number that describes the location of a file. When searching or reading a file, path
identifiers can be either a folders or collectives. Path identifiers that are negative (or
zero) describe actual folders in the computer’s file system, while path identifiers that are
positive refer to collectives.

A basic thing you might want to do make your object accept the read message in a
manner similar to existing Max objects. If the word read is followed by no arguments, a
file dialog appears for the user to choose a file. If read is followed by an argument, your
object will search for the file. If a file is found (or chosen), your object will open it and
read data from it.

First, make your object accept the read message. The simplest way to make the file-
name argument optional is to use the A_DEFSYM argument type specifier. When the
symbol argument is not present, Max passes your method the empty symbol.

class_addmethod(c, (method)myobject_read, "read", A_DEFSYM, 0);

The next requirement for any method that reads files is that it must defer execution to
the low-priority thread, as shown in the following implementation, where the filename
argument is passed as the symbol argument to defer.

void myobject_read(t_myobject *x, t_symbol *s)
{

defer(x, (method)myobject_doread, s, 0, NULL);
}

The myobject_doread() function compares the filename argument with the empty sym-
bol -- if the argument was not supplied, the open_dialog() is used, otherwise, we call
locatefile_extended() to search for the file. This object looks for text files, so we use
a four-character code ’TEXT’ as our file type to either open or locate. File type codes
define a set of acceptable extensions. The file max-fileformats.txt permits contains stan-

60 File Handling

dard definitions, and you can add your own by creating a similar text file and placing it
in the init folder inside the Cycling ’74 folder.

void myobject_doread(t_myobject *x, t_symbol *s)
{

long filetype = ’TEXT’, outtype;
short numtypes = 1;
char filename[512];
short path;

if (s == gensym("")) { // if no argument supplied, ask for file
if (open_dialog(filename, &path, &outtype, &filetype, 1)) //

non-zero: user cancelled
return;

} else {
strcpy(filename, s->s_name); // must copy symbol before calling

locatefile_extended
if (locatefile_extended(filename, &path, &outtype, &filetype, 1)) {

// non-zero: not found
object_error(x, "%s: not found", s->s_name);
return;

}
}
// we have a file
myobject_openfile(x, filename, path);

}

To open and read files, you can use the cross-platform sysfile API. Files can be opened
using a filename plus path identifier. If successfully opened, the file can be accessed
using a t_filehandle. Note that "files" inside collective files are treated identically to
regular files, with the exception that they are read-only.

12.1 Reading Text Files

First, we’ll implement reading the text file whose name and path identifier are passed to
myobject_openfile() using a high-level routine sysfile_readtextfile() specifically for read-
ing text files that handles text encoding conversion for you. If you are reading text files,
using this routine is strongly recommended since converting text encodings is unpleas-
ant to say the least.

void myobject_openfile(t_myobject *x, char *filename, short path)
{

t_filehandle fh;
char **texthandle;

if (path_opensysfile(filename, path, &fh, READ_PERM)) {
object_error(x, "error opening %s", filename);
return

}
// allocate some empty memory to receive text
texthandle = sysmem_newhandle(0);
sysfile_readtextfile(fh, texthandle, 0, 0); // see flags
explanation below
post("the file has %ld characters",sysmem_gethandlesize(texthandle));
sysfile_close(fh);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

12.2 Reading Data Files 61

sysmem_freehandle(texthandle);
}

In most situations, you will pass 0 for the final two arguments to sysfile_readtextfile().
The third argument specifies a maximum length to read, but if the value is 0, the entire
file is read in, regardless of its size. The final argument is a set of flags specifying
options for reading in the text. The options concern the conversion of line breaks, text
encoding, and the ability to add a null character to the end of the data returned.

Line breaks are converted on the basis of any line break flags. When reading text files,
Max converts line breaks to "native" format, which is

\r\n

on Windows and

\n

on the Mac; this is the behavior you get if you either pass no line break flags or use
TEXT_LB_NATIVE. Other options include TEXT_LB_MAC, TEXT_LB_UNIX, or TEXT-
_LB_PC.

By default, text files are converted from their source encoding to UTF-8. If you do not
want this conversion to occur, you can use the TEXT_ENCODING_USE_FILE flag. -
This puts the burden on determining the encoding on you, which is probably not what
you want. For example, the source text file might use UTF-16 encoding, which requires
very different parsing than an 8-bit encoding.

Finally, you can have the memory returned from sysfile_readtextfile() terminated with a
NULL character if you use the TEXT_NULL_TERMINATE flag.

12.2 Reading Data Files

To read data files where you do not want to do text encoding conversion or worry about
line breaks, you can use the same technique shown above for text files, but write the
myobject_openfile function using sysfile_read() instead of sysfile_readtextfile(). This
example shows how to read an entire file into a single block of memory.

void myobject_openfile(t_myobject *x, char *filename, short path)
{

t_filehandle fh;
char *buffer;
long size;

if (path_opensysfile(filename, path, &fh, READ_PERM)) {
object_error(x, "error opening %s", filename);
return

}
// allocate memory block that is the size of the file
sysfile_geteof(fh, &size);
buffer = sysmem_newptr(size);

// read in the file

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

62 File Handling

sysfile_read(fh, &size, buffer);

sysfile_close(fh);

// do something with data in buffer here

sysmem_freeptr(buffer); // must free allocated memory
}

12.3 Writing Files

Some Max objects respond to the write message to save data into a file. If there is no
argument present after the word write, a save file dialog is shown and the user specifies
a file name and location. If an argument is present, it can either specify a complete
path name or a filename. In the filename case, the file is written to the current "default"
directory, which is the location where a patcher was last opened. In the full pathname
case, the file is written to the location specified by the pathname.

Here’s how to implement this behavior. We’ll show how to handle the message argu-
ments, then provide text and data file writing examples.

Message and argument handling is very similar to the way we implemented the read
message above, including the use of deferred execution.

class_addmethod(c, (method)myobject_write, "write", A_DEFSYM, 0);

void myobject_write(t_myobject *x, t_symbol *s)
{

defer(x, (method)myobject_dowrite, s, 0, NULL);
}

The myobject_dowrite() function compares the filename argument with the empty sym-
bol -- if the argument was not supplied, saveasdialog_extended() is used to obtain the
user’s choice for filename and location. Our first example looks for text files, so we use
a four-character code ’TEXT’ as our file type for saving. File type codes define a set
of acceptable extensions. The file max-fileformats.txt permits contains standard defini-
tions, and you can add your own by creating a similar text file and placing it in the init
folder inside the Cycling ’74 folder.

void myobject_dowrite(t_myobject *x, t_symbol *s)
{

long filetype = ’TEXT’, outtype;
short numtypes = 1;
char filename[512];
short path;

if (s == gensym("")) { // if no argument supplied, ask for file
if (saveasdialog_extended(filename, &path, &outtype, &filetype, 1))

// non-zero: user cancelled
return;

} else {
strcpy(filename, s->s_name);
path = path_getdefault();

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

12.3 Writing Files 63

myobject_writefile(x, filename, path);
}

Here is the text file variant of myobject_writefile() using the high-level sysfile_-
writetextfile() routine. We just write a sentence as our "text file" but your object will
presumably have some text data stored internally that it will write. The buffer passed
to sysfile_writetextfile() must be NULL-terminated, and will be assumed to be UTF-8
encoded.

Note that path_createsysfile() can accept a full path in the filename argument, in which
case, the path argument is ignored. This means your object’s write message can either
accept a filename or full pathname and you needn’t do anything special to accept both.

void myobject_writefile(t_myobject *x, char *filename, short path)
{

char *buf = "write me into a file";
long err;
t_filehandle fh;

err = path_createsysfile(filename, path, ’TEXT’, &fh);
if (err)

return;
err = sysfile_writetextfile(fh, &buf, TEXT_LB_NATIVE);
sysfile_close(fh);

}

Here is a data file variant of myobject_writefile(). It writes a small buffer of ten numbers
to a file.

void myobject_writefile(t_myobject *x, char *filename, short path)
{

char *buf[10];
long count, i;
long err;
t_filehandle fh;

// create some data

for (i = 0; i < 10; i++)
buf[i] = i + 1;

count = 10;

err = path_createsysfile(filename, path, ’TEXT’, &fh);
if (err)

return;
err = sysfile_write(fh, &count, buf);
sysfile_close(fh);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

64 File Handling

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 13

Scripting the Patcher

Your object can use scripting capabilities of the patcher to learn things about its context,
such as the patcher’s name, hierarchy, or the peer objects to your object in its patcher.

You can also modify a patcher, although any actions your object takes are not undoable
and may not work in the runtime version.

13.1 Knowing the Patcher

To obtain the patcher object containing your object, you can use the obex hash table.
The obex (for "object extensions") is, more generally, a way to store and recall data in
your object. In this case, however, we are just using it in a read-only fashion.

Note that unlike the technique discussed in previous versions of the SDK, using the
obex to find the patcher works at any time, not just in the new instance routine.

void myobject_getmypatcher(t_myobject *x)
{

t_object *mypatcher;

object_obex_lookup(x, gensym("#P"), &mypatcher);
post("my patcher is at address %lx",mypatcher);

}

The patcher is an opaque Max object. To access data in a patcher, you’ll use attributes
and methods.

13.1.1 Patcher Name and File Path

To obtain the name of the patcher and its file path (if any), obtain attribute values as
shown below.

t_symbol *name = object_attr_getsym(patcher, gensym("name"));
t_symbol *path = object_attr_getsym(patcher, gensym("filepath"));

These attributes may return NULL or empty symbols.

66 Scripting the Patcher

13.1.2 Patcher Hierarchy

To determine the patcher hierarchy above the patcher containing your object, you can
use jpatcher_getparentpatcher(). A patcher whose parent is NULL is a top-level patcher.
Here is a loop that prints the name of each parent patcher as you ascend the hierarchy.

t_object *parent, *patcher;
t_symbol *name;

object_obex_lookup(x, gensym("#P"), &patcher);
parent = patcher;
do {

parent = jpatcher_getparentpatcher(parent);
if (parent) {

name = object_attr_getsym(parent, gensym("name"));
if (name)

post("%s",name->s_name)
}

} while (parent != NULL);

13.1.3 Getting Objects in a Patcher

To obtain the first object in a patcher, you can use jpatcher_get_firstobject(). -
Subsequent objects are available with jbox_get_nextobject().

If you haven’t read the Anatomy of a UI Object, we’ll mention that the patcher does not
keep a list of non-UI objects directly. Instead it keeps a list of UI objects called boxes,
and the box that holds non-UI objects is called a newobj. The "objects" you obtain
with calls such as jpatcher_get_firstobject() are boxes. The jbox_get_object() routine
can be used to get the pointer to the actual object, whether the box is a UI object or a
newobj containing a non-UI object. In the case of UI objects such as dials and sliders,
the pointer returned by jbox_get_object() will be the same as the box. But for non-UI
objects, it will be different.

Here is a function that prints the class of every object (in a box) in a patcher containing
an object.

void myobject_printpeers(t_myobject *x)
{

t_object *patcher, *box, *obj;

object_obex_lookup(x, gensym("#P"), &patcher);

for (box = jpatcher_get_firstobject(patcher); box; box =
jbox_get_nextobject(box)) {

obj = jbox_get_object(box);
if (obj)

post("%s",object_classname(obj)->s_name);
else

post("box with NULL object");
}

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

13.2 Creating Objects 67

13.1.4 Iteration Using Callbacks

As an alternative to the technique shown above, you can write a callback function for
use with the patcher’s iteration service. The advantage of using iteration is that you can
descend into the patcher hierarchy without needing to know the details of the various
objects that may contain subpatchers (patcher, poly∼, bpatcher, etc.). If you want to
iterate only at one level of a patcher hierarchy, you can do that too.

Your iteration function is defined as follows. It will be called on every box in a patcher
(and, if you specify, the patcher’s subpatchers).

long myobject_iterator(t_myobject *x, t_object *b);

The function returns 0 if iteration should continue, or 1 if it should stop. This permits you
to use an iterator as a way to search for a specific object.

Here is an example of using an iterator function:

t_object *patcher;
long result = 0;
t_max_err err;

err = object_obex_lookup(x, gensym("#P"), &patcher);

object_method(patcher, gensym("iterate"), myobject_iterator, (void *)x,
PI_WANTBOX | PI_DEEP, &result);

The PI_WANTBOX flag tells the patcher iterator that it should pass your iterator function
the box, rather than the object contained in the box. The PI_DEEP flag means that the
iteration will descend, depth first, into subpatchers. The result parameter returns the last
value returned by the iterator. For example, if the iterator terminates early by returning a
non-zero value, it will contain that value. If the iterator function does not terminate early,
result will be 0.

Assuming the iterator function receives boxes, here is an example iterator that prints
out the class and scripting name (if any) of all of the objects in a patcher. Note that the
scripting name is an attribute of the box, while the class we would like to know is of the
object associated with the box.

long myobject_iterator(t_myobject *x, t_object *b)
{

t_symbol *name = object_attr_getsym(b, gensym("varname"));
t_symbol *cls = object_classname(jbox_get_object(b));

if (name)
post("%s (%s)",cls->s_name, name->s_name);

else
post("%s", cls->s_name);

return 0;
}

13.2 Creating Objects

Much of the Max user interface is implemented using patcher scripting. For example,
the inspectors are patchers in which an inspector object has been created. The file

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

68 Scripting the Patcher

browser window has four or five separate scripted objects in it. Even the debug window
is a dynamically scripted patcher. We point this out just to inform you that creating
objects in a patcher actually works (if you get all the details right). The xxx example
object shows how to use patcher scripting to create an "editing window" similar to the
ones you see when double-clicking on a table or buffer∼ object.

Creating objects in a patcher generally requires the use of a Dictionary (see discussion
of UI objects above), but there is a convenience function newobject_sprintf() that can be
used to avoid some of the complexity.

To create an object, your task is to set some attributes. In the absence of any specific
values, an object’s attributes will be set to some default, but you’ll probably care, at the
very least, about specifying the object’s location. Here is an example that creates a
toggle and metro object using a combination of attribute parse syntax and sprintf. If
you’re interested in creating objects with newobject_sprintf(), it may help to examine a
Max document to see some of the attribute name - value pairs used to specify objects.

t_object *patcher, *toggle, *metro;
t_max_err err;

err = object_obex_lookup(x, gensym("#P"), &patcher);

toggle = newobject_sprintf(patcher, "@maxclass toggle
@patching_position %.2f %.2f",
x->togxpos, x-> togxpos);

metro = newobject_sprintf(patcher, "@maxclass newobj @text \"metro 400
\"

@patching_position %.2f %.2f",
x->metxpos, x->metypos);

Note that to create a non-UI object, you use set the maxclass attribute to newobj and the
text attribute to the contents of the object box. Attributes can be specified in any order.
Using the patching_position attribute permits you to specify only the top-left corner and
use the object’s default size. For text objects, the default size is based on the default
font for the patcher.

Finally, note that newobject_sprintf() returns a pointer to the newly created box, not the
newly created object inside the box. To get the object inside the box, use jbox_get_-
object().

13.2.1 Connecting Objects

If you’d like to script the connections between two objects, you can do so via a message
to the patcher. Assuming you have the patcher, toggle, and metro objects above, you’ll
create an array of atoms to send the message using object_method_typed().

t_atom msg[4], rv;

atom_setobj(msg, toggle); // source
atom_setlong(msg + 1, 0); // outlet number (0 is leftmost)
atom_setobj(msg + 2, metro); // destination
atom_setlong(msg + 3, 0); // inlet number (0 is leftmost)

object_method_typed(patcher, gensym("connect"), 4, msg, &rv);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

13.3 Deleting Objects 69

If you want to have a hidden connection, pass an optional fifth argument that is any
negative number.

13.3 Deleting Objects

To delete an object in a patcher you call object_free() on the box. As of Max 5.0.6 this
will properly redraw the patcher and remove any connected patch cords.

13.4 Obtaining and Changing Patcher and Object Attributes

You can use object attribute functions to modify the appearance and behavior of objects
in a patcher or the patcher itself. Note that only a few of these attributes can be modified
by the user. The C level access to attributes is much more extensive.

Attributes whose type is object can be accessed via object_attr_getobj() / object_attr-
_setobj(). Attributes whose type is char can be accessed with object_attr_getchar() /
object_attr_setchar(). Attributes whose type is long can be accessed with object_attr-
_getlong() / object_attr_setlong(). Attributes whose type is symbol can be accessed
via object_attr_getsym() / object_attr_setsym(). For attributes that are arrays, such as
colors and rectangles, use object_attr_getvalueof() / object_attr_setvalueof().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

70 Scripting the Patcher

13.4.1 Patcher Attributes

Name Type Settable Description
box object No The box

containing the
patcher (NULL for
top-level patcher)

locked char Yes (not in
runtime)

Locked state of
the patcher

presentation char Yes Presentation
mode of the
patcher

openinpresenta-
tion

char Yes Will patcher open
in presentation
mode?

count long No Number of objects
in a patcher

fgcount long No Number of objects
in the patcher’s
foreground layer

bgcount long No Number of objects
in the patcher’s
background layer

numvews long No Number of
currently open
views of the
patcher

numwindowviews long No Number of
currently open
window-based
views of the
patcher

firstobject object No First box in the
patcher

lastobject object No Last box in the
patcher

firstline object No First patch cord in
the patcher

firstview object No First view object in
the patcher

title symbol Yes Window title
fulltitle symbol No Complete title

including
"unlocked" etc.

name symbol No Name (could be
different from title)

filename symbol No Filename
filepath symbol No File path

(platform-
independent file
path syntax)

fileversion long No File version
noedit char No Whether patcher

can be unlocked
collective object No Collective object,

if patcher is inside
a collective

cansave char No Whether patcher
can be saved

dirty char Yes (not in
runtime)

Whether patcher
is modified

bglocked char Yes Whether
background is
locked

rect double[4] Yes Patcher’s rect
(left, top, width,
height)

defrect double[4] Yes Patcher’s default
rect (used when
opening the first
view)

openrect double[4] Yes Fixed initial
window location

parentpatcher object No Immediate parent
patcher (NULL for
toplevel patchers)

toppatcher object No Topmost parent
patcher (NULL for
toplevel patchers)

parentclass object No Class object of
parent (patcher,
poly∼, bpatcher
etc.)

bgcolor double[4] Yes Locked
background color
(RGBA)

editing_bgcolor double[4] Yes Unlocked
background color
(RGBA)

edit_framecolor double[4] Yes Text editing frame
color

locked_iocolor double[4] Yes Locked inlet/outlet
color

unlocked_iocolor double[4] Yes Unlocked
inlet/outlet color

boguscolor double[4] Yes Color of
uninitialized
(bogus) objects

gridsize double[2] Yes Editing grid size
gridonopen char Yes Show grid on

open
gridsnapopen char Yes Snap to grid on

open
imprint char Yes Save

default-valued
object attributes

defaultfocusbox symbol Yes Default focus box
(varname)

enablehscroll char Yes Show horizontal
scrollbar

enablevscroll char Yes Show vertical
scrollbar

boxanimatetime long Yes Box animation
time

default_fontname symbol Yes Default font name
default_fontface long Yes Default "fake" font

face (0 plain, 1,
bold, 2 italic, 3
bold italic)

default_fontsize long Yes Default font size in
points

toolbarvisible char Yes Show toolbar on
open

toolbarheight long Yes Height of toolbar
(can use 0 for
invisible)

toolbarid symbol Yes Name (in
maxinterface.json)
of toolbar, none =
empty symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

13.4 Obtaining and Changing Patcher and Object Attributes 71

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

72 Scripting the Patcher

13.4.2 Box Attributes

Name Type Settable Description
rect double[4] Settable only Changes both

patching_rect and
presentation_rect

presentation_rect double[4] Yes Presentation
mode rect

patching_rect double[4] Yes Patching mode
rect

position double[2] Settable only Changes both
patching_position
and presentation-
_position

size double[2] Settable only Changes both
patching_size and
presentation_size

patching_position double[2] Yes Patching mode
position (top, left
corner)

presentation_-
position

d[2] Yes Presentation
mode position

patching_size double[2] Yes Patching mode
size (width,
height)

presentation_size double[2] Yes Presentation
mode size

maxclass symbol No Name of Max
class (newobj for
non-UI objects)

object object No Associated object
(equivalent to
jbox_get_object)

patcher object No Containing
patcher

hidden char Yes Is box hidden on
lock?

fontname symbol Yes Font name (if box
has font attributes
or a text field)

fontface long Yes "Fake" font face (if
box has font
attribute or a text
field)

fontsize long Yes Font size (if box
has font attributes
or a text field)

textcolor double[4] Yes Text color (if box
has font attributes
or a text field)

hint symbol Yes Associated hint
color double[4] Yes Standard color

attribute (may not
be present in all
objects)

nextobject object No Next object in the
patcher’s list

prevobject object No Previous object in
the patcher’s list

varname symbol Yes Scripting name
id symbol No Immutable object

ID (stored in files)
canhilite char No Does this object

accept focus?
background char Yes Include in

background
ignoreclick char Yes Ignores clicks
maxfilename symbol No Filename if class

is external
description symbol No Description used

by assistance
drawfirstin char No Is leftmost inlet

drawn?
growy char No Can object grow

with fixed aspect
ratio?

growboth char No Can object grow
independently in
width and height?

nogrow char No Is object fixed
size?

mousedragdelta char No Does object use
hidden-mouse
drag tracking
(number box)

textfield object No Textfield object
associated with
this box if any

editactive char No Is object the
currently focused
box in an
unlocked patcher?

prototypename symbol No Name of the
prototype file used
to create this
object

presentation char Yes Is object included
in the
presentation?

annotation symbol Yes Text shown in clue
window when
mouse is over the
object

numinlets long No Number of inlets
visible

numoutlets long No Number of outlets
visible

outlettype symbol[] No Array of symbols
with outlet types
("signal" etc.)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

13.4 Obtaining and Changing Patcher and Object Attributes 73

To access an attribute of a non-UI object, use jbox_get_object() on the box to obtain the
non-UI object first.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

74 Scripting the Patcher

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 14

Enhancements to Objects

14.1 Preset Support

Presets are a simple state-saving mechanism. Your object receives a preset message
when state is being saved. You respond by creating a message that will be sent back to
your object when the preset is recalled.

For more powerful and general state-saving, use the pattr system described below.

To support saving a single integer in a preset, you can use the preset_int() convenience
function. The preset_int() function records an int message with the value you pass it in
the preset, to be sent back to your object at a later time.

class_addmethod(c, (method)myobject_preset, "preset", 0);

void myobject_preset(t_myobject *x)
{

preset_int(x, x->m_currentvalue);
}

More generally, you can use preset_store(). Here is an example of storing two values
(m_xvalue and m_yvalue) in a list.

preset_store("ossll", x, ob_sym(x), gensym("list"), x->m_xvalue, x->
m_yvalue);

14.2 Pattr Support

In most cases, you need only to define your object’s state using Attributes and it will be
ready for use with Max’s pattr system. For more complex scenarios you may also wish to
investigate object_notify(), object_attach(), and the section on Receiving Notifications.

76 Enhancements to Objects

14.3 Assistance

To show descriptions of your object’s inlets and outlets while editing a patcher, your
object can respond to the assist message with a function that copies the text to a string.

class_addmethod(c, (method)myobject_assist, "assist", A_CANT, 0);

The function below has two inlets and one outlet. The io argument will be 1 for inlets, 2
for outlets. The index argument will be 0 for the leftmost inlet or outlet. You can copy a
maximum of 512 characters to the output string s. You can use strncpy_zero() to copy
the string, or if you want to format the assistance string based on a current value in the
object, you could use snprintf_zero().

void myobject_assist(t_myobject *x, void *b, long io, long index, char *s)
{

switch (io) {
case 1:

switch (index) {
case 0:

strncpy_zero(s, "This is a description of the leftmost
inlet", 512);

break;
case 1:

strncpy_zero(s, "This is a description of the rightmost
inlet", 512);

break;
}
break;

case 2:
strncpy_zero(s, "This is a description of the outlet", 512);
break;

}
}

14.4 Hot and Cold Inlets

Objects such as operators (+, -, etc.) and the int object have inlets that merely store
values rather than performing an operation and producing output. These inlets are
labeled with a blue color to indicate they are "cold" rather than action-producing "hot"
inlets. To implement this labeling, your object can respond to the inletinfo message.

class_addmethod(c, (method)myobject_inletinfo, "inletinfo", A_CANT, 0);

If all of your object’s non-left inlets are "cold" you can use the function stdinletinfo()
instead of writing your own, as shown below:

class_addmethod(c, (method)stdinletinfo, "inletinfo", A_CANT, 0);

To write your own function, just look at the index argument (which is 0 for the left inlet).
This example turns the third inlet cold. You don’t need to do anything for "hot" inlets.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

14.5 Showing a Text Editor 77

void myobject_inletinfo(t_myobject *x, void *b, long index, char *t)
{

if (index == 2)

*t = 1;
}

14.5 Showing a Text Editor

Objects such as coll and text display a text editor window when you double-click. Users
can edit the contents of the objects and save the updated data (or not). Here’s how to
do the same thing in your object.

First, if you want to support double-clicking on a non-UI object, you can respond to the
dblclick message.

class_addmethod(c, (method)myobject_dblclick, "dblclick", A_CANT, 0);

void myobject_dblclick(t_myobject *x)
{

// open editor here
}

You’ll need to add a t_object pointer to your object’s data structure to hold the editor.

typedef struct _myobject
{

t_object m_obj;
t_object *m_editor;

} t_myobject;

Initialize the m_editor field to NULL in your new instance routine. Then implement the
dblclick method as follows:

if (!x->m_editor)
x->m_editor = object_new(CLASS_NOBOX, gensym("jed"), (t_object *)x,

0);
else

object_attr_setchar(x->m_editor, gensym("visible"), 1);

The code above does the following: If the editor does not exist, we create one by making
a "jed" object and passing our object as an argument. This permits the editor to tell our
object when the window is closed.

If the editor does exist, we set its visible attribute to 1, which brings the text editor
window to the front.

To set the text of the edit window, we can send our jed object the settext message with
a zero-terminated buffer of text. We also provide a symbol specifying how the text is
encoded. For best results, the text should be encoded as UTF-8. Here is an example
where we set a string to contain "Some text to edit" then pass it to the editor.

char text[512];

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

78 Enhancements to Objects

strcpy(text,"Some text to edit");
object_method(x->m_editor, gensym("settext"), text, gensym("utf-8")

);

The title attribute sets the window title of the text editor.

object_attr_setsym(x->m_editor, gensym("title"), gensym("crazytext"
));

When the user closes the text window, your object (or the object you passed as an
argument when creating the editor) will be sent the edclose message.

class_addmethod(c, (method)myobject_edclose, "edclose", A_CANT, 0);

The edclose method is responsible for doing something with the text. It should also zero
the reference to the editor stored in the object, because it will be freed. A pointer to the
text pointer is passed, along with its size. The encoding of the text is always UTF-8.

void myobject_edclose(t_myobject *x, char **ht, long size)
{

// do something with the text
x->m_editor = NULL;

}

If your object will be showing the contents of a text file, you are still responsible for
setting the initial text, but you can assign a file so that the editor will save the text data
when the user chooses Save from the File menu. To assign a file, use the filename
message, assuming you have a filename and path ID.

object_method(x->m_editor, gensym("filename"), x->m_myfilename, x->
m_mypath);

The filename message will set the title of the text editor window, but you can use the
title attribute to override the simple filename. For example, you might want the name of
your object to precede the filename:

char titlename[512];

sprintf(titlename, "myobject: %s", x->m_myfilename);
object_attr_setsym(x->m_editor, gensym("title"), gensym(titlename));

Each time the user chooses Save, your object will receive an edsave message. If you
return zero from your edsave method, the editor will proceed with saving the text in a
file. If you return non-zero, the editor assumes you have taken care of saving the text.
The general idea is that when the user wants to save the text, it is either updated inside
your object, updated in a file, or both. As an example, the js object uses its edsave
message to trigger a recompile of the Javascript code. But it also returns 0 from its
edsave method so that the text editor will update the script file. Except for the return
value, the prototype of the edsave method is identical to the edclose method.

class_addmethod(c, (method)myobject_edsave, "edsave", A_CANT, 0);

long myobject_edsave(t_myobject *x, char **ht, long size)
{

// do something with the text
return 0; // tell editor it can save the text

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

14.6 Accessing Data in table Objects 79

14.6 Accessing Data in table Objects

Table objects can be given names as arguments. If a table object has a name, you
can access the data using table_get(). Supply a symbol, as well as a place to assign a
pointer to the data and the length. The following example accesses a table called foo,
and, if found, posts all its values.

long **data = NULL;
long i, size;

if (!table_get(gensym("foo"), &data, &size)) {
for (i = 0; i < size; i++) {

post("%ld: %ld",i,(*data)[i]);
}

}

You can also write data into the table. If you would like the table editor to redraw after
doing so, use table_dirty(). Here’s an example where we set all values in the table to
zero, then notify the table to redraw.

long **data = NULL;
long i, size;

if (!table_get(gensym("foo"), &data, &size)) {
for (i = 0; i < size; i++) {

(*data)[i] = 0;
}
table_dirty(gensym("foo"));

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

80 Enhancements to Objects

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 15

Data Structures

15.1 Available Data Structures

The Max API provides a variety of useful data structures which may be used across
platforms and provide basic thread-safety.

• Atom Array : container for an array of atoms

• Linked List : doubly-linked-list

• Hash Table : hash table for mapping symbols to data

• Quick Map : a double hash with keys mapped to values and vice-versa

• Database : SQLite database access

• Index Map : managed array of pointers

• String Object : wrapper for C-strings with an API for manipulating them

• Symbol Object : wrapper for symbols

• Dictionary : structured/hierarchical data that is both sortable and fast

15.2 Passing Data Structures

Most often, the use of a particular instance of a data structure will be limited to within
the confines a single class or object you create. However, in some cases you may wish
to pass structured data from one object to another. For this purpose, Max 6 introduces
facilities for passing named t_dictionary instances.

Examples, descriptions, and API documentation can be found in Dictionary Passing API
.

82 Data Structures

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 16

Threading

The Max systhread API has two main purposes.

First, it can be used to implement thread protection which works in conjunction with
Max’s existing threading model and is cross-platform. Thread protection prevents data
corruption in the case of simultaneously executing threads in the same application. We’ll
discuss the Max threading model and show you a simple example of thread protection
below, but you can often avoid the need to use thread protection by using one of the
thread-safe Data Storage Max provides.

The second use of the systhread API is a cross-platform way to create and manage
threads. This is an advanced feature that very few programmers will ever need. For
information on creating and managing threads look at the systhread API header file.

16.1 Max Threading Operation

Please note that this description of how Max operates is subject to change and may not
apply to future versions. For more information about the Max scheduler and low-priority
queue, see the The Scheduler section.

Max (without audio) has two threads. The main or event thread handles user interaction,
asks the system to redraw the screen, processes events in the low-priority queue. When
not in Overdrive mode, the main thread handles the execution of events in the Max
scheduler as well. When Overdrive is enabled, the scheduler is moved to a high-priority
timer thread that, within performance limits imposed by the operating system, attempts
to run at the precise scheduler interval set by user preference. This is usually 1 or 2
milliseconds.

The basic idea is to put actions that require precise timing and are relatively computa-
tionally cheap in the high-priority thread and computationally expensive events that do
not require precise timing in the main thread. On multi-core machines, the high-priority
thread may (or may not) be executing on a different core.

On both Mac and Windows, either the main thread or the timer thread can interrupt the
other thread, even though the system priority level of the timer thread is generally much

84 Threading

higher. This might seem less than optimal, but it is just how operating systems work. For
example, if the OS comes to believe the Max timer thread is taking too much time, the
OS may "punish" the thread by interrupting it with other threads, even if those threads
have a lower system priority.

Because either thread can be interrupted by the other, it is necessary to use thread
protection to preserve the integrity of certain types of data structures and logical opera-
tions. A good example is a linked list, which can be corrupted if a thread in the process
of modifying the list is interrupted by another thread that tries to modify the list. The
Max t_linklist data structure is designed to be thread-safe, so if you need such a data
structure, we suggest you use t_linklist. In addition, Max provides thread protection be-
tween the timer thread and the main thread for many of its common operations, such as
sending messages and using outlets.

When we add audio into the mix (so to speak), the threading picture gets more compli-
cated. The audio perform routine is run inside a thread that is controlled by the audio
hardware driver. In order to eliminate excessive thread blocking and potential race con-
ditions, the thread protection offered inside the audio perform routine is far less com-
prehensive, and as discussed in the MSP section of the API documentation, the only
supported operation for perform routines to communicate to Max is to use a clock. This
will trigger a function to run inside the Max scheduler.

The Max scheduler can be run in many different threading conditions. As explained
above it can be run either in the main thread or the timer thread. When Scheduler
in Audio Interrupt (SIAI) is enabled, the scheduler runs with an interval equal to every
signal vector of audio inside the audio thread. However, if the Non-Real-Time audio
driver is used, the audio thread is run inside the main thread, and if SIAI is enabled, the
scheduler will also run inside the main thread. If not, it will run either in the main thread
or the timer thread depending on the Overdrive setting. (Using the Non-Real-Time audio
driver without SIAI will generally lead to unpredictable results and is not recommended.)

16.2 Thread Protection

The easiest method for thread protection is to use critical sections. A critical section
represents a region of code that cannot be interrupted by another thread. We speak of
entering and exiting a critical section, and use critical_enter() and critical_exit() to do so.

Max provides a default global critical section for your use. This same critical section is
used to protect the timer thread from the main thread (and vice versa) for many common
Max data structures such as outlets. If you call critical_enter() and critical_exit() with
argument of 0, you are using this global critical section. Typically it is more efficient
to use fewer critical sections, so for many uses, the global critical section is sufficient.
Note that the critical section is recursive, so you if you exit the critical section from within
some code that is already protected, you won’t be causing any trouble.

16.2.1 When Messages Arrive

It’s possible that a message sent to your object could interrupt the same message sent
to your object ("myobject"). For example, consider what happens when a button is

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

16.2 Thread Protection 85

connected to the left inlet of myobject and a metro connected to the same inlet.

When a user clicks on the bang button, the message is sent to your object in the main
thread. When Overdrive is enabled, the metro will send a bang message to your object
in the timer thread. Either could interrupt the other. If your object performs operations
on a data structure that cannot be interrupted, you should use thread protection.

16.2.2 Critical Section Example

Here is an example that uses the global critical section to provide thread protection for
an array data structure. Assume we have an operation array_read() that reads data from
an array, and array_insert() that inserts data into the same array. We wish to ensure that
reading doesn’t interrupt writing and vice versa.

long array_read(t_myobject *x, long index)
{

critical_enter(0);
result = x->m_data[index];
critical_exit(0);
return result;

}

Note that all paths of your code must exit the critical region once it is entered, or the
other threads in Max will never execute.

long array_insert(t_myobject *x, long index, long value)
{

critical_enter(0);
// move existing data
sysmem_copyptr(x->m_data + index, x->m_data + index + 1, (x->m_size - x

->m_index) * sizeof(long));
// write new data
x->m_data[index] = value;
critical_exit(0);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

86 Threading

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 17

Drag’n’Drop

The Max file browser permits you to drag files to a patcher window or onto objects to
perform file operations.

Your object can specify the file types accepted as well as a message that will be sent
when the user releases the mouse button with the file on top of the object. UI and
non-UI objects use the same interface to drag’n’drop.

Example UI object: pictmeter∼. Example non-UI: TBD.

Messages to support:

acceptsdrag_locked (A_CANT)

Sent to an object during a drag when the mouse is over the object in an unlocked
patcher.

acceptsdrag_unlocked (A_CANT)

Sent to an object during a drag when the mouse is over the object in a locked patcher.

17.1 Discussion

Why two different scenarios? acceptsdrag_unlocked() can be thought of as an "editing"
operation. For example, objects such as pictslider accept new image files for changing
their appearance when the patcher is unlocked, but not when the patcher is locked. -
By contrast, sfplay∼ can accept audio files for playback in either locked or unlocked
patchers, since that is something you can do with a message (rather than an editing
operation that changes the patcher).

Message handler definitions:

long myobject_acceptsdrag_unlocked(t_myobject *x, t_object *drag, t_object

*view);
long myobject_acceptsdrag_locked(t_myobject *x, t_object *drag, t_object *

view);

88 Drag’n’Drop

The handlers return true if the file(s) contained in the drag can be used in some way by
the object. To test the filetypes, use jdrag_matchdragrole() passing in the drag object
and a symbol for the file type. Here is list of pre-defined file types:

• audiofile

• imagefile

• moviefile

• patcher

• helpfile

• textfile

or to accept all files, use file

If jdrag_matchdragrole() returns true, you then describe the messages your object re-
ceives when the drag completes using jdrag_object_add(). You can add as many mes-
sages as you wish. If you are only adding a single message, use jdrag_object_add().
For more control over the process, and for adding more than one message, jdrag_add()
can be used. If you add more than one message, the user can use the option key to
specify the desired action. By default, the first one you add is used. If there are two
actions, the option key will cause the second one to be picked. If there are more than
two, a pop-up menu appears with descriptions of the actions (as passed to jdrag_add()),
and the selected action is used.

Example:

This code shows how to respond to an audiofile being dropped on your object by having
the read message sent.

if (jdrag_matchdragrole(drag, gensym("audiofile"), 0)) {
jdrag_object_add(drag, (t_object *)x, gensym("read"));
return true;

}
return false;

Your acceptsdrag handler can test for multiple types of files and add different mes-
sages.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 18

ITM

ITM is the tempo-based timing system introduced with Max 5.

It allows users to express time in tempo-relative units as well as milliseconds, samples,
and an ISO 8601 hour-minute-second format. In addition, ITM supports one or more
transports, which can be synchronized to external sources. An ITM-aware object can
schedule events to occur when the transport reaches a specific time, or find out the
current transport state.

The ITM API is provided on two different levels. The time object (t_timeobject) interface
provides a higher-level way to parse time format information and schedule events. In
addition, you can use lower-level routines to access ITM objects (t_itm) directly. An ITM
object is responsible for maintaining the current time and scheduling events. There can
be multiple ITM objects in Max, each running independently of the others.

18.1 Scheduling Temporary Events

There are two kinds of events in ITM. Temporary events are analogous to Max clock
objects in that they are scheduled and fire at a dynamically assigned time. Once they
have executed, they are removed from the scheduler. Permanent events always fire
when the transport reaches a specific time, and are not removed from the scheduler.
The ITM-aware metro is an example of an object that uses temporary events, while the
timepoint object uses permanent events. We’ll show how to work both types using an
example included in the SDK called delay2. The existing Max delay object provides this
capability, but this example shows most of the things you can do with the time object
interface. To see the complete object, look at the delay2 example. We’ll introduce a
simpler version of the object, then proceed to add the quantization and the additional
outlet that generates a delayed bang based on low-level ITM calls.

The ITM time object API is based on a Max object you create that packages up common
ways you will be using ITM, including attribute support, quantization, and, if you want
it, the ability to switch between traditional millisecond-based timing and tempo-based
timing using an interface that is consistent with the existing Max objects such as metro
and delay. (If you haven’t familiarized yourself with attributes, you may want to read

90 ITM

through the discussion about them in Attributes before reading further.)

To use the time object, you’ll first need to provide some space in your object to hold a
pointer to the object(s) you’ll be creating.

typedef struct _delay2simple
{

t_object m_ob;
t_object *m_timeobj;
void *m_outlet;

} _delay2simple;

Next, in your main routine, you’ll create attributes associated with the time object using
the class_time_addattr() function.

class_time_addattr(c, "delaytime", "Delay Time", TIME_FLAGS_TICKSONLY |
TIME_FLAGS_USECLOCK | TIME_FLAGS_TRANSPORT);

The second argument, "delaytime", is a string that names the attribute. Users of your
object will be able to change the delay value by sending a delaytime message. "Delay
Time" is the label users see for the attribute in the inspector. The flags argument permits
you to customize the type of time object you’d like. TIME_FLAGS_TICKSONLY means
that the object can only be specified in tempo-relative units. You would not use this flag
if you want the object to use the regular Max scheduler if the user specifies an absolute
time (such as milliseconds). TIME_FLAGS_USECLOCK means that it is a time object
that will actually schedule events. If you do not use this flag, you can use the time object
to hold and convert time values, which you use to schedule events manually. TIME-
_FLAGS_TRANSPORT means that an additional attribute for specifying the transport
name is added to your object automatically (it’s called "transport" and has the label "-
Transport Name"). The combination of flags above is appropriate for an object that will
be scheduling events on a temporary basis that are only synchronized with the transport
and specified in tempo-relative units.

The next step is to create a time object in your new instance routine using time_new.
The time_new function is something like clock_new -- you pass it a task function that
will be executed when the scheduler reaches a certain time (in this case, delay2simple-
_tick, which will send out a bang). The first argument to time_new is a pointer to your
object, the second is the name of the attribute created via class_time_addattr, the third
is your task function, and the fourth are flags to control the behavior of the time object,
as explained above for class_time_addattr.

Finally, we use time_setvalue to set the initial delay value to 0.

void *delay2simple_new()
{

t_delay2simple *x;
t_atom a;

x = (t_delay2simple *)object_alloc(s_delay2simple_class);
x->m_timeobj = (t_object *)time_new((t_object *)x, gensym("delaytime"),
(method)delay2simple_tick, TIME_FLAGS_TICKSONLY | TIME_FLAGS_USECLOCK);
x->m_outlet = bangout((t_object *)x);
atom_setfloat(&a, 0.);
time_setvalue(x->d_timeobj, NULL, 1, &a);
return x;

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

18.1 Scheduling Temporary Events 91

To make a delayed bang, we need a delay2simple_bang function that causes our time
object to put its task function into the ITM scheduler. This is accomplished using time-
_schedule. Note that unlike the roughly equivalent clock_fdelay, where the delay time
is an argument, the time value must already be stored inside the time object using
time_setvalue. The second argument to time_schedule is another time object that can
be used to control quantization of an event. Since we aren’t using quantization in this
simple version of delay2, we pass NULL.

void delay2simple_bang(t_delay2 *x)
{

time_schedule(x->d_timeobj, NULL);
}

Next, our simple task routine, delay2simple_tick. After the specified number of ticks
in the time object has elapsed after the call to time_schedule, the task routine will be
executed.

void delay2_tick(t_delay2 *x)
{

outlet_bang(x->d_outlet);
}

Now let’s add the two more advanced features found in delay2: quantization and a
second (unquantized) bang output using low-level ITM routines. Here is the delay2 data
structure. The new elements are a proxy (for receiving a delay time), a time object for
quantization (d_quantize), a clock to be used for low-level ITM scheduling, and an outlet
for the use of the low-level clock’s task.

typedef struct delay2
{

t_object d_obj;
void *d_outlet;
void *d_proxy;
long d_inletnum;
t_object *d_timeobj;
t_object *d_outlet2;
t_object *d_quantize;
void *d_clock;

} t_delay2;

In the initialization routine, we’ll define a quantization time attribute to work in conjunc-
tion with the d_quantize time object we’ll be creating. This attribute does not have its
own clock to worry about. It just holds a time value, which we specify will only be in
ticks (quantizing in milliseconds doesn’t make sense in the ITM context). If you build
delay2 and open the inspector, you will see time attributes for both Delay Time and
Quantization.

class_time_addattr(c, "quantize", "Quantization", TIME_FLAGS_TICKSONLY);

Here is part of the revised delay2 new instance routine. It now creates two time objects,
plus a regular clock object.

x->d_inletnum = 0;
x->d_proxy = proxy_new(x, 1, &x->d_inletnum);
x->d_outlet2 = bangout(x);
x->d_outlet = bangout(x);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

92 ITM

x->d_timeobj = (t_object*) time_new((t_object *)x, gensym("delaytime"), (
method)delay2_tick, TIME_FLAGS_TICKSONLY | TIME_FLAGS_USECLOCK);

x->d_quantize = (t_object*) time_new((t_object *)x, gensym("quantize"),
NULL, TIME_FLAGS_TICKSONLY);

x->d_clock = clock_new((t_object *)x, (method)delay2_clocktick);

To use the quantization time object, we can pass it as the second argument to time-
schedule. If the value of the quantization is 0, there is no effect. Otherwise, time-
schedule will move the event time so it lies on a quantization boundary. For example, if
the quantization value is 4n (480 ticks), the delay time is 8n (240 ticks) and current time
is 650 ticks, the delay time will be adjusted so that the bang comes out of the delay2
object at 980 ticks instead of 890 ticks.

In addition to using quantization with time_schedule, delay2_bang shows how to cal-
culate a millisecond equivalent for an ITM time value using itm_tickstoms. This delay
value is not quantized, although you read the time value from the d_quantize object and
calculate your own quantized delay if wanted. The "calculated" delay is sent out the
right outlet, since the clock we created uses delay2_clocktick.

void delay2_bang(t_delay2 *x)
{

double ms, tix;

time_schedule(x->d_timeobj, x->d_quantize);

tix = time_getticks(x->d_timeobj);
tix += (tix / 2);
ms = itm_tickstoms(time_getitm(x->d_timeobj), tix);
clock_fdelay(x->d_clock, ms);

}

void delay2_clocktick(t_delay2 *x)
{

outlet_bang(x->d_outlet2);
}

18.2 Permanent Events

A permanent event in ITM is one that has been scheduled to occur when the trans-
port reaches a specific time. You can schedule a permanent event in terms of ticks
or bars/beats/units. An event based in ticks will occur when the transport reaches the
specified tick value, and it will not be affected by changes in time signature. An event
specified for a time in bars/beats/units will be affected by the time signature. As an ex-
ample, consider an event scheduled for bar 2, beat 1, unit 0. If the time signature of the
ITM object on which the event has been scheduled is 3/4, the event will occur at 480
times 3 or 1440 ticks. But if the time signature is 4/4, the event will occur at 1920 ticks.
If, as an alternative, you had scheduled the event to occur at 1920 ticks, setting the time
signature to 3/4 would not have affected when it occurred.

You don’t "schedule" a permanent event. Once it is created, it is always in an ITM
object’s list of permanent events. To specify when the event should occur, use time_-
setvalue.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

18.3 Cleaning Up 93

The high-level time object interface handles permanent events. Let’s say we want to
have a time value called "targettime." First, we declare an attribute using class_time-
_addattr. The flags used are TIME_FLAGS_TICKSONLY (required because you can’t
specify a permanent event in milliseconds), TIME_FLAGS_LOCATION (which inter-
prets the bar/beat/unit times where 1 1 0 is zero ticks), TIME_FLAGS_PERMANENT
(for a permanent event), and TIME_FLAGS_TRANSPORT (which adds a transport at-
tribute permitting a user to choose a transport object as a destination for the event)
and TIME_FLAGS_POSITIVE (constrains the event to happen only for positive tick and
bar/beat/unit values).

class_time_addattr(c, "targettime", "Target Time", TIME_FLAGS_TICKSONLY |
TIME_FLAGS_LOCATION | TIME_FLAGS_PERMANENT | TIME_FLAGS_TRANSPORT |
TIME_FLAGS_POSITIVE);

The TIME_FLAGS_TRANSPORT flag is particularly nice. Without any intervention on
your part, it creates a transport attribute for your object, and takes care of scheduling
the permanent event on the transport the user specifies, with a default value of the
global ITM object. If you want to cause your event to be rescheduled dynamically when
the user changes the transport, your object can respond to the reschedule message as
follows.

class_addmethod(c, (method)myobject_reschedule, "reschedule", A_CANT, 0);
// for dynamic transport reassignment

All you need to do in your reschedule method is just act as if the user has changed the
time value, and use the current time value to call time_setvalue.

In your new instance routine, creating a permanent event with time_new uses the same
flags as were passed to class_time_addattr:

x->t_time = (t_object*) time_new((t_object *)x, gensym("targettime"), (
method)myobject_tick, TIME_FLAGS_TICKSONLY | TIME_FLAGS_USECLOCK |
TIME_FLAGS_PERMANENT | TIME_FLAGS_LOCATION | TIME_FLAGS_POSITIVE);

The task called by the permanent time object is identical to a clock task or an ITM
temporary event task.

18.3 Cleaning Up

With all time objects, both permanent and temporary, it’s necessary to free the objects
in your object’s free method. Failure to do so will lead to crashes if your object is freed
but its events remain in the ITM scheduler. For example, here is the delay2 free routine:

void delay2_free(t_delay2 *x)
{

freeobject(x->d_timeobj);
freeobject(x->d_quantize);
freeobject((t_object *) x->d_proxy);
freeobject((t_object *)x->d_clock);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

94 ITM

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 19

Jitter Object Model

19.1 Jitter Object Model Basics

Jitter objects use an object model which is somewhat different than the one traditionally
used for developing Max external objects. The first big difference between Jitter objects
and traditional Max external objects is that Jitter objects don’t have any notion of the
patcher themselves. This allows for the flexible instantiation and use of Jitter objects
from C, Java, JavaScript, as well as in the Max patcher. The use of these Jitter objects
is exposed to the patcher with a Max "wrapper" object, which will be discussed in the
following chapter.

In this chapter we’ll restrict our discussion to the fundamentals of defining the Jitter
object which can be used in any of these languages. While Jitter’s primary focus is
matrix processing and real-time graphics, these tasks are unrelated to the object model,
and will be covered in later chapters on developing Matrix Operator (MOP) and OB3D
objects. Like Max objects, Jitter objects are typically written in C. While C++ can be used
to develop Jitter objects, none of the object oriented language features will be used to
define your object as far as Jitter is concerned. Similar to C++ or Java objects, Jitter
objects are defined by a class with methods and member variables - we will refer to the
member variables as "attributes". Unlike C++ or Java, there are no language facilities
that manage class definition, class inheritance, or making use of class instances. In
Jitter this must all be managed with sets of standard C function calls that will define
your class, exercise methods, and get and set object attributes.

Max and Jitter implement their object models by maintaining a registry of ordinary -
C functions and struct members that map to methods and attributes associated with
names. When some other code wishes to make use of these methods or attributes, it
asks the Jitter object to look up the method or attribute in its registry based on a name.
This is called dynamic binding, and is similar to Smalltalk or Objective C’s object model.
C++ and Java typically make use of static binding — i.e. methods and member variables
are resolved at compile time rather than being dynamically looked up at run time.

96 Jitter Object Model

19.2 Defining a Jitter Class

A Jitter class is typically defined in a C function named something like your_object_-
name_init(). Class definition begins with a call to jit_class_new(), which creates a new
class associated with a specified name, constructor, destructor, and size in bytes of
the object as stored in a C structure. This is followed by calls to jit_class_addmethod()
and jit_class_addattr(), which register methods and attributes with their corresponding
names in the class. The class is finally registered with a call to jit_class_register(). A
minimal example class definition is shown below:

typedef struct _jit_foo
{

t_jit_object ob;
float myval;

} t_jit_foo;

static t_jit_class *_jit_foo_class=NULL;

t_jit_err jit_foo_init(void)
{

long attrflags=0;
t_jit_object *attr;

// create new class named "jit_foo" with constructor + destructor
_jit_foo_class = jit_class_new("jit_foo",(method)jit_foo_new,

(method)jit_foo_free, sizeof(t_jit_foo), 0L);

// add method to class
jit_class_addmethod(jit_foo_scream, "scream", A_DEFLONG, 0L);

// define attribute
attr = jit_object_new(// instantiate an object

_jit_sym_jit_attr_offset, // of class jit_attr_offset
"myval", // with name "myval"
_jit_sym_float32, // type float32
attrflags, // default flags
(method)0L, // default getter accessor
(method)0L, // default setter accessor
calcoffset(t_jit_foo,myval)); // byte offset to struct member

// add attribute object to class
jit_class_addattr(_jit_foo_class, attr);

// register class
jit_class_register(_jit_foo_class);

return JIT_ERR_NONE;
}

// constructor
t_jit_foo *jit_foo_new(void)
{

t_jit_foo *x;

// allocate object
if (x=jit_object_alloc(_jit_foo_class))
{

// if successful, perform any initialization
x->myval = 0;

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

19.3 Object Struct 97

return x;
}

// destructor
void jit_foo_free(t_jit_foo *x)
{

// would free any necessary resources here
}

// scream method
void jit_foo_scream(t_jit_foo *x, long i)
{

post("MY VALUE IS %f! AND MY ARGUMENT IS %d", x->myval, i);
}

The above example has a constructor, jit_foo_new(); a destructor, jit_foo_free(); one 32
bit floating point attribute, myval, a member of the object struct accessed with default
accessor methods; and a method jit_foo_scream(), which posts the current value of
myval to the Max window.

19.3 Object Struct

Each instance of an object occupies some region of organized memory. The C structure
that defines this organization of memory is typically referred to as the "object struct". It
is important that the object struct always begin with an entry of type t_jit_object. It is
within the t_jit_object where special information about the class is kept. The C structure
can contain additional information, either exposed as attributes or not, but it is important
that the size of the object struct does not exceed 16384 bytes. This means that it is not
safe to define a large array as a struct entry if it will cause the size of the object struct
to be larger than this limit. If additional memory is required, the object struct should
contain a pointer to memory allocated from within the constructor, and freed within the
destructor.

The class registration in the above code makes use of the object struct both to record in
the class how large each object instance should be—i.e. sizeof(t_jit_foo) ; and at what
byte offset in the object struct an attribute is located—i.e. calcoffset(t_jit_foo, myval) .
When methods of an object are called, the instance of the object struct is passed as the
first argument to the C functions which define the object methods. This instance may be
thought of as similar to the "this" keyword used in C++ and Java - actually the C++ and
Java underlying implementation works quite similarly to what has been implemented
here in pure C. Object struct entries may be thought of as similar to object member
variables, but methods must be called via functions rather than simply dereferencing
instances of the class as you might do in C++ or Java. The list of object methods and
other class information is referenced by your object’s t_jit_object entry.

19.4 Constructor/Destructor

The two most important methods that are required for all objects are the constructor and
the destructor. These are typically named your_object_name_new(), and your_object-
_name_free(), respectively. It is the constructor’s responsibility to allocate and initialize

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

98 Jitter Object Model

the object struct and any additional resources the object instance requires. The object
struct is allocated via jit_object_alloc(), which also initializes the t_jit_object struct entry
to point at your relevant class information. The class information resides in your global
class variable, e.g. _jit_foo_class, which you pass as an argument to jit_object_alloc().
This allocation does not, however initialize the other struct entries, such as "myval",
which you must explicitly initialize if your allocation is successful. Note that because
the constructor allocates the object instance, no object instance is passed as the first
argument to the function which defines the constructor, unlike other object methods.

The constructor also has the option of having a typed argument signature with the same
types as defined in the Writing Max Externals documentation—i.e. A_LONG, A_FLOAT,
A_SYM, A_GIMME, etc. Typically, Jitter object constructors either have no arguments
or use the A_GIMME typed argument signature.

In earlier versions of Jitter, the constructors were often specified as private and "un-
typed" using the A_CANT type signature. While this obsolete style of an untyped con-
structor will work for the exposure of a Jitter class to the patcher and C, it is now dis-
couraged, as there must be a valid type signature for exposure of a class to Javascript
or Java, though that signature may be the empty list.

It is the destructor’s responsibility to free any resources allocated, with the exception of
the object struct itself. The object struct is freed for you after your destructor exits.

19.5 Methods

You can define additional methods using the jit_class_addmethod() function. This ex-
ample defines the scream method associated with the function jit_foo_scream(), with
no additional arguments aside from the standard first argument of a pointer to the ob-
ject struct. Just like methods for ordinary Max objects, these methods could have a
typed argument signature with the same types as defined in the Writing Max Externals
documentation — i.e. A_LONG, A_FLOAT, A_SYM, A_GIMME. Typically in Jitter ob-
jects, public methods are specified either without arguments, or use A_GIMME, or the
low priority variants, A_DEFER_LOW, or A_USURP_LOW, which will be discussed in
following chapters. Private methods, just like their Max equivalent should be defined as
untyped, using the A_CANT type signature. Object methods can be called from C either
by calling the C function directly, or by using jit_object_method() or jit_object_method-
_typed(). For example, the following calls that relate to the above jit_foo example are
equivalent:

// call scream method directly
jit_foo_scream(x, 74);

// dynamically resolve and call scream method
jit_object_method(x, gensym("scream"), 74);

// dynamically resolve and call scream method with typed atom arguments
t_atom a[1];
jit_atom_setlong(a, 74);
jit_object_method_typed(x, gensym("scream"), 1, a, NULL);

What the jit_object_method() and jit_object_method_typed() functions do is look up the
provided method symbol in the object’s class information, and then calls the correspond-

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

19.6 Attributes 99

ing C function associated with the provided symbol. The difference between jit_object_-
method() and jit_object_method_typed() is that jit_object_method() will not require that
the method is typed and public, and blindly pass all of the arguments following the
method symbol on to the corresponding method. For this reason, it is required that you
know the signature of the method you are calling, and pass the correct arguments. This
is not type checked at compile time, so you must be extremely attentive to the argu-
ments you pass via jit_object_method(). It is also possible for you to define methods
which have a typed return value with the A_GIMMEBACK type signature. When call-
ing such methods, the final argument to jit_object_method_typed(), should point to a
t_atom to be filled in by the callee. This and the subject of "typed wrappers" for expos-
ing otherwise private methods to language bindings that require typed methods (e.g.
Java/!JavaScript) will be covered in a later chapter.

19.6 Attributes

You can add attributes to the class with jit_class_addattr(). Attributes themselves are
Jitter objects which share a common interface for getting and setting values. While any
class which conforms to the attribute interface could be used to define attributes of a
given class, there are a few common classes which are currently used: jit_attr_offset(),
which specifies a scalar attribute of a specific type (char, long, float32, float64, symbol,
or atom) at some byte offset in the object struct; jit_attr_offset_array() which specifies an
array (vector) attribute of a specific type (char, long, float32, float64, symbol, or atom) at
some byte offset in the object struct; and jit_attribute, which is a more generic attribute
object that can be instantiated on a per object basis. We will not document the usage of
jit_attribute at this time. The constructor for the class jit_attr_offset() has the following
prototype:

t_jit_object *jit_attr_offset_new(char *name, t_symbol *type, long flags,
method mget, method mset, long offset);

When this constructor is called via jit_object_new(), additionally the class name, _jit-
_sym_jit_attr_offset (a global variable equivalent to gensym("jit_attr_offset")) must be
passed as the first parameter, followed by the above arguments, which are passed on to
the constructor. The name argument specifies the attribute name as a null terminated C
string. The type argument specifies the attribute type, which may be one of the following
symbols: _jit_sym_char, _jit_sym_long, _jit_sym_float32, _jit_sym_float64, _jit_sym_-
symbol, _jit_sym_atom, _jit_sym_object, or _jit_sym_pointer. The latter two are only
useful for private attributes as these types are not exposed to, or converted from Max
message atom values.

The flags argument specifies the attribute flags, which may be a bitwise combination of
the following constants:

#define JIT_ATTR_GET_OPAQUE 0x00000001 // cannot query
#define JIT_ATTR_SET_OPAQUE 0x00000002 // cannot set
#define JIT_ATTR_GET_OPAQUE_USER 0x00000100 // user cannot query
#define JIT_ATTR_SET_OPAQUE_USER 0x00000200 // user cannot set
#define JIT_ATTR_GET_DEFER 0x00010000 // (deprecated)
#define JIT_ATTR_GET_USURP 0x00020000 // (deprecated)
#define JIT_ATTR_GET_DEFER_LOW 0x00040000 // query in low priority

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

100 Jitter Object Model

#define JIT_ATTR_GET_USURP_LOW 0x00080000 // query in low, usurping
#define JIT_ATTR_SET_DEFER 0x01000000 // (deprecated)
#define JIT_ATTR_SET_USURP 0x02000000 // (deprecated)
#define JIT_ATTR_SET_DEFER_LOW 0x04000000 // set at low priority
#define JIT_ATTR_SET_USURP_LOW 0x08000000 // set at low, usurping

Typically attributes in Jitter are defined with flags JIT_ATTR_GET_DEFER_LOW, and
JIT_ATTR_SET_USURP_LOW. This means that multiple queries from the patcher will
generate a response for each query, and that multiple attempts to set the value at high
priority will collapse into a single call with the last received value. For more information
on defer and usurp, see the chapter on Jitter scheduling issues.

The mget argument specifies the attribute "getter" accessor method, used to query the
attribute value. If this argument is zero (NULL), then the default getter accessor will be
used. If you need to define a custom accessor, it should have a prototype and form
comparable to the following custom getter:

t_jit_err jit_foo_myval_get(t_jit_foo *x, void *attr, long *ac, t_atom **av)
{

if ((*ac)&&(*av)) {
//memory passed in, use it

} else {
//otherwise allocate memory

*ac = 1;
if (!(*av = jit_getbytes(sizeof(t_atom)*(*ac)))) {

*ac = 0;
return JIT_ERR_OUT_OF_MEM;

}
}
jit_atom_setfloat(*av,x->myval);

return JIT_ERR_NONE;
}

Note that getters require memory to be allocated, if there is not memory passed into
the getter. Also the attr argument is the class’ attribute object and can be queried
using jit_object_method() for things like the attribute flags, names, filters, etc.. The
mset argument specifies the attribute "setter" accessor method, used to set the attribute
value. If this argument is zero (NULL), then the default setter accessor will be used. If
we need to define a custom accessor, it should have a prototype and form comparable
to the following custom setter:

t_jit_err jit_foo_myval_set(t_jit_foo *x, void *attr, long ac, t_atom *av)
{

if (ac&&av) {
x->myval = jit_atom_getfloat(av);

} else {
// no args, set to zero
x->myval = 0;

}
return JIT_ERR_NONE;

}

The offset argument specifies the attribute’s byte offset in the object struct, used by
default getters and setters to automatically query and set the attribute’s value. If you

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

19.7 Array Attributes 101

have both custom accessors, this value is ignored. This can be a useful strategy to
employ if you wish to have an object attribute that does not correspond to any actual
entry in your object struct. For example, this is how we implement the time attribute of
jit.qt.movie — i.e. it uses a custom getter and setter which make QuickTime API calls
to query and set the current movie time, rather than manipulating the object struct itself,
where no information about movie time is actually stored. In such an instance, you
should set this offset to zero.

After creating the attribute, it must be added to the Jitter class using the jit_class_-
addattr() function:

t_jit_err jit_class_addattr(void *c, t_jit_object *attr);

To put it all together: to define a jit_attribute_offset() with the custom getter and setter
functions defined above, you’d make the following call:

long attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;
t_jit_object *attr = jit_object_new(_jit_sym_jit_attr_offset, "myval",

_jit_sym_float32, attrflags,
(method)jit_foo_myval_get, (method)jit_foo_myval_set, NULL);

jit_class_addattr(_jit_foo_class, attr);

And to define a completely standard jit_attribute_offset(), using the default getter and
setter methods:

long attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;
t_jit_object *attr = jit_object_new(_jit_sym_jit_attr_offset, "myval",

_jit_sym_float32, attrflags,
(method)NULL, (method)NULL, calcoffset(t_jit_foo, myval));

jit_class_addattr(_jit_foo_class, attr);

19.7 Array Attributes

Attributes can, in addition to referencing single values, also refer to arrays of data. The
class jit_attribute_offset_array is used in this instance. The constructor for the class
jit_attr_offset_array() has the following prototype:

t_jit_object *jit_attr_offset_array_new(char *name, t_symbol *type, long size,
long flags, method mget, method mset, long offsetcount, long offset);

When this constructor is called via jit_object_new(), additionally the class name, _-
jit_sym_jit_attr_offset_array() (a global variable equivalent to gensym("jit_attr_offset_-
array")) must be passed as the first parameter, followed by the above arguments, which
are passed on to the constructor.

The name, type, flags, mget, mset and offset arguments are identical to those specified
above.

The size argument specifies the maximum length of the array (the allocated size of the
array in the Jitter object struct). The offsetcount specifies the byte offset in the object
struct, where the actual length of the array can be queried/set. This value should be

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

102 Jitter Object Model

specified as a long. This value is used by default getters and setters when querying and
setting the attribute’s value. As with the jit_attr_offset object, if you have both custom
accessors, this value is ignored.

The following sample listing demonstrates the creation of a simple instance of the jit_-
attr_offset_array() class for an object defined as:

typedef struct _jit_foo
{

t_jit_object ob;
long myarray[10]; // max of 10 entries in this array
long myarraycount; // actual number being used

} t_jit_foo;

long attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;
t_jit_object *attr = jit_object_new(_jit_sym_jit_attr_offset_array, "myarray",

_jit_sym_long, 10, attrflags, (method)0L, (method)0L,
calcoffset(t_jit_foo, myarraycount), calcoffset(t_jit_foo, myarray));

jit_class_addattr(_jit_foo_class, attr);

19.8 Attribute Notification

Although the subject of object registration and notification will be covered in greater
depth in a forthcoming chapter, it bears noting that attributes of all types (e.g. jit_-
attr_offset, jit_attr_offset_array and jit_attribute) will, if registered, automatically send
notifications to all attached client objects, each time the attribute’s value is set.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 20

Jitter Max Wrappers

20.1 Max Wrapper Classes

In order to expose the Jitter object to the Max patcher, a Max "wrapper" class must be
defined. For simple classes, this is largely facilitated by a handful of utility functions that
take a Jitter class and create the appropriate wrapper class with default functionality.
However, there are occasions which warrant additional intervention to achieve special
behavior, such as the use of additional inlets and outlets, integrating with MSP, con-
verting matrix information to and from Max lists, etc. The first Max wrapper class we’ll
demonstrate won’t have any extra complication beyond simply containing a basic Jitter
class.

In general it is preferable to design the Jitter class so that it knows nothing about the Max
patcher, and that any logic necessary to communicate with the patcher is maintained in
the Max wrapper class. In situations where this might seem difficult, this can typically
be accomplished by making special methods in the Jitter class that are only meant to
be called by the Max wrapper, or by using Jitter’s object notification mechanism, which
we’ll discuss in a future chapter. Below is the minimal Max wrapper class for the minimal
Jitter class shown in the last chapter.

typedef struct _max_jit_foo
{

t_object ob;
void *obex;

} t_max_jit_foo;

void *class_max_jit_foo;

void main()
{

void *p,*q;

// initialize the Jitter class
jit_foo_init();

// create the Max class as documented in Writing Max Externals
setup(&class_max_jit_foo,

(method) max_jit_foo_new,

104 Jitter Max Wrappers

(method) max_jit_foo_free,
(short)sizeof(t_max_jit_foo),
0L, A_GIMME, 0);

// specify a byte offset to keep additional information
p = max_jit_classex_setup(calcoffset(t_max_jit_foo, obex));

// look up the Jitter class in the class registry
q = jit_class_findbyname(gensym("jit_foo"));

// wrap the Jitter class with the standard methods for Jitter objects
max_jit_classex_standard_wrap(p, q, 0);

// add an inlet/outlet assistance method
addmess((method)max_jit_foo_assist, "assist", A_CANT,0);

}

void max_jit_foo_assist(t_max_jit_foo *x, void *b, long m, long a, char *s)
{

// no inlet/outlet assistance
}

void max_jit_foo_free(t_max_jit_foo *x)
{

// lookup the internal Jitter object instance and free
jit_object_free(max_jit_obex_jitob_get(x));

// free resources associated with the obex entry
max_jit_obex_free(x);

}

void *max_jit_foo_new(t_symbol *s, long argc, t_atom *argv)
{

t_max_jit_foo *x;
long attrstart;
void *o;

// create the wrapper object instance based on the
// max wrapper class, and the jitter class
if (x = (t_max_jit_foo *)max_jit_obex_new(class_max_jit_foo,

gensym("jit_foo")))
{

// add a general purpose outlet (rightmost)
max_jit_obex_dumpout_set(x, outlet_new(x,0L));

// get normal args if necessary
attrstart = max_jit_attr_args_offset(argc,argv);

// instantiate Jitter object
if (o = jit_object_new(gensym("jit_foo")))
{

// set internal jitter object instance
max_jit_obex_jitob_set(x,o);

// process attribute arguments
max_jit_attr_args(x,argc,argv);

}
else
{

// couldn’t instantiate, clean up and report an error
freeobject((void *)x);
x = NULL;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

20.2 Object Struct 105

error("jit.foo: out of memory");
}

}

return (x);
}

20.2 Object Struct

The first thing you must do is define your Max class object struct. As is typical, for
standard Max objects the first entry of the object struct must be of type t_object; for UI
objects, it must be of type t_jbox; for MSP objects, it must be of type t_pxobject; and
for MSP UI objects, it must be of type t_pxjbox. For more information on these different
Max object types, please consult the Max developer documentation. Jitter objects can
be wrapped within any of these object types.

You also need to define a pointer to point to extra information and resources needed to
effectively wrap your Jitter class. This is typically referred to as the "obex" data, and it
is where Jitter stores things like attribute information, the general purpose "dumpout",
the internal Jitter object instance, Matrix Operator resources for inlets/outlets, and other
auxiliary object information that is not required in a simple Max object. As of Max 4.5
there is also the facility for making use of such additional object information for ordinary
Max objects. At the time of this writing, such information is provided in the Pattr devel-
oper documentation, as it is relevant to the definition of object attributes, which may be
stored and operated upon by the patcher attribute suite of objects.

20.3 Defining Your Max Class

In your Max class registration, which takes place in your external’s main function, you
should begin by calling your Jitter class’s registration function, typically named some-
thing like your_object_name_init(). Then you should proceed to define the Max class’s
constructor, destructor, object struct size, and typed arguments as is typically accom-
plished for Max objects via the setup function. In order for your wrapper class to be
able to find the obex data, you need to specify a byte offset where this pointer is located
within each object instance and allocate the resource in which this is stored in your Max
class. This is accomplished with the max_jit_classex_setup() function. You should then
look up the Jitter class via jit_class_findbyname(), and wrap it via the max_jit_classex-
_standard_wrap() function. The max_jit_classex_standard_wrap() function will add all
typed methods defined in the Jitter class, as well getter and setter methods for attributes
that are not opaque (i.e. private), and all the methods that are common to Jitter objects
like getattributes, getstate, summary, importattrs, exportattrs, etc.

Now that you have wrapped the Jitter class, you can add any additional methods that
you wish, such as your inlet/outlet assistance method, or something specific to the -
Max object. Like Jitter objects, you can also add methods which have defer or usurp
wrappers, and these should be added via the max_addmethod_defer_low() or max_-
addmethod_usurp_low() functions, rather than simply using the traditional addmess()
function. C

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

106 Jitter Max Wrappers

20.4 Constructor

Inside the Max object constructor, there are a few things which are different than build-
ing an ordinary Max external. If your object is to respond to attribute arguments, the
constructor must be defined to take variable number of typed atom arguments, accom-
plished with the A_GIMME signature. You allocate your Max object with the max_jit-
_obex_new() function, instead of the traditional newobject function. You need to pass
your Jitter class name to the max_jit_obex_new() function, which also allocates and ini-
tializes your obex data. If successful, you should proceed to add your general purpose
"dumpout" outlet, used for returning attribute queries and other methods that provide
information like ∗jit.qt.movie∗’s framedump method’s frame number or read method
success code, with the max_jit_object_dumpout_set() function. If your object is a -
Matrix Operator that calls max_jit_mop_setup_simple() you will not need to explicitly call
max_jit_object_dumpout_set(), as max_jit_mop_setup_simple() calls max_jit_object_-
dumpout_set() internally.

You then allocate your Jitter object with jit_object_new(), and store it in your obex data
via max_jit_obex_jitob_set(). Note that this Jitter object instance can always be found
with the function max_jit_obex_jitob_get(). If you wish, prior to allocating your Jitter
object, you can look at your non-attribute arguments first — those arguments up to the
location returned by max_jit_attr_args_offset() — and make use of them in your Jitter
object constructor. It is typical to process attribute arguments after you’ve allocated both
the Max and Jitter object instances, with max_jit_attr_args(), which is passed the Max
object instance. If you wanted to use the attribute arguments somehow in your Jitter
object constructor, you would need to parse the attribute arguments yourself. If you are
not able to allocate your Jitter object (as is the case if you have run out of memory or if
Jitter is present but not authorized), it is important that you clean up your Max wrapper
object, and return NULL.

20.5 Destructor

In your Max object destructor, you additionally need to free your internal Jitter object
with jit_object_free(), and free any additional obex data with max_jit_obex_free(). Matrix
operators will typically require that max_jit_mop_free() is called, to free the resources al-
located for matrix inputs and outputs. If your object has attached to a registered object
for notification via jit_object_attach(), you should detach from that object in your de-
structor using jit_object_detach() to prevent invalid memory accesses as the registered
object might attempt to notify the memory of a now freed object. Object registration and
notification is discussed in further detail in following chapters.

20.6 Dumpout

The general purpose outlet, also known as "dumpout", is automatically used by the Max
wrapper object when calling attribute getters and several of the standard methods like
summary, or getattributes. It is also available for use in any other Max method you want,
most easily accessed with the max_jit_obex_dumpout() function that operates similar to

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

20.7 Additional inlets/outlets 107

outlet_anything(), but uses the max object pointer rather than the outlet pointer as the
first argument. The outlet pointer which has been set in your constructor can be queried
with the max_jit_obex_dumpout_get() function, and used in the standard outlet calls.
However, it is recommended for routing purposes that any output through the dumpout
outlet is a message beginning with a symbol, rather than simply a bang, int, or float.
Therefore, outlet_anything() makes the most sense to use.

20.7 Additional inlets/outlets

To add additional inlets and outlets to your Max external, a few things should be noted.
First, if your object is a Matrix Operator, matrix inlets and outlets will be added either
through either the high level max_jit_mop_setup_simple(), or lower level max_jit_mop-
_inputs() or max_jit_mop_outputs() calls. These Matrix Operator functions will be cov-
ered in the chapter on Matrix Operators. Secondly, if your object is an MSP object, all
signal inlets and outlets must be leftmost, and all non-signal inlets and outlets must be
to the right of any single inlets or outlets—i.e. they cannot be intermixed. Lastly, addi-
tional inlets should use proxies (covered in detail in the Max developer documentation)
so that your object knows which inlet a message has been received. This is accom-
plished with the max_jit_obex_proxy_new() function. The inlet number is zero based,
and you do not need to create a proxy for the leftmost inlet. Inside any methods which
need to know which inlet the triggering message has been received, you can use the
max_jit_obex_inletnumber_get() function.

20.8 Max Wrapper Attributes

Sometimes you will need additional attributes which are specific to the Max wrapper
class, but are not part of the internal Jitter class. Attributes objects for the Max wrapper
class are defined in the same way as those for the Jitter class, documented in the
previous chapter. However, these attributes are not added to the Max class with the jit_-
class_addattr() function, but instead with the max_jit_classex_addattr() function, which
takes the classex pointer returned from max_jit_classex_setup(). Attribute flags, and
custom getter and setter methods should be defined exactly as they would for the Jitter
class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

108 Jitter Max Wrappers

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 21

Matrix Operator QuickStart

The purpose of this chapter is to give a quick and high level overview of how to develop
a simple Matrix Operator (MOP), which can process the matrix type most commonly
used for video streams—i.e.

4 plane char data. For this task, we will use the jit.scalebias SDK example. More details
such as how to make a Matrix Operator which deals with multiple types, plane count,
dimensionality, inputs, outputs, etc. will appear in the following chapter. This chapter
assumes familiarity with Jitter’s multi-dimensional matrix representation and Matrix -
Operators used from the Max patcher, as discussed in the Jitter Tutorial, and as well as
the preceding chapters on the Jitter object model and Max wrapper classes.

21.1 Defining the MOP Jitter Class

In the Jitter class definition, we introduce a few new concepts for Matrix Operators. In
addition to the standard method and attribute definitions discussed in the Jitter object
model chapter, you will want to define things like how many inputs and outputs the
operator has, and what type, plane count, and dimension restrictions the operator has.
These are accomplished by creating an instance of the jit_mop class, setting some state
for the jit_mop object and adding this object as an adornment to your Jitter class. The
following code segment references the jit.scalebias SDK example.

// create a new instance of jit_mop with 1 input, and 1 output
mop = jit_object_new(_jit_sym_jit_mop,1,1);

// enforce a single type for all inputs and outputs
jit_mop_single_type(mop,_jit_sym_char);

// enforce a single plane count for all inputs and outputs
jit_mop_single_planecount(mop,4);

// add the jit_mop object as an adornment to the class
jit_class_addadornment(_jit_scalebias_class,mop);

You create your jit_mop instance in a similar fashion to creating your attribute instances,
using jit_object_new(). The jit_mop constructor has two integer arguments for inputs

110 Matrix Operator QuickStart

and outputs, respectively. By default, each MOP input and output is unrestricted in
plane count, type, and dimension, and also are linked to the plane count, type, and
dimensions of the first (i.e. leftmost) input. This default behavior can be overridden,
and this simple 4 plane, char type, jit.scalebias example enforces the corresponding
type and plane count restrictions via the jit_mop_single_type() and jit_mop_single_-
planecount() utility functions. For more information on the jit_mop class, please see the
following chapter on MOP details and the Jitter API reference.

Once you have created your jit_mop instance, and configured it according to the needs
of your object, you add it as an adornment to your Jitter class with the jit_class_add-
_adornment() function. Adornments are one way for Jitter objects to have additional
information, and in some instances behavior, tacked onto an existing class. Adornments
will be discussed in detail in a later chapter.

You also want to define your matrix calculation method, where most of the work of a
Matrix Operator occurs, with the jit_class_addmethod() function as a private, untyped
method bound to the symbol matrix_calc.

jit_class_addmethod(_jit_scalebias_class,
(method)jit_scalebias_matrix_calc,
"matrix_calc", A_CANT, 0L);

21.2 The Jitter Class Constructor/Destructor

You don’t need to add anything special to your Matrix Operator’s constructor or destruc-
tor, aside from the standard initialization and cleanup any Jitter object would need to
do. Any internal matrices for input and outputs are maintained, and only required, by
the Max wrapper’s asynchronous interface. The Jitter MOP contains no matrices for
inputs and outputs, but rather expects that the matrix calculation method is called with
all inputs and outputs synchronously. When used from languages like C, Java, and -
JavaScript, it is up to the programmer to maintain and provide any matrices which are
being passed into the matrix calculation method.

21.3 The Matrix Calculation Method

The most important method for Matrix Operators, and the one in which the most work
typically occurs is in the matrix calculation, or "matrix_calc" method, which should be
defined as a private, untyped method with the A_CANT type signature, and bound to
the symbol "matrix_calc". In this method your object receives a list of input matrices
and output matrices to use in its calculation. You need to lock access to these matrices,
inquire about important attributes, and ensure that any requirements with respect to
type, plane count, or dimensionality for the inputs are met before actually processing
the data, unlocking access to the matrices and returning. It should be defined as in the
following example.

t_jit_err jit_scalebias_matrix_calc(t_jit_scalebias *x,
void *inputs, void *outputs)

{

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

21.3 The Matrix Calculation Method 111

t_jit_err err=JIT_ERR_NONE;
long in_savelock,out_savelock;
t_jit_matrix_info in_minfo,out_minfo;
char *in_bp,*out_bp;
long i,dimcount,planecount,dim[JIT_MATRIX_MAX_DIMCOUNT];
void *in_matrix,*out_matrix;

// get the zeroth index input and output from
// the corresponding input and output lists
in_matrix = jit_object_method(inputs,_jit_sym_getindex,0);
out_matrix = jit_object_method(outputs,_jit_sym_getindex,0);

// if the object and both input and output matrices
// are valid, then process, else return an error
if (x&&in_matrix&&out_matrix)
{

// lock input and output matrices
in_savelock =

(long) jit_object_method(in_matrix,_jit_sym_lock,1);
out_savelock =

(long) jit_object_method(out_matrix,_jit_sym_lock,1);

// fill out matrix info structs for input and output
jit_object_method(in_matrix,_jit_sym_getinfo,&in_minfo);
jit_object_method(out_matrix,_jit_sym_getinfo,&out_minfo);

// get matrix data pointers
jit_object_method(in_matrix,_jit_sym_getdata,&in_bp);
jit_object_method(out_matrix,_jit_sym_getdata,&out_bp);

// if data pointers are invalid, set error, and cleanup
if (!in_bp) { err=JIT_ERR_INVALID_INPUT; goto out;}
if (!out_bp) { err=JIT_ERR_INVALID_OUTPUT; goto out;}

// enforce compatible types
if ((in_minfo.type!=_jit_sym_char) ||

(in_minfo.type!=out_minfo.type))
{

err=JIT_ERR_MISMATCH_TYPE;
goto out;

}

// enforce compatible planecount
if ((in_minfo.planecount!=4) ||

(out_minfo.planecount!=4))
{

err=JIT_ERR_MISMATCH_PLANE;
goto out;

}

// get dimensions/planecount
dimcount = out_minfo.dimcount;
planecount = out_minfo.planecount;
for (i=0;i<dimcount;i++)
{

// if input and output are not matched in
// size, use the intersection of the two
dim[i] = MIN(in_minfo.dim[i],out_minfo.dim[i]);

}

// calculate, using the parallel utility function to
// call the calculate_ndim function in multiple

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

112 Matrix Operator QuickStart

// threads if there are multiple processors available
jit_parallel_ndim_simplecalc2(

(method)jit_scalebias_calculate_ndim,
x, dimcount, dim, planecount,
&in_minfo, in_bp, &out_minfo, out_bp,
0, 0);

} else {
return JIT_ERR_INVALID_PTR;

}

out:
// restore matrix lock state to previous value
jit_object_method(out_matrix,_jit_sym_lock,out_savelock);
jit_object_method(in_matrix,_jit_sym_lock,in_savelock);
return err;

}

21.4 Processing N-Dimensional Matrices

Since Jitter supports the processing of N-dimensional matrices where N can be any
number from 1 to 32, most Matrix Operators are designed with a recursive function that
will process the data in some lower dimensional slice, most often 2 dimensional. The
recursive function that does this is typically named myobject_calculate_ndim(), and is
called by your matrix_calc method either directly or via one of the parallel processing
utility functions, which are discussed in a future chapter.

It is out of the scope of this documentation to provide a detailed tutorial on fixed point
or pointer arithmetic, both of which are used in this example. The code increments a
pointer through the matrix data, scaling each planar element of each matrix cell by some
factor and adding some bias amount. This is done with fixed point arithmetic (assuming
an 8bit fractional component), since a conversion from integer to floating point data and
back is an expensive operation. The jit.scalebias object also has two modes, one which
sums the planes together, and one which processes each plane independently. You
can improve performance by case handling on a per row, rather than per cell basis, and
reduce your code somewhat by case handling on a per row, rather than per matrix basis.
While a slight performance increase could be made by handling on a per matrix basis,
per row is usually a decent point at which to make such an optimization trade off.

// recursive function to handle higher dimension matrices,
// by processing 2D sections at a time
void jit_scalebias_calculate_ndim(t_jit_scalebias *x,

long dimcount, long *dim, long planecount,
t_jit_matrix_info *in_minfo, char *bip,
t_jit_matrix_info *out_minfo, char *bop)

{
long i,j,width,height;
uchar *ip,*op;
long ascale,rscale,gscale,bscale;
long abias,rbias,gbias,bbias,sumbias;
long tmp;

if (dimcount<1) return; //safety

switch(dimcount)
{

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

21.4 Processing N-Dimensional Matrices 113

case 1:
// if only 1D, interpret as 2D, falling through to 2D case
dim[1]=1;

case 2:
// convert floating point scale factors to a fixed point int
ascale = x->ascale*256.;
rscale = x->rscale*256.;
gscale = x->gscale*256.;
bscale = x->bscale*256.;

// convert floating point bias values to a fixed point int
abias = x->abias*256.;
rbias = x->rbias*256.;
gbias = x->gbias*256.;
bbias = x->bbias*256.;

// for efficiency in sum mode (1), make a single bias value
sumbias = (x->abias+x->rbias+x->gbias+x->bbias)*256.;

width = dim[0];
height = dim[1];

// for each row
for (i=0;i<height;i++)
{

// increment data pointers according to byte stride
ip = bip + i*in_minfo->dimstride[1];
op = bop + i*out_minfo->dimstride[1];

switch (x->mode) {
case 1:

// sum together, clamping to the range 0-255
// and set all output planes
for (j=0;j<width;j++) {

tmp = (long)(*ip++)*ascale;
tmp += (long)(*ip++)*rscale;
tmp += (long)(*ip++)*gscale;
tmp += (long)(*ip++)*bscale;
tmp = (tmp>>8L) + sumbias;
tmp = (tmp>255)?255:((tmp<0)?0:tmp);

*op++ = tmp;

*op++ = tmp;

*op++ = tmp;

*op++ = tmp;
}
break;

default:
// apply to each plane individually
// clamping to the range 0-255
for (j=0;j<width;j++) {

tmp = (((long)(*ip++)*ascale)>>8L)+abias;

*op++ = (tmp>255)?255:((tmp<0)?0:tmp);
tmp = (((long)(*ip++)*rscale)>>8L)+rbias;

*op++ = (tmp>255)?255:((tmp<0)?0:tmp);
tmp = (((long)(*ip++)*gscale)>>8L)+gbias;

*op++ = (tmp>255)?255:((tmp<0)?0:tmp);
tmp = (((long)(*ip++)*bscale)>>8L)+bbias;

*op++ = (tmp>255)?255:((tmp<0)?0:tmp);
}
break;

}
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

114 Matrix Operator QuickStart

break;
default:

// if processing higher dimension than 2D,
// for each lower dimensioned slice, set
// base pointer and recursively call this function
// with decremented dimcount and new base pointers
for (i=0;i<dim[dimcount-1];i++)
{

ip = bip + i*in_minfo->dimstride[dimcount-1];
op = bop + i*out_minfo->dimstride[dimcount-1];
jit_scalebias_calculate_ndim(x,dimcount1,

dim,planecount,in_minfo,ip,out_minfo,op);
}

}
}

Rather than using multidimensional arrays, Jitter matrix data is packed in a single di-
mensional array, with defined byte strides for each dimension for greatest flexibility. This
permits matrices to reference subregions of larger matrices, as well as support data
that is not tightly packed. Therefore, rather than using multidimensional array syntax,
this code uses pointer arithmetic to access each plane of each cell of the matrix, adding
the corresponding byte strides to the base pointer for each dimension across which it
is iterating. These byte strides are stored in the dimstride entry of the t_jit_matrix_info
struct. Note that Jitter requires that planes within a cell, and cells across the first dimen-
sion (dim[0]) are tightly packed. The above code assumes that this is the case, using a
simple pointer increment for each plane and cell, rather than looking up byte strides for
dim[0].

21.5 Defining the MOP Max Wrapper Class

In order to use the MOP class in a Max patcher you need to make a Max wrapper
class. In addition to the standard methods used to wrap any Jitter class, MOPs need
to add special methods and information to the Max class. One of the things that needs
to happen is that the Max wrapper class needs to allocate and maintain instances of
jit.matrix for each matrix input and output other than the leftmost input, to accommodate
Max’s asynchronous event model. In order to perform this maintenance, the Max wrap-
per class must have special methods and attributes for setting the type, plane count,
dimensions, adaptability, and named references for the internal matrices. All of these
messages are exclusive to the Max wrapper implementation, and are not used by the
C, Java, or JavaScript usage of Matrix Operators. There are also common methods
and attributes for the matrix output mode, and the jit_matrix and bang messages, all of
which are specific to the MOP’s Max wrapper. These special attributes and methods
are added by the max_jit_classex_mop_wrap() function, which should be called inside
your Max external’s main function, after calling max_jit_classex_setup() and jit_class-
_findbyname(), and before calling max_jit_classex_standard_wrap(). Several default
methods and attributes can be overridden using the various flags that can be combined
for the flags argument to max_jit_classex_mop_wrap(). These flags, which for most
simple MOPs won’t be necessary, are listed below.

#define MAX_JIT_MOP_FLAGS_OWN_ALL 0xFFFFFFFF
#define MAX_JIT_MOP_FLAGS_OWN_JIT_MATRIX 0x00000001

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

21.6 The Max Class Constructor/Destructor 115

#define MAX_JIT_MOP_FLAGS_OWN_BANG 0x00000002
#define MAX_JIT_MOP_FLAGS_OWN_OUTPUTMATRIX 0x00000004
#define MAX_JIT_MOP_FLAGS_OWN_NAME 0x00000008
#define MAX_JIT_MOP_FLAGS_OWN_TYPE 0x00000010
#define MAX_JIT_MOP_FLAGS_OWN_DIM 0x00000020
#define MAX_JIT_MOP_FLAGS_OWN_PLANECOUNT 0x00000040
#define MAX_JIT_MOP_FLAGS_OWN_CLEAR 0x00000080
#define MAX_JIT_MOP_FLAGS_OWN_NOTIFY 0x00000100
#define MAX_JIT_MOP_FLAGS_OWN_ADAPT 0x00000200
#define MAX_JIT_MOP_FLAGS_OWN_OUTPUTMODE 0x00000400

21.6 The Max Class Constructor/Destructor

Inside your Max class’ constructor you need to allocate the matrices necessary for the
MOP inputs and outputs, the corresponding matrix inlets and outlets, process matrix ar-
guments and other MOP setup. The max_jit_mop_setup_simple() function takes care of
these functions and some of the other necessary tasks of wrapping your Jitter instance.
As such, the use of this function simplifies your Jitter class wrapping even further for the
simple case where no special behavior, incompatible with max_jit_mop_setup_simple()
is required. Here is the constructor for the Max class of the jit.scalebias object.

void *max_jit_scalebias_new(t_symbol *s, long argc, t_atom *argv)
{

t_max_jit_scalebias *x;
void *o;

if (x = (t_max_jit_scalebias *)
max_jit_obex_new(
max_jit_scalebias_class,
gensym("jit_scalebias")))

{
// instantiate Jitter object
if (o=jit_object_new(gensym("jit_scalebias")))
{

// handle standard MOP max wrapper setup tasks
max_jit_mop_setup_simple(x,o,argc,argv);

// process attribute arguments
max_jit_attr_args(x,argc,argv);

}
else
{

error("jit.scalebias: could not allocate object");
freeobject(x);

}
}
return (x);

}

Below is the listing of the max_jit_mop_setup_simple() function, demonstrating the
smaller pieces, it manages for you. If your object has special requirements, you can
use whatever subset of the following function as necessary.

t_jit_err max_jit_mop_setup_simple(void *x, void *o, long argc, t_atom *argv)
{

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

116 Matrix Operator QuickStart

max_jit_obex_jitob_set(x,o);
max_jit_obex_dumpout_set(x,outlet_new(x,NULL));
max_jit_mop_setup(x);
max_jit_mop_inputs(x);
max_jit_mop_outputs(x);
max_jit_mop_matrix_args(x,argc,argv);

return JIT_ERR_NONE;
}

In your Max class’ destructor, you need to free the resources allocated for your MO-
P. This is accomplished with the max_jit_mop_free() function, which should be called
before you free your internal Jitter instance, and your Max class’ obex data. As an
example, the jit.scalebias destructor is listed below.

void max_jit_scalebias_free(t_max_jit_scalebias *x)
{

// free MOP max wrapper resources
max_jit_mop_free(x);

// lookup internal Jitter object instance and free
jit_object_free(max_jit_obex_jitob_get(x));

// free resources associated with obex entry
max_jit_obex_free(x);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 22

Matrix Operator Details

The purpose of this chapter is to fill in the details of what a Matrix Operator is and how
it works.

Matrix data in Jitter is typically considered raw data without respect to what the data
represents. This permits simple fundamental operations to be applied to different sorts
of data without needing to know any special information. For this reason most MOPs
are general purpose. The jit.scalebias example from the preceding chapter could be
considered video specific in its terminology, and type and plane count restrictions, but
fundamentally it is just calculating a product and sum on each plane of an incoming
matrix. In this chapter, we’ll cover the details of how to configure MOP inputs and
outputs, any attribute restrictions or linking for those inputs and outputs, what you must
do in your matrix_calc method and how you expose your MOP to the Max environment,
overriding default behavior if necessary.

22.1 Defining the MOP Jitter Class

As discussed in the Matrix Operator Quick Start, for MOPs you must create an instance
of jit_mop with the jit_object_new() function and add it to your Jitter class as an adorn-
ment with the jit_class_addadornment() function. The jit_mop object holds information
such as how many inputs and outputs the object has, what types, plane count, and di-
mension counts are supported, and how inputs should respond to incoming matrices.
This information is only relevant to wrappers of the Jitter object which actually maintain
additional matrices for inputs and outputs, as is the case with the MOP Max wrapper
class. When used from C, Java, or JavaScript, it is the the programmer’s responsibility
to pass in matrices that conform to any restrictions imposed by the MOP. An example of
instantiating and adding the jit_mop object is below.

// create a new instance of jit_mop with 1 input, and 1 output
mop = jit_object_new(_jit_sym_jit_mop,1,1);

// add jit_mop object as an adornment to the class
jit_class_addadornment(_jit_your_class,mop);

118 Matrix Operator Details

22.2 The jit mop io Object

Each instance of jit_mop contains some number of inputs and outputs, specified by the
input and output arguments to the constructor. For each of these inputs and outputs
there is an instance of jit_mop_io which records information specific to that input or
output, such as type, plane count, and dimension restrictions. You can access the input
or output objects by calling the getinput or getoutput methods with an integer index
argument as below:

input = jit_object_method(mop,_jit_sym_getinput,1);
output = jit_object_method(mop,_jit_sym_getoutput,1);

Once you have obtained references to these inputs or outputs, you may query or set
the jit_mop_io attributes. The attributes typically configured are: types, which is a list
of symbols of permitted types, the first of which being the default; mindim and maxdim,
which are the minimum and maximum permitted sizes for each dimension; mindim-
count and maxdimcount, which are the minimum and maximum permitted number of
dimensions permitted; minplanecount and maxplanecount, which are the minimum and
maximum number of planes permitted; typelink, which is the flag that determines if the
I/O should change its type to whatever the leftmost incoming matrix is; dimlink, which is
the flag that determines if the I/O should change its dimensions to whatever the leftmost
incoming matrix is; and planelink, which is the flag that determines if the I/O should
change its plane count to whatever the leftmost incoming matrix is.

22.3 Restricting Input/Output Attributes

By default, all types, dimensions and plane count are permitted, and all linking is en-
abled. If you wish your MOP to have some specific restrictions, or difference in linking
behaviors for any input or output in particular, you can set the corresponding attributes.
For example, to set the plane count to always be four planes, you would set both the
minplanecount and maxplanecount attributes to 4, as below:

output = jit_object_method(mop,_jit_sym_getoutput,1);
jit_attr_setlong(output,_jit_sym_minplanecount,4);
jit_attr_setlong(output,_jit_sym_maxplanecount,4);

The jit.scalebias example could have set the planecount using the minplanecount
and maxplanecount attributes rather than calling the utility function jit_mop_single_-
planecount(), which internally sets these attributes. A similar thing could be done to
restrict type and dimensions. As for linking, if you wish to develop an object where the
right hand input does not adapt to the size of the leftmost input, as is the case with
jit.convolve, you would turn off the dimlink attribute, as below:

input2 = jit_object_method(mop,_jit_sym_getinput,2);
jit_attr_setlong(input2,_jit_sym_dimlink,0);

Similar could be done to remove type and planecount linking, and the utility functions
jit_mop_input_nolink() and jit_mop_output_nolink() set all of these link attributes to false
(zero).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.4 The ioproc Function 119

22.4 The ioproc Function

For right hand matrix inputs, incoming data is typically copied by the MOP Max wrapper
class. When an incoming matrix is received by the MOP Max wrapper class, a function
called the ioproc is called, and the default ioproc copies the data, using the current
input attributes (which might be linked to the lefthand input). The default ioproc can
be overridden by calling the ioproc method followed by a function with the signature as
listed below in the jit_mop_ioproc_copy_adapt() function. The jit_mop_ioproc_copy_-
adapt() function will always adapt to that inlet’s incoming matrix attributes, as long as
they don’t conflict with any restrictions. The SDK project for jit.concat demonstrates the
use of the jit_mop_ioproc_copy_adapt() function.

t_jit_err jit_mop_ioproc_copy_adapt(void *mop, void *mop_io, void *matrix)
{

void *m; // destination matrix
t_jit_matrix_info info;

// look up destination matrix from mop_io
if (matrix&&(m=jit_object_method(mop_io,_jit_sym_getmatrix)))
{

// retrieve incoming matrix info
jit_object_method(matrix,_jit_sym_getinfo,&info);

//restrict matrix info based on mop_io attribtues
jit_object_method(mop_io,_jit_sym_restrict_type,&info);
jit_object_method(mop_io,_jit_sym_restrict_dim,&info);
jit_object_method(mop_io,_jit_sym_restrict_planecount,&info);

// set destination matrix info
jit_object_method(m,_jit_sym_setinfo,&info);

// copy the data with the frommatrix method
jit_object_method(m,_jit_sym_frommatrix,matrix,NULL);

}

return JIT_ERR_NONE;
}

22.5 Variable Inputs/Outputs

You can specify variable input/output MOPs with a negative argument for input and/or
outputs when constructing your jit_mop object. When the using variable inputs and/or
outputs, there is not a jit_mop_io for each input and/or output within your class definition,
and therefore the template type, dim, planecount, and linking attributes are not settable.
If anything but the default behavior is required, you must accomplished it in another way
— for example, either by overriding the jit_matrix method of the MOP Max wrapper class,
or defining an mproc method to be called from within the standard jit_matrix method of
the MOP Max wrapper class. The jit.pack, jit.unpack, jit.scissors, and jit.glue objects
are a few SDK examples of MOPs with variable inputs and outputs. More information
on overriding the jit_matrix, mproc, and other default methods of the MOP Max wrapper
class is covered later in this chapter.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

120 Matrix Operator Details

22.6 Adding jit mop as a Class Adornment

Once you have configured all of the inputs and outputs of your jit_mop object, you must
add your jit_mop object to your Jitter class with the jit_class_addadornment() func-
tion. Adorments can be queried from the Jitter class at any time by calling jit_class-
_adornment_get() with the Jitter class pointer and the class name of the adornment
object, as demonstrated below.

// add jit_mop object as an adornment to the class
jit_class_addadornment(_jit_your_class,mop);

// look up jit_mop adornment
mop = jit_class_adornment_get(_jit_your_class,_jit_sym_jit_mop);

22.7 The Matrix Calculation Method

The entry point of the MOP Jitter class is the matrix_calc method, which is passed a list
of matrices for the input, and a list of matrices for the output. It is not the responsibility
of the matrix_calc method to perform any copying and adaptation behavior, but rather
simply ensure that the matrices are valid, compatible, and if so, process. Certain objects
may modify the dim, type, or planecount of the output matrices — e.g. the SDK project,
jit.thin. However, it is the calling party’s responsibility to perform any copying and confor-
mance to MOP I/O restrictions as defined by the jit_mop_io objects—i.e. either the Max
wrapper class, or the C, Java, or Javascript code which calls the matrix_calc method.

22.8 Accessing the Input and Output Lists

The input and output lists passed as arguments to your matrix_calc method are Jitter
objects, and pointers to the individual inputs and outputs are acquired by calling the
getindex method with an integer argument specifying the zero based list index. The
return values should be tested to make sure they are not null. For example:

// get the zeroth index input and output from
// the corresponding input and output lists
in_matrix = jit_object_method(inputs,_jit_sym_getindex,0);
out_matrix = jit_object_method(outputs,_jit_sym_getindex,0);

// if the object and both input and output matrices
// are valid, then process, else return an error
if (x&&in_matrix&&out_matrix)
{

// ... process data ...

} else {
return JIT_ERR_INVALID_PTR;

}

Technically, you can also pass in an instance of jit_matrix in place of a list for the input
or output arguments, since jit_matrix has a getindex method which returns the jit_matrix

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.9 Locking and Unlocking Matrices 121

instance. This is an example of dynamic binding at work. Another example of dynamic
binding inside the matrix_calc method is that the list elements might be instances of jit_-
mop_io, rather than instances of jit_matrix. However, since Jitter uses dynamic binding
and the jit_mop_io object is a "decorator" class for jit_matrix, all corresponding methods
are passed on to the jit_matrix referenced by the jit_mop_io. In fact, any Jitter objects
which respond to the standard interface for jit_matrix could be passed as inputs or out-
puts. If this seems confusing, you need not think about the underlying implementation
further, but instead can assume that what is being passed in is simply an instance of
jit_matrix. After all it should behave like one, even if it is not.

22.9 Locking and Unlocking Matrices

Prior to working with a matrix, it is necessary to "lock" it so that the data and attributes
will not be changed across the duration of the operation. This is accomplished by calling
the jit_matrix instance’s lock method with an integer argument of 1 (true) to lock the
matrix. You should store the current lock state to restore when you’re done processing.
The lock operation should be the first thing to do after ensuring that the matrix objects
are not NULL. For example

// lock input and output matrices
in_savelock = (long) jit_object_method(in_matrix,_jit_sym_lock,1);
out_savelock = (long) jit_object_method(out_matrix,_jit_sym_lock,1);

// ... process data ...

out:
// restore matrix lock state to previous value
jit_object_method(out_matrix,_jit_sym_lock,out_savelock);
jit_object_method(in_matrix,_jit_sym_lock,in_savelock);

22.10 Retrieving Matrix Information

Once you have locked the matrices, you are ready to find out some information about
them. This is accomplished by calling the getinfo method with a pointer to an instance
of the t_jit_matrix_info struct. The t_jit_matrix_info struct contains several common at-
tributes of the matrix and data organization of the matrix data, and is a useful way to ob-
tain this information in one call, rather than querying each attribute individually. This in-
formation is typically tested to verify compatibility with any assumptions the matrix_calc
method needs to make (since this method might be called from C, Java, or Javascript,
you cannot assume that the MOP Max wrapper will have enforced these assumptions).
It is also used to perform the appropriate pointer arithmetic based on type, plane count,
dimensions, and the byte stride of those dimensions, since higher dimensions may not
be tightly packed. The t_jit_matrix_info struct is listed below:

typedef struct _jit_matrix_info
{

long size; // in bytes (0xFFFFFFFF=UNKNOWN)
t_symbol *type; // primitive type
long flags; // matrix flags: my data?, handle?

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

122 Matrix Operator Details

long dimcount; // # of dimensions
long dim[JIT_MATRIX_MAX_DIMCOUNT]; // dimension sizes
long dimstride[JIT_MATRIX_MAX_DIMCOUNT]; // in bytes
long planecount; // # of planes

} t_jit_matrix_info;

And here is an example of calling the getinfo method to fill out the t_jit_matrix_info struct:

// fill out matrix info structs for input and output
jit_object_method(in_matrix,_jit_sym_getinfo,&in_minfo);
jit_object_method(out_matrix,_jit_sym_getinfo,&out_minfo);

22.11 Retrieving the Data Pointer

The t_jit_matrix_info struct is the meta data, but the actual matrix data can be ac-
cessed by acquiring the data pointer. You accomplish this by calling the matrix’s getdata
method, passing in a pointer to a pointer. This pointer can be any type, but it is typically
a char (or byte) pointer since you may need to perform bytewise pointer arithmetic de-
pending on the type and dimstride of your matrix. It is essential to verify that this pointer
is valid before attempting to operate on the data, as demonstrated below.

// get matrix data pointers
jit_object_method(in_matrix,_jit_sym_getdata,&in_bp);
jit_object_method(out_matrix,_jit_sym_getdata,&out_bp);

// if data pointers are invalid, set error, and cleanup
if (!in_bp) { err=JIT_ERR_INVALID_INPUT; goto out;}
if (!out_bp) { err=JIT_ERR_INVALID_OUTPUT; goto out;}

22.12 Processing the Data

While it is possible to incorporate the data processing code inside the matrix_calc
method, it is typical to rely on other routines to accomplish the N dimensional processing
through recursion, potentially dispatching to multiple processors. The N-dimensional re-
cursive processing function (typically named myobject_calculate_ndim) is discussed in
the next section. You should pass in to the calculate_ndim function your object pointer,
the overall dimension count, dimension sizes, planecount to consider in your calcula-
tion, together with the necessary matrix info structs and data pointers for each input
and output. You can call this method directly as is the case in the following code:

// call calculate_ndim function directly in current thread
jit_scalebias_calculate_ndim(x, dimcount, dim, planecount,

&in_minfo, in_bp, &out_minfo, out_bp);

Or you can call this method with the parallel processing utility functions provided with
Jitter 1.5 to automatically dispatch the processing of large matrices across multiple pro-
cessors when available. This figure illustrates the dispatching and calculating of the
parallel processing utility:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.13 Processing N-Dimensional Matrices 123

The parallel processing is accomplished by breaking up the matrix into smaller matrices
that each reference subregions of the original inputs and outputs. No new objects are
created, but rather just additional t_jit_matrix_info structs and offset data pointers. Jitter
1.5 maintains a pool of worker threads for this purpose, so there is no thread creation
overhead, but rather only some small thread synchronization overhead. Jitter 1.5 only
dispatches across multiple threads when the data count is large enough to justify this
thread synchronization overhead.

An important thing worth noting is that if your object performs some kind of spatial
operation (e.g. convolution, rotation, scaling, etc.), you will either need to account for
the matrix segmentation used by the parallel utilities or avoid using parallel processing
and call directly in the current thread. Since the jit.scalebias example only processes
one pixel at a time (i.e. a pointwise operation), it is inherently parallelizable, so it takes
advantage of multiple processors as below:

// calculate, using the parallel utility function to
// call the calculate_ndim function in multiple
// threads if there are multiple processors available
jit_parallel_ndim_simplecalc2(

(method)jit_scalebias_calculate_ndim,
x, dimcount, dim, planecount,
&in_minfo, in_bp, &out_minfo, out_bp,
0, 0);

Important Note: If you aren’t sure if your object is a pointwise operator, or don’t fully
understand how to make your algorithm parallelizable, you shouldn’t use the parallel
utility functions in your object. You should simply call the function directly.

22.13 Processing N-Dimensional Matrices

In the Matrix Operator Quick Start chapter, we discussed how to define a recursive
function to process N-dimensional data in 2D slices, using the jit.scalebias object as
an example. This example was restricted to processing four plane char data, but many
Jitter objects work with any type of data and any plane count. In order to support all
types and plane counts, there needs to be some case handling to know how to step
through the data, and what type data to interpret as so that you can perform the appro-
priate operations. There are a number of ways to approach this logic, and decisions to
make with respect to optimization. All this case handling can be a bit cumbersome, so
when initially developing objects, it probably makes sense for you to focus on a single
type and plane count, and only after you’ve adequately defined your operation, attempt
to make your code robust to process any type of data and consider optimization of cer-
tain cases. The use of C macros, or C++ templates might be useful things to explore
for better code re-use. As for code optimization, typically a decent atomic element to try
and optimize is the "innermost" loop, avoiding branch conditions where possible.

This function is at the heart of the logic you will add in your own custom object. Since
there is no "right way" to process this data, we won’t cover any more code listings for
the recursive N-dimensional processing function. However, the SDK projects that are
good examples include: jit.clip, which performs a planar independent, pointwise opera-
tion (limiting numbers to some specified range); jit.rgb2luma, which performs a planar

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

124 Matrix Operator Details

dependent, pointwise operation (converting RGB color to luminance); and jit.transpose,
which performs a planar independent, spatial operation (rows become columns). For
more ideas about N-dimensional matrix processing, we would recommend reading one
of the several books available on 2D signal processing and/or image processing. Most
of these concepts are easily generalized to higher dimensions.

22.14 Defining the MOP Max Wrapper Class

MOP Max wrapper classes typically have a large amount of default behavior, as setup
through the max_jit_classex_mop_wrap function, based on the jit_mop Jitter class
adornment, and user specified flags. You can either override all of the default behavior
or just specific features. If you wish to override all of the default behavior, you can use
the flag MAX_JIT_MOP_FLAGS_OWN_ALL, when calling the max_jit_classex_mop_-
wrap() function. If you need to make use of the jit_mop adornment(), the jit_mop can
be looked up by calling the jit_class_adornment_get() method on the Jitter class. The
jit_mop_io inputs and outputs can be queried and their attributes inspected, similar to
how they were set in the MOP Jitter class definition, described earlier in this chapter.
Here is an example of how to look up the jit_mop adornment of the jit.scalebias object:

// look up jitter class by name
jclass = jit_class_findbyname(gensym("jit_scalebias"));
// look up jit_mop adornment
mop = jit_class_adornment_get(jclass,_jit_sym_jit_mop);

22.15 Overriding the jit matrix Method

By default, a jit_matrix method is added which automatically manages matrix copying
and calculation based on the incoming data. Most typical MOPs simply use the default
jit_matrix method. However there are instances where it is necessary to override the
default MOP method to get special behavior, such as recording which matrix input data
is being input to as is the case for the jit.op SDK example, or to do something other
than standard copying and adaptation as is the case for the jit.pack or jit.str.op SDK
examples, or to prevent any jit_matrix method at all, as is the case for the jit.noise SDK
example. To prevent the default jit_matrix method from being defined, you can use the
flag MAX_JIT_MOP_FLAGS_OWN_JIT_MATRIX, when calling the max_jit_classex_-
mop_wrap() function. To define your own jit_matrix method, you can add an A_GIMME
method bound to the symbol jit_matrix, in your main function. Here’s an example from
jit.op:

// add custom jit_matrix method in main()
addmess((method)max_jit_op_jit_matrix, "jit_matrix", A_GIMME, 0);

void max_jit_op_jit_matrix(t_max_jit_op *x, t_symbol *s, short argc,
t_atom *argv)

{
if (max_jit_obex_inletnumber_get(x))
{

// if matrix is received in right input,
// record to override float or int input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.16 Overriding the bang and outputmatrix Methods 125

x->last = OP_LAST_MATRIX;
}

// now pass on to the default jit_matrix method
max_jit_mop_jit_matrix(x,s,argc,argv);

}

The jit.pack and jit.str.op examples are a bit more involved and also better illustrate the
kinds of tasks the default jit_matrix method performs.

22.16 Overriding the bang and outputmatrix Methods

A MOP Max wrapper class typically has a bang and outputmatrix method. These two
methods are typically equivalent, and by default, both send out the most recently calcu-
ated matrix output. Certain objects that don’t have a matrix output, like the jit.3m SDK
example, typcially override these messages with their own bang and sometimes out-
putmatrix method. These methods can be overridden by using the MAX_JIT_MOP_FL-
AGS_OWN_BANG and MAX_JIT_MOP_FLAGS_OWN_OUTPUTMATRIX flags when
calling the max_jit_classex_mop_wrap() function. These flags are typically both passed
in together.

22.17 Overriding the name, type, dim, and planecount Attributes

For each input and output, other than the leftmost input, there is, by default, an attribute
added to query and set that input or output’s matrix attributes, including name, type, dim,
and planecount. While overriding the default attribute behavior is conceivably necessary
to perform very specialized behavior, it is not used by any of the SDK examples. To
prevent the addition of the default attributes for name, type, dim, and planecount, you
can use the MAX_JIT_MOP_FLAGS_OWN_NAME, MAX_JIT_MOP_FLAGS_OWN_-
TYPE, MAX_JIT_MOP_FLAGS_OWN_DIM, and MAX_JIT_MOP_FLAGS_OWN_PLA-
NECOUNT flags when calling the max_jit_classex_mop_wrap() function. To define your
own attributes, you would follow the same means of defining any attributes for a Max
wrapper class with the appropriate attribute name you wish to override.

22.18 Overriding the clear and notify Methods

By default, a clear and a notify method are added. The default clear method clears
each of the input and output matrices. The default notify method, max_jit_mop_notify(),
is called whenever any of the matrices maintained by the MOP are changed. If it is
necessary to respond to additional notifications, it is important to call the max_jit_mop-
_notify function so that the MOP can perform any necessary maintenance with respect
to input and output matrices, as demonstrated by the jit.notify SDK example. These
methods can be overridden using the MAX_JIT_MOP_FLAGS_OWN_CLEAR and M-
AX_JIT_MOP_FLAGS_OWN_NOTIFY flags, respectively, when calling the max_jit_-
classex_mop_wrap() function. Object registration and notification is covered in detail in
a future chapter, but the jit.notify notify method is provided as an example.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

126 Matrix Operator Details

// s is the servername, msg is the message, ob is the server object pointer,
// and data is extra data the server might provide for a given message
void max_jit_notify_notify(

t_max_jit_notify *x, t_symbol *s, t_symbol *msg, void *ob, void *data)
{

if (msg==gensym("splat")) {
post("notify: server=%s message=%s",s->s_name,msg->s_name);
if (!data) {

error("splat message NULL pointer");
return;

}
// here’s where we output using the rightmost outlet
// we just happen to know that "data" points to a t_atom[3]
max_jit_obex_dumpout(x,msg,3,(t_atom *)data);

} else {
// pass on to the default Max MOP notification method
max_jit_mop_notify(x,s,msg);

}
}

22.19 Overriding the adapt and outputmode Attributes

By default, adapt and outputmode attributes are added to the MOP Max Wrapper. -
These attributes determine whether or not to adapt to incoming matrix attributes, and
whether or not the output should calculate a new output matrix, output the last calculated
matrix (freeze), pass on the input matrix (bypass). To prevent the addition of the default
attributes for adapt and outputmode, you can use the MAX_JIT_MOP_FLAGS_OWN-
_ADAPT, and MAX_JIT_MOP_FLAGS_OWN_OUTPUTMODE flags when calling the
max_jit_classex_mop_wrap() function. To define your own attributes, you would follow
the same means of defining any attributes for a Max wrapper class with the appropriate
attribute name you wish to override.

22.20 Defining an mproc Method

For many types of operations, it’s not required to fully override the default jit_matrix
method and any adaptation. If your object simply needs to override the way in which
the Jitter class’ matrix_calc method and outlet functions are called, you can do so by
defining an mproc method, which will be called instead of the default behavior. The jit.-
3m SDK project is an example where after it calls the Jitter class’ matrix_calc method,
it queries the Jitter class’ attributes and outputs max messages rather than the default
jit_matrix message output.

void max_jit_3m_mproc(t_max_jit_3m *x, void *mop)
{

t_jit_err err;

// call internal Jitter object’s matrix_calc method
if (err=(t_jit_err) jit_object_method(

max_jit_obex_jitob_get(x),
_jit_sym_matrix_calc,
jit_object_method(mop,_jit_sym_getinputlist),
jit_object_method(mop,_jit_sym_getoutputlist)))

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.21 The Max Class Constructor/Destructor 127

{
// report error if present
jit_error_code(x,err);

} else {
// query Jitter class and makes outlet calls
max_jit_3m_bang(x);

}
}

22.21 The Max Class Constructor/Destructor

As we discussed in the Matrix Operator Quick Start, inside your Max class’ constructor
you need to allocate the matrices necessary for the MOP inputs and outputs, the cor-
responding matrix inlets and outlets, process matrix arguments and other MOP setup.
And in your destructor, you need to free oup MOP resources. Typically you would ac-
complish this all with the standard max_jit_mop_setup_simple() and max_jit_mop_free()
functions, however there are some instances where you may need to introduce custom
behavior.

22.21.1 Variable Inputs/Outputs

The max_jit_mop_setup_simple() function calls max_jit_mop_inputs() and max_jit_-
mop_outputs() to define any necessary proxy inlets, outlets, and internal matrices. The
listing for these functions are provided below to illustrate the default behavior, and a few
SDK projects we recommend investigating further are jit.scissors, jit.glue, jit.pack, and
jit.unpack.

t_jit_err max_jit_mop_inputs(void *x)
{

void *mop,*p,*m;
long i,incount;
t_jit_matrix_info info;
t_symbol *name;

// look up object’s MOP adornment
if (x&&(mop=max_jit_obex_adornment_get(x,_jit_sym_jit_mop)))
{

incount = jit_attr_getlong(mop,_jit_sym_inputcount);

// add proxy inlet and internal matrix for
// all inputs except leftmost inlet
for (i=2;i<=incount;i++) {

max_jit_obex_proxy_new(x,(incount+1)-i); // right to left
if (p=jit_object_method(mop,_jit_sym_getinput,i)) {

jit_matrix_info_default(&info);
max_jit_mop_restrict_info(x,p,&info);
name = jit_symbol_unique();
m = jit_object_new(_jit_sym_jit_matrix,&info);
m = jit_object_register(m,name);
jit_attr_setsym(p,_jit_sym_matrixname,name);
jit_object_method(p,_jit_sym_matrix,m);
jit_object_attach(name, x);

}
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

128 Matrix Operator Details

return JIT_ERR_NONE;
}
return JIT_ERR_INVALID_PTR;

}

t_jit_err max_jit_mop_outputs(void *x)
{

void *mop,*p,*m;
long i,outcount;
t_jit_matrix_info info;
t_symbol *name;

if (x&&(mop=max_jit_obex_adornment_get(x,_jit_sym_jit_mop)))
{

outcount = jit_attr_getlong(mop,_jit_sym_outputcount);

// add outlet and internal matrix for all outputs
for (i=1;i<=outcount;i++) {

max_jit_mop_matrixout_new(x,(outcount)-i);// right to left
if (p=jit_object_method(mop,_jit_sym_getoutput,i)) {

jit_matrix_info_default(&info);
max_jit_mop_restrict_info(x,p,&info);
name = jit_symbol_unique();
m = jit_object_new(_jit_sym_jit_matrix,&info);
m = jit_object_register(m,name);
jit_attr_setsym(p,_jit_sym_matrixname,name);
jit_object_method(p,_jit_sym_matrix,m);
jit_object_attach(name, x);

}
}

return JIT_ERR_NONE;
}
return JIT_ERR_INVALID_PTR;

}

22.21.2 Matrix Arguments

The max_jit_mop_setup_simple() function calls max_jit_mop_matrix_args() to read any
matrix arguments, and if present send them to any linked inputs/outputs and disable the
adapt attribute. The listing is provided below to illustrate the default behavior.

t_jit_err max_jit_mop_matrix_args(void *x, long argc, t_atom *argv)
{

void *mop,*p,*m;
long incount,outcount,attrstart,i,j;
t_jit_matrix_info info,info2;

if (!(mop=max_jit_obex_adornment_get(x,_jit_sym_jit_mop)))
return JIT_ERR_GENERIC;

incount = jit_attr_getlong(mop,_jit_sym_inputcount);
outcount = jit_attr_getlong(mop,_jit_sym_outputcount);

jit_matrix_info_default(&info);

attrstart = max_jit_attr_args_offset(argc,argv);
if (attrstart&&argv) {

jit_atom_arg_getlong(&info.planecount, 0, attrstart, argv);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

22.21 The Max Class Constructor/Destructor 129

jit_atom_arg_getsym(&info.type, 1, attrstart, argv);
i=2; j=0;
while (i<attrstart) { //dimensions

jit_atom_arg_getlong(&(info.dim[j]), i, attrstart, argv);
i++; j++;

}
if (j) info.dimcount=j;

jit_attr_setlong(mop,_jit_sym_adapt,0); //adapt off
}

jit_attr_setlong(mop,_jit_sym_outputmode,1);

for (i=2;i<=incount;i++) {
if ((p=jit_object_method(mop,_jit_sym_getinput,i)) &&

(m=jit_object_method(p,_jit_sym_getmatrix)))
{

jit_object_method(m,_jit_sym_getinfo,&info2);
if (jit_attr_getlong(p,_jit_sym_typelink)) {

info2.type = info.type;
}
if (jit_attr_getlong(p,_jit_sym_planelink)) {

info2.planecount = info.planecount;
}
if (jit_attr_getlong(p,_jit_sym_dimlink)) {

info2.dimcount = info.dimcount;
for (j=0;j<info2.dimcount;j++) {

info2.dim[j] = info.dim[j];
}

}
max_jit_mop_restrict_info(x,p,&info2);
jit_object_method(m,_jit_sym_setinfo,&info2);

}
}

for (i=1;i<=outcount;i++) {
if ((p=jit_object_method(mop,_jit_sym_getoutput,i)) &&

(m=jit_object_method(p,_jit_sym_getmatrix)))
{

jit_object_method(m,_jit_sym_getinfo,&info2);
if (jit_attr_getlong(p,_jit_sym_typelink)) {

info2.type = info.type;
}
if (jit_attr_getlong(p,_jit_sym_planelink)) {

info2.planecount = info.planecount;
}
if (jit_attr_getlong(p,_jit_sym_dimlink)) {

info2.dimcount = info.dimcount;
for (j=0;j<info2.dimcount;j++) {

info2.dim[j] = info.dim[j];
}

}
max_jit_mop_restrict_info(x,p,&info2);
jit_object_method(m,_jit_sym_setinfo,&info2);

}
}

return JIT_ERR_NONE;
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

130 Matrix Operator Details

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 23

OB3D QuickStart

The purpose of this chapter is to give a quick and high level overview of how to develop
a simple Jitter OpenGL object which draws geometry within a named rendering context
- we refer to such an object as an OB3D.

For this task, we will use the jit.gl.simple SDK example. More details such as how to
make an OpenGL object which deals with resources such as display lists and textures,
wishes to support matrix input/output, or needs greater access to OpenGL state will
appear in the following chapter. This chapter assumes familiarity with Jitter’s OpenG-
L object suite used from the Max patcher, as discussed in the Jitter Tutorial, and the
preceding chapters on the Jitter object model and Max wrapper classes.

23.1 Defining the OB3D Jitter Class

Jitter OB3Ds typically are defined to have all or most of the common OB3D attributes
and methods discussed in the Group-OB3D section of the Jitter HTML object reference.
These include attributes and methods to set the rendering destination name, object
name, color, lighting, texturing, modelview transform, depth buffering, polygon mode,
and several other common tasks. These common attributes and methods are added
by the call to the jit_ob3d_setup() function in your Jitter class definition, after calling
jit_class_new, but typically prior to defining other methods and attributes. For an OB3-
D, Jitter needs to store additional information in your object. This information is stored
in an opaque pointer in your object struct, typically named ob3d. The byte offset to
your OB3D data pointer is passed into jit_ob3d_setup(). You can override any default
attributes and methods added by jit_ob3d_setup() with the following flags:

#define JIT_OB3D_NO_ROTATION_SCALE 1 << 0
#define JIT_OB3D_NO_POLY_VARS 1 << 1
#define JIT_OB3D_NO_BLEND 1 << 2
#define JIT_OB3D_NO_TEXTURE 1 << 3
#define JIT_OB3D_NO_MATRIXOUTPUT 1 << 4
#define JIT_OB3D_AUTO_ONLY 1 << 5
#define JIT_OB3D_DOES_UI 1 << 6
#define JIT_OB3D_NO_DEPTH 1 << 7
#define JIT_OB3D_NO_ANTIALIAS 1 << 8

132 OB3D QuickStart

#define JIT_OB3D_NO_FOG 1 << 9
#define JIT_OB3D_NO_LIGHTING_MATERIAL 1 << 10
#define JIT_OB3D_HAS_LIGHTS 1 << 11
#define JIT_OB3D_HAS_CAMERA 1 << 12
#define JIT_OB3D_IS_RENDERER 1 << 13
#define JIT_OB3D_NO_COLOR 1 << 14

Aside from the attributes and methods added to your class by jit_ob3d_setup(), you
need to define a private, untyped method bound to the symbol ob3d_draw. This method
is where your object does all its drawing. It is called by the standard OB3D draw and
drawraw methods. The OB3D draw method sets up all of the OpenGL state associated
with the common OB3D attributes before calling your private ob3d_draw method. The
drawraw method simply sets the context before calling your private ob3d_draw method.
Because OB3Ds support being named for use within jit.gl.sketch∗’s drawobject com-
mand, you must also add a private, untyped "register" method associated with the jit_-
object_register() function. Let’s examine the ∗jit.gl.simple SDK project as an example:

t_jit_err jit_gl_simple_init(void)
{

long ob3d_flags = JIT_OB3D_NO_MATRIXOUTPUT; // no matrix output
void *ob3d;

_jit_gl_simple_class = jit_class_new("jit_gl_simple",
(method)jit_gl_simple_new, (method)jit_gl_simple_free,
sizeof(t_jit_gl_simple),0L);

// set up object extension for 3d object, customized with flags
ob3d = jit_ob3d_setup(_jit_gl_simple_class,

calcoffset(t_jit_gl_simple, ob3d),
ob3d_flags);

// define the OB3D draw method. called in automatic mode by
// jit.gl.render or otherwise through ob3d when banged. this
// method is A_CANT because our draw setup needs to happen
// in the ob3d beforehand to initialize OpenGL state
jit_class_addmethod(_jit_gl_simple_class,

(method)jit_gl_simple_draw, "ob3d_draw", A_CANT, 0L);

// define the dest_closing and dest_changed methods.
// these methods are called by jit.gl.render when the
// destination context closes or changes: for example, when
// the user moves the window from one monitor to another. Any
// resources your object keeps in the OpenGL machine
// (e.g. textures, display lists, vertex shaders, etc.)
// will need to be freed when closing, and rebuilt when it has
// changed. In this object, these functions do nothing, and
// could be omitted.
jit_class_addmethod(_jit_gl_simple_class,

(method)jit_gl_simple_dest_closing, "dest_closing", A_CANT, 0L);
jit_class_addmethod(_jit_gl_simple_class,

(method)jit_gl_simple_dest_changed, "dest_changed", A_CANT, 0L);

// must register for ob3d use
jit_class_addmethod(_jit_gl_simple_class,

(method)jit_object_register, "register", A_CANT, 0L);

jit_class_register(_jit_gl_simple_class);

return JIT_ERR_NONE;
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

23.2 The Jitter Class Constructor/Destructor 133

23.2 The Jitter Class Constructor/Destructor

In your OB3D Jitter Class constructor, you need to pass in your rendering destina-
tion name as the first argument. You should call the jit_ob3d_new() function with your
destination name argument to initialize the OB3D data pointer, associating it with your
rendering destination. In your destructor, you need to free your OB3D data pointer with
jit_ob3d_free(). The jit.gl.simple constructor and destructors are below as an example.

t_jit_gl_simple *jit_gl_simple_new(t_symbol *dest_name)
{

t_jit_gl_simple *x;

// make jit object
if (x = (t_jit_gl_simple *)jit_object_alloc(_jit_gl_simple_class))
{

// create and attach ob3d
jit_ob3d_new(x, dest_name);

}
else
{

x = NULL;
}
return x;

}

void jit_gl_simple_free(t_jit_gl_simple *x)
{

// free ob3d data
jit_ob3d_free(x);

}

23.3 The OB3D draw Method

Your OB3D draw method, bound to the ob3d_draw symbol, is where all of your drawing
code takes place. It is called automatically when your associated jit.gl.render object
receives a bang, if your automatic and enabled attributes are turned on, as they are
by default. It is also called if your Max wrapper object receives a bang, or the draw or
drawraw messages. With the exception of the drawraw message, all of the standard O-
B3D object state is setup prior to calling your ob3d_draw method, so you needn’t setup
things like the modelview transform, color, lighting properties, texture information, if your
object doesn’t have special needs. The following example from jit.gl.simple, just draws
a simple quadrilateral.

t_jit_err jit_gl_simple_draw(t_jit_gl_simple *x)
{

t_jit_err result = JIT_ERR_NONE;

// draw our OpenGL geometry.
glBegin(GL_QUADS);
glVertex3f(-1,-1,0);
glVertex3f(-1,1,0);
glVertex3f(1,1,0);
glVertex3f(1,-1,0);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

134 OB3D QuickStart

glEnd();

return result;
}

Since this example is meant only to show a minimal object which draws geometry with
standard OpenGL calls, there is no texture information or vertex normals specified. -
However, all standard OpenGL calls should work within the ob3d_draw method. This
example also doesn’t show matrix output, as accomplished by jit_ob3d_draw_chunk(),
which will be discussed in the following chapter on OB3D details.

23.4 Defining the OB3D Max Wrapper Class

For OB3Ds, the Max wrapper class has less extra work than for MOPs. In your Max
wrapper class definition, you need only add a call to the max_ob3d_setup() function
to add your standard drawing methods, and the max_jit_ob3d_assist() function as your
assist method, unless you wish to define your own custom assist method. Everything
else is similar to the standard technique of wrapping a Jitter Class demonstrated in the
Max Wrapper Class chapter.

void main(void)
{

void *classex, *jitclass;

// initialize Jitter class
jit_gl_simple_init();

// create Max class
setup((t_messlist **)&max_jit_gl_simple_class,

(method)max_jit_gl_simple_new, (method)max_jit_gl_simple_free,
(short)sizeof(t_max_jit_gl_simple), 0L, A_GIMME, 0);

// specify a byte offset to keep additional information about our object
classex = max_jit_classex_setup(calcoffset(t_max_jit_gl_simple, obex));

// look up Jitter class in the class registry
jitclass = jit_class_findbyname(gensym("jit_gl_simple"));

// wrap Jitter class with the standard methods for Jitter objects
max_jit_classex_standard_wrap(classex, jitclass, 0);

// use standard ob3d assist method
addmess((method)max_jit_ob3d_assist, "assist", A_CANT,0);

// add methods for 3d drawing
max_ob3d_setup();

}

23.5 The Max Class Constructor/Destructor

Your Max class’ constructor should be similar to the standard Max wrapper constructor,
but the differences worth noting are that you should pass your first normal argument,

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

23.5 The Max Class Constructor/Destructor 135

which is the rendering destination, on to your Jitter OB3D constructor, and create a
second outlet for matrix output, attached to your object’s OB3D data. For your destruc-
tor, there is nothing additional you need to do for OB3D. The jit.gl.simple Max class’
constructor and destructor are provided as examples.

void *max_jit_gl_simple_new(t_symbol *s, long argc, t_atom *argv)
{

t_max_jit_gl_simple *x;
void *jit_ob;
long attrstart;
t_symbol *dest_name_sym = _jit_sym_nothing;

if (x = (t_max_jit_gl_simple *) max_jit_obex_new(
max_jit_gl_simple_class, gensym("jit_gl_simple")))

{
// get first normal arg, the destination name
attrstart = max_jit_attr_args_offset(argc,argv);
if (attrstart&&argv)
{

jit_atom_arg_getsym(&dest_name_sym, 0, attrstart, argv);
}

// instantiate Jitter object with dest_name arg
if (jit_ob = jit_object_new(

gensym("jit_gl_simple"), dest_name_sym))
{

// set internal jitter object instance
max_jit_obex_jitob_set(x, jit_ob);

// add a general purpose outlet (rightmost)
max_jit_obex_dumpout_set(x, outlet_new(x,NULL));

// process attribute arguments
max_jit_attr_args(x, argc, argv);

// attach the jit object’s ob3d to a new outlet
// this outlet is used in matrixoutput mode
max_jit_ob3d_attach(x, jit_ob, outlet_new(x, "jit_matrix"));

}
else
{

error("jit.gl.simple: could not allocate object");
freeobject((t_object *)x);
x = NULL;

}
}
return (x);

}

void max_jit_gl_simple_free(t_max_jit_gl_simple *x)
{

// lookup our internal Jitter object instance and free
jit_object_free(max_jit_obex_jitob_get(x));

// free resources associated with our obex entry
max_jit_obex_free(x);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

136 OB3D QuickStart

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 24

OB3D Details

The purpose of this chapter is to fill in additional details of Jitter OpenGL, which we refer
to as OB3Ds.

We will show how to disable and/or override default OB3D attributes and methods, how
to support matrix input and output, and manage resources such as textures, display
lists, and shaders. This chapter assumes familiarity with the OpenGL API and the OB3-
D Quick Start chapter. It is out of the scope of our documentation to cover the OpenGL
API, so for information on the OpenGL API we recommend consulting the OpenGL Red
Book and the many online tutorials.

24.1 Defining the OB3D Jitter Class

As covered in the OB3D Quick Start, Jitter OB3Ds have a large number of default at-
tributes and methods, and require some specific methods to be defined. This section
seeks to clarify these common attributes and methods and how to achieve custom be-
havior where necessary.

24.2 Declaring a Draw Method

All Jitter OB3Ds must define a method bound to the symbol ob3d_draw. This method
takes no arguments in addition to the object struct, and should be defined with the
private A_CANT type signature. The private ob3d_draw method will be called by the
standard draw, and drawraw methods that are added to every OB3D. The draw method
will set up OpenGL state associated with the default OB3D attributes before calling
ob3d_draw, while the drawraw method will not.

138 OB3D Details

24.3 Declaring Destination and Geometry Related Methods

It is possible for attributes of a Jitter OB3D or your render destination to change, requir-
ing resources to be freed or rebuilt. There are three methods used to communicate to an
OB3D which such events happen so that the OB3D can manage resources accordingly.
They are: dest_closing, which informs an OB3D that the destination is being freed, and
any context dependent resources such as textures, display lists, and shaders should
be freed; dest_changed, which informs an OB3D that the destination has been rebuilt,
and new resources can be allocated; and rebuild_geometry, which informs an OB3D of
a change in texture units or some other attribute which affects jit_gl_drawinfo_setup()
and other t_jit_gl_drawinfo related functions, such as jit_gl_texcoord, requiring geome-
try that uses such functions to be rebuilt. These methods take no arguments in addition
to the object struct. The dest_closing and dest_changed methods should be defined
with the private A_CANT type signature, and the rebuild_geometry method is typically
defined as typed, but without arguments, so that users have the ability to explicitly call, if
deemed necessary. The jit.gl.gridshape SDK project is a good example of these meth-
ods as it needs to free and allocate a display list as the render destination changes, and
also makes use of jit_gl_texcoord to support multi-texturing, requiring geometry to be
rebuilt as the number of texture units or other attributes change.

24.4 Declaring a Register Method

Since all Jitter OB3D objects are named to support reference by name in jit.gl.sketch,
and other objects, it is necessary to add the default registration method, jit_object_-
register(). Object registration and notification are covered in detail in a future chapter.

24.5 Overriding Rotation and Scale Related Attributes

By default, each Jitter OB3D has rotate, rotatexyz, scale, and viewalign attributes added
to the class by jit_ob3d_setup(), and these attributes are used in the ob3d_draw_-
preamble() function to set up OpenGL state prior to calling your object’s draw method.
These attributes can be disabled by using the JIT_OB3D_NO_ROTATION_SCALE flag.
You can override these attributes by defining your own attributes of the same name,
however, you will need to manage any necessary OpenGL state inside of your own draw
method with the appropriate calls to glMatrixMode, glTranslate, glRotate, and glScale.

24.6 Overriding Color Related Attributes

By default, each Jitter OB3D has color, aux_color, and smooth_shading attributes added
to the class by jit_ob3d_setup(), and these attributes are used in the ob3d_draw_-
preamble function prior to calling your object’s draw method. These attributes can be
disabled by using the JIT_OB3D_NO_COLOR flag. You can override these attributes
by defining your own attributes of the same name, however, you will need to manage

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

24.7 Overriding Texture Related Attributes 139

any necessary OpenGL state inside of your own draw method with the appropriate calls
to glColor and glShadeModel.

24.7 Overriding Texture Related Attributes

By default, each Jitter OB3D has texture, capture, tex_map, tex_plane_s, and tex_-
plane_t attributes added to the class by jit_ob3d_setup(), and these attributes are used
in the ob3d_draw_preamble() function prior to calling your object’s draw method. These
attributes can be disabled by using the JIT_OB3D_NO_TEXTURE flag. You can over-
ride these attributes by defining your own attributes of the same name, however, you
will need to manage any necessary OpenGL state inside of your own draw method with
the appropriate calls to glEnable, glTexGen, jit_gl_bindtexture, jit_gl_unbindtexture, jit_-
gl_begincapture, and jit_gl_endcapture.

24.8 Overriding Lighting and Material Related Attributes

By default, each Jitter OB3D has lighting_enable, auto_material, shininess, mat_-
ambient, mat_diffuse, mat_specular, and mat_emission attributes added to the class
by jit_ob3d_setup(), and these attributes are used in the ob3d_draw_preamble function
prior to calling your object’s draw method. These attributes can be disabled by using
the JIT_OB3D_NO_LIGHTING_MATERIAL flag. You can override these attributes by
defining your own attributes of the same name, however, you will need to manage any
necessary OpenGL state inside of your own draw method with the appropriate calls to
glEnable, glLight, glLightModel, and glMaterial.

24.9 Overriding Fog Related Attributes

By default, each Jitter OB3D has fog and fog_params attributes added to the class by
jit_ob3d_setup(), and these attributes are used in the ob3d_draw_preamble function
prior to calling your object’s draw method. These attributes can be disabled by using
the JIT_OB3D_NO_FOG flag. You can override these attributes by defining your own
attributes of the same name, however, you will need to manage any necessary OpenGL
state inside of your own draw method with the appropriate calls to glEnable, glHint, and
glFog.

24.10 Overriding Polygon Variable Related Attributes

By default, each Jitter OB3D has poly_mode, cull_face, point_size, and line_width at-
tributes added to the class by jit_ob3d_setup(), and these attributes are used in the
ob3d_draw_preamble function prior to calling your object’s draw method. These at-
tributes can be disabled by using the JIT_OB3D_NO_POLY_VARS flag. You can over-
ride these attributes by defining your own attributes of the same name, however, you will

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

140 OB3D Details

need to manage any necessary OpenGL state inside of your own draw method with the
appropriate calls to glPolygonMode, glEnable, glCullFace, glPointSize, and glLineWidth.

24.11 Overriding Blending Related Attributes

By default, each Jitter OB3D has blend_mode and blend_enable attributes added to the
class by jit_ob3d_setup(), and these attributes are used in the ob3d_draw_preamble
function prior to calling your object’s draw method. These attributes can be disabled
by using the JIT_OB3D_NO_BLEND flag. You can override these attributes by defining
your own attributes of the same name, however, you will need to manage any necessary
OpenGL state inside of your own draw method with the appropriate calls to glEnable and
glBlendFunc.

24.12 Overriding Depth Buffer and Antialiasing Related Attributes

By default, each Jitter OB3D has depth_enable and antialias attributes added to the
class by jit_ob3d_setup(), and these attributes are used in your ob3d_draw_preamble
function prior to calling your object’s draw method. These attributes can be disabled by
using the JIT_OB3D_NO_DEPTH and JIT_OB3D_NO_ANTIALIAS flags, respectively.
You can override these attributes by defining your own attributes of the same name,
however, you will need to manage any necessary OpenGL state inside of your own
draw method with the appropriate calls to glEnable and glHint.

24.13 Overriding Matrixoutput and Automatic Attributes

By default, each Jitter OB3D has matrixoutput and automatic attributes added to the
class by jit_ob3d_setup(), and these attributes are used in the ob3d_draw_preamble
function prior to calling your object’s draw method. These attributes can be disabled
by using the JIT_OB3D_NO_MATRIXOUTPUT and JIT_OB3D_AUTO_ONLY flags, re-
spectively. You can override these attributes by defining your own attributes of the same
name.

24.14 Declaring a User Interface Object

It is possible to declare a user interface OB3D, such as jit.gl.handle. To do so, you must
use the JIT_OB3D_DOES_UI flag to jit_ob3d_setup(), and define a method bound to
the symbol ob3d_ui, with the private A_CANT type signature and prototype similar to
the following example from jit.gl.handle:

t_jit_err jit_gl_handle_ui(t_jit_gl_handle *x,
t_line_3d *p_line, t_wind_mouse_info *p_mouse);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

24.15 The Jitter Class Constructor and Destructor 141

24.15 The Jitter Class Constructor and Destructor

Inside your Jitter class constructor, you must call jit_ob3d_new() with a pointer to your
newly allocated object, and your render destination name. The jit_ob3d_new() function
allocates an opaque structure that stores the standard OB3D attributes and some addi-
tional OB3D state, initializing them to default values, and then setting the pointer at the
byte offset specified when calling the jit_ob3d_setup() function in your class definition.
If your object supports matrix output or simply uses the t_jit_glchunk structure when
drawing, you should typically allocate your initial t_jit_glchunk in your constructor us-
ing the jit_glchunk_new() or jit_glchunk_grid_new() functions. Use of the t_jit_glchunk
structure and matrix output is described later in this chapter. Similarly, your OB3D Jitter
class destructor must call jit_ob3d_free() to free the opaque structure used for common
OB3D state, free any allocated instances of t_jit_glchunk with jit_glchunk_free(), and
free any other resources allocated such as display lists or textures.

24.16 The OB3D Draw Method

The ob3d_draw method is where all the drawing in your object should take place. It
is also where you should typically allocate context dependent resources or query the
context state, since you know that your context is valid and has been set. For the most
part, the drawing you will perform in your ob3d_draw method will be pure and simple
OpenGL, though there are a few caveats which we will cover.

24.17 The t jit glchunk Structure and Matrix Output

Since Jitter is a general purpose matrix processing framework, it makes sense that you
would have the ability to pass geometry information through a Jitter network as matrices
if your geometry is well suited to a matrix representation. The cells of your matrix can
hold vertex information such as position, texture coordinates, normal vectors, color, and
edge flags, and are documented in the "Geometry Under The Hood" Jitter Tutorial. You
also have the option of specifying a connections matrix to reference the connectivity of
the vertices if it is not implicit in the matrix representation, and a drawing primitive to
use when drawing the vertices.

All this information, and whether or not the geometry matrix should be rendered imme-
diately or sent through the Jitter network is managed with the t_jit_glchunk. An SDK ex-
ample which demonstrates the use of t_jit_glchunk is jit.gl.gridshape. The t_jit_glchunk
structure along with the vertex matrix it contains is allocated by the jit_glchunk_new() or
jit_glchunk_grid_new() functions, freed with the jit_glchunk_delete() function, and drawn
with the jit_ob3d_draw_chunk() function. For reference, the t_jit_glchunk structure and
relevant chunk flags are provided below:

// jit_glchunk is a public structure to store one
// gl-command’s-worth of data, in a format which
// can be passed easily to glDrawRangeElements.

typedef struct _jit_glchunk

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

142 OB3D Details

{
t_symbol *prim; // GL_TRI_STRIP, GL_TRIANGLES, etc.
t_jit_object *m_vertex; // jit_matrix of xyzst... data.
t_symbol *m_vertex_name; // vertex matrix name
t_jit_object *m_index; // optional 1d connection matrix
t_symbol *m_index_name; // connection matrix name
unsigned long m_flags; // special flags
void *next_chunk; // singly linked list, typically NULL

} t_jit_glchunk;

// flags for chunk creation
#define JIT_GL_CHUNK_IGNORE_TEXTURES 1 << 0
#define JIT_GL_CHUNK_IGNORE_NORMALS 1 << 1
#define JIT_GL_CHUNK_IGNORE_COLORS 1 << 2
#define JIT_GL_CHUNK_IGNORE_EDGES 1 << 3

24.18 OB3D OpenGL Caveats

While you can use any standard Open GL calls inside of your ob3d_draw method. -
There are a few things worth noting to follow Jitter conventions. The first of which is the
binding of texture coordinates. Since Jitter OB3Ds support multi-texturing by default, it
is not necessarily satisfactory to submit only one texture coordinate with glTexCoord.
Jitter provides some utility routines to set the texture coordinates for as many texture
units which are bound, jit_gl_texcoord(1/2/3)(f/fv). Determining how many texture units
have been bound by the default OB3D attributes requires some overhead, so rather than
perform this overhead with every jit_gl_texcoord call, the jit_gl_texcoord functions take a
t_jit_gl_drawinfo struct as an argument. This struct can be setup once before rendering
many vertices with the jit_gl_drawinfo_setup function. Example use of jit_gl_texcoord
and jit_gl_drawinfo_setup is in the jit.gl.videoplane SDK project. Another Jitter specific
mechanism is the means to bind textures using named instances of jit.gl.texture. It is
possible to create and bind your own textures in an OB3D, but you must then perform
all maintenance instead of relying on jit.gl.texture to handle this work for you. To bind
and unbind an instance of jit.gl.texture, you should call the jit_gl_bindtexture and jit_-
gl_unbindtexture functions, which take a t_jit_gl_drawinfo argument, a symbol with the
name of the jit.gl.texture instance, and an integer for which texture unit to bind. Unlike
binding ordinary textures in OpenGL, it is important to unbind instances of jit.gl.texture,
or else problems may arise.

24.19 Getting Information About the OB3D Attributes

Though the default OB3D attributes are typically relevant to the code which is automat-
ically handled for your object prior to calling the ob3d_draw method, it is sometimes
necessary to access these values. Since the default OB3D attributes are stored in an
opaque ob3d struct member, they are not accessible by your object with a simple struct
pointer dereference. Instead, you need to use the jit_attr_get∗ functions to access these
attributes. You should pass in your object struct as the first argument to these functions
rather than your ob3d struct member. For example:

float pos[3];
jit_attr_getfloat_array(x,gensym("position"),3,pos);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

24.20 Getting Information About the Context 143

Note that if you are acquiring this value often, it is preferable to generate the symbol in
advance rather than generate the symbol for every call.

24.20 Getting Information About the Context

From within the ob3d_draw, dest_closing, and dest_changed methods, the rendering
context has always been set, and you can get a handle to the native context using
either the aglGetCurrentContext or wglGetCurrentContext functions. One can also in
these methods use standard OpenGL glGet∗ functions to determine the context’s Open-
GL state, such as the viewport, transformation matrix. It is not recommended to try and
acquire the native context from other methods, or query the OpenGL state as it may not
be valid.

24.21 Playing Well with Others

It is important to recognize that OpenGL state is persistent, and that there may be
objects which rely on OpenGL state that are drawn after your object draws itself. If
your object makes any changes to OpenGL state that might affect objects that follow,
you should restore the OpenGL state to whatever it was before your routine was called.
For example, if your object changes the texture transformation matrix, you should push
and pop the texture transformation matrix with glMatrixMode, glPushMatrix, and glPop-
Matrix, to prevent any problems with other objects.

24.22 Defining the OB3D Max Wrapper Class

As mentioned in the OB3D Quick Start, in your Max wrapper class definition, you need
only add a call to the max_ob3d_setup() function to add your standard drawing methods,
and the max_jit_ob3d_assist() function as your assist method, unless you wish to define
your own custom assist method. Everything else is similar to the standard technique
of wrapping a Jitter Class demonstrated in the Max Wrapper Class chapter. Please
consult the OB3D Quick Start chapter and the jit.gl.simple SDK project for all necessary
information related to the OB3D Max wrapper class.

24.23 Matrix Input

Sometimes it is desirable for an OB3D also support incoming matrices as is the case
with jit.gl.videoplane or jit.gl.mesh. It is not recommended to mix and match OB3Ds with
MOPs. Conflicts arise with respect to arguments, standard inlets and outlets. Instead,
if you wish to support matrix input in your OB3D, you should simply add to your Jitter
class a method bound to the symbol jit_matrix, and handle the incoming matrix data
according to your needs - for example as texture data in the case of jit.gl.videoplane, or
geometry data in the case of jit.gl.mesh. The jit.gl.videoplane SDK project provides an
example of an OB3D which also supports matrix input. When it is necessary to have

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

144 OB3D Details

multiple input matrices, this is typically managed by either declaring alternately named
methods for each input, or exposing an attribute that specifies which input the jit_matrix
method assumes it is being called with. Note that this requires additional logic within
the Max wrapper class to map to inlets, as it is not handled automatically.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 25

Scheduler and Low Priority Queue
Issues

In Max, there are a few threads of execution.

The details of these threads are highlighted in the Max documentation and the article,
"Event Priority in Max (Scheduler vs. Queue)". In this chapter, we won’t cover all these
details and restrict our discussion to the scheduler (which when overdrive is on runs in
a separate and high priority thread) and the low priority queue (which always runs in the
main application thread). As far as Jitter is concerned, we won’t consider the real time
audio thread or the case of scheduler in audio interrupt, where the scheduler runs in
this real time audio thread.

By default, Jitter performs all drawing and matrix processing in the main application
thread, with events serviced from the low priority queue. The reason for this low priority
processing is to prevent high timing events such as note triggering or audio DSP from
suffering timing problems due to visual processing. Jitter also exploits the low priority
queue as a mechanism for graceful temporal downsampling of the visual stream in the
instance that the processing requested is too demanding to be calculated in real-time.
This results in dropped frames in the output when the demands cant be met. With
audio, it’s not sufficient to just drop frames of samples, since there will be an audible
click, but with images, the last image will persist if a new one isn’t generated at some
fixed sampling rate.

25.1 Defer and Usurp

The mechanisms which enforce execution of Jitter drawing and matrix processing from
within the low priority queue we will call "defer" and "usurp". The defer mechanism
will take any high priority events and create a corresponding low priority event at the
end of the low priority queue. The defer mechanism ensures that the events will not
be executed from the high priority scheduler thread, but does not prevent scheduler
backlog with the temporal downsampling mentioned above. To accomplish this, the
usurp mechanism mush be used. The usurp mechanism will use no more than one low

146 Scheduler and Low Priority Queue Issues

priority queue element for the task requested (either a method call or attribute setter).
The way usurp works is that if there is no pending event for the method or attribute
call, a new event is placed at the end of the low priority queue. If there is already an
event pending, the usurp mechanism will not place a new event on the end of the low
priority queue, but rather "usurp" the arguments for the event waiting to being passed
to the method or attribute call. This way, if a high priority metronome is rapidly sending
values to set an attribute, while the initial low priority event is waiting to be processed,
the value to be set is constantly being updated ("usurped") and only the value at the
time of servicing the event will be used.

It is important to note that the defer and usurp mechanisms only work as called from
within the Max patcher. For any methods which are called from a text based program-
ming language, such as C, Java, or JavaScript, the defer and usurp mechanisms are
bypassed. This may be something you need to pay attention to and handle yourself if
you are making such calls from a text based programming language and need the defer
or usurp behavior.

25.2 Using Defer and Usurp in Jitter Object Methods

When defining a method in Jitter, there is the possibility to define a type signature for
the method just as one would do in Max. Typical type signatures include typical atom
elements such as A_LONG, A_FLOAT, and A_SYM; or the corresponding default value
versions A_DEFLONG, A_DEFFLOAT, A_DEFSYM; or the variable argument version
A_GIMME which provides a list of atoms and the number of atoms provided; or the
private and untyped status of A_CANT used for methods which are not exposed to
the patcher and require additional C function prototype information in order to call. -
While these type signatures can be used within Jitter objects, most methods exposed
to the patcher interface make use of either the defer or usurp mechanism as defined by
two new type signatures A_DEFER_LOW or A_USURP_LOW. Methods defined with
the A_DEFER_LOW, or A_USURP_LOW type signatures should conform to the same
variable argument prototype as A_GIMME methods, but behind the scenes, Jitter will
make use of the defer and usurp mechanism to enforce the appropriate behavior.

An example of two methods from jit.gl.videoplane which use these mechanisms is
below:

// add a usurping jit_matrix method
jit_class_addmethod(_jit_gl_videoplane_class, (method)

jit_gl_videoplane_jit_matrix, "jit_matrix", A_USURP_LOW, 0);

// add a deferred sendtexture method
jit_class_addmethod(_jit_gl_videoplane_class, (method)

jit_gl_videoplane_sendtexture, "sendtexture", A_DEFER_LOW, 0);

The implementation of these methods is below:

void jit_gl_videoplane_jit_matrix(t_jit_gl_videoplane *x, t_symbol *s, int argc
, t_atom *argv)

{
t_symbol *name;
void *m;
t_jit_matrix_info info;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

25.3 Using Defer and Usurp in Jitter Object Attributes 147

long dim[2];

if ((name=jit_atom_getsym(argv)) != _jit_sym_nothing) {
m = jit_object_findregistered(name);
if (!m) {

error("jit.gl.videoplane: couldn’t get matrix object!");
return;

}
}

if (x->texture) {
jit_object_method(m, _jit_sym_getinfo, &info);
jit_attr_getlong_array(x->texture,_jit_sym_dim,2,dim);
jit_object_method(x->texture,s,s,argc,argv);
jit_attr_setsym(x,ps_texture,x->texturename);

}
}

void jit_gl_videoplane_sendtexture(t_jit_gl_videoplane *x, t_symbol *s, int
argc, t_atom *argv)

{
if (x->texture) {

s = jit_atom_getsym(argv);
argc--;
if (argc)

argv++;
else

argv = NULL;
object_method_typed(x->texture,s,argc,argv,NULL);

}
}

From inspecting the header files, you may note that there are also A_DEFER and A_-
USURP type signatures, but these should be considered obsolete, as they make use
of the problematic deferral strategy of placing the event at the front of the low priority
queue and have the potential of reversing message sequencing.

25.3 Using Defer and Usurp in Jitter Object Attributes

Unlike methods, attributes do not make use of type signatures for their getter and setter
accessor methods. Instead they should always be prototyped similar to A_GIMME, but
with an attribute object being passed in place of the traditional method symbol pointer of
the A_GIMME signature. So the way you can specify to use the defer and usurp mech-
anisms for attribute accessors are through the attribute flags argument to the attribute
constructor. For the getter accessor method, you can use JIT_ATTR_GET_DEFER_L-
OW or JIT_ATTR_GET_USURP_LOW flags. For the setter accessor method, you can
use JIT_ATTR_SET_DEFER_LOW or JIT_ATTR_SET_USURP_LOW flags.

An example attribute definition from jit.gl.videoplane is below:

attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;
attr = jit_object_new(_jit_sym_jit_attr_offset,"displaylist",_jit_sym_char,

attrflags,
(method)0L,(method)jit_gl_videoplane_displaylist,calcoffset(

t_jit_gl_videoplane, displaylist));
jit_class_addattr(_jit_gl_videoplane_class,attr);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

148 Scheduler and Low Priority Queue Issues

You may have noticed that like previous code example, all Jitter object attributes which
are not private have been defined with getter accessors which use the defer mechanism
(JIT_ATTR_GET_DEFER_LOW) and setter accessors which use the usurp mechanism
(JIT_ATTR_SET_USURP_LOW). This is the recommended style of exposing Jitter ob-
ject attributes to the patcher, since there are many cases where at high priority an
attribute is set repeatedly and we want both the latest high priority value when the next
calculation is made at low priority and no low priority queue backlog from generating
more events at high priority than can be processed at low priority. The defer mechanism
is used for getter accessor methods so that every attribute query results in a corre-
sponding output message out the dump outlet. Otherwise certain patcher logic could
easily become confused. If a different behavior is required by the Max programmer, they
can make use of the jit.qball object to force either the defer or usurp mechanisms to be
used for their message stream.

25.4 Using Defer and Usurp in the Max Wrapper Object

Most of the above is also true when declaring methods and attributes in the Max wrapper
object, however the function calls which are used are slightly different. You must use the
special max object function calls max_addmethod_defer_low() and max_addmethod_-
usurp_low() for methods, and max_jit_classex_addattr() for attributes. Below are exam-
ples from jit.matrixset. Note that there is no type signature provided for either max_-
addmethod_defer_low() or max_addmethod_usurp_low().

// add a deferred "exportmovie" method
max_addmethod_defer_low((method)max_jit_matrixset_export_movie, "exportmovie");

// add a usurped outputmatrix method
max_addmethod_usurp_low((method)max_jit_matrixset_outputmatrix, "

outputmatrix");

// add index attribute
attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW ;
attr = jit_object_new(_jit_sym_jit_attr_offset,"index",_jit_sym_long,attrflags,

(method)0L,(method)0L,calcoffset(t_max_jit_matrixset,index));
max_jit_classex_addattr(p,attr);

25.5 When Not to Use the Usurp Mechanism

The bang method for Jitter MOP objects uses the usurp mechanism to drop frames
when the number of bang messages cannot be handled in real time. However, jit.gl.-
render’s bang method does not behave this way, and instead uses the defer mechanism.
At first this might seem counterintuitive, however, because rendering in OpenGL with jit.-
gl.render uses a group of messages to perform erasing, any non automatic drawing of
objects, and then a drawing of automatic clients and a swap to the screen with the bang
method, it is not an atomic action (i.e. requires a sequence of different events rather than
a single event). Since the usurp mechanism is method or attribute specific with regard
to the events which are being usurped, it only works for atomic actions. For this reason,
it is important for users to perform some drop framing behavior before triggering the
message sequence, typically accomplished with qmetro or jit.qball. If your object has

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

25.6 Overriding Defer and Usurp 149

some operation which requires a sequence of events in a similar fashion as jit.gl.render,
then it would be best to use the defer mechanism rather than the usurp mechanism for
relevant methods.

25.6 Overriding Defer and Usurp

There are instances where the user does not wish to be limited to processing Jitter ma-
trices at low priority, such as when Jitter matrices are used for tasks other than realtime
image processing--for example, parameter interpolation or matrices containing audio
data. For these tasks, the jit.qfaker object is provided for advanced users which are
aware of the potential problems involved in bypassing these low priority mechanisms.
As mentioned above, when programming in a text based language, these mechanisms
aren’t used and all method and attribute accessor calls are synchronous. Therefore
there typically isn’t a need to consider overriding this behavior from a text based lan-
guage. However, for certain externals which wish to simulate the jit.qfaker behavior, we
expose the max_jit_queuestate() function to override Jitter’s detection of queue state
for the defer and usurp mechanisms. It is also possible to query what jitter believes
the queue state to be with the max_jit_getqueuestate() function. This is the function
employed by the defer and usurp mechanisms. The source code for these functions is
below for reference.

long max_jit_queuestate(long state)
{

long rv=_max_jit_queuestate;

_max_jit_queuestate = (state!=0);

return rv;
}

long max_jit_getqueuestate(void)
{

// always return true if faking
if (_max_jit_queuestate) return 1;

return !sched_isinpoll();
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

150 Scheduler and Low Priority Queue Issues

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 26

Jitter Object Registration and
Notification

In Jitter, matrices are passed around as named references between Max objects.

This named reference is created since Jitter registers these matrices with the corre-
sponding name using the jit_object_register() function. Object registration is useful for
a few reasons. First, registered matrices can be resolved by name using the jit_object-
_findregistered() function. Secondly, registered objects can sent event notification to
clients who have attached to them using jit_object_attach(). Lastly, under certain cir-
cumstances, the object registration process can be used to have multiple external ref-
erences to a single instance of an object as is the case with jit.matrix.

26.1 Registering Named Objects

To register an object, one can use the jit_object_register() function, which is equivalent
to the Max object_register() function in the namespace associated with gensym("jitter").
Traditionally in Jitter, we bind jit_object_register() to the "register" method for an object
and use jit_object_method() to call this method. For example, from the jit.notify SDK
example:

// allocate the Jitter object
if (o=jit_object_new(gensym("jit_notify"))) {

...
// generate a unique name
x->servername = jit_symbol_unique();

// register the object with the given name
jit_object_method(o,_jit_sym_register,x->servername);
...

}

If not using a specific name, it is good to use the jit_symbol_unique() function as above
to generate a unique name which is slated for re-use once a registered object is freed.

152 Jitter Object Registration and Notification

This prevents excess memory usage by the symbol table as associated with these
unique names.

If you wish the object to have multiple references to a single instance with some name,
as is common with the jit.matrix object, it is essential to use the return value of jit_object-
_register() in any instance where the object pointer is saved after registration. This is
because if the registered object with the same class already exists, the object attempting
to be registered will be freed, and the already registered object of the same class will
be returned, its reference count having been incremented. This is not typically an issue
outside of registering jit.matrix objects, although you may have a need for this type of
implementation in other situations. Most other situations in which object registration is
used within Jitter only expects and/or permits a single instance to be registered. In the
above example, we know that this is safe to do, as we are using jit_symbol_unique() to
generate a unique name.

It is also possible to unregister named objects, with the jit_object_unregister() function,
but typically this is handled for you when your object is freed, or if your object is regis-
tered again with a different name. This is not often used in the Jitter code base except
within these contexts.

26.2 Looking Up an Object by Name

Registered objects can be found by name using the jit_object_findregistered() function.
For example named matrices are resolved using this function. Most Matrix Operator
objects have this done for them by the default MOP code, but for example any MOP
which has its own jit_matrix method, such as the jit.pack SDK example will make use of
jit_object_findregistered() inside its jit_matrix method:

// get our matrix name from the atom arguments provided
matrixname = jit_atom_getsym(argv);

// look up based on name
matrix = jit_object_findregistered(matrixname);

// make sure that it is a valid pointer and has a "class_jit_matrix" method
which returns 1

if (matrix&&jit_object_method(matrix, _jit_sym_class_jit_matrix)) {
...

}

26.3 Attaching to Named Objects

Once an object has been registered, it can be considered a server to which clients attach
to be notified of various events. To attach to a named object, use the the jit_object_-
attach() function. Similarly to detach from a named object, use the jit_object_detach()
function. It is typical to detach from a server in your object’s destructor, or any time
your object is switching which server it is attached to. For your client object to receive
any notification from the server object, it is important for your object to have defined a
"notify" method which will receive the notification from all objects it is attached to.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

26.4 Notifying Clients 153

Below is the jit.notify SDK example’s max wrapper object’s notify method, which receives
some atom values from its internal Jitter object instance. Since this object is a Matrix
Operator, it is important in the following example that jit.notify calls the max_jit_classex-
_mop_wrap() function with the MAX_JIT_MOP_FLAGS_OWN_NOTIFY flag to override
the default MOP notify method, and that we pass on all other messages to the standard
max_jit_mop_notify() method so that the default MOP code is informed of any changes
to the input and output matrices.

// s is the servername, msg is the message, ob is the server object pointer,
// and data is extra data the server might provide for a given message
void max_jit_notify_notify(t_max_jit_notify *x, t_symbol *s, t_symbol *msg,

void *ob, void *data)
{

if (msg==gensym("splat")) {
post("notify: server=%s message=%s",s->s_name,msg->s_name);
if (!data) {

error("splat message NULL pointer");
return;

}
// here’s where we output using the rightmost outlet
// we just happen to know that "data" points to a t_atom[3]
// alternately you could use max_jit_obex_dumpout_get just to get
// the outlet pointer
max_jit_obex_dumpout(x,msg,3,(t_atom *)data);

} else {
// since we are a MOP, we are also attached to all the matrices for each
input/output
// so we need to deal with this by calling the default mop notify method
// (this is how mops handle their matrices getting new
names/freed/modified)
max_jit_mop_notify(x,s,msg);

}
}

26.4 Notifying Clients

If you are making an object which is to be registered, and wish to send custom notifica-
tion to clients in addition to the default notification that attributes send to all clients when
the attribute is modified, and the default object free notification, then you will want to
use the jit_object_notify() function. This function lets you determine a message name
to use for notification and optionally specify additional, but untyped data to all clients. If
you choose to send additional data to clients, it is necessary for all client code to know
how to unpack this information. Below is the example from the jit.notify SDK example
which uses the notification mechanism to send some data to its max wrapper object:

t_atom foo[3];

jit_atom_setlong(&foo[0],1);
jit_atom_setlong(&foo[1],2);
jit_atom_setlong(&foo[2],3);
jit_object_notify(x,gensym("splat"), foo);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

154 Jitter Object Registration and Notification

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 27

Using Jitter Objects in C

When developing for Jitter in C, the functionality of pre-existing Jitter objects can be
used.

In this chapter, we’ll briefly examine instantation and incorporation of the features of the
jit.qt.movie and jit.qt.record objects from your C code.

27.1 Example 1: the t jit qt movie object

Using an object like t_jit_qt_movie from your own code is fairly straightforward. Since
it’s a standard Jitter object, we can use jit_object_new() and jit_object_free() for instan-
tiation and freeing, jit_object_method() for sending messages, and jit_attr_get... and
jit_attr_set... for getting and setting attributes.

For instance, in the following code snippet, we’ll create a t_jit_qt_movie object, read a
pre-specified movie from disk, and decompress its first frame into a matrix, set to the
native size of the movie.

void jit_foo_read_first_movie_frame(
t_jit_foo *x, t_symbol *s, long ac, t_atom *av)

{
void *qtmovie;

// create the t_jit_qt_movie object, sized to 1x1
qtmovie = jit_object_new(gensym("jit_qt_movie"), 1, 1);
if (qtmovie) {

t_atom rv; // will contain rvarr, with any return values
// from our "read" call

t_object *rvarr; // the t_atomarray with the actual
// return values

// turn off autostart
jit_attr_setlong(qtmovie, gensym("autostart"), 0);
// read the movie, just pass in the args to our function
object_method_typed(qtmovie, gensym("read"), ac, av, &rv);

// check the return value & verify that the movie loaded
if (rvarr = jit_atom_getobj(&rv)) {

156 Using Jitter Objects in C

long rvac = 0;
t_atom *rvav = NULL;

object_getvalueof(rvarr, &rvac, &rvav);
if (rvac && rvav) {

// just as in Max, we get a list: "filename success";
// success of 1 means the read was successful
if (rvac > 1 && jit_atom_getlong(rvav + 1)) {

long dim[2];
void *matrix;
t_jit_matrix_info info;

// get our movie’s native dims
jit_attr_getlong_array(qtmovie, gensym("movie_dim"),

2, dim);
// set the t_jit_qt_movie’s dim to match
jit_object_method(qtmovie,_jit_sym_dim,dim[0],dim[1]);
// set our matrix up to match
jit_matrix_info_default(&info);
info.type = _jit_sym_char;
info.planecount = 4;
info.dimcount = 2;
info.dim[0] = dim[0];
info.dim[1] = dim[1];
matrix = jit_object_new(_jit_sym_jit_matrix, &info);
if (matrix) {

// call the t_jit_qt_movie’s matrix_calc method
// with our matrix as an argument
err = (t_jit_err)jit_object_method(qtmovie,

_jit_sym_matrix_calc, NULL, matrix);
if (err != JIT_ERR_NONE) {

error("something went wrong");
}
// do something with the matrix

// free the matrix
jit_object_free(matrix);

}
}
freebytes(rvav, sizeof(t_atom) * rvac);

}
freeobject(rvarr);

}
jit_object_free(qtmovie);

}
}

Naturally, we could also set the t_jit_qt_movie object’s time attribute, or call its or frame
method, to recall an arbitrary point in time. In fact, nearly every documented method
and attribute of the jit.qt.movie object, as it functions in the Max interface, is available
from C. The exceptions are those functions implemented in the Max wrapper object,
such as framedump.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 28

JXF File Specification

The Jitter File Format (JXF) stores matrix data in a binary (not human-readable) form.

When using Jitter you can create JXF files by sending the write message to a jit.matrix
object. Conversely you can read JXF files from disk using the read message. This
section will cover first the API functions that one can use from C to read and write JXF
files. Then it will break down the file format at the bit level.

28.1 The Binary JXF API

Most Jitter users do not need or want to know about the internal binary format of a JX-
F-file. Even users who want to read and write JXF-files from C do not need to know the
internal details if they use the functions of the Jitter API for the binary interface. Not only
is the API more convenient, but using the functions provided by Cycling ’74 may protect
your code from having to be altered in the future in the event of a specification change.

There are two primary functions one should use to read data from a JXF file. jit_bin_-
read_header() reads the version number and the size of the file from the header, and
has the following signature:

t_jit_err jit_bin_read_header(t_filehandle fh, ulong *version, long *filesize)

jit_bin_read_matrix() imports matrix data from a file to a matrix, resizing the matrix if
necessary, and has the following signature:

t_jit_err jit_bin_read_matrix(t_filehandle fh, void *matrix)

Here’s a chunk of code that shows how to read a matrix from disk:

if (!(err=path_opensysfile(filename, path, &fh, READ_PERM))) {
//all is well

} else {
error("jit.matrix: can’t open file %s",name->s_name);
goto out;

158 JXF File Specification

}
if (jit_bin_read_header(fh,&version,&filesize)) {

error("jit.matrix: improper file format %s",name->s_name);
sysfile_close(fh);
goto out;

}
if (jit_bin_read_matrix(fh,matrix)) {

error("jit.matrix: improper file format %s",name->s_name);
sysfile_close(fh);
goto out;

}
sysfile_close(fh);

Similarly there are two functions one should use when writing data to a JXF file. jit_bin-
_write_header() writes a header to a file, and has the following signature:

t_jit_err jit_bin_write_header(t_filehandle fh, long filesize)

jit_bin_write_matrix() writes a matrix to a file, and has the following signature:

t_jit_err jit_bin_write_matrix(t_filehandle fh, void *matrix)

Here’s a section of code that shows how you might write a file with one matrix. Note
that the initial filesize argument to jit_bin_write_header() is bogus, but that the header is
written again at the end of the operation when the filesize can be determined from the
file position after writing the matrix.

if (err=path_createsysfile(filename, path, type, &fh)) {
error("jit.matrix: could not create file %s",name->s_name);
goto out;

}
if (jit_bin_write_header(fh,0)) {

error("jit.matrix: could not write header %s", matrixName->s_name);
sysfile_close(fh);
goto out;

}
if (jit_bin_write_matrix(fh,pointerToMatrix)) {

error("jit.matrix: could not write matrix %s", matrixName->s_name);
sysfile_close(fh);
goto out;

}
sysfile_getpos(fh, &position);
sysfile_seteof(fh, position);
if (jit_bin_write_header(fh,position)) {

error("jit.matrix: could not write header %s",
matrixName->s_name);

sysfile_close(fh);
goto out;

}
sysfile_close(fh);

28.2 Specification of the JXF Format

The internal format of JXF-files is based on the Interchange File Format (IFF) (http-
://en.wikipedia.org/wiki/Interchange_File_Format). An IFF file is

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://en.wikipedia.org/wiki/Interchange_File_Format
http://en.wikipedia.org/wiki/Interchange_File_Format

28.2 Specification of the JXF Format 159

built up from chunks. All data in IFF files is big-endian. Several convenience macros
defined in jit.byteorder.h are available to help convert numbers to the proper format
before and after they’re written to and read from a JXF file: BE_I32() can be called
on 32-bit integers, BE_F32() on 32-bit floats, and BE_F64() on 64-bit doubles.

Each chunk in an IFF file begins with a four character Type ID. This is followed by a 32-
bit unsigned integer specifying the size of the chunk content in bytes. In a JXF file, the
32-bit integer part of the first chunk tells us the size of the file, and all the subsequent
chunks, which begin immediately after the first chunk, contain matrices. In the future
chunks may also be used to store other kinds of data.

Here is a tabular overview of an example minimal JXF file.

Container Chunk

groupID JIT_BIN_CHUNK_CONTAINER
(’FORM’)

File size 32-bit int
IFF Type JIT_BIN_FORMAT (’JIT!’)
Format Chunk

chunkID JIT_BIN_CHUNK_FORMAT_VERSION
(’FVER’)

Chunk size 12 bytes
Version JIT_BIN_VERSION_1 (0x3C93DC80)
Matrix Chunk
chunk ID JIT_BIN_CHUNK_MATRIX (’MTRX’)
chunk size 32-bit int
offset 32-bit int
type 4-char
planecount 32-bit int
dimcount 32-bit int
dim Array of 32-bit ints that contain the

dimensions
data

The data offset of the matrix chunk represents the offset, in bytes, from the beginning of
the chunk to the beginning of the data portion of the chunk. The type is one of CHAR,
LONG, FL32 and FL64. The dim array contains dimcount elements, each of which is a
32-bit int. The data portion consists of the cells of the matrix written out one at a time in
row-major order. Planar data is multiplexed in each cell. For example, a 3-plane 2 by 2
matrix would be written out in the following order:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

160 JXF File Specification

Plane Dim 0 Dim 1
0 0 0
1 0 0
2 0 0
0 1 0
1 1 0
2 1 0
0 0 1
1 0 1
2 0 1
0 1 1
1 1 1
2 1 1

The various chunks discussed above can be represented by the C structs listed below:

typedef struct _jit_bin_chunk_container
{

ulong ckid; //’FORM’
long cksize; //filesize
ulong formtype; //’JIT!’

} t_jit_bin_chunk_container;

typedef struct _jit_bin_chunk_format_version
{

ulong ckid; //’FVER’
long cksize; //12
ulong vers; //timestamp

} t_jit_bin_chunk_format_version;

typedef struct _jit_bin_chunk_matrix
{

ulong ckid; //’MTRX’
long cksize; //varies(should be equal to

//24+(4*dimcount)+(typesize*planecount*totalpoints))
long offset; //data offset(should be equal to 24+(4*dimcount))
ulong type; //’CHAR’,’LONG’,’FL32’,’FL64’
long planecount;
long dimcount;
long dim[1];

} t_jit_bin_chunk_matrix;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 29

Jitter Networking Specification

This appendix describes the format of the data sent by a jit.net.send object.

The object attempts to form a TCP connection with a host at the IP and port specified
by the object’s attributes. Any program wishing to receive data will therefore have to set
itself up as a host and listen for incoming TCP connections.

Once a connection is formed, data can be sent. Data is sent as a stream of chunks.
The first thing received will be a chunk header. It consists of a 32-bit chunk ID and a
32-bit int representing the size of the next chunk to come. The chunk ID can be one of
the following 4-char symbols, depending on what kind of packet it is:

#define JIT_MATRIX_PACKET_ID ’JMTX’
#define JIT_MATRIX_LATENCY_PACKET_ID ’JMLP’
#define JIT_MESSAGE_PACKET_ID ’JMMP’

This chunk header could be represented in C by the following struct:

typedef struct _jit_net_packet_header
{

long id;
long size; //size of packet to come

} t_jit_net_packet_header;

If the chunk is a matrix packet, the next data received will be a header of 288 bytes with
the following contents:

id ’JMTX’
Size 288 (32-bit int, size of this header)
Planecount 32-bit int
Type 32-bit int, 0 for char, 1 for long, 2 for

float32, 3 for float64
Dimcount 32-bit int
Dim Array of 32 32-bit ints
Dimstride Array of 32 32-bit ints
Datasize 32-bit int, size of the data buffer to come
Time 64-bit double precision float

This chunk could be represented with the following C struct:

162 Jitter Networking Specification

typedef struct _jit_net_packet_matrix
{

long id;
long size;
long planecount;
long type; //0=char,1=long,2=float32,3=float64
long dimcount;
long dim[JIT_MATRIX_MAX_DIMCOUNT];
long dimstride[JIT_MATRIX_MAX_DIMCOUNT];
long datasize;
double time;

} t_jit_net_packet_matrix;

Following this header the next data received will be the matrix data, the size of which
was passed in the above header. When using the data, please note the dimstrides
transmitted in the header.

The time field in the above header will be set to the time of transmission from the sending
computer. jit.net.send expects the server to respond by sending back timing data of its
own – it uses this data to estimate the transmission latency. The exact data in the
latency chunk that jit.net.send expects to receive is the following:

id ’JMLP’
client_time_original 64-bit double, the time value received in

the matrix header packet
server_time_before_data 64-bit double, the time on the server

when the packet header is received
server_time_after_data 64-bit double, the time on the server

after the packet has been processed
and is in use

This chunk can be represnted by the following C struct:

typedef struct _jit_net_packet_latency
{

long id;
double client_time_original;
double server_time_before_data;
double server_time_after_data;

} t_jit_net_packet_latency;

The difference between the server time before and server time after processing the data
represents the time it takes the server to mobilize the data after it has been received.
jit.net.send will send and expects to receive time in milliseconds. When this timing
information is received by the transmitting computer, it notes its current time, calculates
the round trip time and then estimates the latency as half the round trip time plus half
of the server processing time. This estimate is accurate if the time of flight from A
to B is the same as the time of flight from B to A, but network topology can be very
complicated, and often the route from A to B is not the reverse of the route from B to
A. In simple situations, such as a direct connection between two computers or a small
LAN, the estimate should be reasonably accurate.

Finally, the last type of packet that can be sent is the message packet. The size of the
message packet is sent in the initial header packet. Standard A_GIMME messages (t_-

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

163

symbol ∗s, long ac, t_atom ∗av) are serialized starting with a 32-bit integer that contains
the size of the serialized message in bytes. Following that another 32-bit integer gives
the argument count for the atoms. Following that comes the message atoms them-
selves, starting with the leading symbol if it exists. Each atom is represented in memory
first with a char that indicates what type of atom it is: ’s’ for symbol, ’l’ for long, and ’f’
for float. For long and float atoms, the next 4 bytes contain the value of the atom; for
symbol atoms a null terminated character string follows. Below is a C function that will
deserialize a message passed in as a data pointer.

void gimme_deserialize(char *data, t_symbol **s, long *ac, t_atom **av)
{

char *curr = data;
float *currf;
long *currl,i;
long datasize = BE_I32(*((long *)curr));
curr += sizeof(long);

ac = BE_I32((long *)(curr));
curr += sizeof(long);

*av = (t_atom *)sysmem_newptr(sizeof(t_atom)*(*ac));

if (*curr == ATOM_SERIALIZATION_SYMBOL_CODE)
{

curr++;

*s = gensym(curr);
while (*(++curr) != ’\0’) ;
curr++;

}
else

*s = 0L;
for (i=0;i<*ac;i++)

switch (*curr++)
{

case ATOM_SERIALIZATION_SYMBOL_CODE:
(*av)[i].a_type = A_SYM;
(*av)[i].a_w.w_sym = gensym(curr);
while (*(++curr) != ’\0’) ;
curr++;
break;

case ATOM_SERIALIZATION_FLOAT_CODE:
(*av)[i].a_type = A_FLOAT;
(*av)[i].a_w.w_float = BE_F32(*((float *)curr));
curr += sizeof(float);
break;

case ATOM_SERIALIZATION_LONG_CODE:
(*av)[i].a_type = A_LONG;
(*av)[i].a_w.w_long = BE_I32(*((long *)curr));
curr += sizeof(long);
break;

}
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

164 Jitter Networking Specification

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 30

Appendix: Messages sent to Objects

When writing objects for Max, you typically think of creating methods which are called
when a message is sent to your object through the object’s inlet.

However, your object may receive messages directly from Max rather than using the
inlet.

One common example is the "assist" message, which is sent to your object when a
user’s mouse cursor hovers over one of your object’s inlets or outlets. If your object
binds a method to the "assist" message then you will be able to customize the message
that is shown.

This appendix serves as a quick reference for messages that are commonly sent to
objects by Max, should they be implemented by the given object. Where possible, the
prototypes given are actual prototypes from example objects in the SDK rather than
abstractions to assist in finding the context for these calls.

166 Appendix: Messages sent to Objects

30.1 Messages for All Objects

acceptsdrag_locked long
pictmeter_acceptsdrag_-
unlocked(t_pictmeter ∗x,
t_object ∗drag, t_object
∗view);

acceptsdrag_unlocked long
pictmeter_acceptsdrag_-
unlocked(t_pictmeter ∗x,
t_object ∗drag, t_object
∗view);

assist void pictmeter_assist(t_-
pictmeter ∗x, void ∗b,
long m, long a, char ∗s);

dumpout bind this message to
object_obex_dumpout()
rather than defining your
own method.

inletinfo void my_obj(t_object ∗x,
void ∗b, long a, char ∗t)

you may bind to
stdinletinfo() or define
your own inletinfo
method.
The ’b’ parameter can be
ignored, the ’a’ parameter
is the inlet number, and 1
or 0 should set the value
of ’∗t’ upon return.

notify t_max_err dbviewer_-
notify(t_dbviewer ∗x,
t_symbol ∗s, t_symbol
∗msg, void ∗sender, void
∗data);

quickref obsolete, this is provided
automatically now

30.2 Messages for Non-UI Objects

dblclick void
scripto_dblclick(t_scripto
∗x);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

30.3 Messages for User Interface Objects 167

30.3 Messages for User Interface Objects

getdrawparams void uisimp_-
getdrawparams(t_uisimp
∗x, t_object
∗patcherview,
t_jboxdrawparams
∗params);

mousedown void scripto_ui_-
mousedown(t_scripto_ui
∗x, t_object
∗patcherview, t_pt pt,
long modifiers);

mouseup void uisimp_mouseup(t_-
uisimp ∗x, t_object
∗patcherview, t_pt pt,
long modifiers);

mousedrag void scripto_ui_-
mousedrag(t_scripto_ui
∗x, t_object
∗patcherview, t_pt pt,
long modifiers);

mouseenter void uisimp_-
mouseenter(t_uisimp ∗x,
t_object ∗patcherview,
t_pt pt, long modifiers);

mouseleave void uisimp_-
mouseleave(t_uisimp ∗x,
t_object ∗patcherview,
t_pt pt, long modifiers);

mousemove void uisimp_-
mousemove(t_uisimp ∗x,
t_object ∗patcherview,
t_pt pt, long modifiers);

paint void pictmeter_paint(t_-
pictmeter ∗x, t_object
∗patcherview);

30.4 Message for Audio Objects

dsp void plus_dsp(t_plus ∗x,
t_signal ∗∗sp, short
∗count);

dspstate plus_dspstate(t_plus ∗x,
long n);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

168 Appendix: Messages sent to Objects

30.5 Messages for Objects Containing Text Fields

key long uitextfield_key(t_-
uitextfield ∗x, t_object
∗patcherview, long
keycode, long modifiers,
long textcharacter);

keyfilter long uitextfield_keyfilter(t-
_uitextfield ∗x, t_object
∗patcherview, long
∗keycode, long
∗modifiers, long
∗textcharacter);

enter void uitextfield_enter(t_-
uitextfield
∗x);

select void uitextfield_select(t_-
uitextfield
∗x);

30.6 Messages for Objects with Text Editor Windows

edclose void simpletext_-
edclose(t_simpletext ∗x,
char ∗∗text, long size);

30.7 Messages for Dataview Client Objects

getcelltext void dbviewer_-
getcelltext(t_dbviewer ∗x,
t_symbol ∗colname, long
index, char ∗text, long
maxlen);

newpatcherview void dbviewer_-
newpatcherview(t_-
dbviewer ∗x, t_object
∗patcherview);

freepatcherview void dbviewer_-
freepatcherview(t_-
dbviewer ∗x, t_object
∗patcherview);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 31

Appendix: Providing Icons for UI
Objects

If you are writing user interface objects for Max, it is recommended that you provide an
icon for your object.

Providing an icon will allow users to create an instance of your class from the object
palette, and improve the user’s experience in other interactions with Max including the
Object Defaults inspector.

31.1 Object SVG Icon

To see the icons provided by Cycling ’74 for objects included in Max, look in the Cycling
’74/object-palettes folder installed by Max. You fill find a variety of SVG (scalable vector
graphics) files for the objects. The files are named with the same name of the class (as
it is defined in your main() function) with which they are associated. You will need to
place your svg in this folder for it to be found by Max.

SVG files can be edited in a variety of software applications such as InkScape or Adobe
Illustrator. You can also export SVG files from OmniGraffle on the Mac, which is how
the Max’s object icons were created.

31.2 Object Palette Definition

Adding the svg file will make the icon available to Max for use in some ways. To make
your icon appear in the new object palette, however, you must create a palette con-
taining your SVG file. If you look in the Cycling ’74/object-palettes folder (where you
placed your SVG file), you should notice some files with names like "palette1.json",
"palette2.json", and "palette3.json". For your object, you should create a new palette
file.

For the following example we will assume you have created an object called ’littleuifoo’.

170 Appendix: Providing Icons for UI Objects

For this object we will create a palette called ’littleuifoo-palette.json’. The contents of
this file will look like this:

{
"patcher" : {
"rect" : [0.000000, 0.000000, 1000.000000, 1000.000000],
"bgcolor" : [1.000000, 1.000000, 1.000000, 1.000000],
"bglocked" : 0,
"defrect" : [10.000000, 59.000000, 1176.000000, 668.000000],
"boxes" : [{
"box" : {
"maxclass" : "fpic",
"boxalpha" : 1.000000,
"presentation" : 0,
"destrect" : [0.000000, 0.000000, 0.000000, 0.000000],
"patching_rect" : [241.000000, 244.000000, 100.000000, 50.000000],
"autofit" : 0,
"id" : "obj-1",
"ignoreclick" : 0,
"hidden" : 0,
"fontname" : "Courier",
"pic" : "littleuifoo.svg",
"xoffset" : 0.000000,
"yoffset" : 0.000000,
"background" : 0,
"presentation_rect" : [0.000000, 0.000000, 0.000000, 0.000000],
"fontsize" : 12.000000,
"instance_attributes" : {
"palette_category" : ["Images", "Interface"],
"palette_action" : "littleuifoo"
}

}

}
],

"lines" : []
}
}

Most of this palette file will be the same for any given object. The astute reader might
notice that this is a JSON representation of a t_dictionary representing a patcher that
includes an fpic object. We care about three lines in this dictionary:

1. The ’pic’ attribute of the fpic object determines what image will be displayed in the
new-object palette.

2. The ’palette_category’ instance attribute will determine what categories/tabs your
icon will appear under in the new-object palette.

3. The ’palette_action’ instance attribute will determine what object class is instanti-
ated by when user chooses your icon.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 32

Appendix: Additional Resources

While it is out of the scope of this document to cover many topics related to Jitter devel-
opment, we suggest the following resources to better inform your development.

The C Programming Language:

• "The C Programming Language", Kernighan and Ritchie (Prentice Hall, 1988).
ISBN: 0131103709

• "A Book on C", Kelly and Pohl (Addison Wesley, 1997). ISBN: 0201183994

• Wikipedia’s C programming language resources

Object Oriented Programming:

• Wikipedia’s Object Oriented Programming resources

• Sun’s Object Oriented Programming Concepts Tutorial

• Object Oriented Programming in C

Digital Image Processing:

• "Handbook of Image and Video Processing", A. Bovik et al. (Academic Press,
2000). ISBN: 0121197921

• "Digital Image Processing", W. K. Pratt (John Wiley and Sons, 2001). ISBN:
0471857661

• "Principles of Digital Image Synthesis", A. S. Glassner (Morgan Kaufmann, 1995).
ISBN: 1558602763

• Wikipedia’s digital image processing resources

Open GL:

• The official OpenGL web portal

http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming
http://java.sun.com/docs/books/tutorial/java/concepts/index.html
http://www.accu.org/acornsig/public/articles/oop_c.html
http://en.wikipedia.org/wiki/Digital_image_processing
http://www.opengl.org/

172 Appendix: Additional Resources

Apple and QuickTime:

• Apple’s developer resources

Microsoft:

• Micrcosoft’s developer resources

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://developer.apple.com/
http://msdn.microsoft.com/

Chapter 33

Appendix: Updating MSP Externals for
Max 6

33.1 Background

In Max 5 and prior versions, the signal chain for processing audio was compiled by
sending all objects in the patcher a "dsp" message. Objects responding to this message
then executed their dsp method, typically adding one of the object’s perform methods to
the signal chain.

In Max 6, the signal chain is compiled by first sending objects a "dsp64" message. -
When your object responds to this message, you can add your 64-bit audio perform
methods. If an object supports the old "dsp" message but not the "dsp64" message, it
then wraps the older 32-bit perform routine with conversion on the inputs and outputs.

This means that the 64-bit engine will work just fine with the older 32-bit objects. -
However, the conversion comes with some computational expense. For the best per-
formance your objects should support the 64-bit dsp chain natively by implementing the
"dsp64" message as explained below.

33.2 API

As noted, instead of the "dsp" method used by objects for Max 5 and earlier, Max 6
objects implement a "dsp64" method. This has the same purpose as the original dsp
method. One notable difference is that the signals are not passed to the dsp64 method.
This is to allow for the signal that is used to change dynamically at runtime. However,
the relevant info (samplerate, number of signals connected, etc) is passed in.

The main purpose of the dsp64 method is to call back into the audio lib to put perform
methods on the dsp chain. This is done using the new dsp_add64() function whose
prototype is defined in z_dsp.h.

The perform routine is now of type t_perfroutine64, defined in z_dsp.h, and now has a

174 Appendix: Updating MSP Externals for Max 6

fixed function signature. It does take a user-defined parameter that is passed back from
the call to dsp_add64().

33.3 Example Code

The simplemsp∼ example in the SDK has been updated for 64-bit audio processing in
Max 6. This project demonstrates how to support both 64-bit audio processing in Max
6 and 32-bit audio processing for compatibility with Max 5.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 34

Module Documentation

34.1 Attributes

An attribute of an object is a setting or property that tells the object how to do its job.

Data Structures

• struct t_attr

Common attr struct.

Defines

• #define CLASS_ATTR_CHAR(c, attrname, flags, structname, structmember)

Create a char attribute and add it to a Max class.

• #define CLASS_ATTR_LONG(c, attrname, flags, structname, structmember)

Create a long integer attribute and add it to a Max class.

• #define CLASS_ATTR_FLOAT(c, attrname, flags, structname, structmember)

Create a 32-bit float attribute and add it to a Max class.

• #define CLASS_ATTR_DOUBLE(c, attrname, flags, structname, structmem-
ber)

Create a 64-bit float attribute and add it to a Max class.

• #define CLASS_ATTR_SYM(c, attrname, flags, structname, structmember)

Create a t_symbol∗ attribute and add it to a Max class.

• #define CLASS_ATTR_ATOM(c, attrname, flags, structname, structmember)

Create a t_atom attribute and add it to a Max class.

• #define CLASS_ATTR_OBJ(c, attrname, flags, structname, structmember)

Create a t_object∗ attribute and add it to a Max class.

• #define CLASS_ATTR_CHAR_ARRAY(c, attrname, flags, structname, struct-
member, size)

176 Module Documentation

Create an array-of-chars attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_LONG_ARRAY(c, attrname, flags, structname, struct-
member, size)

Create an array-of-long-integers attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_FLOAT_ARRAY(c, attrname, flags, structname, struct-
member, size)

Create an array-of-32bit-floats attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_DOUBLE_ARRAY(c, attrname, flags, structname, struct-
member, size)

Create an array-of-64bit-floats attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_SYM_ARRAY(c, attrname, flags, structname, structmem-
ber, size)

Create an array-of-symbols attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_ATOM_ARRAY(c, attrname, flags, structname, struct-
member, size)

Create an array-of-atoms attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_OBJ_ARRAY(c, attrname, flags, structname, structmem-
ber, size)

Create an array-of-objects attribute of fixed length, and add it to a Max class.

• #define CLASS_ATTR_CHAR_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-chars attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_LONG_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-long-integers attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_FLOAT_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-32bit-floats attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_DOUBLE_VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-64bit-floats attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_SYM_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-symbols attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_ATOM_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-atoms attribute of variable length, and add it to a Max class.

• #define CLASS_ATTR_OBJ_VARSIZE(c, attrname, flags, structname, struct-
member, sizemember, maxsize)

Create an array-of-objects attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_CHAR(c, flags, structname, structmember)

Create a char attribute and add it to a Max class.

• #define STRUCT_ATTR_LONG(c, flags, structname, structmember)

Create a long integer attribute and add it to a Max class.

• #define STRUCT_ATTR_FLOAT(c, flags, structname, structmember)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 177

Create a 32bit float attribute and add it to a Max class.

• #define STRUCT_ATTR_DOUBLE(c, flags, structname, structmember)

Create a 64bit float attribute and add it to a Max class.

• #define STRUCT_ATTR_SYM(c, flags, structname, structmember)

Create a t_symbol∗ attribute and add it to a Max class.

• #define STRUCT_ATTR_ATOM(c, flags, structname, structmember)

Create a t_atom attribute and add it to a Max class.

• #define STRUCT_ATTR_OBJ(c, flags, structname, structmember)

Create a t_object∗ attribute and add it to a Max class.

• #define STRUCT_ATTR_CHAR_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-chars attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_LONG_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-long-integers attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_FLOAT_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-32bit-floats attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_DOUBLE_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-64bit-floats attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_SYM_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-symbols attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_ATOM_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-atoms attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_OBJ_ARRAY(c, flags, structname, structmember,
size)

Create an array-of-objects attribute of fixed length, and add it to a Max class.

• #define STRUCT_ATTR_CHAR_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-chars attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_LONG_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-long-integers attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_FLOAT_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-32bit-floats attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_DOUBLE_VARSIZE(c, flags, structname, structmem-
ber, sizemember, maxsize)

Create an array-of-64bit-floats attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_SYM_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-symbols attribute of variable length, and add it to a Max class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

178 Module Documentation

• #define STRUCT_ATTR_ATOM_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-atoms attribute of variable length, and add it to a Max class.

• #define STRUCT_ATTR_OBJ_VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-objects attribute of variable length, and add it to a Max class.

• #define STATIC_ATTR_CHAR(c, attrname, flags, val)

Create a shared (static/global) char attribute and add it to a Max class.

• #define STATIC_ATTR_LONG(c, attrname, flags, val)

Create a shared (static/global) long integer attribute and add it to a Max class.

• #define STATIC_ATTR_FLOAT(c, attrname, flags, val)

Create a shared (static/global) 32bit float attribute and add it to a Max class.

• #define STATIC_ATTR_DOUBLE(c, attrname, flags, val)

Create a shared (static/global) 64bit float attribute and add it to a Max class.

• #define STATIC_ATTR_SYM(c, attrname, flags, val)

Create a shared (static/global) t_symbol∗ attribute and add it to a Max class.

• #define STATIC_ATTR_ATOM(c, attrname, flags, val)

Create a shared (static/global) t_atom attribute and add it to a Max class.

• #define STATIC_ATTR_OBJ(c, attrname, flags, val)

Create a shared (static/global) t_object∗ attribute and add it to a Max class.

• #define STATIC_ATTR_CHAR_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-chars attribute of fixed length, and add it to a
Max class.

• #define STATIC_ATTR_LONG_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-long-integers attribute of fixed length, and add
it to a Max class.

• #define STATIC_ATTR_FLOAT_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-32bit-floats attribute of fixed length, and add it
to a Max class.

• #define STATIC_ATTR_DOUBLE_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-64bit-floats attribute of fixed length, and add it
to a Max class.

• #define STATIC_ATTR_SYM_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-symbols attribute of fixed length, and add it to
a Max class.

• #define STATIC_ATTR_ATOM_ARRAY

Create a shared (static/global) array-of-atoms attribute of fixed length, and add it to a
Max class.

• #define STATIC_ATTR_OBJ_ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-objects attribute of fixed length, and add it to a
Max class.

• #define OBJ_ATTR_CHAR(x, attrname, flags, val)

Create an instance-local char attribute and add it to a Max class.

• #define OBJ_ATTR_LONG(x, attrname, flags, val)

Create an instance-local long integer attribute and add it to a Max class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 179

• #define OBJ_ATTR_FLOAT(x, attrname, flags, val)

Create an instance-local 32bit float attribute and add it to a Max class.

• #define OBJ_ATTR_DOUBLE(x, attrname, flags, val)

Create an instance-local 64bit float attribute and add it to a Max class.

• #define OBJ_ATTR_SYM(x, attrname, flags, val)

Create an instance-local t_symbol∗ attribute and add it to a Max class.

• #define OBJ_ATTR_ATOM(x, attrname, flags, val)

Create an instance-local t_atom attribute and add it to a Max class.

• #define OBJ_ATTR_OBJ(x, attrname, flags, val)

Create an instance-local t_object∗ attribute and add it to a Max class.

• #define OBJ_ATTR_CHAR_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-chars attribute of fixed length, and add it to the object.

• #define OBJ_ATTR_LONG_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-long-integers attribute of fixed length, and add it to
the object.

• #define OBJ_ATTR_FLOAT_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-32bit-floats attribute of fixed length, and add it to the
object.

• #define OBJ_ATTR_DOUBLE_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-64bit-floats attribute of fixed length, and add it to the
object.

• #define OBJ_ATTR_SYM_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-symbols attribute of fixed length, and add it to the
object.

• #define OBJ_ATTR_ATOM_ARRAY

Create an instance-local array-of-atoms attribute of fixed length, and add it to the ob-
ject.

• #define OBJ_ATTR_OBJ_ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-objects attribute of fixed length, and add it to the
object.

• #define CLASS_ATTR_ACCESSORS(c, attrname, getter, setter)

Specify custom accessor methods for an attribute.

• #define CLASS_ATTR_ADD_FLAGS(c, attrname, flags)

Add flags to an attribute.

• #define CLASS_ATTR_REMOVE_FLAGS(c, attrname, flags)

Remove flags from an attribute.

• #define CLASS_ATTR_FILTER_MIN(c, attrname, minval)

Add a filter to the attribute to limit the lower bound of a value.

• #define CLASS_ATTR_FILTER_MAX(c, attrname, maxval)

Add a filter to the attribute to limit the upper bound of a value.

• #define CLASS_ATTR_FILTER_CLIP(c, attrname, minval, maxval)

Add a filter to the attribute to limit both the lower and upper bounds of a value.

• #define CLASS_ATTR_ALIAS(c, attrname, aliasname)

Create a new attribute that is an alias of an existing attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

180 Module Documentation

• #define CLASS_ATTR_DEFAULT(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default value.

• #define CLASS_ATTR_SAVE(c, attrname, flags)

Add a new attribute to the specified attribute to indicate that the specified attribute
should be saved with the patcher.

• #define CLASS_ATTR_DEFAULT_SAVE(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULT and CLASS_ATTR_SAVE.

• #define CLASS_ATTR_DEFAULTNAME(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default value, based on Max’s
Object Defaults.

• #define CLASS_ATTR_DEFAULTNAME_SAVE(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULTNAME and CLASS_ATTR-
_SAVE.

• #define CLASS_ATTR_MIN(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a lower range.

• #define CLASS_ATTR_MAX(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify an upper range.

• #define CLASS_ATTR_PAINT(c, attrname, flags)

Add a new attribute indicating that any changes to the specified attribute will trigger a
call to the object’s paint method.

• #define CLASS_ATTR_DEFAULT_PAINT(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULT and CLASS_ATTR_PAIN-
T.

• #define CLASS_ATTR_DEFAULT_SAVE_PAINT(c, attrname, flags, parsestr)

A convenience wrapper for CLASS_ATTR_DEFAULT, CLASS_ATTR_SAVE, and C-
LASS_ATTR_PAINT.

• #define CLASS_ATTR_DEFAULTNAME_PAINT(c, attrname, flags, parsestr)

A convenience wrapper for CLASS_ATTR_DEFAULTNAME, CLASS_ATTR_SAVE,
and CLASS_ATTR_PAINT.

• #define CLASS_ATTR_DEFAULTNAME_SAVE_PAINT(c, attrname, flags, pars-
estr)

A convenience wrapper for CLASS_ATTR_DEFAULTNAME, CLASS_ATTR_SAVE,
and CLASS_ATTR_PAINT.

• #define CLASS_ATTR_STYLE(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify an editor style for the Max
inspector.

• #define CLASS_ATTR_LABEL(c, attrname, flags, labelstr)

Add a new attribute to the specified attribute to specify an a human-friendly label for
the Max inspector.

• #define CLASS_ATTR_ENUM(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a list of choices to display in a
menu for the Max inspector.

• #define CLASS_ATTR_ENUMINDEX(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a list of choices to display in a
menu for the Max inspector.

• #define CLASS_ATTR_CATEGORY(c, attrname, flags, parsestr)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 181

Add a new attribute to the specified attribute to specify a category to which the attribute
is assigned in the Max inspector.

• #define CLASS_ATTR_STYLE_LABEL(c, attrname, flags, stylestr, labelstr)

A convenience wrapper for CLASS_ATTR_STYLE, and CLASS_ATTR_LABEL.

• #define CLASS_ATTR_INVISIBLE(c, attrname, flags)

Add a new attribute to the specified attribute to flag an attribute as invisible to the Max
inspector.

• #define CLASS_ATTR_ORDER(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default order in which to list
attributes.

• #define CLASS_ATTR_BASIC(c, attrname, flags)

Add a new attribute to the specified attribute to specify that it should appear in the
inspector’s Basic tab.

• #define CLASS_METHOD_ATTR_PARSE(c, methodname, attrname, type,
flags, parsestring)

Define and add attributes to class methods.

• #define OBJ_ATTR_DEFAULT(x, attrname, flags, parsestr)

An instance-attribute version of CLASS_ATTR_DEFAULT.

• #define OBJ_ATTR_SAVE(x, attrname, flags)

An instance-attribute version of CLASS_ATTR_SAVE.

• #define OBJ_ATTR_DEFAULT_SAVE(x, attrname, flags, parsestr)

An instance-attribute version of CLASS_ATTR_DEFAULT_SAVE.

• #define CLASS_STICKY_ATTR(c, name, flags, parsestr)

Create an attribute, and add it to all following attribute declarations.

• #define CLASS_STICKY_ATTR_CLEAR(c, name)

Close a CLASS_STICKY_ATTR block.

• #define CLASS_STICKY_METHOD(c, name, flags, parsestr)

Create an attribute, and add it to all following method declarations.

• #define CLASS_STICKY_METHOD_CLEAR(c, name)

Close a CLASS_STICKY_METHOD block.

• #define CLASS_ATTR_RGBA(c, attrname, flags, structname, structmember)

Create a color (t_jrgba) attribute and add it to a Max class.

Enumerations

• enum e_max_attrflags { ATTR_FLAGS_NONE, ATTR_GET_OPAQUE, ATTR-
_SET_OPAQUE, ATTR_GET_OPAQUE_USER, ATTR_SET_OPAQUE_USER
}

Attribute flags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

182 Module Documentation

Functions

• void ∗ object_attr_get (void ∗x, t_symbol ∗attrname)

Returns the pointer to an attribute, given its name.

• method object_attr_method (void ∗x, t_symbol ∗methodname, void ∗∗attr, long
∗get)

Returns the method of an attribute’s get or set function, as well as a pointer to the
attribute itself, from a message name.

• long object_attr_usercanset (void ∗x, t_symbol ∗s)

Determines if an object’s attribute can be set from the Max interface (i.e.

• long object_attr_usercanget (void ∗x, t_symbol ∗s)

Determines if the value of an object’s attribute can be queried from the Max interface
(i.e.

• void object_attr_getdump (void ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Forces a specified object’s attribute to send its value from the object’s dumpout outlet
in the Max interface.

• t_max_err object_attr_setvalueof (void ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets the value of an object’s attribute.

• t_max_err object_addattr (void ∗x, t_object ∗attr)

Attaches an attribute directly to an object.

• t_max_err object_deleteattr (void ∗x, t_symbol ∗attrsym)

Detach an attribute from an object that was previously attached with object_addattr().

• t_max_err object_chuckattr (void ∗x, t_symbol ∗attrsym)

Detach an attribute from an object that was previously attached with object_addattr().

• long attr_args_offset (short ac, t_atom ∗av)

Determines the point in an atom list where attribute arguments begin.

• void attr_args_process (void ∗x, short ac, t_atom ∗av)

Takes an atom list and properly set any attributes described within.

• t_object ∗ attribute_new (C74_CONST char ∗name, t_symbol ∗type, long flags,
method mget, method mset)

Create a new attribute.

• t_object ∗ attr_offset_new (C74_CONST char ∗name, C74_CONST t_symbol
∗type, long flags, C74_CONST method mget, C74_CONST method mset, long
offset)

Create a new attribute.

• t_object ∗ attr_offset_array_new (C74_CONST char ∗name, t_symbol ∗type, long
size, long flags, method mget, method mset, long offsetcount, long offset)

Create a new attribute.

• long object_attr_getlong (void ∗x, t_symbol ∗s)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setlong (void ∗x, t_symbol ∗s, long c)

Sets the value of an attribute, given its parent object and name.

• float object_attr_getfloat (void ∗x, t_symbol ∗s)

Retrieves the value of an attribute, given its parent object and name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 183

• t_max_err object_attr_setfloat (void ∗x, t_symbol ∗s, float c)

Sets the value of an attribute, given its parent object and name.

• t_symbol ∗ object_attr_getsym (void ∗x, t_symbol ∗s)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setsym (void ∗x, t_symbol ∗s, t_symbol ∗c)

Sets the value of an attribute, given its parent object and name.

• long object_attr_getlong_array (void ∗x, t_symbol ∗s, long max, long ∗vals)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setlong_array (void ∗x, t_symbol ∗s, long count, long
∗vals)

Sets the value of an attribute, given its parent object and name.

• long object_attr_getchar_array (void ∗x, t_symbol ∗s, long max, uchar ∗vals)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setchar_array (void ∗x, t_symbol ∗s, long count, C74_CO-
NST uchar ∗vals)

Sets the value of an attribute, given its parent object and name.

• long object_attr_getfloat_array (void ∗x, t_symbol ∗s, long max, float ∗vals)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setfloat_array (void ∗x, t_symbol ∗s, long count, float
∗vals)

Sets the value of an attribute, given its parent object and name.

• long object_attr_getdouble_array (void ∗x, t_symbol ∗s, long max, double ∗vals)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setdouble_array (void ∗x, t_symbol ∗s, long count, double
∗vals)

Sets the value of an attribute, given its parent object and name.

• long object_attr_getsym_array (void ∗x, t_symbol ∗s, long max, t_symbol
∗∗vals)

Retrieves the value of an attribute, given its parent object and name.

• t_max_err object_attr_setsym_array (void ∗x, t_symbol ∗s, long count, t_symbol
∗∗vals)

Sets the value of an attribute, given its parent object and name.

• t_max_err attr_addfilterset_clip (void ∗x, double min, double max, long usemin,
long usemax)

Attaches a clip filter to an attribute.

• t_max_err attr_addfilterset_clip_scale (void ∗x, double scale, double min, double
max, long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

• t_max_err attr_addfilterget_clip (void ∗x, double min, double max, long usemin,
long usemax)

Attaches a clip filter to an attribute.

• t_max_err attr_addfilterget_clip_scale (void ∗x, double scale, double min, double
max, long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

184 Module Documentation

• t_max_err attr_addfilter_clip (void ∗x, double min, double max, long usemin, long
usemax)

Attaches a clip filter to an attribute.

• t_max_err attr_addfilter_clip_scale (void ∗x, double scale, double min, double
max, long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

• t_max_err attr_addfilterset_proc (void ∗x, method proc)

Attaches a custom filter method to an attribute.

• t_max_err attr_addfilterget_proc (void ∗x, method proc)

Attaches a custom filter method to an attribute.

• void attr_args_dictionary (t_dictionary ∗x, short ac, t_atom ∗av)

Create a dictionary of attribute-name, attribute-value pairs from an array of atoms con-
taining an attribute definition list.

• void attr_dictionary_process (void ∗x, t_dictionary ∗d)

Set attributes for an object that are defined in a dictionary.

• t_max_err object_attr_setparse (t_object ∗x, t_symbol ∗s, C74_CONST char
∗parsestr)

Set an attribute value with one or more atoms parsed from a C-string.

• void ∗ object_new_parse (t_symbol ∗name_space, t_symbol ∗classname, C74_-
CONST char ∗parsestr)

Create a new object with one or more atoms parsed from a C-string.

• t_max_err object_attr_getjrgba (void ∗ob, t_symbol ∗s, t_jrgba ∗c)

Retrieves the value of a color attribute, given its parent object and name.

• t_max_err object_attr_setjrgba (void ∗ob, t_symbol ∗s, t_jrgba ∗c)

Sets the value of a color attribute, given its parent object and name.

• t_max_err object_attr_get_rect (t_object ∗o, t_symbol ∗name, t_rect ∗rect)

Gets the value of a t_rect attribute, given its parent object and name.

• t_max_err object_attr_set_rect (t_object ∗o, t_symbol ∗name, t_rect ∗rect)

Sets the value of a t_rect attribute, given its parent object and name.

• t_max_err object_attr_getpt (t_object ∗o, t_symbol ∗name, t_pt ∗pt)

Gets the value of a t_pt attribute, given its parent object and name.

• t_max_err object_attr_setpt (t_object ∗o, t_symbol ∗name, t_pt ∗pt)

Sets the value of a t_pt attribute, given its parent object and name.

• t_max_err object_attr_getsize (t_object ∗o, t_symbol ∗name, t_size ∗size)

Gets the value of a t_size attribute, given its parent object and name.

• t_max_err object_attr_setsize (t_object ∗o, t_symbol ∗name, t_size ∗size)

Sets the value of a t_size attribute, given its parent object and name.

• t_max_err object_attr_getcolor (t_object ∗b, t_symbol ∗attrname, t_jrgba
∗prgba)

Gets the value of a t_jrgba attribute, given its parent object and name.

• t_max_err object_attr_setcolor (t_object ∗b, t_symbol ∗attrname, t_jrgba
∗prgba)

Sets the value of a t_jrgba attribute, given its parent object and name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 185

34.1.1 Detailed Description

An attribute of an object is a setting or property that tells the object how to do its job.
For example, the metro object has an interval attribute that tells it how fast to run.

Attributes are similar to methods, except that the attributes have a state. Attributes are
themselves objects, and they share a common interface for getting and setting values.

An attribute is most typically added to the class definition of another object during it’s
class initialization or main() function. Most typically, this attribute’s value will be stored
in an instance’s struct, and thus it will serve as a property of that instance of the object.

Attributes can, however, be declared as ’class static’. This means that the property is
shared by all instances of the class, and the value is stored as a shared (static) variable.

Additionally, Max 5 has introduced the notion of ’instance attributes’ (also called ’object
attributes’). Instance attributes are the creation of an attribute object, and then adding it
to one specific instance of another class.

Finally, because attributes themselves are Max objects they too can possess attributes.
These ’attributes of attributes’ are used in Max to do things like specify a range of values
for an attribute, give an attribute human friendly caption, or determine to what category
an attribute should belong in the inspector.

The easiest and most common way of working with attributes is to use the provided
macros. These macros simplify the process of creating a new attribute object, setting
any attributes of the attribute, and binding it to an object class or an object instance.

34.1.2 Setting and Getting Attribute Values

By default, Max provides standard attribute accessors. These are the functions the get
or set the attribute value in the object’s struct. If you need to define a custom accessor,
you can specify this information using the CLASS_ATTR_ACCESSORS macro.

34.1.2.1 Writing a custom Attribute Getter

If you need to define a custom accessor, it should have a prototype and form comparable
to the following custom getter:

t_max_err foo_myval_get(t_foo *x, void *attr, long *ac, t_atom **av)
{

if ((*ac)&&(*av)) {
//memory passed in, use it

} else {
//otherwise allocate memory

*ac = 1;
if (!(*av = getbytes(sizeof(t_atom)*(*ac)))) {

*ac = 0;
return MAX_ERR_OUT_OF_MEM;

}
}
atom_setfloat(*av,x->myval);

return MAX_ERR_NONE;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

186 Module Documentation

}

Note that getters require memory to be allocated, if there is not memory passed into
the getter. Also the attr argument is the class’ attribute object and can be queried using
object_method for things like the attribute flags, names, filters, etc..

34.1.2.2 Writing a custom Attribute Getter

If you need to define a custom accessor, it should have a prototype and form comparable
to the following custom setter:

t_max_err foo_myval_set(t_foo *x, void *attr, long ac, t_atom *av)
{

if (ac&&av) {
x->myval = atom_getfloat(av);

} else {
// no args, set to zero
x->myval = 0;

}
return MAX_ERR_NONE;

}

34.1.3 Attribute Notificaton

Although the subject of object registration and notification is covered elsewhere, it bears
noting that attributes of all types will, if registered, automatically send notifications to all
attached client objects each time the attribute’s value is set.

34.1.4 Define Documentation

34.1.4.1 #define CLASS ATTR ACCESSORS(c, attrname, getter, setter)

Specify custom accessor methods for an attribute.

If you specify a non-NULL value for the setter or getter, then the function you specify will
be called to set or get the attribute’s value rather than using the built-in accessor.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
getter An appropriate getter method as discussed in Setting and Getting -

Attribute Values, or NULL to use the default getter.
setter An appropriate setter method as discussed in Setting and Getting -

Attribute Values, or NULL to use the default setter.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 187

34.1.4.2 #define CLASS ATTR ADD FLAGS(c, attrname, flags)

Add flags to an attribute.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to add to this attribute, as defined in e_max_attrflags.

34.1.4.3 #define CLASS ATTR ALIAS(c, attrname, aliasname)

Create a new attribute that is an alias of an existing attribute.

Parameters
c The class pointer.

attrname The name of the actual attribute as a C-string.
aliasname The name of the new alias attribute.

34.1.4.4 #define CLASS ATTR ATOM(c, attrname, flags, structname, structmember)

Create a t_atom attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.5 #define CLASS ATTR ATOM ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-atoms attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

188 Module Documentation

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_atom array.

34.1.4.6 #define CLASS ATTR ATOM VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-atoms attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_atom array at any given moment.
maxsize The maximum number of items in the t_atom array, i.e. the number of

members allocated for the array in the struct.

34.1.4.7 #define CLASS ATTR BASIC(c, attrname, flags)

Add a new attribute to the specified attribute to specify that it should appear in the
inspector’s Basic tab.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.

34.1.4.8 #define CLASS ATTR CATEGORY(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a category to which the attribute
is assigned in the Max inspector.

Categories are represented in the inspector as tabs. If the specified category does not
exist then it will be created.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 189

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

34.1.4.9 #define CLASS ATTR CHAR(c, attrname, flags, structname, structmember)

Create a char attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.10 #define CLASS ATTR CHAR ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-chars attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

size The number of chars in the array.

34.1.4.11 #define CLASS ATTR CHAR VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-chars attribute of variable length, and add it to a Max class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

190 Module Documentation

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the char array at any given moment.
maxsize The maximum number of items in the char array, i.e. the number of

members allocated for the array in the struct.

34.1.4.12 #define CLASS ATTR DEFAULT(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default value.

The default value will be automatically set when the object is created only if your object
uses a dictionary constructor with the CLASS_FLAG_NEWDICTIONARY flag.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

34.1.4.13 #define CLASS ATTR DEFAULT PAINT(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULT and CLASS_ATTR_PAINT.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULT
CLASS_ATTR_PAINT

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 191

34.1.4.14 #define CLASS ATTR DEFAULT SAVE(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULT and CLASS_ATTR_SAVE.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULT
CLASS_ATTR_SAVE

34.1.4.15 #define CLASS ATTR DEFAULT SAVE PAINT(c, attrname, flags, parsestr)

A convenience wrapper for CLASS_ATTR_DEFAULT, CLASS_ATTR_SAVE, and CL-
ASS_ATTR_PAINT.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULT
CLASS_ATTR_PAINT
CLASS_ATTR_SAVE

34.1.4.16 #define CLASS ATTR DEFAULTNAME(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default value, based on Max’s
Object Defaults.

If a value is present in Max’s Object Defaults, then that value will be used as the default
value. Otherwise, use the default value specified here. The default value will be auto-
matically set when the object is created only if your object uses a dictionary constructor
with the CLASS_FLAG_NEWDICTIONARY flag.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

192 Module Documentation

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

34.1.4.17 #define CLASS ATTR DEFAULTNAME PAINT(c, attrname, flags, parsestr)

A convenience wrapper for CLASS_ATTR_DEFAULTNAME, CLASS_ATTR_SAVE,
and CLASS_ATTR_PAINT.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULTNAME
CLASS_ATTR_PAINT
CLASS_ATTR_SAVE

34.1.4.18 #define CLASS ATTR DEFAULTNAME SAVE(c, attrname, flags, parsestr)

A convenience wrapper for both CLASS_ATTR_DEFAULTNAME and CLASS_ATTR_-
SAVE.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULTNAME
CLASS_ATTR_SAVE

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 193

34.1.4.19 #define CLASS ATTR DEFAULTNAME SAVE PAINT(c, attrname, flags, parsestr)

A convenience wrapper for CLASS_ATTR_DEFAULTNAME, CLASS_ATTR_SAVE,
and CLASS_ATTR_PAINT.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULTNAME
CLASS_ATTR_PAINT
CLASS_ATTR_SAVE

34.1.4.20 #define CLASS ATTR DOUBLE(c, attrname, flags, structname, structmember)

Create a 64-bit float attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.21 #define CLASS ATTR DOUBLE ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-64bit-floats attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

194 Module Documentation

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of doubles in the array.

34.1.4.22 #define CLASS ATTR DOUBLE VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-64bit-floats attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the double array at any given moment.
maxsize The maximum number of items in the double array, i.e. the number of

members allocated for the array in the struct.

34.1.4.23 #define CLASS ATTR ENUM(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a list of choices to display in a
menu for the Max inspector.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Remarks

This macro automatically calls

CLASS_ATTR_STYLE(c,attrname,flags,"enum").

See also

CLASS_ATTR_ENUMINDEX

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 195

34.1.4.24 #define CLASS ATTR ENUMINDEX(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a list of choices to display in a
menu for the Max inspector.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Remarks

This macro automatically calls

CLASS_ATTR_STYLE(c,attrname,flags,"enumindex").

See also

CLASS_ATTR_ENUM

34.1.4.25 #define CLASS ATTR FILTER CLIP(c, attrname, minval, maxval)

Add a filter to the attribute to limit both the lower and upper bounds of a value.

The limiting will be performed by the default attribute accessor.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
minval The maximum acceptable value to which the attribute will be limited.

maxval The maximum acceptable value to which the attribute will be limited.

See also

34.1.4.26 #define CLASS ATTR FILTER MAX(c, attrname, maxval)

Add a filter to the attribute to limit the upper bound of a value.

The limiting will be performed by the default attribute accessor.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

196 Module Documentation

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
maxval The maximum acceptable value to which the attribute will be limited.

See also

CLASS_ATTR_FILTER_MIN
CLASS_ATTR_FILTER_CLIP
CLASS_ATTR_MAX

34.1.4.27 #define CLASS ATTR FILTER MIN(c, attrname, minval)

Add a filter to the attribute to limit the lower bound of a value.

The limiting will be performed by the default attribute accessor.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
minval The minimum acceptable value to which the attribute will be limited.

See also

CLASS_ATTR_FILTER_MAX
CLASS_ATTR_FILTER_CLIP
CLASS_ATTR_MIN

34.1.4.28 #define CLASS ATTR FLOAT(c, attrname, flags, structname, structmember)

Create a 32-bit float attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 197

34.1.4.29 #define CLASS ATTR FLOAT ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-32bit-floats attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

size The number of floats in the array.

34.1.4.30 #define CLASS ATTR FLOAT VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-32bit-floats attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the float array at any given moment.
maxsize The maximum number of items in the float array, i.e. the number of

members allocated for the array in the struct.

34.1.4.31 #define CLASS ATTR INVISIBLE(c, attrname, flags)

Add a new attribute to the specified attribute to flag an attribute as invisible to the Max
inspector.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

198 Module Documentation

34.1.4.32 #define CLASS ATTR LABEL(c, attrname, flags, labelstr)

Add a new attribute to the specified attribute to specify an a human-friendly label for the
Max inspector.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
labelstr A C-string, which will be parsed into an array of atoms to set the initial

value.

34.1.4.33 #define CLASS ATTR LONG(c, attrname, flags, structname, structmember)

Create a long integer attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.34 #define CLASS ATTR LONG ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-long-integers attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

size The number of longs in the array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 199

34.1.4.35 #define CLASS ATTR LONG VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-long-integers attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the long array at any given moment.
maxsize The maximum number of items in the long array, i.e. the number of

members allocated for the array in the struct.

34.1.4.36 #define CLASS ATTR MAX(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify an upper range.

The values will not be automatically limited.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_MIN
CLASS_ATTR_FILTER_MAX
CLASS_ATTR_FILTER_CLIP

34.1.4.37 #define CLASS ATTR MIN(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a lower range.

The values will not be automatically limited.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

200 Module Documentation

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_MAX
CLASS_ATTR_FILTER_MAX
CLASS_ATTR_FILTER_CLIP

34.1.4.38 #define CLASS ATTR OBJ(c, attrname, flags, structname, structmember)

Create a t_object∗ attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.39 #define CLASS ATTR OBJ ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-objects attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_object∗ array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 201

34.1.4.40 #define CLASS ATTR OBJ VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-objects attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_object∗ array at any given moment.
maxsize The maximum number of items in the t_object∗ array, i.e. the number

of members allocated for the array in the struct.

34.1.4.41 #define CLASS ATTR ORDER(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify a default order in which to list
attributes.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Remarks

A value of zero indicates that there is no ordering. Ordering values begin at 1. For
example:

CLASS_ATTR_ORDER(c, "firstattr", 0, "1");
CLASS_ATTR_ORDER(c, "secondattr", 0, "2");
CLASS_ATTR_ORDER(c, "thirdattr", 0, "3");

34.1.4.42 #define CLASS ATTR PAINT(c, attrname, flags)

Add a new attribute indicating that any changes to the specified attribute will trigger a
call to the object’s paint method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

202 Module Documentation

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.

34.1.4.43 #define CLASS ATTR REMOVE FLAGS(c, attrname, flags)

Remove flags from an attribute.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to remove from this attribute, as defined in e_max_-

attrflags.

34.1.4.44 #define CLASS ATTR RGBA(c, attrname, flags, structname, structmember)

Create a color (t_jrgba) attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.45 #define CLASS ATTR SAVE(c, attrname, flags)

Add a new attribute to the specified attribute to indicate that the specified attribute
should be saved with the patcher.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 203

34.1.4.46 #define CLASS ATTR STYLE(c, attrname, flags, parsestr)

Add a new attribute to the specified attribute to specify an editor style for the Max in-
spector.

Available styles include

• "text" : a text editor

• "onoff" : a toggle switch

• "rgba" : a color chooser

• "enum" : a menu of available choices, whose symbol will be passed upon selec-
tion

• "enumindex" : a menu of available choices, whose index will be passed upon
selection

• "rect" : a style for displaying and editing t_rect values

• "font" : a font chooser

• "file" : a file chooser dialog

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

34.1.4.47 #define CLASS ATTR STYLE LABEL(c, attrname, flags, stylestr, labelstr)

A convenience wrapper for CLASS_ATTR_STYLE, and CLASS_ATTR_LABEL.

Parameters
c The class pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
stylestr A C-string that names the style for the attribute. See CLASS_ATTR_S-

TYLE for the available styles.
labelstr A C-string that names the category to which the attribute is assigned in

the inspector.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

204 Module Documentation

See also

CLASS_ATTR_STYLE
CLASS_ATTR_LABEL

34.1.4.48 #define CLASS ATTR SYM(c, attrname, flags, structname, structmember)

Create a t_symbol∗ attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.49 #define CLASS ATTR SYM ARRAY(c, attrname, flags, structname,
structmember, size)

Create an array-of-symbols attribute of fixed length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
structname The C identifier for the struct (containing a valid t_object header) repre-

senting an instance of this class.
structmem-

ber
The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_symbol∗ array.

34.1.4.50 #define CLASS ATTR SYM VARSIZE(c, attrname, flags, structname,
structmember, sizemember, maxsize)

Create an array-of-symbols attribute of variable length, and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 205

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_symbol∗ array at any given moment.
maxsize The maximum number of items in the t_symbol∗ array, i.e. the number

of members allocated for the array in the struct.

34.1.4.51 #define CLASS METHOD ATTR PARSE(c, methodname, attrname, type, flags,
parsestring)

Define and add attributes to class methods.

Parameters
c The class pointer.

method-
name

The name of the existing method as a C-string.

attrname The name of the attribute to add as a C-string.
type The datatype of the attribute to be added.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestring A C-string, which will be parsed into an array of atoms to set the initial

value.

Remarks

An example which makes a method invisible to users:

class_addmethod(c, (method)my_foo, "foo", 0);
CLASS_METHOD_ATTR_PARSE(c, "foo", "undocumented", gensym("long"), 0, "1");

34.1.4.52 #define CLASS STICKY ATTR(c, name, flags, parsestr)

Create an attribute, and add it to all following attribute declarations.

The block is closed by a call to CLASS_STICKY_ATTR_CLEAR.

Parameters
c The class pointer.

name The name of the new attribute to create as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

206 Module Documentation

Remarks

The most common use of CLASS_STICKY_ATTR is for creating multiple attributes
with the same category, as in this example:

CLASS_STICKY_ATTR(c, "category", 0, "Foo");

CLASS_ATTR_DOUBLE(c, "bar", 0, t_myobject, x_bar);
CLASS_ATTR_LABEL(c, "bar", 0, "A Bar");

CLASS_ATTR_CHAR(c, "switch", 0, t_myobject, x_switch);
CLASS_ATTR_STYLE_LABEL(c, "switch", 0, "onoff", "Bar Switch");

CLASS_ATTR_DOUBLE(c, "flow", 0, t_myobject, x_flow);
CLASS_ATTR_LABEL(c, "flow", 0, "Flow Amount");

CLASS_STICKY_ATTR_CLEAR(c, "category");

See also

CLASS_STICKY_ATTR_CLEAR

34.1.4.53 #define CLASS STICKY ATTR CLEAR(c, name)

Close a CLASS_STICKY_ATTR block.

Parameters
c The class pointer.

name The name of the sticky attribute as a C-string.

See also

CLASS_STICKY_ATTR

34.1.4.54 #define CLASS STICKY METHOD(c, name, flags, parsestr)

Create an attribute, and add it to all following method declarations.

The block is closed by a call to CLASS_STICKY_METHOD_CLEAR.

Parameters
c The class pointer.

name The name of the new attribute to create as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 207

Remarks

The most common use of CLASS_STICKY_ATTR is for creating multiple attributes
with the same category, as in this example:

CLASS_STICKY_METHOD(c, "undocumented", 0, "1");

// add some methods here with class_add_method()
// the undocumented attribute for methods means that the ref-page
// generator will ignore these methods.

CLASS_STICKY_METHOD_CLEAR(c, "undocumented");

See also

CLASS_STICKY_METHOD_CLEAR

34.1.4.55 #define CLASS STICKY METHOD CLEAR(c, name)

Close a CLASS_STICKY_METHOD block.

Parameters
c The class pointer.

name The name of the sticky attribute as a C-string.

See also

CLASS_STICKY_METHOD

34.1.4.56 #define OBJ ATTR ATOM(x, attrname, flags, val)

Create an instance-local t_atom attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.57 #define OBJ ATTR ATOM ARRAY

Create an instance-local array-of-atoms attribute of fixed length, and add it to the object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

208 Module Documentation

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the t_atom array.

vals Pointer to the values.

34.1.4.58 #define OBJ ATTR CHAR(x, attrname, flags, val)

Create an instance-local char attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.59 #define OBJ ATTR CHAR ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-chars attribute of fixed length, and add it to the object.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the char array.

vals Pointer to the values.

34.1.4.60 #define OBJ ATTR DEFAULT(x, attrname, flags, parsestr)

An instance-attribute version of CLASS_ATTR_DEFAULT.

Parameters
x The t_object instance pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 209

See also

CLASS_ATTR_DEFAULT

34.1.4.61 #define OBJ ATTR DEFAULT SAVE(x, attrname, flags, parsestr)

An instance-attribute version of CLASS_ATTR_DEFAULT_SAVE.

Parameters
x The t_object instance pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.
parsestr A C-string, which will be parsed into an array of atoms to set the initial

value.

See also

CLASS_ATTR_DEFAULT_SAVE

34.1.4.62 #define OBJ ATTR DOUBLE(x, attrname, flags, val)

Create an instance-local 64bit float attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.63 #define OBJ ATTR DOUBLE ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-64bit-floats attribute of fixed length, and add it to the
object.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the double array.

vals Pointer to the values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

210 Module Documentation

34.1.4.64 #define OBJ ATTR FLOAT(x, attrname, flags, val)

Create an instance-local 32bit float attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.65 #define OBJ ATTR FLOAT ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-32bit-floats attribute of fixed length, and add it to the
object.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the float array.

vals Pointer to the values.

34.1.4.66 #define OBJ ATTR LONG(x, attrname, flags, val)

Create an instance-local long integer attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.67 #define OBJ ATTR LONG ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-long-integers attribute of fixed length, and add it to the
object.

Parameters
x The object pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 211

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the long array.

vals Pointer to the values.

34.1.4.68 #define OBJ ATTR OBJ(x, attrname, flags, val)

Create an instance-local t_object∗ attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.69 #define OBJ ATTR OBJ ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-objects attribute of fixed length, and add it to the ob-
ject.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the t_object∗ array.

vals Pointer to the values.

34.1.4.70 #define OBJ ATTR SAVE(x, attrname, flags)

An instance-attribute version of CLASS_ATTR_SAVE.

Parameters
x The t_object instance pointer.

attrname The name of the attribute as a C-string.
flags Any flags you wish to declare for this new attribute, as defined in e_-

max_attrflags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

212 Module Documentation

See also

CLASS_ATTR_SAVE

34.1.4.71 #define OBJ ATTR SYM(x, attrname, flags, val)

Create an instance-local t_symbol∗ attribute and add it to a Max class.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.72 #define OBJ ATTR SYM ARRAY(x, attrname, flags, count, vals)

Create an instance-local array-of-symbols attribute of fixed length, and add it to the
object.

Parameters
x The object pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the t_symbol∗ array.

vals Pointer to the values.

34.1.4.73 #define STATIC ATTR ATOM(c, attrname, flags, val)

Create a shared (static/global) t_atom attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 213

34.1.4.74 #define STATIC ATTR ATOM ARRAY

Create a shared (static/global) array-of-atoms attribute of fixed length, and add it to a
Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the t_atom array.

vals Pointer to the values.

34.1.4.75 #define STATIC ATTR CHAR(c, attrname, flags, val)

Create a shared (static/global) char attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.76 #define STATIC ATTR CHAR ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-chars attribute of fixed length, and add it to a
Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the char array.

vals Pointer to the values.

34.1.4.77 #define STATIC ATTR DOUBLE(c, attrname, flags, val)

Create a shared (static/global) 64bit float attribute and add it to a Max class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

214 Module Documentation

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.78 #define STATIC ATTR DOUBLE ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-64bit-floats attribute of fixed length, and add it
to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the double array.

vals Pointer to the values.

34.1.4.79 #define STATIC ATTR FLOAT(c, attrname, flags, val)

Create a shared (static/global) 32bit float attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.80 #define STATIC ATTR FLOAT ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-32bit-floats attribute of fixed length, and add it
to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the float array.

vals Pointer to the values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 215

34.1.4.81 #define STATIC ATTR LONG(c, attrname, flags, val)

Create a shared (static/global) long integer attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.82 #define STATIC ATTR LONG ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-long-integers attribute of fixed length, and add it
to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the long array.

vals Pointer to the values.

34.1.4.83 #define STATIC ATTR OBJ(c, attrname, flags, val)

Create a shared (static/global) t_object∗ attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.84 #define STATIC ATTR OBJ ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-objects attribute of fixed length, and add it to a
Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

216 Module Documentation

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

count The number of items in the t_object∗ array.
vals Pointer to the values.

34.1.4.85 #define STATIC ATTR SYM(c, attrname, flags, val)

Create a shared (static/global) t_symbol∗ attribute and add it to a Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
val Pointer to the value.

34.1.4.86 #define STATIC ATTR SYM ARRAY(c, attrname, flags, count, vals)

Create a shared (static/global) array-of-symbols attribute of fixed length, and add it to a
Max class.

Parameters
c The class pointer.

attrname The name of this attribute as a C-string.
flags Any flags you wish to declare for this attribute, as defined in e_max_-

attrflags.
count The number of items in the t_symbol∗ array.

vals Pointer to the values.

34.1.4.87 #define STRUCT ATTR ATOM(c, flags, structname, structmember)

Create a t_atom attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 217

34.1.4.88 #define STRUCT ATTR ATOM ARRAY(c, flags, structname, structmember, size)

Create an array-of-atoms attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_atom array.

34.1.4.89 #define STRUCT ATTR ATOM VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-atoms attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_atom array at any given moment.
maxsize The maximum number of items in the t_atom array, i.e. the number of

members allocated for the array in the struct.

34.1.4.90 #define STRUCT ATTR CHAR(c, flags, structname, structmember)

Create a char attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

218 Module Documentation

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.91 #define STRUCT ATTR CHAR ARRAY(c, flags, structname, structmember, size)

Create an array-of-chars attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the char array.

34.1.4.92 #define STRUCT ATTR CHAR VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-chars attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the char array at any given moment.
maxsize The maximum number of items in the char array, i.e. the number of

members allocated for the array in the struct.

34.1.4.93 #define STRUCT ATTR DOUBLE(c, flags, structname, structmember)

Create a 64bit float attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 219

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.94 #define STRUCT ATTR DOUBLE ARRAY(c, flags, structname, structmember,
size)

Create an array-of-64bit-floats attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the double array.

34.1.4.95 #define STRUCT ATTR DOUBLE VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-64bit-floats attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the double array at any given moment.
maxsize The maximum number of items in the double array, i.e. the number of

members allocated for the array in the struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

220 Module Documentation

34.1.4.96 #define STRUCT ATTR FLOAT(c, flags, structname, structmember)

Create a 32bit float attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.97 #define STRUCT ATTR FLOAT ARRAY(c, flags, structname, structmember, size
)

Create an array-of-32bit-floats attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the floats array.

34.1.4.98 #define STRUCT ATTR FLOAT VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-32bit-floats attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 221

sizemember The actual number of items in the float array at any given moment.
maxsize The maximum number of items in the float array, i.e. the number of

members allocated for the array in the struct.

34.1.4.99 #define STRUCT ATTR LONG(c, flags, structname, structmember)

Create a long integer attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.100 #define STRUCT ATTR LONG ARRAY(c, flags, structname, structmember, size
)

Create an array-of-long-integers attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the long array.

34.1.4.101 #define STRUCT ATTR LONG VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-long-integers attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

222 Module Documentation

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the long array at any given moment.
maxsize The maximum number of items in the long array, i.e. the number of

members allocated for the array in the struct.

34.1.4.102 #define STRUCT ATTR OBJ(c, flags, structname, structmember)

Create a t_object∗ attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.103 #define STRUCT ATTR OBJ ARRAY(c, flags, structname, structmember, size)

Create an array-of-objects attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_object∗ array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 223

34.1.4.104 #define STRUCT ATTR OBJ VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-objects attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_object∗ array at any given moment.
maxsize The maximum number of items in the t_object∗ array, i.e. the number

of members allocated for the array in the struct.

34.1.4.105 #define STRUCT ATTR SYM(c, flags, structname, structmember)

Create a t_symbol∗ attribute and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

34.1.4.106 #define STRUCT ATTR SYM ARRAY(c, flags, structname, structmember, size)

Create an array-of-symbols attribute of fixed length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

224 Module Documentation

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

size The number of items in the t_symbol∗ array.

34.1.4.107 #define STRUCT ATTR SYM VARSIZE(c, flags, structname, structmember,
sizemember, maxsize)

Create an array-of-symbols attribute of variable length, and add it to a Max class.

The name of the attribute is automatically determined by the name of the struct member.

Parameters
c The class pointer.

flags Any flags you wish to declare for this attribute, as defined in e_max_-
attrflags.

structname The C identifier for the struct (containing a valid t_object header) repre-
senting an instance of this class.

structmem-
ber

The C identifier of the member in the struct that holds the value of this
attribute.

sizemember The actual number of items in the t_symbol∗ array at any given moment.
maxsize The maximum number of items in the t_symbol∗ array, i.e. the number

of members allocated for the array in the struct.

34.1.5 Enumeration Type Documentation

34.1.5.1 enum e_max_attrflags

Attribute flags.

Remarks

To create a readonly attribute, for example, you should pass ATTR_SET_OPAQUE
or ATTR_SET_OPAQUE_USER as a flag when you create your attribute.

Enumerator:

ATTR_FLAGS_NONE No flags.

ATTR_GET_OPAQUE The attribute cannot be queried by either max message
when used inside of a CLASS_BOX object, nor from C code.

ATTR_SET_OPAQUE The attribute cannot be set by either max message when
used inside of a CLASS_BOX object, nor from C code.

ATTR_GET_OPAQUE_USER The attribute cannot be queried by max message
when used inside of a CLASS_BOX object, but can be queried from C code.

ATTR_SET_OPAQUE_USER The attribute cannot be set by max message when
used inside of a CLASS_BOX object, but can be set from C code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 225

34.1.6 Function Documentation

34.1.6.1 t_max_err attr addfilter clip (void ∗ x, double min, double max, long usemin, long
usemax)

Attaches a clip filter to an attribute.

The filter will clip any values sent to or retrieved from the attribute using the attribute’s
get and set functions.

Parameters
x Pointer to the attribute to receive the filter

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.2 t_max_err attr addfilter clip scale (void ∗ x, double scale, double min, double max,
long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

The filter will clip and scale any values sent to or retrieved from the attribute using the
attribute’s get and set functions.

Parameters
x Pointer to the attribute to receive the filter

scale Scale value. Data sent to the attribute will be scaled by this amount.
Data retrieved from the attribute will be scaled by its reciprocal. Scaling
occurs previous to clipping.

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

226 Module Documentation

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.3 t_max_err attr addfilterget clip (void ∗ x, double min, double max, long usemin,
long usemax)

Attaches a clip filter to an attribute.

The filter will only clip values retrieved from the attribute using the attribute’s get func-
tion.

Parameters
x Pointer to the attribute to receive the filter

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.4 t_max_err attr addfilterget clip scale (void ∗ x, double scale, double min, double
max, long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

The filter will only clip and scale values retrieved from the attribute using the attribute’s
get function.

Parameters
x Pointer to the attribute to receive the filter

scale Scale value. Data retrieved from the attribute will be scaled by this
amount. Scaling occurs previous to clipping.

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 227

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.5 t_max_err attr addfilterget proc (void ∗ x, method proc)

Attaches a custom filter method to an attribute.

The filter will only be called for values retrieved from the attribute using the attribute’s
get function.

Parameters
x Pointer to the attribute to receive the filter

proc A filter method

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

The filter method should be prototyped and implemented as described above for
the attr_addfilterset_proc() function.

34.1.6.6 t_max_err attr addfilterset clip (void ∗ x, double min, double max, long usemin,
long usemax)

Attaches a clip filter to an attribute.

The filter will only clip values sent to the attribute using the attribute’s set function.

Parameters
x Pointer to the attribute to receive the filter

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

228 Module Documentation

34.1.6.7 t_max_err attr addfilterset clip scale (void ∗ x, double scale, double min, double
max, long usemin, long usemax)

Attaches a clip/scale filter to an attribute.

The filter will only clip and scale values sent to the attribute using the attribute’s set
function.

Parameters
x Pointer to the attribute to receive the filter

scale Scale value. Data sent to the attribute will be scaled by this amount.
Scaling occurs previous to clipping.

min Minimum value for the clip filter
max Maximum value for the clip filter

usemin Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

usemax Sets this value to 0 if the minimum clip value should not be used. -
Otherwise, set the value to non-zero.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.8 t_max_err attr addfilterset proc (void ∗ x, method proc)

Attaches a custom filter method to an attribute.

The filter will only be called for values retrieved from the attribute using the attribute’s
set function.

Parameters
x Pointer to the attribute to receive the filter

proc A filter method

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

The filter method should be prototyped and implemented as follows:

t_max_err myfiltermethod(void *parent, void *attr, long ac, t_atom *av);

t_max_err myfiltermethod(void *parent, void *attr, long ac, t_atom *av)
{

long i;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 229

float temp,

// this filter rounds off all values
// assumes that the data is float
for (i = 0; i < ac; i++) {

temp = atom_getfloat(av + i);
temp = (float)((long)(temp + 0.5));
atom_setfloat(av + i, temp);

}
return MAX_ERR_NONE;

}

34.1.6.9 void attr args dictionary (t_dictionary ∗ x, short ac, t_atom ∗ av)

Create a dictionary of attribute-name, attribute-value pairs from an array of atoms con-
taining an attribute definition list.

Parameters
x A dictionary instance pointer.

ac The number of atoms to parse in av.
av A pointer to the first of the array of atoms containing the attribute values.

Remarks

The code example below shows the creation of a list of atoms using atom_-
setparse(), and then uses that list of atoms to fill the dictionary with attr_args_-
dictionary().

long ac = 0;
t_atom *av = NULL;
char parsebuf[4096];
t_dictionary *d = dictionary_new();
t_atom a;

sprintf(parsebuf,"@defrect %.6f %.6f %.6f %.6f @title Untitled
@presentation 0 ", r->x, r->y, r->width, r->height);

atom_setparse(&ac, &av, parsebuf);
attr_args_dictionary(d, ac, av);
atom_setobj(&a, d);

34.1.6.10 long attr args offset (short ac, t_atom ∗ av)

Determines the point in an atom list where attribute arguments begin.

Developers can use this function to assist in the manual processing of attribute argu-
ments, when attr_args_process() doesn’t provide the correct functionality for a particular
purpose.

Parameters
ac The count of t_atoms in av
av An atom list

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

230 Module Documentation

Returns

This function returns an offset into the atom list, where the first attribute argu-
ment occurs. For instance, the atom list foo bar 3.0 @mode 6 would cause
attr_args_offset to return 3 (the attribute mode appears at position 3 in the
atom list).

34.1.6.11 void attr args process (void ∗ x, short ac, t_atom ∗ av)

Takes an atom list and properly set any attributes described within.

This function is typically used in an object’s new method to conveniently process at-
tribute arguments.

Parameters
x The object whose attributes will be processed

ac The count of t_atoms in av
av An atom list

Remarks

Here is a typical example of usage:

void *myobject_new(t_symbol *s, long ac, t_atom *av)
{

t_myobject *x = NULL;

if (x=(t_myobject *)object_alloc(myobject_class))
{

// initialize any data before processing
// attributes to avoid overwriting
// attribute argument-set values
x->data = 0;

// process attr args, if any
attr_args_process(x, ac, av);

}
return x;

}

34.1.6.12 void attr dictionary process (void ∗ x, t_dictionary ∗ d)

Set attributes for an object that are defined in a dictionary.

Objects with dictionary constructors, such as UI objects, should call this method to set
their attributes when an object is created.

Parameters
x The object instance pointer.
d The dictionary containing the attributes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 231

See also

attr_args_process()

34.1.6.13 t_object∗ attr offset array new (C74 CONST char ∗ name, t_symbol ∗ type, long
size, long flags, method mget, method mset, long offsetcount, long offset)

Create a new attribute.

The attribute references an array of memory stored outside of itself, in the object’s data
structure. Attributes created using attr_offset_array_new() can be assigned either to
classes (using the class_addattr() function) or to objects (using the object_addattr()
function).

Parameters
name A name for the attribute, as a C-string

type A t_symbol ∗ representing a valid attribute type. At the time of this
writing, the valid type-symbols are: _sym_char (char), _sym_long
(long), _sym_float32 (32-bit float), _sym_float64 (64-bit float),
_sym_atom (Max t_atom pointer), _sym_symbol (Max t_symbol
pointer), _sym_pointer (generic pointer) and _sym_object (Max
t_object pointer).

size Maximum number of items that may be in the array.
flags Any attribute flags, expressed as a bitfield. Attribute flags are used

to determine if an attribute is accessible for setting or querying. The
available accessor flags are defined in e_max_attrflags.

mget The method to use for the attribute’s get functionality. If mget is NULL,
the default method is used. See the discussion under attribute_new(),
for more information.

mset The method to use for the attribute’s set functionality. If mset is NULL,
the default method is used. See the discussion under attribute_new(),
for more information.

offsetcount Byte offset into the object class’s data structure of a long variable de-
scribing how many array elements (up to size) comprise the data to
be referenced by the attribute. Typically, the calcoffset macro is used to
calculate this offset.

offset Byte offset into the class data structure of the object which will "own"
the attribute. The offset should point to the data to be referenced by the
attribute. Typically, the calcoffset macro is used to calculate this offset.

Returns

This function returns the new attribute’s object pointer if successful, or NULL if
unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

232 Module Documentation

Remarks

For instance, to create a new attribute which references an array of 10 t_atoms
(atm; the current number of "active" elements in the array is held in the variable
atmcount) in an object class’s data structure:

t_object *attr = attr_offset_array_new("myattrarray", _sym_atom / * matches
data size * /, 10 / * max * /, 0 / * no flags * /, (method)0L, (method)0L,

calcoffset(t_myobject, atmcount) / * count * /, calcoffset(t_myobject, atm) / *
data * /);

34.1.6.14 t_object∗ attr offset new (C74 CONST char ∗ name, C74 CONST t_symbol ∗
type, long flags, C74 CONST method mget, C74 CONST method mset, long offset
)

Create a new attribute.

The attribute references memory stored outside of itself, in the object’s data structure.
Attributes created using attr_offset_new() can be assigned either to classes (using the
class_addattr() function) or to objects (using the object_addattr() function).

Parameters
name A name for the attribute, as a C-string

type A t_symbol ∗ representing a valid attribute type. At the time of this
writing, the valid type-symbols are: _sym_char (char), _sym_long
(long), _sym_float32 (32-bit float), _sym_float64 (64-bit float),
_sym_atom (Max t_atom pointer), _sym_symbol (Max t_symbol
pointer), _sym_pointer (generic pointer) and _sym_object (Max
t_object pointer).

flags Any attribute flags, expressed as a bitfield. Attribute flags are used
to determine if an attribute is accessible for setting or querying. The
available accessor flags are defined in e_max_attrflags.

mget The method to use for the attribute’s get functionality. If mget is NULL,
the default method is used. See the discussion under attribute_new(),
for more information.

mset The method to use for the attribute’s set functionality. If mset is NULL,
the default method is used. See the discussion under attribute_new(),
for more information.

offset Byte offset into the class data structure of the object which will "own"
the attribute. The offset should point to the data to be referenced by the
attribute. Typically, the calcoffset macro (described above) is used to
calculate this offset.

Returns

This function returns the new attribute’s object pointer if successful, or NULL if
unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 233

Remarks

For instance, to create a new attribute which references the value of a double vari-
able (val) in an object class’s data structure:

t_object *attr = attr_offset_new("myattr", _sym_float64 / * matches data
size * /, 0 / * no flags * /, (method)0L, (method)0L, calcoffset(t_myobject, val))
;

34.1.6.15 t_object∗ attribute new (C74 CONST char ∗ name, t_symbol ∗ type, long flags,
method mget, method mset)

Create a new attribute.

The attribute will allocate memory and store its own data. Attributes created using
attribute_new() can be assigned either to classes (using the class_addattr() function) or
to objects (using the object_addattr() function).

Parameters
name A name for the attribute, as a C-string

type A t_symbol ∗ representing a valid attribute type. At the time of this
writing, the valid type-symbols are: _sym_char (char), _sym_long
(long), _sym_float32 (32-bit float), _sym_float64 (64-bit float),
_sym_atom (Max t_atom pointer), _sym_symbol (Max t_symbol
pointer), _sym_pointer (generic pointer) and _sym_object (Max
t_object pointer).

flags Any attribute flags, expressed as a bitfield. Attribute flags are used
to determine if an attribute is accessible for setting or querying. The
available accessor flags are defined in e_max_attrflags.

mget The method to use for the attribute’s get functionality. If mget is NU-
LL, the default method is used.

mset The method to use for the attribute’s set functionality. If mset is NU-
LL, the default method is used.

Returns

This function returns the new attribute’s object pointer if successful, or NULL if
unsuccessful.

Remarks

Developers wishing to define custom methods for get or set functionality need to
prototype them as:

t_max_err myobject_myattr_get(t_myobject *x, void *attr, long *ac, t_atom *
*av);

t_max_err myobject_myattr_set(t_myobject *x, void *attr, long ac, t_atom *
av);

Implementation will vary, of course, but need to follow the following basic mod-
els. Note that, as with custom getvalueof and setvalueof methods for the
object, assumptions are made throughout Max that getbytes() has been used for
memory allocation. Developers are strongly urged to do the same:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

234 Module Documentation

t_max_err myobject_myattr_get(t_myobject *x, void *attr, long *ac, t_atom *
*av)

{
if (*ac && *av)

// memory passed in; use it
else {

*ac = 1; // size of attr data

*av = (t_atom *)getbytes(sizeof(t_atom) * (*ac));
if (!(*av)) {

*ac = 0;
return MAX_ERR_OUT_OF_MEM;

}
}
atom_setlong(*av, x->some_value);
return MAX_ERR_NONE;

}

t_max_err myobject_myattr_set(t_myobject *x, void *attr, long ac, t_atom *
av)

{
if (ac && av) {

x->some_value = atom_getlong(av);
}
return MAX_ERR_NONE;

}

34.1.6.16 t_max_err object addattr (void ∗ x, t_object ∗ attr)

Attaches an attribute directly to an object.

Parameters
x An object to which the attribute should be attached

attr The attribute’s pointer—this should be a pointer returned from attribute-
_new(), attr_offset_new() or attr_offset_array_new().

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.17 void∗ object attr get (void ∗ x, t_symbol ∗ attrname)

Returns the pointer to an attribute, given its name.

Parameters
x Pointer to the object whose attribute is of interest

attrname The attribute’s name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 235

Returns

This function returns a pointer to the attribute, if successful, or NULL, if unsuccess-
ful.

34.1.6.18 t_max_err object attr get rect (t_object ∗ o, t_symbol ∗ name, t_rect ∗ rect)

Gets the value of a t_rect attribute, given its parent object and name.

Do not use this on a jbox object -- use jbox_get_rect_for_view() instead!

Parameters
o The attribute’s parent object

name The attribute’s name
rect The address of a valid t_rect whose values will be filled-in from the

attribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.19 long object attr getchar array (void ∗ x, t_symbol ∗ s, long max, uchar ∗ vals)

Retrieves the value of an attribute, given its parent object and name.

This function uses a developer-allocated array to copy data to. Developers wishing
to retrieve the value of an attribute without pre-allocating memory should refer to the
object_attr_getvalueof() function.

Parameters
x The attribute’s parent object
s The attribute’s name

max The number of array elements in vals. The function will take care not
to overwrite the bounds of the array.

vals Pointer to the first element of a pre-allocated array of unsigned char
data.

Returns

This function returns the number of elements copied into vals.

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

236 Module Documentation

34.1.6.20 t_max_err object attr getcolor (t_object ∗ b, t_symbol ∗ attrname, t_jrgba ∗
prgba)

Gets the value of a t_jrgba attribute, given its parent object and name.

Parameters
b The attribute’s parent object

attrname The attribute’s name
prgba The address of a valid t_jrgba whose values will be filled-in from the

attribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.21 long object attr getdouble array (void ∗ x, t_symbol ∗ s, long max, double ∗ vals
)

Retrieves the value of an attribute, given its parent object and name.

This function uses a developer-allocated array to copy data to. Developers wishing
to retrieve the value of an attribute without pre-allocating memory should refer to the
object_attr_getvalueof() function.

Parameters
x The attribute’s parent object
s The attribute’s name

max The number of array elements in vals. The function will take care not
to overwrite the bounds of the array.

vals Pointer to the first element of a pre-allocated array of double data.

Returns

This function returns the number of elements copied into vals.

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

34.1.6.22 void object attr getdump (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv)

Forces a specified object’s attribute to send its value from the object’s dumpout outlet in
the Max interface.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 237

Parameters
x Pointer to the object whose attribute is of interest
s The attribute’s name

argc Unused
argv Unused

34.1.6.23 float object attr getfloat (void ∗ x, t_symbol ∗ s)

Retrieves the value of an attribute, given its parent object and name.

Parameters
x The attribute’s parent object
s The attribute’s name

Returns

This function returns the value of the specified attribute, if successful, or 0, if un-
successful.

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

34.1.6.24 long object attr getfloat array (void ∗ x, t_symbol ∗ s, long max, float ∗ vals)

Retrieves the value of an attribute, given its parent object and name.

This function uses a developer-allocated array to copy data to. Developers wishing
to retrieve the value of an attribute without pre-allocating memory should refer to the
object_attr_getvalueof() function.

Parameters
x The attribute’s parent object
s The attribute’s name

max The number of array elements in vals. The function will take care not
to overwrite the bounds of the array.

vals Pointer to the first element of a pre-allocated array of float data.

Returns

This function returns the number of elements copied into vals.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

238 Module Documentation

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

34.1.6.25 t_max_err object attr getjrgba (void ∗ ob, t_symbol ∗ s, t_jrgba ∗ c)

Retrieves the value of a color attribute, given its parent object and name.

Parameters
ob The attribute’s parent object

s The attribute’s name
c The address of a t_jrgba struct that will be filled with the attribute’s color

component values.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.26 long object attr getlong (void ∗ x, t_symbol ∗ s)

Retrieves the value of an attribute, given its parent object and name.

Parameters
x The attribute’s parent object
s The attribute’s name

Returns

This function returns the value of the specified attribute, if successful, or 0, if un-
successful.

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

34.1.6.27 long object attr getlong array (void ∗ x, t_symbol ∗ s, long max, long ∗ vals)

Retrieves the value of an attribute, given its parent object and name.

This function uses a developer-allocated array to copy data to. Developers wishing
to retrieve the value of an attribute without pre-allocating memory should refer to the
object_attr_getvalueof() function.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 239

Parameters
x The attribute’s parent object
s The attribute’s name

max The number of array elements in vals. The function will take care not
to overwrite the bounds of the array.

vals Pointer to the first element of a pre-allocated array of long data.

Returns

This function returns the number of elements copied into vals.

Remarks

If the attribute is not of the type specified by the function, the function will attempt
to coerce a valid value from the attribute.

34.1.6.28 t_max_err object attr getpt (t_object ∗ o, t_symbol ∗ name, t_pt ∗ pt)

Gets the value of a t_pt attribute, given its parent object and name.

Parameters
o The attribute’s parent object

name The attribute’s name
pt The address of a valid t_pt whose values will be filled-in from the at-

tribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.29 t_max_err object attr getsize (t_object ∗ o, t_symbol ∗ name, t_size ∗ size)

Gets the value of a t_size attribute, given its parent object and name.

Parameters
o The attribute’s parent object

name The attribute’s name
size The address of a valid t_size whose values will be filled-in from the

attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

240 Module Documentation

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.30 t_symbol∗ object attr getsym (void ∗ x, t_symbol ∗ s)

Retrieves the value of an attribute, given its parent object and name.

Parameters
x The attribute’s parent object
s The attribute’s name

Returns

This function returns the value of the specified attribute, if successful, or the empty
symbol (equivalent to gensym("") or _sym_nothing), if unsuccessful.

34.1.6.31 long object attr getsym array (void ∗ x, t_symbol ∗ s, long max, t_symbol ∗∗
vals)

Retrieves the value of an attribute, given its parent object and name.

This function uses a developer-allocated array to copy data to. Developers wishing
to retrieve the value of an attribute without pre-allocating memory should refer to the
object_attr_getvalueof() function.

Parameters
x The attribute’s parent object
s The attribute’s name

max The number of array elements in vals. The function will take care not
to overwrite the bounds of the array.

vals Pointer to the first element of a pre-allocated array of t_symbol ∗s.

Returns

This function returns the number of elements copied into vals.

34.1.6.32 method object attr method (void ∗ x, t_symbol ∗ methodname, void ∗∗ attr,
long ∗ get)

Returns the method of an attribute’s get or set function, as well as a pointer to the
attribute itself, from a message name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 241

Parameters
x Pointer to the object whose attribute is of interest

method-
name

The Max message used to call the attribute’s get or set function. For
example, gensym("mode") or gensym("getthresh").

attr A pointer to a void ∗, which will be set to the attribute pointer upon
successful completion of the function

get A pointer to a long variable, which will be set to 1 upon successful com-
pletion of the function, if the queried method corresponds to the get
function of the attribute.

Returns

This function returns the requested method, if successful, or NULL, if unsuccessful.

34.1.6.33 t_max_err object attr set rect (t_object ∗ o, t_symbol ∗ name, t_rect ∗ rect)

Sets the value of a t_rect attribute, given its parent object and name.

Do not use this on a jbox object -- use jbox_get_rect_for_view() instead!

Parameters
o The attribute’s parent object

name The attribute’s name
rect The address of a valid t_rect whose values will be used to set the at-

tribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.34 t_max_err object attr setchar array (void ∗ x, t_symbol ∗ s, long count,
C74 CONST uchar ∗ vals)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name

count The number of array elements in vals
vals Pointer to the first element of an array of unsigned char data

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

242 Module Documentation

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.35 t_max_err object attr setcolor (t_object ∗ b, t_symbol ∗ attrname, t_jrgba ∗
prgba)

Sets the value of a t_jrgba attribute, given its parent object and name.

Parameters
b The attribute’s parent object

attrname The attribute’s name
prgba The address of a valid t_jrgba whose values will be used to set the

attribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.36 t_max_err object attr setdouble array (void ∗ x, t_symbol ∗ s, long count,
double ∗ vals)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name

count The number of array elements in vals
vals Pointer to the first element of an array of double data

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.37 t_max_err object attr setfloat (void ∗ x, t_symbol ∗ s, float c)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 243

Parameters
x The attribute’s parent object
s The attribute’s name
c An floating point value; the new value for the attribute

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.38 t_max_err object attr setfloat array (void ∗ x, t_symbol ∗ s, long count, float ∗
vals)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name

count The number of array elements in vals
vals Pointer to the first element of an array of float data

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.39 t_max_err object attr setjrgba (void ∗ ob, t_symbol ∗ s, t_jrgba ∗ c)

Sets the value of a color attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
ob The attribute’s parent object

s The attribute’s name
c The address of a t_jrgba struct that contains the new color.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

244 Module Documentation

34.1.6.40 t_max_err object attr setlong (void ∗ x, t_symbol ∗ s, long c)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name
c An integer value; the new value for the attribute

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.41 t_max_err object attr setlong array (void ∗ x, t_symbol ∗ s, long count, long ∗
vals)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name

count The number of array elements in vals
vals Pointer to the first element of an array of long data

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.42 t_max_err object attr setparse (t_object ∗ x, t_symbol ∗ s, C74 CONST char ∗
parsestr)

Set an attribute value with one or more atoms parsed from a C-string.

Parameters
x The object whose attribute will be set.
s The name of the attribute to set.

parsestr A C-string to parse into an array of atoms to set the attribute value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 245

Returns

A Max error code.

See also

atom_setparse()

34.1.6.43 t_max_err object attr setpt (t_object ∗ o, t_symbol ∗ name, t_pt ∗ pt)

Sets the value of a t_pt attribute, given its parent object and name.

Parameters
o The attribute’s parent object

name The attribute’s name
pt The address of a valid t_pt whose values will be used to set the attribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.44 t_max_err object attr setsize (t_object ∗ o, t_symbol ∗ name, t_size ∗ size)

Sets the value of a t_size attribute, given its parent object and name.

Parameters
o The attribute’s parent object

name The attribute’s name
size The address of a valid t_size whose values will be used to set the at-

tribute.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.45 t_max_err object attr setsym (void ∗ x, t_symbol ∗ s, t_symbol ∗ c)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

246 Module Documentation

Parameters
x The attribute’s parent object
s The attribute’s name
c A t_symbol ∗; the new value for the attribute

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.46 t_max_err object attr setsym array (void ∗ x, t_symbol ∗ s, long count,
t_symbol ∗∗ vals)

Sets the value of an attribute, given its parent object and name.

The function will call the attribute’s set method, using the data provided.

Parameters
x The attribute’s parent object
s The attribute’s name

count The number of array elements in vals
vals Pointer to the first element of an array of t_symbol ∗s

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.47 t_max_err object attr setvalueof (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets the value of an object’s attribute.

Parameters
x Pointer to the object whose attribute is of interest
s The attribute’s name

argc The count of arguments in argv
argv Array of t_atoms; the new desired data for the attribute

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.1 Attributes 247

34.1.6.48 long object attr usercanget (void ∗ x, t_symbol ∗ s)

Determines if the value of an object’s attribute can be queried from the Max interface
(i.e.

if its ATTR_GET_OPAQUE_USER flag is set).

Parameters
x Pointer to the object whose attribute is of interest
s The attribute’s name

Returns

This function returns 1 if the value of the attribute can be queried from the Max
interface. Otherwise, it returns 0.

34.1.6.49 long object attr usercanset (void ∗ x, t_symbol ∗ s)

Determines if an object’s attribute can be set from the Max interface (i.e.

if its ATTR_SET_OPAQUE_USER flag is set).

Parameters
x Pointer to the object whose attribute is of interest
s The attribute’s name

Returns

This function returns 1 if the attribute can be set from the Max interface. Otherwise,
it returns 0.

34.1.6.50 t_max_err object chuckattr (void ∗ x, t_symbol ∗ attrsym)

Detach an attribute from an object that was previously attached with object_addattr().

This function will not free the attribute (use object_free() to do this manually).

Parameters
x The object to which the attribute is attached

attrsym The attribute’s name

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

248 Module Documentation

34.1.6.51 t_max_err object deleteattr (void ∗ x, t_symbol ∗ attrsym)

Detach an attribute from an object that was previously attached with object_addattr().

The function will also free all memory associated with the attribute. If you only wish to
detach the attribute, without freeing it, see the object_chuckattr() function.

Parameters
x The object to which the attribute is attached

attrsym The attribute’s name

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.1.6.52 void∗ object new parse (t_symbol ∗ name space, t_symbol ∗ classname,
C74 CONST char ∗ parsestr)

Create a new object with one or more atoms parsed from a C-string.

The object’s new method must have an A_GIMME signature.

Parameters
name_space The namespace in which to create the instance. Typically this is either

CLASS_BOX or CLASS_NOBOX.
classname The name of the class to instantiate.

parsestr A C-string to parse into an array of atoms to set the attribute value.

Returns

A pointer to the new instance.

See also

atom_setparse()
object_new_typed()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.2 Classes 249

34.2 Classes

When a user types the name of your object into an object box, Max looks for an external
of this name in the searchpath and, upon finding it, loads the bundle or dll and calls the
main() function.

Collaboration diagram for Classes:

Classes

Inlets and Outlets

Old-Style Classes

Data Structures

• struct t_class

The data structure for a Max class.

Modules

• Old-Style Classes
• Inlets and Outlets

Routines for creating and communicating with inlets and outlets.

Defines

• #define CLASS_BOX

The namespace for all Max object classes which can be instantiated in a box, i.e.

• #define CLASS_NOBOX

A namespace for creating hidden or internal object classes which are not a direct part
of the user creating patcher.

Enumerations

• enum e_max_class_flags { CLASS_FLAG_BOX, CLASS_FLAG_POLYGLOT, -
CLASS_FLAG_NEWDICTIONARY, CLASS_FLAG_REGISTERED, CLASS_FL-
AG_UIOBJECT, CLASS_FLAG_ALIAS, CLASS_FLAG_SCHED_PURGE, CLA-

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

250 Module Documentation

SS_FLAG_DO_NOT_PARSE_ATTR_ARGS, CLASS_FLAG_NOATTRIBUTES,
CLASS_FLAG_OWNATTRIBUTES }

Class flags.

Functions

• t_class ∗ class_new (C74_CONST char ∗name, C74_CONST method mnew, -
C74_CONST method mfree, long size, C74_CONST method mmenu, short
type,...)

Initializes a class by informing Max of its name, instance creation and free functions,
size and argument types.

• t_max_err class_free (t_class ∗c)

Frees a previously defined object class.

• t_max_err class_register (t_symbol ∗name_space, t_class ∗c)

Registers a previously defined object class.

• t_max_err class_alias (t_class ∗c, t_symbol ∗aliasname)

Registers an alias for a previously defined object class.

• t_max_err class_addmethod (t_class ∗c, C74_CONST method m, C74_CONST
char ∗name,...)

Adds a method to a previously defined object class.

• t_max_err class_addattr (t_class ∗c, t_object ∗attr)

Adds an attribute to a previously defined object class.

• t_symbol ∗ class_nameget (t_class ∗c)

Retrieves the name of a class, given the class’s pointer.

• t_class ∗ class_findbyname (t_symbol ∗name_space, t_symbol ∗classname)

Finds the class pointer for a class, given the class’s namespace and name.

• t_class ∗ class_findbyname_casefree (t_symbol ∗name_space, t_symbol
∗classname)

Finds the class pointer for a class, given the class’s namespace and name.

• t_max_err class_dumpout_wrap (t_class ∗c)

Wraps user gettable attributes with a method that gets the values and sends out
dumpout outlet.

• void class_obexoffset_set (t_class ∗c, long offset)

Registers the byte-offset of the obex member of the class’s data structure with the
previously defined object class.

• long class_obexoffset_get (t_class ∗c)

Retrieves the byte-offset of the obex member of the class’s data structure.

• long class_is_ui (t_class ∗c)

Determine if a class is a user interface object.

• t_max_err class_subclass (t_class ∗superclass, t_class ∗subclass)

Define a subclass of an existing class.

• t_object ∗ class_super_construct (t_class ∗c,...)

Call super class constructor.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.2 Classes 251

34.2.1 Detailed Description

When a user types the name of your object into an object box, Max looks for an external
of this name in the searchpath and, upon finding it, loads the bundle or dll and calls
the main() function. Thus, Max classes are typically defined in the main() function of an
external.

Historically, Max classes have been defined using an API that includes functions like
setup() and addmess(). This interface is still supported, and the relevant documentation
can be found in Old-Style Classes.

A more recent and more flexible interface for creating objects was introduced with Jitter
1.0 and later included directly in Max 4.5. This newer API includes functions such as
class_new() and class_addmethod(). Supporting attributes, user interface objects, and
additional new features of Max requires the use of the newer interface for definiting
classes documented on this page.

You may not mix these two styles of creating classes within an object.

34.2.2 Define Documentation

34.2.2.1 #define CLASS BOX

The namespace for all Max object classes which can be instantiated in a box, i.e.

in a patcher.

34.2.3 Enumeration Type Documentation

34.2.3.1 enum e_max_class_flags

Class flags.

If not box or polyglot, class is only accessible in C via known interface

Enumerator:

CLASS_FLAG_BOX for use in a patcher

CLASS_FLAG_POLYGLOT for use by any text language (c/js/java/etc)

CLASS_FLAG_NEWDICTIONARY dictionary based constructor

CLASS_FLAG_REGISTERED for backward compatible messlist implementation
(once reg’d can’t grow)

CLASS_FLAG_UIOBJECT for objects that don’t go inside a newobj box.

CLASS_FLAG_ALIAS for classes that are just copies of some other class (i.e.
del is a copy of delay)

CLASS_FLAG_SCHED_PURGE for classes that have called clock_new() or
qelem_new() (don’t need to set this yourself)

CLASS_FLAG_DO_NOT_PARSE_ATTR_ARGS override dictionary based con-
structor attr arg parsing

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

252 Module Documentation

CLASS_FLAG_NOATTRIBUTES for efficiency

CLASS_FLAG_OWNATTRIBUTES for classes which support a custom attr in-
terface (e.g. jitter)

34.2.4 Function Documentation

34.2.4.1 t_max_err class addattr (t_class ∗ c, t_object ∗ attr)

Adds an attribute to a previously defined object class.

Parameters
c The class pointer

attr The attribute to add. The attribute will be a pointer returned by attribute-
_new(), attr_offset_new() or attr_offset_array_new().

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.2.4.2 t_max_err class addmethod (t_class ∗ c, C74 CONST method m, C74 CONST
char ∗ name, ...)

Adds a method to a previously defined object class.

Parameters
c The class pointer

m Function to be called when the method is invoked
name C-string defining the message (message selector)

... One or more integers specifying the arguments to the message, in the
standard Max type list format (see Chapter 3 of the Writing Externals in
Max document for more information).

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

The class_addmethod() function works essentially like the traditional addmess()
function, adding the function pointed to by m, to respond to the message string
name in the leftmost inlet of the object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.2 Classes 253

34.2.4.3 t_max_err class alias (t_class ∗ c, t_symbol ∗ aliasname)

Registers an alias for a previously defined object class.

Parameters
c The class pointer

aliasname A symbol who’s name will become an alias for the given class

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.2.4.4 t_max_err class dumpout wrap (t_class ∗ c)

Wraps user gettable attributes with a method that gets the values and sends out
dumpout outlet.

Parameters
c The class pointer

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.2.4.5 t_class∗ class findbyname (t_symbol ∗ name space, t_symbol ∗ classname)

Finds the class pointer for a class, given the class’s namespace and name.

Parameters
name_space The desired class’s name space. Typically, either the constant CLASS_-

BOX, for obex classes which can instantiate inside of a Max patcher (e.-
g. boxes, UI objects, etc.), or the constant CLASS_NOBOX, for classes
which will only be used internally. Developers can define their own
name spaces as well, but this functionality is currently undocumented.

classname The name of the class to be looked up

Returns

If successful, this function returns the class’s data pointer. Otherwise, it returns
NULL.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

254 Module Documentation

34.2.4.6 t_class∗ class findbyname casefree (t_symbol ∗ name space, t_symbol ∗
classname)

Finds the class pointer for a class, given the class’s namespace and name.

Parameters
name_space The desired class’s name space. Typically, either the constant CLASS_-

BOX, for obex classes which can instantiate inside of a Max patcher (e.-
g. boxes, UI objects, etc.), or the constant CLASS_NOBOX, for classes
which will only be used internally. Developers can define their own
name spaces as well, but this functionality is currently undocumented.

classname The name of the class to be looked up (case free)

Returns

If successful, this function returns the class’s data pointer. Otherwise, it returns
NULL.

34.2.4.7 t_max_err class free (t_class ∗ c)

Frees a previously defined object class.

This function is not typically used by external developers.

Parameters
c The class pointer

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.2.4.8 long class is ui (t_class ∗ c)

Determine if a class is a user interface object.

Parameters
c The class pointer.

Returns

True is the class defines a user interface object, otherwise false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.2 Classes 255

34.2.4.9 t_symbol∗ class nameget (t_class ∗ c)

Retrieves the name of a class, given the class’s pointer.

Parameters
c The class pointer

Returns

If successful, this function returns the name of the class as a t_symbol ∗.

34.2.4.10 t_class∗ class new (C74 CONST char ∗ name, C74 CONST method mnew,
C74 CONST method mfree, long size, C74 CONST method mmenu, short type, ...
)

Initializes a class by informing Max of its name, instance creation and free functions,
size and argument types.

Developers wishing to use obex class features (attributes, etc.) must use class_new()
instead of the traditional setup() function.

Parameters
name The class’s name, as a C-string
mnew The instance creation function
mfree The instance free function

size The size of the object’s data structure in bytes. Usually you use the C
sizeof operator here.

mmenu Obsolete - pass NULL. In Max 4 this was a function pointer for UI ob-
jects called when the user created a new object of the class from the
Patch window’s palette.

type A standard Max type list as explained in Chapter 3 of the Writing -
Externals in Max document (in the Max SDK). The final argument of
the type list should be a 0. Generally, obex objects have a single type
argument , A_GIMME, followed by a 0.

Returns

This function returns the class pointer for the new object class. This pointer is used
by numerous other functions and should be stored in a global or static variable.

34.2.4.11 long class obexoffset get (t_class ∗ c)

Retrieves the byte-offset of the obex member of the class’s data structure.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

256 Module Documentation

Parameters
c The class pointer

Returns

This function returns the byte-offset of the obex member of the class’s data struc-
ture.

34.2.4.12 void class obexoffset set (t_class ∗ c, long offset)

Registers the byte-offset of the obex member of the class’s data structure with the pre-
viously defined object class.

Use of this function is required for obex-class objects. It must be called from main().

Parameters
c The class pointer

offset The byte-offset to the obex member of the object’s data structure. -
Conventionally, the macro calcoffset is used to calculate the offset.

34.2.4.13 t_max_err class register (t_symbol ∗ name space, t_class ∗ c)

Registers a previously defined object class.

This function is required, and should be called at the end of main().

Parameters
name_space The desired class’s name space. Typically, either the constant CLASS_-

BOX, for obex classes which can instantiate inside of a Max patcher (e.-
g. boxes, UI objects, etc.), or the constant CLASS_NOBOX, for classes
which will only be used internally. Developers can define their own
name spaces as well, but this functionality is currently undocumented.

c The class pointer

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.2.4.14 t_max_err class subclass (t_class ∗ superclass, t_class ∗ subclass)

Define a subclass of an existing class.

First call class_new on the subclass, then pass in to class_subclass. If constructor or
destructor are NULL will use the superclass constructor.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.2 Classes 257

Parameters
superclass The superclass pointer.

subclass The subclass pointer.

Returns

A Max error code

34.2.4.15 t_object∗ class super construct (t_class ∗ c, ...)

Call super class constructor.

Use this instead of object_alloc if you want to call the super class constructor, but allo-
cating enough memory for subclass.

Parameters
c The (sub)class pointer.

... Args to super class constructor.

Returns

initialized object instance

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

258 Module Documentation

34.3 Old-Style Classes

Collaboration diagram for Old-Style Classes:

Classes Old-Style Classes

Functions

• void setup (t_messlist ∗∗ident, method makefun, method freefun, short size,
method menufun, short type,...)

Use the setup() function to initialize your class by informing Max of its size, the name of
your functions that create and destroy instances, and the types of arguments passed
to the instance creation function.

• void addmess (method f, char ∗s, short type,...)

Use addmess() to bind a function to a message other than the standard ones covered
by addbang(), addint(), etc.

• void addbang (method f)

Used to bind a function to the common triggering message bang.

• void addint (method f)

Use addint() to bind a function to the int message received in the leftmost inlet.

• void addfloat (method f)

Use addfloat() to bind a function to the float message received in the leftmost inlet.

• void addinx (method f, short n)

Use addinx() to bind a function to a int message that will be received in an inlet other
than the leftmost one.

• void addftx (method f, short n)

Use addftx() to bind a function to a float message that will be received in an inlet other
than the leftmost one.

• void ∗ newobject (void ∗maxclass)

Use newobject to allocate the space for an instance of your class and initialize its
object header.

• void freeobject (t_object ∗op)

Release the memory used by a Max object.

• void ∗ newinstance (t_symbol ∗s, short argc, t_atom ∗argv)

Make a new instance of an existing Max class.

• void alias (char ∗name)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.3 Old-Style Classes 259

Use the alias function to allow users to refer to your object by a name other than that
of your shared library.

• void class_setname (char ∗obname, char ∗filename)

Use class_setname() to associate you object’s name with it’s filename on disk.

• void ∗ typedmess (t_object ∗op, t_symbol ∗msg, short argc, t_atom ∗argp)

Send a typed message directly to a Max object.

• method getfn (t_object ∗op, t_symbol ∗msg)

Use getfn() to send an untyped message to a Max object with error checking.

• method egetfn (t_object ∗op, t_symbol ∗msg)

Use egetfn() to send an untyped message to a Max object that always works.

• method zgetfn (t_object ∗op, t_symbol ∗msg)

Use zgetfn() to send an untyped message to a Max object without error checking.

34.3.1 Function Documentation

34.3.1.1 void addbang (method f)

Used to bind a function to the common triggering message bang.

Parameters
f Function to be the bang method.

34.3.1.2 void addfloat (method f)

Use addfloat() to bind a function to the float message received in the leftmost inlet.

Parameters
f Function to be the int method.

34.3.1.3 void addftx (method f, short n)

Use addftx() to bind a function to a float message that will be received in an inlet other
than the leftmost one.

Parameters
f Function to be the float method.

n Number of the inlet connected to this method. 1 is the first inlet to the
right of the left inlet.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

260 Module Documentation

Remarks

This correspondence between inlet locations and messages is not automatic, but it
is strongly suggested that you follow existing practice. You must set the correspon-
dence up when creating an object of your class with proper use of intin and floatin
in your instance creation function New Instance Routine.

34.3.1.4 void addint (method f)

Use addint() to bind a function to the int message received in the leftmost inlet.

Parameters
f Function to be the int method.

34.3.1.5 void addinx (method f, short n)

Use addinx() to bind a function to a int message that will be received in an inlet other
than the leftmost one.

Parameters
f Function to be the int method.

n Number of the inlet connected to this method. 1 is the first inlet to the
right of the left inlet.

Remarks

This correspondence between inlet locations and messages is not automatic, but it
is strongly suggested that you follow existing practice. You must set the correspon-
dence up when creating an object of your class with proper use of intin and floatin
in your instance creation function New Instance Routine.

34.3.1.6 void addmess (method f, char ∗ s, short type, ...)

Use addmess() to bind a function to a message other than the standard ones covered
by addbang(), addint(), etc.

Parameters
f Function you want to be the method.
s C string defining the message.

type The first of one or more integers from e_max_atomtypes specifying the
arguments to the message.

... Any additional types from e_max_atomtypes for additonal arguments.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.3 Old-Style Classes 261

See also

Anatomy of a Max Object

34.3.1.7 void alias (char ∗ name)

Use the alias function to allow users to refer to your object by a name other than that of
your shared library.

Parameters
name An alternative name for the user to use to make an object of your class.

34.3.1.8 void class setname (char ∗ obname, char ∗ filename)

Use class_setname() to associate you object’s name with it’s filename on disk.

Parameters
obname A character string with the name of your object class as it appears in

Max.
filename A character string with the name of your external’s file as it appears on

disk.

34.3.1.9 method egetfn (t_object ∗ op, t_symbol ∗ msg)

Use egetfn() to send an untyped message to a Max object that always works.

Parameters
op Receiver of the message.

msg Message selector.

Returns

egetfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. If the method can’t be found, a pointer to a do-nothing
function is returned.

34.3.1.10 void freeobject (t_object ∗ op)

Release the memory used by a Max object.

freeobject() calls an object’s free function, if any, then disposes the memory used by the
object itself. freeobject() should be used on any instance of a standard Max object data

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

262 Module Documentation

structure, with the exception of Qelems and Atombufs. Clocks, Binbufs, Proxies, Exprs,
etc. should be freed with freeobject().

Parameters
op The object instance pointer to free.

Remarks

This function can be replaced by the use of object_free(). Unlike freeobject(),
object_free() checkes to make sure the pointer is not NULL before trying to free
it.

See also

newobject()
object_free()

34.3.1.11 method getfn (t_object ∗ op, t_symbol ∗ msg)

Use getfn() to send an untyped message to a Max object with error checking.

Parameters
op Receiver of the message.

msg Message selector.

Returns

getfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. It returns 0 and prints an error message in Max Window if
the method can’t be found.

34.3.1.12 void∗ newinstance (t_symbol ∗ s, short argc, t_atom ∗ argv)

Make a new instance of an existing Max class.

Parameters
s className Symbol specifying the name of the class of the instance to

be created.
argc Count of arguments in argv.
argv Array of t_atoms; arguments to the class’s instance creation function.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.3 Old-Style Classes 263

Returns

A pointer to the created object, or 0 if the class didn’t exist or there was another
type of error in creating the instance.

Remarks

This function creates a new instance of the specified class. Using newinstance is
equivalent to typing something in a New Object box when using Max. The difference
is that no object box is created in any Patcher window, and you can send messages
to the object directly without connecting any patch cords. The messages can either
be type- checked (using typedmess) or non-type-checked (using the members of
the getfn family).

This function is useful for taking advantage of other already-defined objects that you
would like to use ’privately’ in your object, such as tables. See the source code for the
coll object for an example of using a privately defined class.

34.3.1.13 void∗ newobject (void ∗ maxclass)

Use newobject to allocate the space for an instance of your class and initialize its object
header.

Parameters
maxclass The global class variable initialized in your main routine by the setup

function.

Returns

A pointer to the new instance.

Remarks

You call newobject() when creating an instance of your class in your creation func-
tion. newobject allocates the proper amount of memory for an object of your class
and installs a pointer to your class in the object, so that it can respond with your
class’s methods if it receives a message.

34.3.1.14 void setup (t_messlist ∗∗ ident, method makefun, method freefun, short size,
method menufun, short type, ...)

Use the setup() function to initialize your class by informing Max of its size, the name of
your functions that create and destroy instances, and the types of arguments passed to
the instance creation function.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

264 Module Documentation

Parameters
ident A global variable in your code that points to the initialized class.

makefun Your instance creation function.
freefun Your instance free function (see Chapter 7).

size The size of your objects data structure in bytes. Usually you use the C
sizeof operator here.

menufun No longer used. You should pass NULL for this parameter.
type The first of a list of arguments passed to makefun when an object is

created.
... Any additional arguments passed to makefun when an object is created.

Together with the type parameter, this creates a standard Max type list
as enumerated in e_max_atomtypes. The final argument of the type list
should be a 0.

See also

Anatomy of a Max Object

34.3.1.15 void∗ typedmess (t_object ∗ op, t_symbol ∗ msg, short argc, t_atom ∗ argp)

Send a typed message directly to a Max object.

Parameters
op Max object that will receive the message.

msg The message selector.
argc Count of message arguments in argv.
argp Array of t_atoms; the message arguments.

Returns

If the receiver object can respond to the message, typedmess() returns the result.
Otherwise, an error message will be seen in the Max window and 0 will be returned.

Remarks

typedmess sends a message to a Max object (receiver) a message with arguments.
Note that the message must be a t_symbol, not a character string, so you must
call gensym on a string before passing it to typedmess. Also, note that untyped
messages defined for classes with the argument list A_CANT cannot be sent using
typedmess. You must use getfn() etc. instead.

Example:

//If you want to send a bang message to the object bang_me...
void *bangResult;
bangResult = typedmess(bang_me,gensym("bang"),0,0L);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.3 Old-Style Classes 265

34.3.1.16 method zgetfn (t_object ∗ op, t_symbol ∗ msg)

Use zgetfn() to send an untyped message to a Max object without error checking.

Parameters
op Receiver of the message.

msg Message selector.

Returns

zgetfn returns a pointer to the method bound to the message selector msg in the
receiver’s message list. It returns 0 but doesn’t print an error message in Max
Window if the method can’t be found.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

266 Module Documentation

34.4 Inlets and Outlets

Routines for creating and communicating with inlets and outlets.

Collaboration diagram for Inlets and Outlets:

Classes Inlets and Outlets

Functions

• void ∗ inlet_new (void ∗x, C74_CONST char ∗s)

Use inlet_new() to create an inlet that can receive a specific message or any message.

• void ∗ intin (void ∗x, short n)

Use intin() to create an inlet typed to receive only integers.

• void ∗ floatin (void ∗x, short n)

Use floatin() to create an inlet typed to receive only floats.

• void ∗ outlet_new (void ∗x, C74_CONST char ∗s)

Use outlet_new() to create an outlet that can send a specific non-standard message,
or any message.

• void ∗ bangout (void ∗x)

Use bangout() to create an outlet that will always send the bang message.

• void ∗ intout (void ∗x)

Use intout() to create an outlet that will always send the int message.

• void ∗ floatout (void ∗x)

Use floatout() to create an outlet that will always send the float message.

• void ∗ listout (void ∗x)

Use listout() to create an outlet that will always send the list message.

• void ∗ outlet_bang (void ∗o)

Use outlet_bang() to send a bang message out an outlet.

• void ∗ outlet_int (void ∗o, long n)

Use outlet_int() to send an int message out an outlet.

• void ∗ outlet_float (void ∗o, double f)

Use outlet_float() to send a float message out an outlet.

• void ∗ outlet_list (void ∗o, t_symbol ∗s, short ac, t_atom ∗av)

Use outlet_list() to send a list message out an outlet.

• void ∗ outlet_anything (void ∗o, t_symbol ∗s, short ac, t_atom ∗av)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.4 Inlets and Outlets 267

Use outlet_anything() to send any message out an outlet.

• void ∗ proxy_new (void ∗x, long id, long ∗stuffloc)

Use proxy_new to create a new Proxy object.

• long proxy_getinlet (t_object ∗master)

Use proxy_getinlet to get the inlet number in which a message was received.

34.4.1 Detailed Description

Routines for creating and communicating with inlets and outlets.

34.4.2 Function Documentation

34.4.2.1 void∗ bangout (void ∗ x)

Use bangout() to create an outlet that will always send the bang message.

Parameters
x Your object.

Returns

A pointer to the new outlet.

Remarks

You can send a bang message out a general purpose outlet, but creating an outlet
using bangout() allows Max to type-check the connection a user might make and
refuse to connect the outlet to any object that cannot receive a bang message.
bangout() returns the created outlet.

34.4.2.2 void∗ floatin (void ∗ x, short n)

Use floatin() to create an inlet typed to receive only floats.

Parameters
x Your object.
n Location of the inlet from 1 to 9. 1 is immediately to the right of the

leftmost inlet.

Returns

A pointer to the new inlet.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

268 Module Documentation

34.4.2.3 void∗ floatout (void ∗ x)

Use floatout() to create an outlet that will always send the float message.

Parameters
x Your object.

Returns

A pointer to the new outlet.

34.4.2.4 void∗ inlet new (void ∗ x, C74 CONST char ∗ s)

Use inlet_new() to create an inlet that can receive a specific message or any message.

Parameters
x Your object.
s Character string of the message, or NULL to receive any message.

Returns

A pointer to the new inlet.

Remarks

inlet_new() ceates a general purpose inlet. You can use it in circumstances where
you would like special messages to be received in inlets other than the leftmost
one. To create an inlet that receives a particular message, pass the message’s
character string. For example, to create an inlet that receives only bang messages,
do the following

inlet_new (myObject,"bang");

To create an inlet that can receive any message, pass NULL for msg

inlet_new (myObject, NULL);

Proxies are an alternative method for general-purpose inlets that have a number of
advantages. If you create multiple inlets as shown above, there would be no way
to figure out which inlet received a message. See the discussion in Creating and
Using Proxies.

34.4.2.5 void∗ intin (void ∗ x, short n)

Use intin() to create an inlet typed to receive only integers.

Parameters

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.4 Inlets and Outlets 269

x Your object.
n Location of the inlet from 1 to 9. 1 is immediately to the right of the

leftmost inlet.

Returns

A pointer to the new inlet.

Remarks

intin creates integer inlets. It takes a pointer to your newly created object and an
integer n, from 1 to 9. The number specifies the message type you’ll get, so you
can distinguish one inlet from another. For example, an integer sent in inlet 1 will
be of message type in1 and a floating point number sent in inlet 4 will be of type
ft4. You use addinx() and addftx() to add methods to respond to these messages.

The order you create additional inlets is important. If you want the rightmost inlet to be
the have the highest number in- or ft- message (which is usually the case), you should
create the highest number message inlet first.

34.4.2.6 void∗ intout (void ∗ x)

Use intout() to create an outlet that will always send the int message.

Parameters
x Your object.

Returns

A pointer to the new outlet.

Remarks

You can send a bang message out a general purpose outlet, but creating an outlet
using bangout() allows Max to type-check the connection a user might make and
refuse to connect the outlet to any object that cannot receive a bang message.
bangout() returns the created outlet.

34.4.2.7 void∗ listout (void ∗ x)

Use listout() to create an outlet that will always send the list message.

Parameters
x Your object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

270 Module Documentation

Returns

A pointer to the new outlet.

34.4.2.8 void∗ outlet anything (void ∗ o, t_symbol ∗ s, short ac, t_atom ∗ av)

Use outlet_anything() to send any message out an outlet.

Parameters
o Outlet that will send the message.
s The message selector t_symbol∗.

ac Number of elements in the list in argv.
av Atoms constituting the list.

Returns

Returns 0 if a stack overflow occurred, otherwise returns 1.

Remarks

This function lets you send an arbitrary message out an outlet. Here are a couple
of examples of its use.

First, here’s a hard way to send the bang message (see outlet_bang() for an easier
way):

outlet_anything(myOutlet, gensym("bang"), 0, NIL);

Remarks

And here’s an even harder way to send a single integer (instead of using outlet_-
int()).

t_atom myNumber;

atom_setlong(&myNumber, 432);
outlet_anything(myOutlet, gensym("int"), 1, &myNumber);

Notice that outlet_anything() expects the message argument as a t_symbol∗, so
you must use gensym() on a character string.

If you’ll be sending the same message a lot, you might call gensym() on the message
string at initialization time and store the result in a global variable to save the (significant)
overhead of calling gensym() every time you want to send a message.

Also, do not send lists using outlet_anything() with list as the selector argument. Use
the outlet_list() function instead.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.4 Inlets and Outlets 271

34.4.2.9 void∗ outlet bang (void ∗ o)

Use outlet_bang() to send a bang message out an outlet.

Parameters
o Outlet that will send the message.

Returns

Returns 0 if a stack overflow occurred, otherwise returns 1.

34.4.2.10 void∗ outlet float (void ∗ o, double f)

Use outlet_float() to send a float message out an outlet.

Parameters
o Outlet that will send the message.
f Float value to send.

Returns

Returns 0 if a stack overflow occurred, otherwise returns 1.

34.4.2.11 void∗ outlet int (void ∗ o, long n)

Use outlet_int() to send an int message out an outlet.

Parameters
o Outlet that will send the message.
n Integer value to send.

Returns

Returns 0 if a stack overflow occurred, otherwise returns 1.

34.4.2.12 void∗ outlet list (void ∗ o, t_symbol ∗ s, short ac, t_atom ∗ av)

Use outlet_list() to send a list message out an outlet.

Parameters
o Outlet that will send the message.
s Should be NULL, but can be the _sym_list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

272 Module Documentation

ac Number of elements in the list in argv.
av Atoms constituting the list.

Returns

Returns 0 if a stack overflow occurred, otherwise returns 1.

Remarks

outlet_list() sends the list specified by argv and argc out the specified outlet. The
outlet must have been created with listout or outlet_new in your object creation
function (see above). You create the list as an array of Atoms, but the first item in
the list must be an integer or float.

Here’s an example of sending a list of three numbers.

t_atom myList[3];
long theNumbers[3];
short i;

theNumbers[0] = 23;
theNumbers[1] = 12;
theNumbers[2] = 5;
for (i=0; i < 3; i++) {

atom_setlong(myList+i,theNumbers[i]);
}
outlet_list(myOutlet,0L,3,&myList);

Remarks

It’s not a good idea to pass large lists to outlet_list that are comprised of local (auto-
matic) variables. If the list is small, as in the above example, there’s no problem. If
your object will regularly send lists, it might make sense to keep an array of t_atoms
inside your object’s data structure.

34.4.2.13 void∗ outlet new (void ∗ x, C74 CONST char ∗ s)

Use outlet_new() to create an outlet that can send a specific non-standard message, or
any message.

Parameters
x Your object.
s A C-string specifying the message that will be sent out this outlet, or

NULL to indicate the outlet will be used to send various messages. The
advantage of this kind of outlet’s flexibility is balanced by the fact that
Max must perform a message-lookup in real-time for every message
sent through it, rather than when a patch is being constructed, as is
true for other types of outlets. Patchers execute faster when outlets
are typed, since the message lookup can be done before the program
executes. Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.4 Inlets and Outlets 273

Returns

A pointer to the new outlet.

34.4.2.14 long proxy getinlet (t_object ∗ master)

Use proxy_getinlet to get the inlet number in which a message was received.

Note that the owner argument should point to your external object’s instance, not a
proxy object.

Parameters
master Your object.

Returns

The index number of the inlet that received the message.

34.4.2.15 void∗ proxy new (void ∗ x, long id, long ∗ stuffloc)

Use proxy_new to create a new Proxy object.

Parameters
x Your object.

id A non-zero number to be written into your object when a message is
received in this particular Proxy. Normally, id will be the inlet number
analogous to in1, in2 etc.

stuffloc A pointer to a location where the id value will be written.

Returns

A pointer to the new proxy inlet.

Remarks

This routine creates a new Proxy object (that includes an inlet). It allows you to
identify messages based on an id value stored in the location specified by stuffLoc.
You should store the pointer returned by proxy_new() because you’ll need to free
all Proxies in your object’s free function using object_free().

After your method has finished, Proxy sets the stuffLoc location back to 0, since it never
sees messages coming in an object’s leftmost inlet. You’ll know you received a message
in the leftmost inlet if the contents of stuffLoc is 0. As of Max 4.3, stuffLoc is not always
guaranteed to be a correct indicator of the inlet in which a message was received. Use
proxy_getinlet() to determine the inlet number.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

274 Module Documentation

34.5 Data Storage

Max provides a number of ways of storing and manipulating data at a high level.

Collaboration diagram for Data Storage:

Linked List

Quick Map

String Object

Database

Symbol Object

Atom Array

Dictionary Passing API

Dictionary

Hash Table

Data Storage

Index Map

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.5 Data Storage 275

Modules

• Atom Array

Max’s atomarray object is a container for an array of atoms with an interface for ma-
nipulating that array.

• Database

Max’s database (i.e.

• Dictionary

Max 5, introduced the t_dictionary structure/object.

• Hash Table

A hash table is a data structure that associates some data with a unique key.

• Index Map

An indexmap is basically a managed array of pointers, but it allows you to derive rela-
tively quickly the index from a pointer in the array.

• Linked List

The Max t_linklist data structure is useful for maintaining ordered lists of items where
you want to be able to insert and delete items efficiently.

• Quick Map

A quickmap implements a pair of t_hashtab hash tables so that it is fast to look up a
unique value for a unique key or vice-versa.

• String Object

Max’s string object is a simple wrapper for c-strings, useful when working with Max’s
t_dictionary, t_linklist, or t_hashtab.

• Symbol Object

The symobject class is a simple object that wraps a t_symbol∗ together with a couple
of additional fields.

• Dictionary Passing API

The Dictionary Passing API defines a means by which t_dictionary instances may be
passed between Max objects in a way similar to the way Jitter Matrices are passed
between objects.

Typedefs

• typedef long(∗ t_cmpfn)(void ∗, void ∗)
Comparison function pointer type.

Enumerations

• enum e_max_datastore_flags { OBJ_FLAG_OBJ, OBJ_FLAG_REF, OBJ_FLA-
G_DATA, OBJ_FLAG_MEMORY, OBJ_FLAG_SILENT, OBJ_FLAG_INHERIT-
ABLE }

Flags used in linklist and hashtab objects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

276 Module Documentation

34.5.1 Detailed Description

Max provides a number of ways of storing and manipulating data at a high level. -
It is recommended to use Max’s data storage mechanisms where possible, as Max’s
systems are designed for thread-safety and integration with the rest of Max API.

34.5.2 Typedef Documentation

34.5.2.1 typedef long(∗ t_cmpfn)(void ∗, void ∗)

Comparison function pointer type.

Methods that require a comparison function pointer to be passed in use this type. It
should return true or false depending on the outcome of the comparison of the two
linklist items passed in as arguments.

See also

linklist_match()
hashtab_findfirst()
indexmap_sort()

34.5.3 Enumeration Type Documentation

34.5.3.1 enum e_max_datastore_flags

Flags used in linklist and hashtab objects.

Enumerator:

OBJ_FLAG_OBJ free using object_free()

OBJ_FLAG_REF don’t free

OBJ_FLAG_DATA don’t free data or call method

OBJ_FLAG_MEMORY don’t call method, and when freeing use sysmem_-
freeptr() instead of freeobject

OBJ_FLAG_SILENT don’t notify when modified

OBJ_FLAG_INHERITABLE obexprototype entry will be inherited by subpatch-
ers and abstractions

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.6 Atom Array 277

34.6 Atom Array

Max’s atomarray object is a container for an array of atoms with an interface for manip-
ulating that array.

Collaboration diagram for Atom Array:

Atom ArrayData Storage

Data Structures

• struct t_atomarray

The atomarray object.

Defines

• #define ATOMARRAY_FLAG_FREECHILDREN

The atomarray flags.

Functions

• t_atomarray ∗ atomarray_new (long ac, t_atom ∗av)

Create a new atomarray object.

• void atomarray_flags (t_atomarray ∗x, long flags)

Set the atomarray flags.

• long atomarray_getflags (t_atomarray ∗x)

Get the atomarray flags.

• t_max_err atomarray_setatoms (t_atomarray ∗x, long ac, t_atom ∗av)

Replace the existing array contents with a new set of atoms Note that atoms provided
to this function will be copied.

• t_max_err atomarray_getatoms (t_atomarray ∗x, long ∗ac, t_atom ∗∗av)

Retrieve a pointer to the first atom in the internal array of atoms.

• t_max_err atomarray_copyatoms (t_atomarray ∗x, long ∗ac, t_atom ∗∗av)

Retrieve a copy of the atoms in the array.

• long atomarray_getsize (t_atomarray ∗x)

Return the number of atoms in the array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

278 Module Documentation

• t_max_err atomarray_getindex (t_atomarray ∗x, long index, t_atom ∗av)

Copy an a specific atom from the array.

• void ∗ atomarray_duplicate (t_atomarray ∗x)

Create a new atomarray object which is a copy of another atomarray object.

• void atomarray_appendatom (t_atomarray ∗x, t_atom ∗a)

Copy a new atom onto the end of the array.

• void atomarray_appendatoms (t_atomarray ∗x, long ac, t_atom ∗av)

Copy multiple new atoms onto the end of the array.

• void atomarray_chuckindex (t_atomarray ∗x, long index)

Remove an atom from any location within the array.

• void atomarray_clear (t_atomarray ∗x)

Clear the array.

• void atomarray_funall (t_atomarray ∗x, method fun, void ∗arg)

Call the specified function for every item in the atom array.

34.6.1 Detailed Description

Max’s atomarray object is a container for an array of atoms with an interface for manipu-
lating that array. It can be useful for passing lists as a single atom, such as for the return
value of an A_GIMMEBACK method. It also used frequently in when working with Max’s
t_dictionary object.

See also

Dictionary

34.6.2 Define Documentation

34.6.2.1 #define ATOMARRAY FLAG FREECHILDREN

The atomarray flags.

Currently the only flag is ATOMARRAY_FLAG_FREECHILDREN. If set via atomarray_-
flags() the atomarray will free any contained A_OBJ atoms when the atomarray is freed.

34.6.3 Function Documentation

34.6.3.1 void atomarray appendatom (t_atomarray ∗ x, t_atom ∗ a)

Copy a new atom onto the end of the array.

Parameters
x The atomarray instance.
a A pointer to the new atom to append to the end of the array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.6 Atom Array 279

See also

atomarray_appendatoms()
atomarray_setatoms()

34.6.3.2 void atomarray appendatoms (t_atomarray ∗ x, long ac, t_atom ∗ av)

Copy multiple new atoms onto the end of the array.

Parameters
x The atomarray instance.

ac The number of new atoms to be appended to the array.
av A pointer to the first of the new atoms to append to the end of the array.

See also

atomarray_appendatom()
atomarray_setatoms()

34.6.3.3 void atomarray chuckindex (t_atomarray ∗ x, long index)

Remove an atom from any location within the array.

The array will be resized and collapsed to fill in the gap.

Parameters
x The atomarray instance.

index The zero-based index of the atom to remove from the array.

34.6.3.4 void atomarray clear (t_atomarray ∗ x)

Clear the array.

Frees all of the atoms and sets the size to zero. This function does not perform a
’deep’ free, meaning that any A_OBJ atoms will not have their object’s freed. Only the
references to those objects contained in the atomarray will be freed.

Parameters
x The atomarray instance.

Returns

The number of atoms in the array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

280 Module Documentation

34.6.3.5 t_max_err atomarray copyatoms (t_atomarray ∗ x, long ∗ ac, t_atom ∗∗ av)

Retrieve a copy of the atoms in the array.

This method does not copy the atoms, btu simply provides access to them. To retrieve
a copy of the atoms use atomarray_copyatoms().

Parameters
x The atomarray instance.

ac The address of a long where the number of atoms will be set.
av The address of a t_atom pointer where the atoms will be allocated and

copied.

Returns

A Max error code.

Remarks

You are responsible for freeing memory allocated for the copy of the atoms returned.

long ac = 0;
t_atom *av = NULL;

atomarray_copyatoms(anAtomarray, &ac, &av);
if(ac && av){

// do something with ac and av here...
sysmem_freeptr(av);

}

See also

atomarray_getatoms()

34.6.3.6 void∗ atomarray duplicate (t_atomarray ∗ x)

Create a new atomarray object which is a copy of another atomarray object.

Parameters
x The atomarray instance which is to be copied.

Returns

A new atomarray which is copied from x.

See also

atomarray_new()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.6 Atom Array 281

34.6.3.7 void atomarray flags (t_atomarray ∗ x, long flags)

Set the atomarray flags.

Parameters
x The atomarray instance.

flags The new value for the flags.

34.6.3.8 void atomarray funall (t_atomarray ∗ x, method fun, void ∗ arg)

Call the specified function for every item in the atom array.

Parameters
x The atomarray instance.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Returns

A max error code.

Remarks

The atomarray_funall() method will call your function for every item in the list. It will
pass both a pointer to the item in the list, and any argument that you provide. The
following example shows a function that could be called by hashtab_funall().

void myFun(t_atom *a, void *myArg)
{

// do something with a and myArg here
// a is the atom in the atom array

}

See also

linklist_funall()
hashtab_funall()

34.6.3.9 t_max_err atomarray getatoms (t_atomarray ∗ x, long ∗ ac, t_atom ∗∗ av)

Retrieve a pointer to the first atom in the internal array of atoms.

This method does not copy the atoms, btu simply provides access to them. To retrieve
a copy of the atoms use atomarray_copyatoms().

Parameters
x The atomarray instance.

ac The address of a long where the number of atoms will be set.
av The address of a t_atom pointer where the address of the first atom of

the array will be set.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

282 Module Documentation

Returns

A Max error code.

See also

atomarray_copyatoms()

34.6.3.10 long atomarray getflags (t_atomarray ∗ x)

Get the atomarray flags.

Parameters
x The atomarray instance.

Returns

The current value of the atomarray flags.

34.6.3.11 t_max_err atomarray getindex (t_atomarray ∗ x, long index, t_atom ∗ av)

Copy an a specific atom from the array.

Parameters
x The atomarray instance.

index The zero-based index into the array from which to retrieve an atom
pointer.

av The address of an atom to contain the copy.

Returns

A Max error code.

Remarks

Example:

{
t_atom a;

// fetch a copy of the second atom in a previously existing array
atomarray_getindex(anAtomarray, 1, &a);
// do something with the atom here...

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.6 Atom Array 283

34.6.3.12 long atomarray getsize (t_atomarray ∗ x)

Return the number of atoms in the array.

Parameters
x The atomarray instance.

Returns

The number of atoms in the array.

34.6.3.13 t_atomarray∗ atomarray new (long ac, t_atom ∗ av)

Create a new atomarray object.

Note that atoms provided to this function will be copied . The copies stored internally to
the atomarray instance. You can free the atomarray by calling object_free().

Parameters
ac The number of atoms to be initially contained in the atomarray.
av A pointer to the first of an array of atoms to initially copy into the atom-

array.

Returns

Pointer to the new atomarray object.

Remarks

Note that due to the unusual prototype of this method that you cannot instantiate
this object using the object_new_typed() function. If you wish to use the dynamically
bound creator to instantiate the object, you should instead should use object_new()
as demonstrated below. The primary reason that you might choose to instantiate an
atomarray using object_new() instead of atomarray_new() is for using the atomarray
object in code that is also intended to run in Max 4.

object_new(CLASS_NOBOX, gensym("atomarray"), argc, argv);

See also

atomarray_duplicate()

34.6.3.14 t_max_err atomarray setatoms (t_atomarray ∗ x, long ac, t_atom ∗ av)

Replace the existing array contents with a new set of atoms Note that atoms provided
to this function will be copied .

The copies stored internally to the atomarray instance.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

284 Module Documentation

Parameters
x The atomarray instance.

ac The number of atoms to be initially contained in the atomarray.
av A pointer to the first of an array of atoms to initially copy into the atom-

array.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 285

34.7 Database

Max’s database (i.e.

Collaboration diagram for Database:

DatabaseData Storage

Typedefs

• typedef t_object t_database

A database object.

• typedef t_object t_db_result

A database result object.

• typedef t_object t_db_view

A database view object.

Functions

• BEGIN_USING_C_LINKAGE t_max_err db_open (t_symbol ∗dbname, const
char ∗fullpath, t_database ∗∗db)

Create an instance of a database.

• t_max_err db_close (t_database ∗∗db)

Close an open database.

• t_max_err db_query (t_database ∗db, t_db_result ∗∗dbresult, const char
∗sql,...)

Execute a SQL query on the database.

• t_max_err db_query_silent (t_database ∗db, t_db_result ∗∗dbresult, const char
∗sql,...)

Execute a SQL query on the database, temporarily overriding the database’s error
logging attribute.

• t_max_err db_query_getlastinsertid (t_database ∗db, long ∗id)

Determine the id (key) number for the most recent INSERT query executed on the
database.

• t_max_err db_query_table_new (t_database ∗db, const char ∗tablename)

Create a new table in a database.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

286 Module Documentation

• t_max_err db_query_table_addcolumn (t_database ∗db, const char ∗tablename,
const char ∗columnname, const char ∗columntype, const char ∗flags)

Add a new column to an existing table in a database.

• t_max_err db_transaction_start (t_database ∗db)

Begin a database transaction.

• t_max_err db_transaction_end (t_database ∗db)

Finalize a database transaction.

• t_max_err db_transaction_flush (t_database ∗db)

Force any open transactions to close.

• t_max_err db_view_create (t_database ∗db, const char ∗sql, t_db_view
∗∗dbview)

A database view is a way of looking at a particular set of records in the database.

• t_max_err db_view_remove (t_database ∗db, t_db_view ∗∗dbview)

Remove a database view created using db_view_create().

• t_max_err db_view_getresult (t_db_view ∗dbview, t_db_result ∗∗result)

Fetch the pointer for a t_db_view’s query result.

• t_max_err db_view_setquery (t_db_view ∗dbview, char ∗newquery)

Set the query used by the view.

• char ∗∗ db_result_nextrecord (t_db_result ∗result)

Return the next record from a set of results that you are walking.

• void db_result_reset (t_db_result ∗result)

Reset the interface for walking a result’s record list to the first record.

• void db_result_clear (t_db_result ∗result)

Zero-out a database result.

• long db_result_numrecords (t_db_result ∗result)

Return a count of all records in the query result.

• long db_result_numfields (t_db_result ∗result)

Return a count of all fields (columns) in the query result.

• char ∗ db_result_fieldname (t_db_result ∗result, long fieldindex)

Return the name of a field specified by its index number.

• char ∗ db_result_string (t_db_result ∗result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

• long db_result_long (t_db_result ∗result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

• float db_result_float (t_db_result ∗result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

• unsigned long db_result_datetimeinseconds (t_db_result ∗result, long
recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

• void db_util_stringtodate (const char ∗string, unsigned long ∗date)

A utility to convert from a sql datetime string into seconds.

• void db_util_datetostring (const unsigned long date, char ∗string)

A utility to convert from seconds into a sql-ready datetime string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 287

34.7.1 Detailed Description

Max’s database (i.e. t_database) support currently consists of a SQLite (http-
://sqlite.org) extension which is loaded dynamically by Max at launch time.
Because it is loaded dynamically, all interfacing with the sqlite object relies on Max’s
message passing interface, using object_method() and related functions.

For most common database needs, a C-interface is defined in the ext_database.h
header file and implemented in the ext_database.c source file. The functions defined in
this interface wrap the message passing calls and provide a convenient means by which
you can work with databases. ext_database.c is located in the ’common’ folder inside
of the ’max-includes’ folder. If you use any of the functions defined ext_database.h, you
will need to add ext_database.c to your project.

34.7.2 Typedef Documentation

34.7.2.1 typedef t_object t_database

A database object.

Use db_open() and db_close() to create and free database objects.

34.7.2.2 typedef t_object t_db_result

A database result object.

This is what the database object returns when a query is executed.

34.7.2.3 typedef t_object t_db_view

A database view object.

A database view wraps a query and a result for a given database, and is always updated
and in-sync with the database.

34.7.3 Function Documentation

34.7.3.1 t_max_err db close (t_database ∗∗ db)

Close an open database.

Parameters
db The address of the t_database pointer for your database instance. The

pointer will be freed and set NULL upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://sqlite.org
http://sqlite.org

288 Module Documentation

Returns

An error code.

34.7.3.2 BEGIN USING C LINKAGE t_max_err db open (t_symbol ∗ dbname, const char ∗
fullpath, t_database ∗∗ db)

Create an instance of a database.

Parameters
dbname The name of the database.
fullpath If a database with this dbname is not already open, this will specify a

full path to the location where the database is stored on disk. If NULL is
passed for this argument, the database will reside in memory only. The
path should be formatted as a Max style path.

db The address of a t_database pointer that will be set to point to the new
database instance. If the pointer is not NULL, then it will be treated as
a pre-existing database instance and thus will be freed.

Returns

An error code.

34.7.3.3 t_max_err db query (t_database ∗ db, t_db_result ∗∗ dbresult, const char ∗
sql, ...)

Execute a SQL query on the database.

Parameters
db The t_database pointer for your database instance.

dbresult The address of a t_db_result pointer. If the pointer is passed-in set to
NULL then a new dbresult will be created. If the pointer is not NULL
then it is assumed to be a valid dbresult, which will be filled in with the
query results. When you are done with the dbresult you should free it
with object_free().

sql A C-string containing a valid SQL query, possibly with sprintf() format-
ting codes.

... If an sprintf() formatting codes are used in the sql string, these values
will be interpolated into the sql string.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 289

34.7.3.4 t_max_err db query getlastinsertid (t_database ∗ db, long ∗ id)

Determine the id (key) number for the most recent INSERT query executed on the
database.

Parameters
db The t_database pointer for your database instance.
id The address of a variable to hold the result on return.

Returns

An error code.

34.7.3.5 t_max_err db query silent (t_database ∗ db, t_db_result ∗∗ dbresult, const
char ∗ sql, ...)

Execute a SQL query on the database, temporarily overriding the database’s error log-
ging attribute.

Parameters
db The t_database pointer for your database instance.

dbresult The address of a t_db_result pointer. If the pointer is passed-in set to
NULL then a new dbresult will be created. If the pointer is not NULL
then it is assumed to be a valid dbresult, which will be filled in with the
query results. When you are done with the dbresult you should free it
with object_free().

sql A C-string containing a valid SQL query, possibly with sprintf() format-
ting codes.

... If an sprintf() formatting codes are used in the sql string, these values
will be interpolated into the sql string.

Returns

An error code.

34.7.3.6 t_max_err db query table addcolumn (t_database ∗ db, const char ∗ tablename,
const char ∗ columnname, const char ∗ columntype, const char ∗ flags)

Add a new column to an existing table in a database.

Parameters
db The t_database pointer for your database instance.

tablename The name of the table to which the column should be added.
columnname The name to use for the new column.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

290 Module Documentation

columntype The SQL type for the data that will be stored in the column. For
example: "INTEGER" or "VARCHAR"

flags If you wish to specify any additional information for the column, then
pass that here. Otherwise pass NULL.

Returns

An error code.

34.7.3.7 t_max_err db query table new (t_database ∗ db, const char ∗ tablename)

Create a new table in a database.

Parameters
db The t_database pointer for your database instance.

tablename The name to use for the new table. The new table will be created with
one column, which holds the primary key for the table, and is named
according the form {tablename}_id.

Returns

An error code.

34.7.3.8 void db result clear (t_db_result ∗ result)

Zero-out a database result.

Parameters
result The t_db_result pointer for your query results.

34.7.3.9 unsigned long db result datetimeinseconds (t_db_result ∗ result, long recordindex,
long fieldindex)

Return a single value from a result according to its index and field coordinates.

The value will be coerced from an expected datetime field into seconds.

Parameters
result The t_db_result pointer for your query results.

recordindex The zero-based index number of the record (row) in the result.
fieldindex The zero-based index number of the field (column) in the result.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 291

Returns

The datetime represented in seconds.

34.7.3.10 char∗ db result fieldname (t_db_result ∗ result, long fieldindex)

Return the name of a field specified by its index number.

Parameters
result The t_db_result pointer for your query results.

fieldindex The zero-based index number of the field (column) in the result.

Returns

A C-String with the name of the field.

34.7.3.11 float db result float (t_db_result ∗ result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

Parameters
result The t_db_result pointer for your query results.

recordindex The zero-based index number of the record (row) in the result.
fieldindex The zero-based index number of the field (column) in the result.

Returns

The content of the specified cell from the result scanned out to a float.

34.7.3.12 long db result long (t_db_result ∗ result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

Parameters
result The t_db_result pointer for your query results.

recordindex The zero-based index number of the record (row) in the result.
fieldindex The zero-based index number of the field (column) in the result.

Returns

The content of the specified cell from the result scanned out to a long int.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

292 Module Documentation

34.7.3.13 char∗∗ db result nextrecord (t_db_result ∗ result)

Return the next record from a set of results that you are walking.

When you are returned a result from a query of the database, the result is prepared for
walking the results from the beginning. You can also reset the result manually to the
beginning of the record list by calling db_result_reset().

Parameters
result The t_db_result pointer for your query results.

Returns

An array of C-Strings with the values for every requested column (field) of a
database record. To find out how many columns are represented in the array, use
db_result_numfields().

34.7.3.14 long db result numfields (t_db_result ∗ result)

Return a count of all fields (columns) in the query result.

Parameters
result The t_db_result pointer for your query results.

Returns

The count of fields in the query result.

34.7.3.15 long db result numrecords (t_db_result ∗ result)

Return a count of all records in the query result.

Parameters
result The t_db_result pointer for your query results.

Returns

The count of records in the query result.

34.7.3.16 void db result reset (t_db_result ∗ result)

Reset the interface for walking a result’s record list to the first record.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 293

Parameters
result The t_db_result pointer for your query results.

34.7.3.17 char∗ db result string (t_db_result ∗ result, long recordindex, long fieldindex)

Return a single value from a result according to its index and field coordinates.

Parameters
result The t_db_result pointer for your query results.

recordindex The zero-based index number of the record (row) in the result.
fieldindex The zero-based index number of the field (column) in the result.

Returns

A C-String with the content of the specified cell in the result.

34.7.3.18 t_max_err db transaction end (t_database ∗ db)

Finalize a database transaction.

Parameters
db The t_database pointer for your database instance.

Returns

An error code.

34.7.3.19 t_max_err db transaction flush (t_database ∗ db)

Force any open transactions to close.

Parameters
db The t_database pointer for your database instance.

Returns

An error code.

34.7.3.20 t_max_err db transaction start (t_database ∗ db)

Begin a database transaction.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

294 Module Documentation

When you are working with a file-based database, then the database will not be flushed
to disk until db_transacation_end() is called. This means that you can _much_ more
efficiently execute a sequence of queries in one transaction rather than independently.

That database object reference counts transactions, so it is possible nest calls to db_-
transacation_start() and db_transacation_end(). It is important to balance all calls with
db_transacation_end() or the database contents will never be flushed to disk.

Parameters
db The t_database pointer for your database instance.

Returns

An error code.

34.7.3.21 void db util datetostring (const unsigned long date, char ∗ string)

A utility to convert from seconds into a sql-ready datetime string.

Parameters
date The datetime represented in seconds.

string The address of a valid C-string whose contents will be set to a SQL-
ready string format upon return.

34.7.3.22 void db util stringtodate (const char ∗ string, unsigned long ∗ date)

A utility to convert from a sql datetime string into seconds.

Parameters
string A C-string containing a date and time in SQL format.
date The datetime represented in seconds upon return.

34.7.3.23 t_max_err db view create (t_database ∗ db, const char ∗ sql, t_db_view ∗∗
dbview)

A database view is a way of looking at a particular set of records in the database.

This particular set of records is defined with a standard SQL query, and the view main-
tains a copy of the results of the query internally. Any time the database is modified
the internal result set is updated, and any objects listening to the view are notified via
object_notify().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.7 Database 295

Parameters
db The t_database pointer for your database instance.
sql A SQL query that defines the set of results provided by the view.

dbview The address of a NULL t_db_view pointer which will be set with the new
view upon return.

Returns

An error code.

34.7.3.24 t_max_err db view getresult (t_db_view ∗ dbview, t_db_result ∗∗ result)

Fetch the pointer for a t_db_view’s query result.

Parameters
dbview The t_db_view pointer for your database view instance.

result The address of a pointer to a t_db_result object. This pointer will be
overwritten with the view’s result pointer upon return.

Returns

An error code.

34.7.3.25 t_max_err db view remove (t_database ∗ db, t_db_view ∗∗ dbview)

Remove a database view created using db_view_create().

Parameters
db The t_database pointer for your database instance for which this view

was created.
dbview The address of the t_db_view pointer for the view. This pointer will be

freed and set NULL upon return.

Returns

An error code.

34.7.3.26 t_max_err db view setquery (t_db_view ∗ dbview, char ∗ newquery)

Set the query used by the view.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

296 Module Documentation

Parameters
dbview The t_db_view pointer for your database view instance.

newquery The SQL string to define a new query for the view, replacing the old
query.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 297

34.8 Dictionary

Max 5, introduced the t_dictionary structure/object.

Collaboration diagram for Dictionary:

DictionaryData Storage

Data Structures

• struct t_dictionary_entry

A dictionary entry.

• struct t_dictionary

The dictionary object.

Functions

• t_dictionary ∗ dictionary_new ()

Create a new dictionary object.

• t_max_err dictionary_appendlong (t_dictionary ∗d, t_symbol ∗key, long value)

Add a long integer value to the dictionary.

• t_max_err dictionary_appendfloat (t_dictionary ∗d, t_symbol ∗key, double
value)

Add a double-precision float value to the dictionary.

• t_max_err dictionary_appendsym (t_dictionary ∗d, t_symbol ∗key, t_symbol
∗value)

Add a t_symbol∗ value to the dictionary.

• t_max_err dictionary_appendatom (t_dictionary ∗d, t_symbol ∗key, t_atom
∗value)

Add a t_atom∗ value to the dictionary.

• t_max_err dictionary_appendstring (t_dictionary ∗d, t_symbol ∗key, const char
∗value)

Add a C-string to the dictionary.

• t_max_err dictionary_appendatoms (t_dictionary ∗d, t_symbol ∗key, long argc,
t_atom ∗argv)

Add an array of atoms to the dictionary.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

298 Module Documentation

• t_max_err dictionary_appendatomarray (t_dictionary ∗d, t_symbol ∗key, t_object
∗value)

Add an Atom Array object to the dictionary.

• t_max_err dictionary_appenddictionary (t_dictionary ∗d, t_symbol ∗key, t_object
∗value)

Add a dictionary object to the dictionary.

• t_max_err dictionary_appendobject (t_dictionary ∗d, t_symbol ∗key, t_object
∗value)

Add an object to the dictionary.

• t_max_err dictionary_getlong (C74_CONST t_dictionary ∗d, t_symbol ∗key, long
∗value)

Retrieve a long integer from the dictionary.

• t_max_err dictionary_getfloat (C74_CONST t_dictionary ∗d, t_symbol ∗key, dou-
ble ∗value)

Retrieve a double-precision float from the dictionary.

• t_max_err dictionary_getsym (C74_CONST t_dictionary ∗d, t_symbol ∗key, t_-
symbol ∗∗value)

Retrieve a t_symbol∗ from the dictionary.

• t_max_err dictionary_getatom (C74_CONST t_dictionary ∗d, t_symbol ∗key, t_-
atom ∗value)

Copy a t_atom from the dictionary.

• t_max_err dictionary_getstring (C74_CONST t_dictionary ∗d, t_symbol ∗key,
const char ∗∗value)

Retrieve a C-string pointer from the dictionary.

• t_max_err dictionary_getatoms (C74_CONST t_dictionary ∗d, t_symbol ∗key,
long ∗argc, t_atom ∗∗argv)

Retrieve the address of a t_atom array of in the dictionary.

• t_max_err dictionary_copyatoms (C74_CONST t_dictionary ∗d, t_symbol ∗key,
long ∗argc, t_atom ∗∗argv)

Retrieve copies of a t_atom array in the dictionary.

• t_max_err dictionary_getatomarray (C74_CONST t_dictionary ∗d, t_symbol ∗key,
t_object ∗∗value)

Retrieve a t_atomarray pointer from the dictionary.

• t_max_err dictionary_getdictionary (C74_CONST t_dictionary ∗d, t_symbol ∗key,
t_object ∗∗value)

Retrieve a t_dictionary pointer from the dictionary.

• t_max_err dictionary_getobject (C74_CONST t_dictionary ∗d, t_symbol ∗key, t_-
object ∗∗value)

Retrieve a t_object pointer from the dictionary.

• long dictionary_entryisstring (C74_CONST t_dictionary ∗d, t_symbol ∗key)

Test a key to set if the data stored with that key contains a t_string object.

• long dictionary_entryisatomarray (C74_CONST t_dictionary ∗d, t_symbol ∗key)

Test a key to set if the data stored with that key contains a t_atomarray object.

• long dictionary_entryisdictionary (C74_CONST t_dictionary ∗d, t_symbol ∗key)

Test a key to set if the data stored with that key contains a t_dictionary object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 299

• long dictionary_hasentry (C74_CONST t_dictionary ∗d, t_symbol ∗key)

Test a key to set if it exists in the dictionary.

• long dictionary_getentrycount (C74_CONST t_dictionary ∗d)

Return the number of keys in a dictionary.

• t_max_err dictionary_getkeys (C74_CONST t_dictionary ∗d, long ∗numkeys, t_-
symbol ∗∗∗keys)

Retrieve all of the key names stored in a dictionary.

• void dictionary_freekeys (t_dictionary ∗d, long numkeys, t_symbol ∗∗keys)

Free memory allocated by the dictionary_getkeys() method.

• t_max_err dictionary_deleteentry (t_dictionary ∗d, t_symbol ∗key)

Remove a value from the dictionary.

• t_max_err dictionary_chuckentry (t_dictionary ∗d, t_symbol ∗key)

Remove a value from the dictionary without freeing it.

• t_max_err dictionary_clear (t_dictionary ∗d)

Delete all values from a dictionary.

• void dictionary_funall (t_dictionary ∗d, method fun, void ∗arg)

Call the specified function for every entry in the dictionary.

• t_symbol ∗ dictionary_entry_getkey (t_dictionary_entry ∗x)

Given a t_dictionary_entry∗, return the key associated with that entry.

• void dictionary_entry_getvalue (t_dictionary_entry ∗x, t_atom ∗value)

Given a t_dictionary_entry∗, return the value associated with that entry.

• void dictionary_entry_getvalues (t_dictionary_entry ∗x, long ∗argc, t_atom
∗∗argv)

Given a t_dictionary_entry∗, return the values associated with that entry.

• t_max_err dictionary_copyunique (t_dictionary ∗d, t_dictionary ∗copyfrom)

Given 2 dictionaries, copy the keys unique to one of the dictionaries to the other dic-
tionary.

• t_max_err dictionary_getdeflong (t_dictionary ∗d, t_symbol ∗key, long ∗value,
long def)

Retrieve a long integer from the dictionary.

• t_max_err dictionary_getdeffloat (t_dictionary ∗d, t_symbol ∗key, double ∗value,
double def)

Retrieve a double-precision float from the dictionary.

• t_max_err dictionary_getdefsym (t_dictionary ∗d, t_symbol ∗key, t_symbol
∗∗value, t_symbol ∗def)

Retrieve a t_symbol∗ from the dictionary.

• t_max_err dictionary_getdefatom (t_dictionary ∗d, t_symbol ∗key, t_atom ∗value,
t_atom ∗def)

Retrieve a t_atom∗ from the dictionary.

• t_max_err dictionary_getdefstring (t_dictionary ∗d, t_symbol ∗key, const char
∗∗value, char ∗def)

Retrieve a C-string from the dictionary.

• t_max_err dictionary_getdefatoms (t_dictionary ∗d, t_symbol ∗key, long ∗argc,
t_atom ∗∗argv, t_atom ∗def)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

300 Module Documentation

Retrieve the address of a t_atom array of in the dictionary.

• t_max_err dictionary_copydefatoms (t_dictionary ∗d, t_symbol ∗key, long ∗argc,
t_atom ∗∗argv, t_atom ∗def)

Retrieve copies of a t_atom array in the dictionary.

• t_max_err dictionary_dump (t_dictionary ∗d, long recurse, long console)

Print the contents of a dictionary to the Max window.

• t_max_err dictionary_copyentries (t_dictionary ∗src, t_dictionary ∗dst, t_symbol
∗∗keys)

Copy specified entries from one dictionary to another.

• t_dictionary ∗ dictionary_sprintf (C74_CONST char ∗fmt,...)

Create a new dictionary populated with values using a combination of attribute and
sprintf syntax.

• t_max_err dictionary_read (char ∗filename, short path, t_dictionary ∗∗d)

Read the specified JSON file and return a t_dictionary object.

• t_max_err dictionary_write (t_dictionary ∗d, char ∗filename, short path)

Serialize the specified t_dictionary object to a JSON file.

• void postdictionary (t_object ∗d)

Print the contents of a dictionary to the Max window.

34.8.1 Detailed Description

Max 5, introduced the t_dictionary structure/object. This is used for object prototypes,
object serialization, object constructors, and many other tasks. A dictionary is ultimately
a collection of atom values assigned to symbolic keys. In addition to primitive A_LONG,
A_FLOAT, and A_SYM atom types, the A_OBJ atom type is used for t_atomarray (for
a set of atoms assigned to a key), t_dictionary (for hierarhical use), t_string (for large
blocks of text which we don’t wish to bloat the symbol table), and potentially other object
data types. Internally, the dictionary object uses a combination data structure of a hash
table (for fast key lookup) and a linked-list (to maintain ordering of information within the
dictionary).

Dictionaries are clonable entites, but note that all the member objects of a given dictio-
nary may not be clonable. At the time of this writing, for example, the t_string object
is not clonable, though it will be made clonable in the near future. In order for proto-
type entities to be g uaranteed their passage into the constructor, they must be clonable
(currenlty a symbol conversion is in place for the t_string class).

34.8.2 Using Dictionaries

Dictionaries are used in many places in Max 5. They can be confusing in many respects.
It is easy to produce memory leaks or bugs where objects are freed twice. It is easy to
confuse what type of dictionary is used for what. This page will begin with some high
level information to help understand when to free and when not to free. Then, we will
offer recipies for using dictionaries to accomplish common tasks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 301

34.8.2.1 Understanding Dictionaries

A dictionary stores atom values under named key entries. These atoms can contain A-
_OBJ values. When the dictionary is freed, any A_OBJ values that are in the dictionary
will also be freed. Thus, it is easy to mistakenly free objects twice, thus this is something
to be careful about. For example, look at this code:

t_dictionary *d = dictionary_new();
t_dictionary *sd = dictionary_new();
dictionary_appenddictionary(d, gensym("subdictionary"), sd);
do_something(d);
object_free(d); // this will free *both* d and sd since sd is contained by

d
// freeing "sd" here would be bad

You primarily need to keep this in mind when calling dictionary_appendobject(),
dictionary_appenddictionary(), or dictionary_appendatomarray(). So, what do you
do if you need to free a dictionary but you also want to hang on to an object that is
inside of the dictionary? In this case, chuck the entry in question first. For example, let’s
assume that for some reason you cannot free the "sd" dictionary in the code above.
Perhaps it doesn’t belong to you. But, to do some operation you need to append it to a
new dictionary. Then, do this:

void function_foo(t_dictionary *sd) {
t_dictionary *d = dictionary_new();
dictionary_appenddictionary(d, gensym("subdictionary"), sd);
do_something(d);
dictionary_chuckentry(d, gensym("subdictionary"));
object_free(d);

}

34.8.2.2 When to Free a Dictionary

So, how do you know when you need to free a dictionary? Well, generally if you make a
dictionary, you need to free it when you are done (unless you transfer ownership of the
dictionary to someone else). On the other hand, if you are passed a dictionary (i.e. as
a parameter of your function or method) then it is not yours to free and you should just
use it. However, it is not always obvious that you made a dictionary vs just borrowed it.

Here are some common (and not so common) ways to make a dictionary. These func-
tions return a new dictionary and thus the dictionary you get should be freed when you
are done, unless you pass the dictionary on to someone else who will free it at an
appropriate time. Here they are:

• dictionary_new()

• dictionary_clone()

• dictionary_read()

• dictionary_sprintf()

• dictionary_vsprintf()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

302 Module Documentation

• jsonreader_parse()

• jpatcher_monikerforobject()

• class_cloneprototype()

• prototype_getdictionary()

• clipboard_todictionary()

• jpatchercontroller_copytodictionary()

• probably others of course

Here are some functions that return borrowed dictionaries. These are dictionaries that
you can use but you cannot free since you do not own them. Here they are:

• dictionary_prototypefromclass()

• object_refpage_get_class_info_fromclassname()

• object_refpage_get_class_info()

• object_dictionaryarg()

Finally, most functions that accept dictionaries as parameters will not assume ownership
of the dictionary. Usually the way ownership is assumed is if you add a dictionary as a
subdictionary to a dictionary that you do not own. One exception is the utility newobject-
_fromdictionary_delete() who’s name makes it clear that the dictionary will be deleted
after calling the function.

34.8.2.3 Some Common Uses of Dictionaries

You can make a patcher by passing a dictionary to object_new_typed() when making a
"jpatcher". Using atom_setparse() and attr_args_dictionary() makes this relatively easy.

Use newobject_sprintf() to programmatically make an object in a patch. Actually, you
don’t explicitly use a dictionary here! If you do want more control, so you can touch the
dictionary to customize it, then see the next bullet.

Use dictionary_sprintf() to make a dictionary to specify a box (i.e. specify class with
@maxclass attr). Then, make another dictionary and append your box dictionary to it
under the key "box" via dictionary_appenddictionary(). Finally, make your object with
newobject_fromdictionary().

See also

Linked List
Hash Table

Version

5.0

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 303

34.8.3 Function Documentation

34.8.3.1 t_max_err dictionary appendatom (t_dictionary ∗ d, t_symbol ∗ key, t_atom ∗
value)

Add a t_atom∗ value to the dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.2 t_max_err dictionary appendatomarray (t_dictionary ∗ d, t_symbol ∗ key,
t_object ∗ value)

Add an Atom Array object to the dictionary.

Note that from this point on that you should not free the t_atomarray∗, because the
atomarray is now owned by the dictionary, and freeing the dictionary will free the atom-
array as discussed in When to Free a Dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.3 t_max_err dictionary appendatoms (t_dictionary ∗ d, t_symbol ∗ key, long
argc, t_atom ∗ argv)

Add an array of atoms to the dictionary.

Internally these atoms will be copied into a t_atomarray object, which will be appended
to the dictionary with the given key.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

304 Module Documentation

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

argc The number of atoms to append to the dictionary.
argv The address of the first atom in the array to append to the dictionary.

Returns

A Max error code.

34.8.3.4 t_max_err dictionary appenddictionary (t_dictionary ∗ d, t_symbol ∗ key,
t_object ∗ value)

Add a dictionary object to the dictionary.

Note that from this point on that you should not free the t_dictionary∗ that is being
added, because the newly-added dictionary is now owned by the dictionary to which it
has been added, as discussed in When to Free a Dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.5 t_max_err dictionary appendfloat (t_dictionary ∗ d, t_symbol ∗ key, double
value)

Add a double-precision float value to the dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 305

Returns

A Max error code.

34.8.3.6 t_max_err dictionary appendlong (t_dictionary ∗ d, t_symbol ∗ key, long value
)

Add a long integer value to the dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.7 t_max_err dictionary appendobject (t_dictionary ∗ d, t_symbol ∗ key,
t_object ∗ value)

Add an object to the dictionary.

Note that from this point on that you should not free the t_object∗ that is being added,
because the newly-added object is now owned by the dictionary to which it has been
added, as discussed in When to Free a Dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.8 t_max_err dictionary appendstring (t_dictionary ∗ d, t_symbol ∗ key, const
char ∗ value)

Add a C-string to the dictionary.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

306 Module Documentation

Internally this uses the t_symbol object. It is useful to use the t_string in dictionaries
rather than the t_symbol to avoid bloating Max’s symbol table unnecessarily.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.9 t_max_err dictionary appendsym (t_dictionary ∗ d, t_symbol ∗ key, t_symbol
∗ value)

Add a t_symbol∗ value to the dictionary.

Parameters
d The dictionary instance.

key The name of the key used to index the new value. All keys must be
unique. If the key name already exists, then the existing value associ-
ated with the key will be freed prior to the new value’s assignment.

value The new value to append to the dictionary.

Returns

A Max error code.

34.8.3.10 t_max_err dictionary chuckentry (t_dictionary ∗ d, t_symbol ∗ key)

Remove a value from the dictionary without freeing it.

Parameters
d The dictionary instance.

key The key associated with the value to delete.

Returns

A max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 307

See also

dictionary_deleteentry()

34.8.3.11 t_max_err dictionary clear (t_dictionary ∗ d)

Delete all values from a dictionary.

This method will free the objects in the dictionary. If freeing the objects is inappropri-
ate or undesirable then you should iterate through the dictionary and use dictionary_-
chuckentry() instead.

Parameters
d The dictionary instance.

Returns

A max error code.

See also

dictionary_getkeys()
dictionary_chuckentry()
dictionary_deleteentry()

34.8.3.12 t_max_err dictionary copyatoms (C74 CONST t_dictionary ∗ d, t_symbol ∗
key, long ∗ argc, t_atom ∗∗ argv)

Retrieve copies of a t_atom array in the dictionary.

The retrieved pointer of t_atoms in the dictionary has memory allocated and copied to
it from within the function. You are responsible for freeing it with sysmem_freeptr().

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
argc The address of a variable to hold the number of atoms in the array.
argv The address of a variable to hold a pointer to the first atom in the array.

You should initialize this pointer to NULL prior to passing it to dictionary-
_copyatoms().

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

308 Module Documentation

See also

dictionary_getatoms()

34.8.3.13 t_max_err dictionary copydefatoms (t_dictionary ∗ d, t_symbol ∗ key, long ∗
argc, t_atom ∗∗ argv, t_atom ∗ def)

Retrieve copies of a t_atom array in the dictionary.

The retrieved pointer of t_atoms in the dictionary has memory allocated and copied
to it from within the function. You are responsible for freeing it with sysmem_freeptr().
If the named key doesn’t exist, then copy a default array of atoms, specified as a t_-
atomarray∗.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
argc The address of a variable to hold the number of atoms in the array.
argv The address of a variable to hold a pointer to the first atom in the array.

You should initialize this pointer to NULL prior to passing it to dictionary-
_copyatoms().

def The default values specified as an instance of the t_atomarray object.

Returns

A Max error code.

See also

dictionary_getdefatoms()
dictionary_copyatoms()

34.8.3.14 t_max_err dictionary copyentries (t_dictionary ∗ src, t_dictionary ∗ dst,
t_symbol ∗∗ keys)

Copy specified entries from one dictionary to another.

Parameters
src The source dictionary from which to copy entries.
dst The destination dictionary to which the entries will be copied.

keys The address of the first of an array of t_symbol∗ that specifies which
keys to copy.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 309

Returns

A Max error code.

See also

dictionary_copyunique()

34.8.3.15 t_max_err dictionary copyunique (t_dictionary ∗ d, t_dictionary ∗ copyfrom)

Given 2 dictionaries, copy the keys unique to one of the dictionaries to the other dictio-
nary.

Parameters
d A dictionary instance. This will be the destination for any values that

are copied.
copyfrom A dictionary instance from which we will copy any values with unique

keys.

Returns

A Max error code.

See also

dictionary_copyentries()

34.8.3.16 t_max_err dictionary deleteentry (t_dictionary ∗ d, t_symbol ∗ key)

Remove a value from the dictionary.

This method will free the object in the dictionary. If freeing the object is inappropriate or
undesirable, use dictionary_chuckentry() instead.

Parameters
d The dictionary instance.

key The key associated with the value to delete.

Returns

A max error code.

See also

dictionary_chuckentry()
dictionary_clear()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

310 Module Documentation

34.8.3.17 t_max_err dictionary dump (t_dictionary ∗ d, long recurse, long console)

Print the contents of a dictionary to the Max window.

Parameters
d The dictionary instance.

recurse If non-zero, the dictionary will be recursively unravelled to the Max win-
dow. Otherwise it will only print the top level.

console If non-zero, the dictionary will be posted to the console rather than the
Max window. On the Mac you can view this using Console.app. On
Windows you can use the free DbgView program which can be down-
loaded from Microsoft.

Returns

A Max error code.

34.8.3.18 t_symbol∗ dictionary entry getkey (t_dictionary_entry ∗ x)

Given a t_dictionary_entry∗, return the key associated with that entry.

Parameters
x The dictionary entry.

Returns

The key associated with the entry.

See also

dictionary_entry_getvalue()
dictionary_funall()

34.8.3.19 void dictionary entry getvalue (t_dictionary_entry ∗ x, t_atom ∗ value)

Given a t_dictionary_entry∗, return the value associated with that entry.

Parameters
x The dictionary entry.

value The address of a t_atom to which the value will be copied.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 311

See also

dictionary_entry_getkey()
dictionary_funall()

34.8.3.20 void dictionary entry getvalues (t_dictionary_entry ∗ x, long ∗ argc, t_atom ∗∗
argv)

Given a t_dictionary_entry∗, return the values associated with that entry.

Parameters
x The dictionary entry.

argc The length of the returned t_atom vector.
argv The address of a t_atom vector to which the values will be copied.

See also

dictionary_entry_getkey()
dictionary_funall()

34.8.3.21 long dictionary entryisatomarray (C74 CONST t_dictionary ∗ d, t_symbol ∗ key
)

Test a key to set if the data stored with that key contains a t_atomarray object.

Parameters
d The dictionary instance.

key The key associated with the value to test.

Returns

Returns true if the key contains a t_atomarray, otherwise returns false.

34.8.3.22 long dictionary entryisdictionary (C74 CONST t_dictionary ∗ d, t_symbol ∗ key)

Test a key to set if the data stored with that key contains a t_dictionary object.

Parameters
d The dictionary instance.

key The key associated with the value to test.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

312 Module Documentation

Returns

Returns true if the key contains a t_dictionary, otherwise returns false.

34.8.3.23 long dictionary entryisstring (C74 CONST t_dictionary ∗ d, t_symbol ∗ key)

Test a key to set if the data stored with that key contains a t_string object.

Parameters
d The dictionary instance.

key The key associated with the value to test.

Returns

Returns true if the key contains a t_string, otherwise returns false.

34.8.3.24 void dictionary freekeys (t_dictionary ∗ d, long numkeys, t_symbol ∗∗ keys)

Free memory allocated by the dictionary_getkeys() method.

Parameters
d The dictionary instance.

numkeys The address of a long where the number of keys retrieved will be set.
keys The address of the first of an array t_symbol pointers where the re-

trieved keys will be set.

Returns

A max error code.

See also

dictionary_getkeys()

34.8.3.25 void dictionary funall (t_dictionary ∗ d, method fun, void ∗ arg)

Call the specified function for every entry in the dictionary.

Parameters
d The dictionary instance.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 313

Remarks

The dictionary_funall() method will call your function for every entry in the dictionary.
It will pass both a pointer to the t_dictionary_entry, and any argument that you
provide. The following example shows a function that could be called by dictionary-
_funall().

void my_function(t_dictionary_entry *entry, void* my_arg)
{

t_symbol *key;
t_atom value;

key = dictionary_entry_getkey(entry);
dictionary_entry_getvalue(entry, &value);

// do something with key, value, and my_arg...
}

See also

dictionary_entry_getkey()
dictionary_entry_getvalue()

34.8.3.26 t_max_err dictionary getatom (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
t_atom ∗ value)

Copy a t_atom from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.27 t_max_err dictionary getatomarray (C74 CONST t_dictionary ∗ d, t_symbol ∗
key, t_object ∗∗ value)

Retrieve a t_atomarray pointer from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

314 Module Documentation

Returns

A Max error code.

34.8.3.28 t_max_err dictionary getatoms (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
long ∗ argc, t_atom ∗∗ argv)

Retrieve the address of a t_atom array of in the dictionary.

The retrieved pointer references the t_atoms in the dictionary. To fetch a copy of the
t_atoms from the dictionary, use dictionary_copyatoms().

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
argc The address of a variable to hold the number of atoms in the array.
argv The address of a variable to hold a pointer to the first atom in the array.

Returns

A Max error code.

See also

dictionary_copyatoms()

34.8.3.29 t_max_err dictionary getdefatom (t_dictionary ∗ d, t_symbol ∗ key, t_atom ∗
value, t_atom ∗ def)

Retrieve a t_atom∗ from the dictionary.

If the named key doesn’t exist, then return a specified default value.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

def The default value to return in the absence of the key existing in the
dictionary.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 315

See also

dictionary_getatom()

34.8.3.30 t_max_err dictionary getdefatoms (t_dictionary ∗ d, t_symbol ∗ key, long ∗
argc, t_atom ∗∗ argv, t_atom ∗ def)

Retrieve the address of a t_atom array of in the dictionary.

The retrieved pointer references the t_atoms in the dictionary. To fetch a copy of the t_-
atoms from the dictionary, use dictionary_copyatoms(). If the named key doesn’t exist,
then return a default array of atoms, specified as a t_atomarray∗.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
argc The address of a variable to hold the number of atoms in the array.
argv The address of a variable to hold a pointer to the first atom in the array.
def The default values specified as an instance of the t_atomarray object.

Returns

A Max error code.

See also

dictionary_getatoms()
dictionary_copydefatoms()

34.8.3.31 t_max_err dictionary getdeffloat (t_dictionary ∗ d, t_symbol ∗ key, double ∗
value, double def)

Retrieve a double-precision float from the dictionary.

If the named key doesn’t exist, then return a specified default value.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

def The default value to return in the absence of the key existing in the
dictionary.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

316 Module Documentation

See also

dictionary_getfloat()

34.8.3.32 t_max_err dictionary getdeflong (t_dictionary ∗ d, t_symbol ∗ key, long ∗
value, long def)

Retrieve a long integer from the dictionary.

If the named key doesn’t exist, then return a specified default value.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

def The default value to return in the absence of the key existing in the
dictionary.

Returns

A Max error code.

See also

dictionary_getlong()

34.8.3.33 t_max_err dictionary getdefstring (t_dictionary ∗ d, t_symbol ∗ key, const
char ∗∗ value, char ∗ def)

Retrieve a C-string from the dictionary.

If the named key doesn’t exist, then return a specified default value.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

def The default value to return in the absence of the key existing in the
dictionary.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 317

See also

dictionary_getstring()

34.8.3.34 t_max_err dictionary getdefsym (t_dictionary ∗ d, t_symbol ∗ key, t_symbol
∗∗ value, t_symbol ∗ def)

Retrieve a t_symbol∗ from the dictionary.

If the named key doesn’t exist, then return a specified default value.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

def The default value to return in the absence of the key existing in the
dictionary.

Returns

A Max error code.

See also

dictionary_getsym()

34.8.3.35 t_max_err dictionary getdictionary (C74 CONST t_dictionary ∗ d, t_symbol ∗
key, t_object ∗∗ value)

Retrieve a t_dictionary pointer from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.36 long dictionary getentrycount (C74 CONST t_dictionary ∗ d)

Return the number of keys in a dictionary.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

318 Module Documentation

Parameters
d The dictionary instance.

Returns

The number of keys in the dictionary.

34.8.3.37 t_max_err dictionary getfloat (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
double ∗ value)

Retrieve a double-precision float from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.38 t_max_err dictionary getkeys (C74 CONST t_dictionary ∗ d, long ∗ numkeys,
t_symbol ∗∗∗ keys)

Retrieve all of the key names stored in a dictionary.

The numkeys and keys parameters should be initialized to zero. The dictionary_-
getkeys() method will allocate memory for the keys it returns. You are then responsible
for freeing this memory using dictionary_freekeys(). You must use dictionary_freekeys(),
not some other method for freeing the memory.

Parameters
d The dictionary instance.

numkeys The address of a long where the number of keys retrieved will be set.
keys The address of the first of an array t_symbol pointers where the re-

trieved keys will be set.

Returns

A max error code.

Remarks

The following example demonstrates fetching all of the keys from a dictionary
named ’d’ in order to iterate through each item stored in the dictionary.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 319

t_symbol **keys = NULL;
long numkeys = 0;
long i;
t_object *anItem;

dictionary_getkeys(d, &numkeys, &keys);
for(i=0; i<numkeys; i++){

// do something with the keys...
}
if(keys)

dictionary_freekeys(d, numkeys, keys);

See also

dictionary_freekeys()

34.8.3.39 t_max_err dictionary getlong (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
long ∗ value)

Retrieve a long integer from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.40 t_max_err dictionary getobject (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
t_object ∗∗ value)

Retrieve a t_object pointer from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

320 Module Documentation

34.8.3.41 t_max_err dictionary getstring (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
const char ∗∗ value)

Retrieve a C-string pointer from the dictionary.

The retrieved pointer references the string in the dictionary, it is not a copy.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.42 t_max_err dictionary getsym (C74 CONST t_dictionary ∗ d, t_symbol ∗ key,
t_symbol ∗∗ value)

Retrieve a t_symbol∗ from the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to lookup.
value The address of variable to hold the value associated with the key.

Returns

A Max error code.

34.8.3.43 long dictionary hasentry (C74 CONST t_dictionary ∗ d, t_symbol ∗ key)

Test a key to set if it exists in the dictionary.

Parameters
d The dictionary instance.

key The key associated with the value to test.

Returns

Returns true if the key exists, otherwise returns false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 321

34.8.3.44 t_dictionary∗ dictionary new ()

Create a new dictionary object.

You can free the dictionary by calling object_free(). However, you should keep in mind
the guidelines provided in When to Free a Dictionary.

Returns

Pointer to the new dictionary object.

See also

object_free()

34.8.3.45 t_max_err dictionary read (char ∗ filename, short path, t_dictionary ∗∗ d)

Read the specified JSON file and return a t_dictionary object.

You are responsible for freeing the dictionary with object_free(), subject to the caveats
explained in When to Free a Dictionary.

Parameters
filename The name of the file.

path The path of the file.
d The address of a t_dictionary pointer that will be set to the newly created

dictionary.

Returns

A Max error code

34.8.3.46 t_dictionary∗ dictionary sprintf (C74 CONST char ∗ fmt, ...)

Create a new dictionary populated with values using a combination of attribute and
sprintf syntax.

Parameters
fmt An sprintf-style format string specifying key-value pairs with attribute

nomenclature.
... One or more arguments which are to be substituted into the format

string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

322 Module Documentation

Returns

A new dictionary instance.

Remarks

Max attribute syntax is used to define key-value pairs. For example,

"@key1 value @key2 another_value"

One common use of this to create dictionary that represents an element of a
patcher, or even an entire patcher itself. The example below creates a dictionary
that can be passed to a function like newobject_fromdictionary() to create a new
object.

t_dictionary *d;
char text[4];

strncpy_zero(text, "foo", 4);

d = dictionary_sprintf("@maxclass comment @varname _name \
@text \"%s\" @patching_rect %.2f %.2f %.2f %.2f \
@fontsize %f @textcolor %f %f %f 1.0 \
@fontname %s @bgcolor 0.001 0.001 0.001 0.",
text, 20.0, 20.0, 200.0, 24.0,
18, 0.9, 0.9, 0.9, "Arial");

// do something with the dictionary here.

object_free(d);

See also

newobject_sprintf()
newobject_fromdictionary()
atom_setparse()

34.8.3.47 t_max_err dictionary write (t_dictionary ∗ d, char ∗ filename, short path)

Serialize the specified t_dictionary object to a JSON file.

Parameters
d The dictionary to serialize into JSON format and write to disk.

filename The name of the file to write.
path The path to which the file should be written.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.8 Dictionary 323

34.8.3.48 void postdictionary (t_object ∗ d)

Print the contents of a dictionary to the Max window.

Parameters
d A pointer to a dictionary object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

324 Module Documentation

34.9 Hash Table

A hash table is a data structure that associates some data with a unique key.

Collaboration diagram for Hash Table:

Hash TableData Storage

Data Structures

• struct t_hashtab_entry

A hashtab entry.

• struct t_hashtab

The hashtab object.

Defines

• #define HASH_DEFSLOTS

Default number of slots in the hash table.

Functions

• t_hashtab ∗ hashtab_new (long slotcount)

Create a new hashtab object.

• t_max_err hashtab_store (t_hashtab ∗x, t_symbol ∗key, t_object ∗val)

Store an item in a hashtab with an associated key.

• t_max_err hashtab_store_safe (t_hashtab ∗x, t_symbol ∗key, t_object ∗val)

Store an item in a hashtab with an associated key.

• t_max_err hashtab_storeflags (t_hashtab ∗x, t_symbol ∗key, t_object ∗val, long
flags)

Store an item in a hashtab with an associated key and also flags that define the be-
havior of the item.

• t_max_err hashtab_lookup (t_hashtab ∗x, t_symbol ∗key, t_object ∗∗val)

Return an item stored in a hashtab with the specified key.

• t_max_err hashtab_lookupflags (t_hashtab ∗x, t_symbol ∗key, t_object ∗∗val,
long ∗flags)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.9 Hash Table 325

Return an item stored in a hashtab with the specified key, also returning the items
flags.

• t_max_err hashtab_delete (t_hashtab ∗x, t_symbol ∗key)

Remove an item from a hashtab associated with the specified key and free it.

• t_max_err hashtab_clear (t_hashtab ∗x)

Delete all items stored in a hashtab.

• t_max_err hashtab_chuckkey (t_hashtab ∗x, t_symbol ∗key)

Remove an item from a hashtab associated with a given key.

• t_max_err hashtab_chuck (t_hashtab ∗x)

Free a hashtab, but don’t free the items it contains.

• t_max_err hashtab_findfirst (t_hashtab ∗x, void ∗∗o, long cmpfn(void ∗, void ∗),
void ∗cmpdata)

Search the hash table for the first item meeting defined criteria.

• t_max_err hashtab_methodall (t_hashtab ∗x, t_symbol ∗s,...)

Call the named message on every object in the hashtab.

• t_max_err hashtab_funall (t_hashtab ∗x, method fun, void ∗arg)

Call the specified function for every item in the hashtab.

• long hashtab_getsize (t_hashtab ∗x)

Return the number of items stored in a hashtab.

• void hashtab_print (t_hashtab ∗x)

Post a hashtab’s statistics to the Max window.

• void hashtab_readonly (t_hashtab ∗x, long readonly)

Set the hashtab’s readonly bit.

• void hashtab_flags (t_hashtab ∗x, long flags)

Set the hashtab’s datastore flags.

• long hashtab_getflags (t_hashtab ∗x)

Get the hashtab’s datastore flags.

• t_max_err hashtab_keyflags (t_hashtab ∗x, t_symbol ∗key, long flags)

Change the flags for an item stored in the hashtab with a given key.

• long hashtab_getkeyflags (t_hashtab ∗x, t_symbol ∗key)

Retrieve the flags for an item stored in the hashtab with a given key.

• t_max_err hashtab_getkeys (t_hashtab ∗x, long ∗kc, t_symbol ∗∗∗kv)

Retrieve all of the keys stored in a hashtab.

34.9.1 Detailed Description

A hash table is a data structure that associates some data with a unique key. If you know
the key, you can get back the data much more quickly than with a linked list, particularly
as the number of items stored grows larger. The Max hash table t_hashtab is optimized
to work with symbol pointers as keys, but you can use any pointer or number, as long
as it is unique.

To create a t_hashtab, you use hashtab_new(). To add items, use hashtab_store(). To
find items that have been added, use hashtab_lookup().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

326 Module Documentation

By contrast with linked lists and arrays, hash tables do not have a strong sense of
ordering. You can iterate through all items using hashtab_funall(), but the exact order is
not under your control as items are added and removed. There is also no way to "sort"
a hash table.

Example:

The following example creates a hashtab, shows how to add some data (in this case,
just a number), look it up, and delete the hashtab.

t_hashtab *tab = (t_hashtab *)hashtab_new(0);
long result, value;

hashtab_store(tab, gensym("a great number"), (t_object *)74);

result = hashtab_lookup(tab, gensym("a great number"), (t_object **)value);

if (!result)
post("found the value and it is %ld",value);

else
post("did not find the value");

hashtab_chuck(tab);

Note that the Max t_dictionary used for managing patcher data is implemented internally
using both a t_hashtab and a t_linklist in parallel. The t_hashtab provides fast access,
and the t_linklist provides sorting.

See also

http://en.wikipedia.org/wiki/Hash_table
Linked List

34.9.2 Define Documentation

34.9.2.1 #define HASH DEFSLOTS

Default number of slots in the hash table.

Creating a hashtab using hashtab_new() with an argument of 0 will use the default
number of slots. Primes typically work well for the number of slots.

34.9.3 Function Documentation

34.9.3.1 t_max_err hashtab chuck (t_hashtab ∗ x)

Free a hashtab, but don’t free the items it contains.

The hashtab can contain a variety of different types of data. By default, the hashtab
assumes that all items are max objects with a valid t_object header.

You can alter the hashtab’s notion of what it contains by using the hashtab_flags()
method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://en.wikipedia.org/wiki/Hash_table

34.9 Hash Table 327

When you free the hashtab by calling object_free() it then tries to free all of the items it
contains. If the hashtab is storing a custom type of data, or should otherwise not free
the data it contains, then call hashtab_chuck() to free the object instead of object_free().

Parameters
x The hashtab object to be freed.

Returns

A max error code.

See also

object_free

34.9.3.2 t_max_err hashtab chuckkey (t_hashtab ∗ x, t_symbol ∗ key)

Remove an item from a hashtab associated with a given key.

You are responsible for freeing any memory associated with the item that is removed
from the hashtab.

Parameters
x The hashtab instance.

key The key of the item to delete.

Returns

A Max error code.

See also

hashtab_delete

34.9.3.3 t_max_err hashtab clear (t_hashtab ∗ x)

Delete all items stored in a hashtab.

This is the equivalent of calling hashtab_delete() on every item in a hashtab.

Returns

A max error code.

See also

hashtab_flags()
hashtab_delete()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

328 Module Documentation

34.9.3.4 t_max_err hashtab delete (t_hashtab ∗ x, t_symbol ∗ key)

Remove an item from a hashtab associated with the specified key and free it.

The hashtab can contain a variety of different types of data. By default, the hashtab
assumes that all items are max objects with a valid t_object header. Thus by default, it
frees items by calling object_free() on them.

You can alter the hashtab’s notion of what it contains by using the hashtab_flags()
method.

If you wish to remove an item from the hashtab and free it yourself, then you should use
hashtab_chuckkey().

Parameters
x The hashtab instance.

key The key of the item to delete.

Returns

A Max error code.

See also

hashtab_chuckkey()
hashtab_clear()
hashtab_flags()

34.9.3.5 t_max_err hashtab findfirst (t_hashtab ∗ x, void ∗∗ o, long cmpfnvoid ∗, void ∗,
void ∗ cmpdata)

Search the hash table for the first item meeting defined criteria.

The items in the hashtab are iteratively processed, calling a specified comparison func-
tion on each until the comparison function returns true.

Parameters
x The hashtab instance.
o The address to pointer that will be set with the matching item.

cmpfn The function used to determine a match in the list.
cmpdata An argument to be passed to the t_cmpfn. This will be passed as the

second of the two args to the t_cmpfn. The first arg will be the hashtab
item at each iteration in the list.

Returns

A max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.9 Hash Table 329

See also

linklist_findfirst()
t_cmpfn

34.9.3.6 void hashtab flags (t_hashtab ∗ x, long flags)

Set the hashtab’s datastore flags.

The available flags are enumerated in e_max_datastore_flags. These flags control the
behavior of the hashtab, particularly when removing items from the list using functions
such as hashtab_clear(), hashtab_delete(), or when freeing the hashtab itself.

Parameters
x The hashtab instance.

flags A valid value from the e_max_datastore_flags. The default is OBJ_FL-
AG_OBJ.

34.9.3.7 t_max_err hashtab funall (t_hashtab ∗ x, method fun, void ∗ arg)

Call the specified function for every item in the hashtab.

Parameters
x The hashtab instance.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Returns

A max error code.

Remarks

The hashtab_funall() method will call your function for every item in the list. It will
pass both a pointer to the item in the list, and any argument that you provide. The
following example shows a function that could be called by hashtab_funall().

void myFun(t_hashtab_entry *e, void *myArg)
{

if (e->key && e->value) {
// do something with e->key, e->value, and myArg here as

appropriate
}

}

34.9.3.8 long hashtab getflags (t_hashtab ∗ x)

Get the hashtab’s datastore flags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

330 Module Documentation

Parameters
x The hashtab instance.

Returns

The current state of the hashtab flags as enumerated in e_max_datastore_flags.

34.9.3.9 long hashtab getkeyflags (t_hashtab ∗ x, t_symbol ∗ key)

Retrieve the flags for an item stored in the hashtab with a given key.

Parameters
x The hashtab instance.

key The key in the hashtab whose flags will be returned.

Returns

The flags for the given key.

See also

hashtab_store_flags()

34.9.3.10 t_max_err hashtab getkeys (t_hashtab ∗ x, long ∗ kc, t_symbol ∗∗∗ kv)

Retrieve all of the keys stored in a hashtab.

If the kc and kv parameters are properly initialized to zero, then hashtab_getkeys() will
allocate memory for the keys it returns. You are then responsible for freeing this memory
using sysmem_freeptr().

Parameters
x The hashtab instance.

kc The address of a long where the number of keys retrieved will be set.
kv The address of the first of an array t_symbol pointers where the re-

trieved keys will be set.

Returns

A max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.9 Hash Table 331

Remarks

The following example demonstrates fetching all of the keys from a hashtab in order
to iterate through each item stored in the hashtab.

t_symbol **keys = NULL;
long numKeys = 0;
long i;
t_object *anItem;

hashtab_getkeys(aHashtab, &numKeys, &keys);
for(i=0; i<numKeys; i++){

hashtab_lookup(aHashtab, keys[i], &anItem);
// Do something with anItem here...

}
if(keys)

sysmem_freeptr(keys);

34.9.3.11 long hashtab getsize (t_hashtab ∗ x)

Return the number of items stored in a hashtab.

Parameters
x The hashtab instance.

Returns

The number of items in the hash table.

34.9.3.12 t_max_err hashtab keyflags (t_hashtab ∗ x, t_symbol ∗ key, long flags)

Change the flags for an item stored in the hashtab with a given key.

Parameters
x The hashtab instance.

key The key in the hashtab whose flags will be changed.
flags One of the values listed in e_max_datastore_flags.

Returns

A Max error code.

See also

hashtab_store_flags()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

332 Module Documentation

34.9.3.13 t_max_err hashtab lookup (t_hashtab ∗ x, t_symbol ∗ key, t_object ∗∗ val)

Return an item stored in a hashtab with the specified key.

Parameters
x The hashtab instance.

key The key in the hashtab to fetch.
val The address of a pointer to which the fetched value will be assigned.

Returns

A Max error code.

See also

hashtab_store()

34.9.3.14 t_max_err hashtab lookupflags (t_hashtab ∗ x, t_symbol ∗ key, t_object ∗∗
val, long ∗ flags)

Return an item stored in a hashtab with the specified key, also returning the items flags.

Parameters
x The hashtab instance.

key The key in the hashtab to fetch.
val The address of a pointer to which the fetched value will be assigned.

flags The address of a value to which the fetched flags will be assigned.

Returns

A Max error code.

See also

hashtab_lookup()
hashtab_store_flags()

34.9.3.15 t_max_err hashtab methodall (t_hashtab ∗ x, t_symbol ∗ s, ...)

Call the named message on every object in the hashtab.

The hashtab_methodall() function requires that all items in the hashtab are object in-
stances with a valid t_object header.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.9 Hash Table 333

Parameters
x The hashtab instance.
s The name of the message to send to the objects.

... Any arguments to be sent with the message.

Returns

A max error code.

Remarks

Internally, this function uses object_method(), meaning that no errors will be posted
if the message name does not exist for the object. It also means that messages
sent methods with A_GIMME definitions will need to be given a symbol argument
prior to the argc and argv array information.

34.9.3.16 t_hashtab∗ hashtab new (long slotcount)

Create a new hashtab object.

You can free the hashtab by calling object_free() on the hashtab’s pointer, or by using
hashtab_chuck().

Parameters
slotcount The number of slots in the hash table. Prime numbers typically work

well. Pass 0 to get the default size.

Returns

Pointer to the new hashtab object.

See also

HASH_DEFSLOTS
object_free()
hashtab_chuck()

34.9.3.17 void hashtab print (t_hashtab ∗ x)

Post a hashtab’s statistics to the Max window.

Parameters
x The hashtab instance.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

334 Module Documentation

34.9.3.18 void hashtab readonly (t_hashtab ∗ x, long readonly)

Set the hashtab’s readonly bit.

By default the readonly bit is 0, indicating that it is threadsafe for both reading and
writing. Setting the readonly bit to 1 will disable the hashtab’s theadsafety mechanism,
increasing performance but at the expense of threadsafe operation. Unless you can
guarantee the threading context for a hashtab’s use, you should leave this set to 0.

Parameters
x The hashtab instance.

readonly A 1 or 0 for setting the readonly bit.

34.9.3.19 t_max_err hashtab store (t_hashtab ∗ x, t_symbol ∗ key, t_object ∗ val)

Store an item in a hashtab with an associated key.

Parameters
x The hashtab instance.

key The key in the hashtab with which to associate the value.
val The value to store.

Returns

A Max error code.

See also

hashtab_lookup()

34.9.3.20 t_max_err hashtab store safe (t_hashtab ∗ x, t_symbol ∗ key, t_object ∗ val
)

Store an item in a hashtab with an associated key.

The difference between hashtab_store_safe() and hashtab_store() is what happens in
the event of a collision in the hash table. The normal hashtab_store() function will free
the existing value at the collision location with sysmem_freeptr() and then replaces it.
This version doesn’t try to free the existing value at the collision location, but instead
just over-writes it.

Parameters
x The hashtab instance.

key The key in the hashtab with which to associate the value.
val The value to store.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.9 Hash Table 335

Returns

A Max error code.

See also

hashtab_store()

34.9.3.21 t_max_err hashtab storeflags (t_hashtab ∗ x, t_symbol ∗ key, t_object ∗ val,
long flags)

Store an item in a hashtab with an associated key and also flags that define the behavior
of the item.

The hashtab_store() method is the same as calling this method with the default (0) flags.

Parameters
x The hashtab instance.

key The key in the hashtab with which to associate the value.
val The value to store.

flags One of the values listed in e_max_datastore_flags.

Returns

A Max error code.

See also

hashtab_store()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

336 Module Documentation

34.10 Index Map

An indexmap is basically a managed array of pointers, but it allows you to derive rela-
tively quickly the index from a pointer in the array.

Collaboration diagram for Index Map:

Data Storage Index Map

Data Structures

• struct t_indexmap_entry

An indexmap element.

• struct t_indexmap

An indexmap object.

Functions

• t_indexmap ∗ indexmap_new (void)

Create a new indexmap object.

• void indexmap_append (t_indexmap ∗x, void ∗data)

Add an item to an indexmap.

• t_max_err indexmap_move (t_indexmap ∗x, void ∗data, long newindex)

Move an item to a different position in an indexmap.

• t_max_err indexmap_delete (t_indexmap ∗x, void ∗data)

Delete a specified item from an indexmap.

• t_max_err indexmap_delete_index (t_indexmap ∗x, long index)

Delete an item from the indexmap by index.

• t_max_err indexmap_delete_multi (t_indexmap ∗x, long count, void ∗∗pdata)

Delete multiple specified items from an indexmap.

• t_max_err indexmap_delete_index_multi (t_indexmap ∗x, long count, long
∗indices)

Delete multiple items from an indexmap by index.

• void ∗ indexmap_datafromindex (t_indexmap ∗x, long index)

Get an item from an indexmap by index.

• t_max_err indexmap_indexfromdata (t_indexmap ∗x, void ∗data, long ∗index)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.10 Index Map 337

Find the index of an item given a pointer to the item.

• long indexmap_getsize (t_indexmap ∗x)

Return the number of items in an indexmap.

• void indexmap_clear (t_indexmap ∗x)

Delete all items in an indexmap.

• void indexmap_sort (t_indexmap ∗x, t_cmpfn fn)

Sort the items in an indexmap.

34.10.1 Detailed Description

An indexmap is basically a managed array of pointers, but it allows you to derive rel-
atively quickly the index from a pointer in the array. The index is assumed to be 0-N
(where N is the current size of the array). You can sort the data and retain access to an
index from the data relatively quickly. There is a hashtab which holds pieces of memory
that hold indices that can be referenced by the data pointer. There is also an array of
data pointers -- this is in "index" order. When operations take place on the array (insert,
delete, sort), the pointers in the hashtab are updated with new indices.

34.10.2 Function Documentation

34.10.2.1 void indexmap append (t_indexmap ∗ x, void ∗ data)

Add an item to an indexmap.

Parameters
x The indexmap instance.

data The item to add.

34.10.2.2 void indexmap clear (t_indexmap ∗ x)

Delete all items in an indexmap.

Parameters
x The indexmap instance.

34.10.2.3 void∗ indexmap datafromindex (t_indexmap ∗ x, long index)

Get an item from an indexmap by index.

Parameters
x The indexmap instance.

index The index from which to fetch a stored item.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

338 Module Documentation

Returns

The item stored at the specified index.

34.10.2.4 t_max_err indexmap delete (t_indexmap ∗ x, void ∗ data)

Delete a specified item from an indexmap.

Parameters
x The indexmap instance.

data The item pointer to remove from the indexmap.

Returns

A Max error code.

34.10.2.5 t_max_err indexmap delete index (t_indexmap ∗ x, long index)

Delete an item from the indexmap by index.

Parameters
x The indexmap instance.

index The index of the item to remove from the indexmap.

Returns

A Max error code.

34.10.2.6 t_max_err indexmap delete index multi (t_indexmap ∗ x, long count, long ∗
indices)

Delete multiple items from an indexmap by index.

Parameters
x The indexmap instance.

count The number of items to remove from the indexmap.
indices The address of the first of an array of index numbers to remove the

indexmap.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.10 Index Map 339

34.10.2.7 t_max_err indexmap delete multi (t_indexmap ∗ x, long count, void ∗∗ pdata)

Delete multiple specified items from an indexmap.

Parameters
x The indexmap instance.

count The number of items to remove from the indexmap.
pdata The address of the first of an array of item pointers to remove from the

indexmap.

Returns

A Max error code.

34.10.2.8 long indexmap getsize (t_indexmap ∗ x)

Return the number of items in an indexmap.

Parameters
x The indexmap instance.

Returns

The number of items in the indexmap.

34.10.2.9 t_max_err indexmap indexfromdata (t_indexmap ∗ x, void ∗ data, long ∗ index)

Find the index of an item given a pointer to the item.

Parameters
x The indexmap instance.

data The item whose index you wish to look up.
index The address of a variable to hold the retrieved index.

Returns

A Max error code.

34.10.2.10 t_max_err indexmap move (t_indexmap ∗ x, void ∗ data, long newindex)

Move an item to a different position in an indexmap.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

340 Module Documentation

Parameters
x The indexmap instance.

data The item in the indexmap to move.
newindex The new index to which to move the item.

Returns

A Max error code.

34.10.2.11 t_indexmap∗ indexmap new (void)

Create a new indexmap object.

Returns

Pointer to the new indexmap object.

34.10.2.12 void indexmap sort (t_indexmap ∗ x, t_cmpfn fn)

Sort the items in an indexmap.

Item are sorted using a t_cmpfn function that is passed in as an argument.

Parameters
x The indexmap instance.

fn The function used to sort the list.

See also

linklist_sort()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 341

34.11 Linked List

The Max t_linklist data structure is useful for maintaining ordered lists of items where
you want to be able to insert and delete items efficiently.

Collaboration diagram for Linked List:

Linked ListData Storage

Data Structures

• struct t_llelem

A linklist element.

• struct t_linklist

The linklist object.

Functions

• t_linklist ∗ linklist_new (void)

Create a new linklist object.

• void linklist_chuck (t_linklist ∗x)

Free a linklist, but don’t free the items it contains.

• long linklist_getsize (t_linklist ∗x)

Return the number of items in a linklist object.

• void ∗ linklist_getindex (t_linklist ∗x, long index)

Return the item stored in a linklist at a specified index.

• long linklist_objptr2index (t_linklist ∗x, void ∗p)

Return an item’s index, given the item itself.

• long linklist_append (t_linklist ∗x, void ∗o)

Add an item to the end of the list.

• long linklist_insertindex (t_linklist ∗x, void ∗o, long index)

Insert an item into the list at the specified index.

• long linklist_insert_sorted (t_linklist ∗x, void ∗o, long cmpfn(void ∗, void ∗))
Insert an item into the list, keeping the list sorted according to a specified comparison
function.

• t_llelem ∗ linklist_insertafterobjptr (t_linklist ∗x, void ∗o, void ∗objptr)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

342 Module Documentation

Insert an item into the list after another specified item.

• t_llelem ∗ linklist_insertbeforeobjptr (t_linklist ∗x, void ∗o, void ∗objptr)

Insert an item into the list before another specified item.

• t_llelem ∗ linklist_moveafterobjptr (t_linklist ∗x, void ∗o, void ∗objptr)

Move an existing item in the list to a position after another specified item in the list.

• t_llelem ∗ linklist_movebeforeobjptr (t_linklist ∗x, void ∗o, void ∗objptr)

Move an existing item in the list to a position before another specified item in the list.

• long linklist_deleteindex (t_linklist ∗x, long index)

Remove the item from the list at the specified index and free it.

• long linklist_chuckindex (t_linklist ∗x, long index)

Remove the item from the list at the specified index.

• void linklist_chuckobject (t_linklist ∗x, void ∗o)

Remove the specified item from the list.

• void linklist_deleteobject (t_linklist ∗x, void ∗o)

Delete the specified item from the list.

• void linklist_clear (t_linklist ∗x)

Remove and free all items in the list.

• long linklist_makearray (t_linklist ∗x, void ∗∗a, long max)

Retrieve linklist items as an array of pointers.

• void linklist_reverse (t_linklist ∗x)

Reverse the order of items in the linked-list.

• void linklist_rotate (t_linklist ∗x, long i)

Rotate items in the linked list in circular fashion.

• void linklist_shuffle (t_linklist ∗x)

Randomize the order of items in the linked-list.

• void linklist_swap (t_linklist ∗x, long a, long b)

Swap the position of two items in the linked-list, specified by index.

• long linklist_findfirst (t_linklist ∗x, void ∗∗o, long cmpfn(void ∗, void ∗), void
∗cmpdata)

Search the linked list for the first item meeting defined criteria.

• void linklist_findall (t_linklist ∗x, t_linklist ∗∗out, long cmpfn(void ∗, void ∗), void
∗cmpdata)

Search the linked list for all items meeting defined criteria.

• void linklist_methodall (t_linklist ∗x, t_symbol ∗s,...)

Call the named message on every object in the linklist.

• void ∗ linklist_methodindex (t_linklist ∗x, long i, t_symbol ∗s,...)

Call the named message on an object specified by index.

• void linklist_sort (t_linklist ∗x, long cmpfn(void ∗, void ∗))
Sort the linked list.

• void linklist_funall (t_linklist ∗x, method fun, void ∗arg)

Call the specified function for every item in the linklist.

• long linklist_funall_break (t_linklist ∗x, method fun, void ∗arg)

Call the specified function for every item in the linklist.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 343

• void ∗ linklist_funindex (t_linklist ∗x, long i, method fun, void ∗arg)

Call the specified function for an item specified by index.

• void ∗ linklist_substitute (t_linklist ∗x, void ∗p, void ∗newp)

Given an item in the list, replace it with a different value.

• void ∗ linklist_next (t_linklist ∗x, void ∗p, void ∗∗next)

Given an item in the list, find the next item.

• void ∗ linklist_prev (t_linklist ∗x, void ∗p, void ∗∗prev)

Given an item in the list, find the previous item.

• void ∗ linklist_last (t_linklist ∗x, void ∗∗item)

Return the last item (the tail) in the linked-list.

• void linklist_readonly (t_linklist ∗x, long readonly)

Set the linklist’s readonly bit.

• void linklist_flags (t_linklist ∗x, long flags)

Set the linklist’s datastore flags.

• long linklist_getflags (t_linklist ∗x)

Get the linklist’s datastore flags.

• long linklist_match (void ∗a, void ∗b)

A linklist comparison method that determines if two item pointers are equal.

34.11.1 Detailed Description

The Max t_linklist data structure is useful for maintaining ordered lists of items where you
want to be able to insert and delete items efficiently. Random access of individual items,
however, gets appreciably slower as the list grows in size. The t_linklist is thread-safe by
default, but thread safety can be turned off for performance benefits in single-threaded
applications. However, ensure that your use of the linked list is truly single-threaded
(based on an understanding of Max’s Threading model) before turning off the thread
safety features.

By default, the t_linklist holds pointers to Max objects. However, you can treat what the
linklist holds as data rather than objects to be freed by using the linklist_flags() function.

Here is a simple example of the use of t_linklist. The code below stores five symbols,
sorts them, searches for a specific item, deletes an item, prints all items, and then frees
the entire structure. Since symbols in Max are never freed, linklist_flags() is used to
specify that data, rather than object pointers, are being stored.

void mylistfun()
{

t_linklist *list;

list = (t_linklist *)linklist_new();
linklist_flags(list, OBJ_FLAG_DATA);

// add some data
linklist_append(list, gensym("one"));
linklist_append(list, gensym("two"));
linklist_append(list, gensym("three"));
linklist_append(list, gensym("four"));

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

344 Module Documentation

linklist_append(list, gensym("five"));

// sort
linklist_sort(list, (t_cmpfn)mysortfun);

// search
index = linklist_findfirst(list, &found, mysearchfun, gensym("four"));

// find the "four" symbol
if (index != -1) // found

linklist_chuckindex(list, index);

// iterate
linklist_funall(list, myprintfun, NULL);

// delete
linklist_chuck(list);

}

The sorting function compares two items in the list and returns non-zero if the first one
should go before the second one.

long mysortfun(void *a, void *b)
{

t_symbol *sa = (t_symbol *)a;
t_symbol *sb = (t_symbol *)b;

return strcmp(sa->s_name, sb->s_name) > 0;
}

The search function is passed the final argument to linklist_findfirst() and, in this case,
just returns the symbol that matches, which is just testing for pointer equivalence since
all Max symbols are unique. You could do more sophisticated searching if you store
more complex data in a linklist.

long mysearchfun(t_symbol *elem, t_symbol *match)
{

return elem == match;
}

The iteration function takes some action on all items in the list. The third argument
to linklist_funall() is passed as the second argument to your iteration function. In this
example, we don’t do anything with it.

void myprintfun(t_symbol *item, void *dummy)
{

post("%s",item->s_name);
}

See also

http://en.wikipedia.org/wiki/Linked_list

34.11.2 Function Documentation

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://en.wikipedia.org/wiki/Linked_list

34.11 Linked List 345

34.11.2.1 long linklist append (t_linklist ∗ x, void ∗ o)

Add an item to the end of the list.

Parameters
x The linklist instance.
o The item pointer to append to the linked-list.

Returns

The updated size of the linklist after appending the new item, or -1 if the append
failed.

34.11.2.2 void linklist chuck (t_linklist ∗ x)

Free a linklist, but don’t free the items it contains.

The linklist can contain a variety of different types of data. By default, the linklist as-
sumes that all items are max objects with a valid t_object header.

You can alter the linklist’s notion of what it contains by using the linklist_flags() method.

When you free the linklist by calling object_free() it then tries to free all of the items it
contains. If the linklist is storing a custom type of data, or should otherwise not free the
data it contains, then call linklist_chuck() to free the object instead of object_free().

Parameters
x The linklist object to be freed.

See also

object_free

34.11.2.3 long linklist chuckindex (t_linklist ∗ x, long index)

Remove the item from the list at the specified index.

You are responsible for freeing any memory associated with the item that is removed
from the linklist.

Parameters
x The linklist instance.

index The index of the item to remove.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

346 Module Documentation

Returns

Returns MAX_ERR_NONE on successful removal, otherwise returns MAX_ERR_-
GENERIC

See also

linklist_deleteindex
linklist_chuckobject

34.11.2.4 void linklist chuckobject (t_linklist ∗ x, void ∗ o)

Remove the specified item from the list.

You are responsible for freeing any memory associated with the item that is removed
from the linklist.

Parameters
x The linklist instance.
o The pointer to the item to remove.

See also

linklist_deleteindex
linklist_chuckindex
linklist_deleteobject

34.11.2.5 void linklist clear (t_linklist ∗ x)

Remove and free all items in the list.

Freeing items in the list is subject to the same rules as linklist_deleteindex(). You can
alter the linklist’s notion of what it contains, and thus how items are freed, by using the
linklist_flags() method.

Parameters
x The linklist instance.

34.11.2.6 long linklist deleteindex (t_linklist ∗ x, long index)

Remove the item from the list at the specified index and free it.

The linklist can contain a variety of different types of data. By default, the linklist as-
sumes that all items are max objects with a valid t_object header. Thus by default, it
frees items by calling object_free() on them.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 347

You can alter the linklist’s notion of what it contains by using the linklist_flags() method.

If you wish to remove an item from the linklist and free it yourself, then you should use
linklist_chuckptr().

Parameters
x The linklist instance.

index The index of the item to delete.

Returns

Returns the index number of the item delted, or -1 if the operation failed.

See also

linklist_chuckindex
linklist_chuckobject

34.11.2.7 void linklist deleteobject (t_linklist ∗ x, void ∗ o)

Delete the specified item from the list.

The object is removed from the list and deleted. The deletion is done with respect to
any flags passed to linklist_flags.

Parameters
x The linklist instance.
o The pointer to the item to delete.

See also

linklist_deleteindex
linklist_chuckindex
linklist_chuckobject

34.11.2.8 void linklist findall (t_linklist ∗ x, t_linklist ∗∗ out, long cmpfnvoid ∗, void ∗,
void ∗ cmpdata)

Search the linked list for all items meeting defined criteria.

The items in the list are traversed, calling a specified comparison function on each, and
returning the matches in another linklist.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

348 Module Documentation

Parameters
x The linklist instance.

out The address to a t_linklist pointer. You should initialize the pointer to
NULL before calling linklist_findall(). A new linklist will be created inter-
nally by linklist_findall() and returned here.

cmpfn The function used to determine a match in the list.
cmpdata An argument to be passed to the t_cmpfn. This will be passed as the

second of the two args to the t_cmpfn. The first arg will be the linklist
item at each iteration in the list.

Remarks

The following example assumes you have a linklist called myLinkList, and t_cmpfn
called myCmpFunction, and some sort of data to match in someCriteria.

t_linklist *results = NULL;

linklist_findall(myLinkList, &results, myCmpFunction, (void *)someCriteria)
;

// do something here with the ’results’ linklist
// then free the results linklist
linklist_chuck(results);

See also

linklist_match
t_cmpfn
linklist_findfirst

34.11.2.9 long linklist findfirst (t_linklist ∗ x, void ∗∗ o, long cmpfnvoid ∗, void ∗, void ∗
cmpdata)

Search the linked list for the first item meeting defined criteria.

The items in the list are traversed, calling a specified comparison function on each until
the comparison function returns true.

Parameters
x The linklist instance.
o The address to pointer that will be set with the matching item.

cmpfn The function used to determine a match in the list.
cmpdata An argument to be passed to the t_cmpfn. This will be passed as the

second of the two args to the t_cmpfn. The first arg will be the linklist
item at each iteration in the list.

Returns

The index of the matching item, or -1 if no match is found.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 349

Remarks

The following shows how to manually do what linklist_chuckobject() does.

void *obj;
long index;

index = linklist_findfirst(x, &obj, #linklist_match, o);
if(index != -1)

linklist_chuckindex(x, index);

See also

linklist_match
t_cmpfn
linklist_findall

34.11.2.10 void linklist flags (t_linklist ∗ x, long flags)

Set the linklist’s datastore flags.

The available flags are enumerated in e_max_datastore_flags. These flags control the
behavior of the linklist, particularly when removing items from the list using functions
such as linklist_clear(), linklist_deleteindex(), or when freeing the linklist itself.

Parameters
x The linklist instance.

flags A valid value from the e_max_datastore_flags. The default is OBJ_FL-
AG_OBJ.

34.11.2.11 void linklist funall (t_linklist ∗ x, method fun, void ∗ arg)

Call the specified function for every item in the linklist.

Parameters
x The linklist instance.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Remarks

The linklist_funall() method will call your function for every item in the list. It will
pass both a pointer to the item in the list, and any argument that you provide. The
following example shows a function that could be called by linklist_funall().

void myFun(t_object *myObj, void *myArg)
{

// do something with myObj and myArg here
// myObj is the item in the linklist

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

350 Module Documentation

34.11.2.12 long linklist funall break (t_linklist ∗ x, method fun, void ∗ arg)

Call the specified function for every item in the linklist.

The iteration through the list will halt if the function returns a non-zero value.

Parameters
x The linklist instance.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Remarks

The linklist_funall() method will call your function for every item in the list. It will
pass both a pointer to the item in the list, and any argument that you provide. The
following example shows a function that could be called by linklist_funall().

long myFun(t_symbol *myListItemSymbol, void *myArg)
{

// this function is called by a linklist that contains symbols for its
items
if(myListItemSymbol == gensym("")){

error("empty symbol -- aborting linklist traversal")
return 1;

}
else{

// do something with the symbol
return 0;

}
}

34.11.2.13 void∗ linklist funindex (t_linklist ∗ x, long i, method fun, void ∗ arg)

Call the specified function for an item specified by index.

Parameters
x The linklist instance.
i The index of the item to which to send the message.

fun The function to call, specified as function pointer cast to a Max method.
arg An argument that you would like to pass to the function being called.

Remarks

The linklist_funindex() method will call your function for an item in the list. It will
pass both a pointer to the item in the list, and any argument that you provide. The
following example shows a function that could be called by linklist_funindex().

void myFun(t_object *myObj, void *myArg)
{

// do something with myObj and myArg here
// myObj is the item in the linklist

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 351

34.11.2.14 long linklist getflags (t_linklist ∗ x)

Get the linklist’s datastore flags.

Parameters
x The linklist instance.

Returns

The current state of the linklist flags as enumerated in e_max_datastore_flags.

34.11.2.15 void∗ linklist getindex (t_linklist ∗ x, long index)

Return the item stored in a linklist at a specified index.

Parameters
x The linklist instance.

index The index in the linklist to fetch. Indices are zero-based.

Returns

The item from the linklist stored at index. If there is no item at the index, NULL is
returned

34.11.2.16 long linklist getsize (t_linklist ∗ x)

Return the number of items in a linklist object.

Parameters
x The linklist instance.

Returns

The number of items in the linklist object.

34.11.2.17 long linklist insert sorted (t_linklist ∗ x, void ∗ o, long cmpfnvoid ∗, void ∗)

Insert an item into the list, keeping the list sorted according to a specified comparison
function.

Parameters
x The linklist instance.
o The item pointer to insert.

cmpfn A comparison function by which the list should be sorted.
Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

352 Module Documentation

Returns

The index of the new item in the linklist, or -1 if the insert failed.

34.11.2.18 t_llelem∗ linklist insertafterobjptr (t_linklist ∗ x, void ∗ o, void ∗ objptr)

Insert an item into the list after another specified item.

Parameters
x The linklist instance.
o The item pointer to insert.

objptr The item pointer after which to insert in the list.

Returns

An opaque linklist element.

34.11.2.19 t_llelem∗ linklist insertbeforeobjptr (t_linklist ∗ x, void ∗ o, void ∗ objptr)

Insert an item into the list before another specified item.

Parameters
x The linklist instance.
o The item pointer to insert.

objptr The item pointer before which to insert in the list.

Returns

An opaque linklist element.

34.11.2.20 long linklist insertindex (t_linklist ∗ x, void ∗ o, long index)

Insert an item into the list at the specified index.

Parameters
x The linklist instance.
o The item pointer to insert.

index The index at which to insert. Index 0 is the head of the list.

Returns

The index of the item in the linklist, or -1 if the insert failed.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 353

34.11.2.21 void∗ linklist last (t_linklist ∗ x, void ∗∗ item)

Return the last item (the tail) in the linked-list.

Parameters
x The linklist instance.

item The address of pointer in which to store the last item in the linked-list.

Returns

always returns NULL

34.11.2.22 long linklist makearray (t_linklist ∗ x, void ∗∗ a, long max)

Retrieve linklist items as an array of pointers.

Parameters
x The linklist instance.
a The address of the first pointer in the array to fill.

max The number of pointers in the array.

Returns

The number of items from the list actually returned in the array.

34.11.2.23 long linklist match (void ∗ a, void ∗ b)

A linklist comparison method that determines if two item pointers are equal.

Parameters
a The first item to compare.
b The second item to compare.

Returns

Returns 1 if the items are equal, otherwise 0.

See also

t_cmpfn

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

354 Module Documentation

34.11.2.24 void linklist methodall (t_linklist ∗ x, t_symbol ∗ s, ...)

Call the named message on every object in the linklist.

The linklist_methodall() function requires that all items in the linklist are object instances
with a valid t_object header.

Parameters
x The linklist instance.
s The name of the message to send to the objects.

... Any arguments to be sent with the message.

Remarks

Internally, this function uses object_method(), meaning that no errors will be posted
if the message name does not exist for the object. It also means that messages
sent methods with A_GIMME definitions will need to be given a symbol argument
prior to the argc and argv array information.

34.11.2.25 void∗ linklist methodindex (t_linklist ∗ x, long i, t_symbol ∗ s, ...)

Call the named message on an object specified by index.

The item must be an object instance with a valid t_object header.

Parameters
x The linklist instance.
i The index of the item to which to send the message.

s The name of the message to send to the objects.
... Any arguments to be sent with the message.

Remarks

Internally, this function uses object_method(), meaning that no errors will be posted
if the message name does not exist for the object. It also means that messages
sent methods with A_GIMME definitions will need to be given a symbol argument
prior to the argc and argv array information.

34.11.2.26 t_llelem∗ linklist moveafterobjptr (t_linklist ∗ x, void ∗ o, void ∗ objptr)

Move an existing item in the list to a position after another specified item in the list.

Parameters
x The linklist instance.
o The item pointer to insert.

objptr The item pointer after which to move o in the list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 355

Returns

An opaque linklist element.

34.11.2.27 t_llelem∗ linklist movebeforeobjptr (t_linklist ∗ x, void ∗ o, void ∗ objptr)

Move an existing item in the list to a position before another specified item in the list.

Parameters
x The linklist instance.
o The item pointer to insert.

objptr The item pointer before which to move o in the list.

Returns

An opaque linklist element.

34.11.2.28 t_linklist∗ linklist new (void)

Create a new linklist object.

You can free the linklist by calling object_free() on the linklist’s pointer, or by using linklist-
_chuck().

Returns

Pointer to the new linklist object.

See also

object_free()
linklist_chuck()

34.11.2.29 void∗ linklist next (t_linklist ∗ x, void ∗ p, void ∗∗ next)

Given an item in the list, find the next item.

This provides an means for walking the list.

Parameters
x The linklist instance.
p An item in the list.

next The address of a pointer to set with the next item in the list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

356 Module Documentation

34.11.2.30 long linklist objptr2index (t_linklist ∗ x, void ∗ p)

Return an item’s index, given the item itself.

Parameters
x The linklist instance.
p The item pointer to search for in the linklist.

Returns

The index of the item given in the linklist. If the item is not in the linklist MAX_ERR-
_GENERIC is returned.

34.11.2.31 void∗ linklist prev (t_linklist ∗ x, void ∗ p, void ∗∗ prev)

Given an item in the list, find the previous item.

This provides an means for walking the list.

Parameters
x The linklist instance.
p An item in the list.

prev The address of a pointer to set with the previous item in the list.

34.11.2.32 void linklist readonly (t_linklist ∗ x, long readonly)

Set the linklist’s readonly bit.

By default the readonly bit is 0, indicating that it is threadsafe for both reading and
writing. Setting the readonly bit to 1 will disable the linklist’s theadsafety mechanism,
increasing performance but at the expense of threadsafe operation. Unless you can
guarantee the threading context for a linklist’s use, you should leave this set to 0.

Parameters
x The linklist instance.

readonly A 1 or 0 for setting the readonly bit.

34.11.2.33 void linklist reverse (t_linklist ∗ x)

Reverse the order of items in the linked-list.

Parameters
x The linklist instance.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.11 Linked List 357

34.11.2.34 void linklist rotate (t_linklist ∗ x, long i)

Rotate items in the linked list in circular fashion.

Parameters
x The linklist instance.
i The number of positions in the list to shift items.

34.11.2.35 void linklist shuffle (t_linklist ∗ x)

Randomize the order of items in the linked-list.

Parameters
x The linklist instance.

34.11.2.36 void linklist sort (t_linklist ∗ x, long cmpfnvoid ∗, void ∗)

Sort the linked list.

The items in the list are ordered using a t_cmpfn function that is passed in as an argu-
ment.

Parameters
x The linklist instance.

cmpfn The function used to sort the list.

Remarks

The following is example is a real-world example of sorting a linklist of symbols
alphabetically by first letter only. First the cmpfn is defined, then it is used in a
different function by linklist_sort().

long myAlphabeticalCmpfn(void *a, void *b)
{

t_symbol *s1 = (t_symbol *)a;
t_symbol *s2 = (t_symbol *)b;

if(s1->s_name[0] < s2->s_name[0])
return true;

else
return false;

}

void mySortMethod(t_myobj *x)
{

// the linklist was already created and filled with items previously
linklist_sort(x->myLinkList, myAlphabeticalCmpfn);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

358 Module Documentation

34.11.2.37 void∗ linklist substitute (t_linklist ∗ x, void ∗ p, void ∗ newp)

Given an item in the list, replace it with a different value.

Parameters
x The linklist instance.
p An item in the list.

newp The new value.

Returns

Always returns NULL.

34.11.2.38 void linklist swap (t_linklist ∗ x, long a, long b)

Swap the position of two items in the linked-list, specified by index.

Parameters
x The linklist instance.
a The index of the first item to swap.
b The index of the second item to swap.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.12 Quick Map 359

34.12 Quick Map

A quickmap implements a pair of t_hashtab hash tables so that it is fast to look up a
unique value for a unique key or vice-versa.

Collaboration diagram for Quick Map:

Quick MapData Storage

Data Structures

• struct t_quickmap

The quickmap object.

Functions

• BEGIN_USING_C_LINKAGE void ∗ quickmap_new (void)

Create a new quickmap object.

• void quickmap_add (t_quickmap ∗x, void ∗p1, void ∗p2)

Add a pair of keys mapped to each other to the quickmap.

• void quickmap_drop (t_quickmap ∗x, void ∗p1, void ∗p2)

Drop a pair of keys mapped to each other in the quickmap.

• long quickmap_lookup_key1 (t_quickmap ∗x, void ∗p1, void ∗∗p2)

Given a (first) key, lookup the value (the second key).

• long quickmap_lookup_key2 (t_quickmap ∗x, void ∗p1, void ∗∗p2)

Given a (second) key, lookup the value (the first key).

• void quickmap_readonly (t_quickmap ∗x, long way)

Set the readonly flag of the quickmap’s hash tables.

34.12.1 Detailed Description

A quickmap implements a pair of t_hashtab hash tables so that it is fast to look up a
unique value for a unique key or vice-versa. This implies that both the keys and the
values must be unique so that look-ups can be performed in both directions.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

360 Module Documentation

34.12.2 Function Documentation

34.12.2.1 void quickmap add (t_quickmap ∗ x, void ∗ p1, void ∗ p2)

Add a pair of keys mapped to each other to the quickmap.

Note that these are considered to be a t_symbol internally. This means that if you
are mapping a t_symbol to a t_object, for example, the t_object will not automatically
be freed when you free the quickmap (unlike what happens when you typically free a
t_hashtab).

Parameters
x The quickmap instance.

p1 The (first) key.
p2 The value (or the second key).

Returns

A Max error code.

34.12.2.2 void quickmap drop (t_quickmap ∗ x, void ∗ p1, void ∗ p2)

Drop a pair of keys mapped to each other in the quickmap.

Parameters
x The quickmap instance.

p1 The first key.
p2 The second key.

Returns

A Max error code.

34.12.2.3 long quickmap lookup key1 (t_quickmap ∗ x, void ∗ p1, void ∗∗ p2)

Given a (first) key, lookup the value (the second key).

Parameters
x The quickmap instance.

p1 The (first) key.
p2 The address of a pointer which will hold the resulting key upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.12 Quick Map 361

Returns

A Max error code.

34.12.2.4 long quickmap lookup key2 (t_quickmap ∗ x, void ∗ p1, void ∗∗ p2)

Given a (second) key, lookup the value (the first key).

Parameters
x The quickmap instance.

p1 The (second) key.
p2 The address of a pointer which will hold the resulting key upon return.

Returns

A Max error code.

34.12.2.5 BEGIN USING C LINKAGE void∗ quickmap new (void)

Create a new quickmap object.

Returns

Pointer to the new quickmap object.

34.12.2.6 void quickmap readonly (t_quickmap ∗ x, long way)

Set the readonly flag of the quickmap’s hash tables.

See hashtab_readonly() for more information about this.

Parameters
x The quickmap instance.

way Set to true to make the quickmap readonly (disable thread protection)
or false (the default) to enable thread protection.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

362 Module Documentation

34.13 String Object

Max’s string object is a simple wrapper for c-strings, useful when working with Max’s
t_dictionary, t_linklist, or t_hashtab.

Collaboration diagram for String Object:

String ObjectData Storage

Data Structures

• struct t_string

The string object.

Functions

• t_string ∗ string_new (const char ∗psz)

Create a new string object.

• const char ∗ string_getptr (t_string ∗x)

Fetch a pointer to a string object’s internal C-string.

• void string_reserve (t_string ∗x, long numbytes)

Reserve additional memory for future string growth.

• void string_append (t_string ∗x, const char ∗s)

Append a C-string onto the existing string maintained by a t_string object.

• void string_chop (t_string ∗x, long numchars)

Shorten a string by eliminating N characters from the end.

34.13.1 Detailed Description

Max’s string object is a simple wrapper for c-strings, useful when working with Max’s
t_dictionary, t_linklist, or t_hashtab.

See also

Dictionary

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.13 String Object 363

34.13.2 Function Documentation

34.13.2.1 void string append (t_string ∗ x, const char ∗ s)

Append a C-string onto the existing string maintained by a t_string object.

Memory allocation for the string will grow as needed to hold the concatenated string.

Parameters
x The string object instance.
s A string to append/concatenate with the existing string.

34.13.2.2 void string chop (t_string ∗ x, long numchars)

Shorten a string by eliminating N characters from the end.

Parameters
x The string object instance.

numchars The number of characters to chop from the end of the string.

34.13.2.3 const char∗ string getptr (t_string ∗ x)

Fetch a pointer to a string object’s internal C-string.

Parameters
x The string object instance.

Returns

A pointer to the internally maintained C-string.

34.13.2.4 t_string∗ string new (const char ∗ psz)

Create a new string object.

Parameters
psz Pointer to a C-string that will be copied to memory internal to this string

object instance.

Returns

The new string object instance pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

364 Module Documentation

34.13.2.5 void string reserve (t_string ∗ x, long numbytes)

Reserve additional memory for future string growth.

Parameters
x The string object instance.

numbytes The total number of bytes to allocate for this string object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.14 Symbol Object 365

34.14 Symbol Object

The symobject class is a simple object that wraps a t_symbol∗ together with a couple
of additional fields.

Collaboration diagram for Symbol Object:

Symbol ObjectData Storage

Data Structures

• struct t_symobject

The symobject data structure.

Functions

• void ∗ symobject_new (t_symbol ∗sym)

The symobject data structure.

• long symobject_linklist_match (void ∗a, void ∗b)

Utility for searching a linklist containing symobjects.

34.14.1 Detailed Description

The symobject class is a simple object that wraps a t_symbol∗ together with a couple
of additional fields. It is useful for storing symbols, possibly with additional flags or
pointers, into a Hash Table or Linked List.

Version

5.0

34.14.2 Function Documentation

34.14.2.1 long symobject linklist match (void ∗ a, void ∗ b)

Utility for searching a linklist containing symobjects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

366 Module Documentation

Parameters
a (opaque)
b (opaque)

Returns

Returns true if a match is found, otherwise returns false.

Remarks

The following example shows one common use of the this method.

t_symobject *item = NULL;
long index;
t_symbol *textsym;

textsym = gensym("something to look for");

// search for a symobject with the symbol ’something to look for’
index = linklist_findfirst(s_ll_history, (void **)&item,
symobject_linklist_match, textsym);

if(index == -1){
// symobject not found.

}
else{

do something with the symobject, or with the index of the symbobject in
the linklist

}

34.14.2.2 void∗ symobject new (t_symbol ∗ sym)

The symobject data structure.

Parameters
sym A symbol with which to initialize the new symobject.

Returns

Pointer to the new symobject instance.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.15 Dictionary Passing API 367

34.15 Dictionary Passing API

The Dictionary Passing API defines a means by which t_dictionary instances may be
passed between Max objects in a way similar to the way Jitter Matrices are passed
between objects.

Collaboration diagram for Dictionary Passing API:

Dictionary Passing APIData Storage

Functions

• BEGIN_USING_C_LINKAGE t_dictionary ∗ dictobj_register (t_dictionary ∗d, t_-
symbol ∗∗name)

Register a t_dictionary with the dictionary passing system and map it to a unique
name.

• t_max_err dictobj_unregister (t_dictionary ∗d)

Unregister a t_dictionary with the dictionary passing system.

• t_dictionary ∗ dictobj_findregistered_clone (t_symbol ∗name)

Find the t_dictionary for a given name, and return a copy of that dictionary When you
are done, do not call dictobj_release() on the dictionary, because you are working on
a copy rather than on a retained pointer.

• t_dictionary ∗ dictobj_findregistered_retain (t_symbol ∗name)

Find the t_dictionary for a given name, return a pointer to that t_dictionary, and incre-
ment its reference count.

• t_max_err dictobj_release (t_dictionary ∗d)

For a t_dictionary/name that was previously retained with dictobj_findregistered_-
retain(), release it (decrement its reference count).

• t_symbol ∗ dictobj_namefromptr (t_dictionary ∗d)

Find the name associated with a given t_dictionary.

• void dictobj_outlet_atoms (void ∗out, long argc, t_atom ∗argv)

Send atoms to an outlet in your Max object, handling complex datatypes that may be
present in those atoms.

• long dictobj_atom_safety (t_atom ∗a)

Ensure that an atom is safe for passing.

• long dictobj_validate (const t_dictionary ∗schema, const t_dictionary ∗candidate)

Validate the contents of a t_dictionary against a second t_dictionary containing a
schema.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

368 Module Documentation

• t_max_err dictobj_jsonfromstring (long ∗jsonsize, char ∗∗json, const char ∗str)

Convert a C-string of Dictionary Syntax into a C-string of JSON.

• t_max_err dictobj_dictionaryfromstring (t_dictionary ∗∗d, const char ∗str, int str_-
is_already_json, char ∗errorstring)

Create a new t_dictionary from Dictionary Syntax which is passed in as a C-string.

• t_max_err dictobj_dictionaryfromatoms (t_dictionary ∗∗d, const long argc, const
t_atom ∗argv)

Create a new t_dictionary from Dictionary Syntax which is passed in as an array of
atoms.

• t_max_err dictobj_dictionarytoatoms (const t_dictionary ∗d, long ∗argc, t_atom
∗∗argv)

Serialize the contents of a t_dictionary into Dictionary Syntax .

34.15.1 Detailed Description

The Dictionary Passing API defines a means by which t_dictionary instances may be
passed between Max objects in a way similar to the way Jitter Matrices are passed be-
tween objects. There are important differences, however, between Jitter matrix passing
and dictionary passing. Many of these differences are documented in Max’s documen-
tation on dictionaries and structured data.

Every dictionary instance in this system is mapped to a unique name that identifies the
dictionary. Dictionaries are passed between objects using the "dictionary" message with
a single argument, which is the name of the dictionary.

34.15.2 Registration and Access

The C-API for working with these dictionaries is composed of 5 primary registration/ac-
cess methods:

• dictobj_register() : register a t_dictionary instance with the system, and map the
instance to a name

• dictobj_unregister() : unregister a t_dictionary from the system

• dictobj_findregistered_clone() : find the t_dictionary for a given name, and return
a copy of that dictionary

• dictobj_findregistered_retain() : find the t_dictionary for a given name, return a
pointer to that t_dictionary, and increment its reference count.

• dictobj_release() : for a t_dictionary/name that was previously retained with
dictobj_findregistered_retain(), release it (decrement its reference count).

It is useful to think of objects in the dictionary system as "nouns" and "verbs".

A "noun" is an object that possess or owns a dictionary. These objects are servers
whose dictionary will accessed by other object that are clients. An example of a "noun"
is the dict.pack object that creates a dictionary that is passed to other objects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.15 Dictionary Passing API 369

A "verb" is an object that does not maintain its own dictionary (it is not a thing) but
merely does something to any dictionaries it receives. This object is a client rather than
a server. An example of a "verb" is the dict.strip object, which removes entries from an
existing dictionary but possesses no dictionary of its own.

Any object which is a dictionary "noun", can keep and rely on their dictionary pointer.
Because of the way object_register() works, there should be no possiblity for this pointer
to change behind the scenes. They each need to call object_free() on their respective
object pointer, however. A call to object_free() also calls object_unregister() once, so
there’s technically not a need to unregister from the owner itself. They work like jit.matrix
(and similar to buffer∼), and use object_register() to increment a server reference count.
If an object has already registered an object with the given name, the pointer passed in
to register is freed and the existing one is returned from the registration function.

Dictionary "verbs" on the other hand should just call dict_findregistered_retain() and
dict_release() when done. They are not incrementing the server reference count. They
increment a reference count with regards to object freeing, which is compatible with and
complementary to the server reference count.

34.15.3 Dictionary Syntax

Dictionaries may be represented in a variety of textual formats including JSON. Max
also supports a compact YAML-like dictionary notation which is useful for proving data
structure contents as lists of atoms in object boxes. This format is documented in Max’s
documentation of the dictionary features. The following functions are used for formatting
and parsing the dictionary syntax.

• dictobj_jsonfromstring()

• dictobj_dictionaryfromstring()

• dictobj_dictionaryfromatoms()

• dictobj_dictionarytoatoms()

34.15.4 Utilities

There are several utility functions available to assist in coding objects that pass dictio-
naries.

• dictobj_outlet_atoms()

• dictobj_atom_safety()

• dictobj_validate()

The dictobj_validate() object is a utility routine for validating a dictionary against
"schema" dictionary. This enables a behavior somewhat analogous to Objective-C or
Smalltalk prototypes. Dictionary validation can be useful to implement a kind of dic-
tionary polymorphism. For a multiple-inheritance behavior, simply validate a dictionary
against multiple schemas to verify the presence of required keys and values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

370 Module Documentation

34.15.5 Registration and Access

The dict_outlet_atoms() function will not output A_OBJ atoms directly (nor should any
other object) and as such it will also not output t_atomarray instances containing objects,
thus atomarrays are not hierarchical in the dictionary passing implementation.

It will output an atom array if provided a single A_OBJ atom with class atomarray. If there
is an array of atoms which contain A_OBJ atoms, they are converted to the ∗symbols∗
<dictionary-object>, <atomarray-object>, <string-object>, <other-object> respec-
tively. Ideally such a case should never be reached if everything which inserts values
into a dictionary is well behaved--i.e.

• a key may be a single atom

• a key may be an atomarray (but no A_OBJ atoms)

• a key may be a dictionary

Version

6.0

34.15.6 Function Documentation

34.15.6.1 long dictobj atom safety (t_atom ∗ a)

Ensure that an atom is safe for passing.

Atoms are allowed to be A_LONG, A_FLOAT, or A_SYM, but not A_OBJ. If the atom is
an A_OBJ, it will be converted into something that will be safe to pass.

Parameters
a An atom to check, and potentially modify, to ensure safety in the

dictionary-passing system.

Returns

If the atom was changed then 1 is returned. Otherwise 0 is returned.

34.15.6.2 t_max_err dictobj dictionaryfromatoms (t_dictionary ∗∗ d, const long argc,
const t_atom ∗ argv)

Create a new t_dictionary from Dictionary Syntax which is passed in as an array of
atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.15 Dictionary Passing API 371

Parameters
d The address of a dictionary variable, which will hold a pointer to the new

dictionary upon return. Should be initialized to NULL.
argc The number of atoms in argv.
argv Pointer to the first of an array of atoms to be interpreted as Dictionary

Syntax .

Returns

A Max error code.

See also

dictobj_dictionarytoatoms()

34.15.6.3 t_max_err dictobj dictionaryfromstring (t_dictionary ∗∗ d, const char ∗ str, int
str is already json, char ∗ errorstring)

Create a new t_dictionary from Dictionary Syntax which is passed in as a C-string.

Parameters
d The address of a dictionary variable, which will hold a pointer to the new

dictionary upon return. Should be initialized to NULL.
str A NULL-terminated C-string containing Dictionary Syntax .

str_is_-
already_json

errorstring

Returns

A Max error code.

See also

dictobj_dictionarytoatoms()

34.15.6.4 t_max_err dictobj dictionarytoatoms (const t_dictionary ∗ d, long ∗ argc,
t_atom ∗∗ argv)

Serialize the contents of a t_dictionary into Dictionary Syntax .

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

372 Module Documentation

Parameters
d The dictionary to serialize.

argc The address of a variable to hold the number of atoms allocated upon
return.

argv The address of a t_atom pointer which will point to the first atom (of an
array of argc atoms) upon return.

Returns

A Max error code.

See also

dictobj_dictionaryfromatoms()

34.15.6.5 t_dictionary∗ dictobj findregistered clone (t_symbol ∗ name)

Find the t_dictionary for a given name, and return a copy of that dictionary When you
are done, do not call dictobj_release() on the dictionary, because you are working on a
copy rather than on a retained pointer.

Parameters
name The name associated with the dictionary for which you wish to obtain a

copy.

Returns

The dictionary cloned from the existing dictionary. Returns NULL if no dictionary is
associated with name.

See also

dictobj_findregistered_retain()

34.15.6.6 t_dictionary∗ dictobj findregistered retain (t_symbol ∗ name)

Find the t_dictionary for a given name, return a pointer to that t_dictionary, and incre-
ment its reference count.

When you are done you should call dictobj_release() on the dictionary.

Parameters
name The name associated with the dictionary for which you wish to obtain a

pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.15 Dictionary Passing API 373

Returns

A pointer to the dictionary associated with name. Returns NULL if no dictionary is
associated with name.

See also

dictobj_release()
dictobj_findregistered_clone()

34.15.6.7 t_max_err dictobj jsonfromstring (long ∗ jsonsize, char ∗∗ json, const char ∗ str)

Convert a C-string of Dictionary Syntax into a C-string of JSON.

Parameters
jsonsize The address of a variable to be filled-in with the number of chars in json

upon return.
json The address of a char pointer to point to the JSON C-string upon return.

Should be initialized to NULL. You are responsible for freeing the string
with sysmem_freeptr() when you are done with it.

str A NULL-terminated C-string containing Dictionary Syntax .

Returns

A Max error code.

See also

dictobj_dictionarytoatoms()

34.15.6.8 t_symbol∗ dictobj namefromptr (t_dictionary ∗ d)

Find the name associated with a given t_dictionary.

Parameters
d A dictionary, whose name you wish to determine.

Returns

The symbol associated with the dictionary, or NULL if the dictionary is not regis-
tered.

See also

dictobj_register()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

374 Module Documentation

34.15.6.9 void dictobj outlet atoms (void ∗ out, long argc, t_atom ∗ argv)

Send atoms to an outlet in your Max object, handling complex datatypes that may be
present in those atoms.

This is particularly when sending the contents of a dictionary entry out of an outlet as in
the following example code.

long ac = 0;
t_atom *av = NULL;
t_max_err err;

err = dictionary_copyatoms(d, key, &ac, &av);
if (!err && ac && av) {

// handles singles, lists, symbols, atomarrays, dictionaries, etc.
dictobj_outlet_atoms(x->outlets[i],ac,av);

}

if (av)
sysmem_freeptr(av);

Parameters
out The outlet through which the atoms should be sent.

argc The count of atoms in argv.
argv Pointer to the first of an array of atoms to send to the outlet.

34.15.6.10 BEGIN USING C LINKAGE t_dictionary∗ dictobj register (t_dictionary ∗ d,
t_symbol ∗∗ name)

Register a t_dictionary with the dictionary passing system and map it to a unique name.

Parameters
d A valid dictionary object.

name The address of a t_symbol pointer to the name you would like mapped
to this dictionary. If the t_symbol pointer has a NULL value then a
unique name will be generated and filled-in upon return.

Returns

The dictionary mapped to the specified name.

34.15.6.11 t_max_err dictobj release (t_dictionary ∗ d)

For a t_dictionary/name that was previously retained with dictobj_findregistered_-
retain(), release it (decrement its reference count).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.15 Dictionary Passing API 375

Parameters
d A valid dictionary object retained by dictobj_findregistered_retain().

Returns

A Max error code.

See also

dictobj_findregistered_retain()

34.15.6.12 t_max_err dictobj unregister (t_dictionary ∗ d)

Unregister a t_dictionary with the dictionary passing system.

Generally speaking you should not need to call this method. Calling object_free() on
the t_dictionary automatically unregisters it.

Parameters
d A valid dictionary object.

Returns

A Max error code.

34.15.6.13 long dictobj validate (const t_dictionary ∗ schema, const t_dictionary ∗
candidate)

Validate the contents of a t_dictionary against a second t_dictionary containing a
schema.

The schema dictionary contains keys and values, like any dictionary. dictobj_validate()
checks to make sure that all keys in the schema dictionary are present in the candidate
dictionary. If the keys are all present then the candidate passes and the function returns
true. Otherwise the the candidate fails the validation and the function returns false.

Generally speaking, the schema dictionary with contain values with the symbol "∗",
indicating a wildcard, and thus only the key is used to validate the dictionary (all values
match the wildcard). However, if the schema dictionary contains non-wildcard values
for any of its keys, those keys in the candidate dictionary must also contain matching
values in order for the candidate to successfully validate.

An example of this in action is the dict.route object in Max, which simply wraps this
function.

Parameters
schema The dictionary against which to validate candidate.

candidate A dictionary to test against the schema.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

376 Module Documentation

Returns

Returns true if the candidate validates against the schema, otherwise returns false.

See also

dictobj_dictionarytoatoms()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.16 Data Types 377

34.16 Data Types

Collaboration diagram for Data Types:

Atoms

Binbufs

Data Types

Atombufs

Symbols

Data Structures

• struct t_rect

Coordinates for specifying a rectangular region.

• struct t_pt

Coordinates for specifying a point.

• struct t_size

Coordinates for specifying the size of a region.

Modules

• Atoms

• Atombufs

An Atombuf is an alternative to Binbufs for temporary storage of atoms.

• Binbufs

You won’t need to know about the internal structure of a Binbuf, so you can use the
void ∗ type to refer to one.

• Symbols

Max maintains a symbol table of all strings to speed lookup for message passing.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

378 Module Documentation

Typedefs

• typedef void ∗(∗ method)(void ∗,...)
Function pointer type for generic methods.

• typedef long(∗ longmethod)(void ∗,...)
Function pointer type for methods returning a long.

• typedef void ∗(∗ voidstarvoid)()

Function pointer type for a function with no arguments, returning a generic pointer.

• typedef char ∗ t_ptr

Generic pointer type.

• typedef char ∗∗ t_handle

Generic pointer-to-a-pointer type.

• typedef void ∗ t_vptr

Void pointer type.

• typedef void ∗(∗ zero_meth)(void ∗x)

Function pointer type for methods with no arguments.

• typedef void ∗(∗ one_meth)(void ∗x, void ∗z)

Function pointer type for methods with a single argument.

• typedef void ∗(∗ two_meth)(void ∗x, void ∗z, void ∗a)

Function pointer type for methods with two arguments.

• typedef long ∗(∗ gimmeback_meth)(void ∗x, t_symbol ∗s, long ac, t_atom ∗av,
t_atom ∗rv)

Function pointer type for methods that pass back a result value through the last pa-
rameter as a t_atom, and return an error.

• typedef unsigned long ulong

An unsigned long integer.

• typedef unsigned int uint

An unsigned integer.

• typedef unsigned short ushort

An unsigned short integer.

• typedef unsigned char uchar

An unsigned char.

• typedef long t_max_err

A Max error code.

34.16.1 Typedef Documentation

34.16.1.1 typedef long t_max_err

A Max error code.

Common error codes are defined in e_max_errorcodes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 379

34.17 Atoms

Collaboration diagram for Atoms:

AtomsData Types

Data Structures

• union word

Union for packing any of the datum defined in e_max_atomtypes.

• struct t_atom

An atom is a typed datum.

Defines

• #define ATOM_MAX_STRLEN

Defines the largest possible string size for an atom.

Enumerations

• enum e_max_atomtypes { A_NOTHING, A_LONG, A_FLOAT, A_SYM, A_OBJ,
A_DEFLONG, A_DEFFLOAT, A_DEFSYM, A_GIMME, A_CANT, A_SEMI, A_-
COMMA, A_DOLLAR, A_DOLLSYM, A_GIMMEBACK, A_DEFER, A_USURP,
A_DEFER_LOW, A_USURP_LOW }

the list of officially recognized types, including pseudotypes for commas and semi-
colons.

• enum e_max_atom_gettext_flags { OBEX_UTIL_ATOM_GETTEXT_DEFAUL-
T, OBEX_UTIL_ATOM_GETTEXT_TRUNCATE_ZEROS, OBEX_UTIL_ATOM_-
GETTEXT_SYM_NO_QUOTE, OBEX_UTIL_ATOM_GETTEXT_SYM_FORCE-
_QUOTE, OBEX_UTIL_ATOM_GETTEXT_COMMA_DELIM, OBEX_UTIL_AT-
OM_GETTEXT_FORCE_ZEROS, OBEX_UTIL_ATOM_GETTEXT_NUM_HI_R-
ES }

Flags that determine how functions convert atoms into text (C-strings).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

380 Module Documentation

Functions

• t_max_err atom_setlong (t_atom ∗a, long b)

Inserts an integer into a t_atom and change the t_atom’s type to A_LONG.

• t_max_err atom_setfloat (t_atom ∗a, double b)

Inserts a floating point number into a t_atom and change the t_atom’s type to A_FLO-
AT.

• t_max_err atom_setsym (t_atom ∗a, t_symbol ∗b)

Inserts a t_symbol ∗ into a t_atom and change the t_atom’s type to A_SYM.

• t_max_err atom_setobj (t_atom ∗a, void ∗b)

Inserts a generic pointer value into a t_atom and change the t_atom’s type to A_OBJ.

• long atom_getlong (const t_atom ∗a)

Retrieves a long integer value from a t_atom.

• float atom_getfloat (const t_atom ∗a)

Retrieves a floating point value from a t_atom.

• t_symbol ∗ atom_getsym (const t_atom ∗a)

Retrieves a t_symbol ∗ value from a t_atom.

• void ∗ atom_getobj (const t_atom ∗a)

Retrieves a generic pointer value from a t_atom.

• long atom_getcharfix (const t_atom ∗a)

Retrieves an unsigned integer value between 0 and 255 from a t_atom.

• long atom_gettype (const t_atom ∗a)

Retrieves type from a t_atom.

• long atom_arg_getlong (long ∗c, long idx, long ac, const t_atom ∗av)

Retrieves the integer value of a particular t_atom from an atom list, if the atom exists.

• long atom_arg_getfloat (float ∗c, long idx, long ac, const t_atom ∗av)

Retrieves the floating point value of a particular t_atom from an atom list, if the atom
exists.

• long atom_arg_getdouble (double ∗c, long idx, long ac, const t_atom ∗av)

Retrieves the floating point value, as a double, of a particular t_atom from an atom list,
if the atom exists.

• long atom_arg_getsym (t_symbol ∗∗c, long idx, long ac, const t_atom ∗av)

Retrieves the t_symbol ∗ value of a particular t_atom from an atom list, if the atom
exists.

• t_max_err atom_alloc (long ∗ac, t_atom ∗∗av, char ∗alloc)

Allocate a single atom.

• t_max_err atom_alloc_array (long minsize, long ∗ac, t_atom ∗∗av, char ∗alloc)

Allocate an array of atoms.

• t_max_err atom_setchar_array (long ac, t_atom ∗av, long count, unsigned char
∗vals)

Assign an array of char values to an array of atoms.

• t_max_err atom_setlong_array (long ac, t_atom ∗av, long count, long ∗vals)

Assign an array of long integer values to an array of atoms.

• t_max_err atom_setfloat_array (long ac, t_atom ∗av, long count, float ∗vals)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 381

Assign an array of 32bit float values to an array of atoms.

• t_max_err atom_setdouble_array (long ac, t_atom ∗av, long count, double
∗vals)

Assign an array of 64bit float values to an array of atoms.

• t_max_err atom_setsym_array (long ac, t_atom ∗av, long count, t_symbol
∗∗vals)

Assign an array of t_symbol∗ values to an array of atoms.

• t_max_err atom_setatom_array (long ac, t_atom ∗av, long count, t_atom ∗vals)

Assign an array of t_atom values to an array of atoms.

• t_max_err atom_setobj_array (long ac, t_atom ∗av, long count, t_object ∗∗vals)

Assign an array of t_object∗ values to an array of atoms.

• t_max_err atom_setparse (long ∗ac, t_atom ∗∗av, C74_CONST char ∗parsestr)

Parse a C-string into an array of atoms.

• t_max_err atom_setformat (long ∗ac, t_atom ∗∗av, C74_CONST char ∗fmt,...)

Create an array of atoms populated with values using sprintf-like syntax.

• t_max_err atom_getformat (long ac, t_atom ∗av, C74_CONST char ∗fmt,...)

Retrieve values from an array of atoms using sscanf-like syntax.

• t_max_err atom_gettext (long ac, t_atom ∗av, long ∗textsize, char ∗∗text, long
flags)

Convert an array of atoms into a C-string.

• t_max_err atom_getchar_array (long ac, t_atom ∗av, long count, unsigned char
∗vals)

Fetch an array of char values from an array of atoms.

• t_max_err atom_getlong_array (long ac, t_atom ∗av, long count, long ∗vals)

Fetch an array of long integer values from an array of atoms.

• t_max_err atom_getfloat_array (long ac, t_atom ∗av, long count, float ∗vals)

Fetch an array of 32bit float values from an array of atoms.

• t_max_err atom_getdouble_array (long ac, t_atom ∗av, long count, double
∗vals)

Fetch an array of 64bit float values from an array of atoms.

• t_max_err atom_getsym_array (long ac, t_atom ∗av, long count, t_symbol
∗∗vals)

Fetch an array of t_symbol∗ values from an array of atoms.

• t_max_err atom_getatom_array (long ac, t_atom ∗av, long count, t_atom ∗vals)

Fetch an array of t_atom values from an array of atoms.

• t_max_err atom_getobj_array (long ac, t_atom ∗av, long count, t_object ∗∗vals)

Fetch an array of t_object∗ values from an array of atoms.

• long atomisstring (t_atom ∗a)

Determines whether or not an atom represents a t_string object.

• long atomisatomarray (t_atom ∗a)

Determines whether or not an atom represents a t_atomarray object.

• long atomisdictionary (t_atom ∗a)

Determines whether or not an atom represents a t_dictionary object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

382 Module Documentation

• BEGIN_USING_C_LINKAGE void atom_copy (short argc1, t_atom ∗argv1, t_-
atom ∗argv2)

Copy an array of atoms.

• void postargs (short argc, t_atom ∗argv)

Print the contents of an array of atoms to the Max window.

• t_max_err atom_arg_getobjclass (t_object ∗∗x, long idx, long argc, t_atom ∗argv,
t_symbol ∗cls)

Return a pointer to an object contained in an atom if it is of the specified class.

• void ∗ atom_getobjclass (t_atom ∗av, t_symbol ∗cls)

Return a pointer to an object contained in an atom if it is of the specified class.

34.17.1 Enumeration Type Documentation

34.17.1.1 enum e_max_atom_gettext_flags

Flags that determine how functions convert atoms into text (C-strings).

Enumerator:

OBEX_UTIL_ATOM_GETTEXT_DEFAULT default translation rules for getting
text from atoms

OBEX_UTIL_ATOM_GETTEXT_TRUNCATE_ZEROS eliminate redundant ze-
ros for floating point numbers (default used)

OBEX_UTIL_ATOM_GETTEXT_SYM_NO_QUOTE don’t introduce quotes
around symbols with spaces

OBEX_UTIL_ATOM_GETTEXT_SYM_FORCE_QUOTE always introduce
quotes around symbols (useful for JSON)

OBEX_UTIL_ATOM_GETTEXT_COMMA_DELIM separate atoms with commas
(useful for JSON)

OBEX_UTIL_ATOM_GETTEXT_FORCE_ZEROS always print the zeros

OBEX_UTIL_ATOM_GETTEXT_NUM_HI_RES print more decimal places

34.17.1.2 enum e_max_atomtypes

the list of officially recognized types, including pseudotypes for commas and semi-
colons.

Used in two places: 1. the reader, when it reads a string, returns long, float, sym,
comma, semi, or dollar; and 2. each object method comes with an array of them saying
what types it needs, from among long, float, sym, obj, gimme, and cant.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 383

Remarks

While these values are defined in an enum, you should use a long to represent
the value. Using the enum type creates ambiguity in struct size and is subject to
various inconsistent compiler settings.

Enumerator:

A_NOTHING no type, thus no atom

A_LONG long integer

A_FLOAT 32-bit float

A_SYM t_symbol pointer

A_OBJ t_object pointer (for argtype lists; passes the value of sym)

A_DEFLONG long but defaults to zero

A_DEFFLOAT float, but defaults to zero

A_DEFSYM symbol, defaults to ""

A_GIMME request that args be passed as an array, the routine will check the
types itself.

A_CANT cannot typecheck args

A_SEMI semicolon

A_COMMA comma

A_DOLLAR dollar

A_DOLLSYM dollar

A_GIMMEBACK request that args be passed as an array, the routine will check
the types itself. can return atom value in final atom ptr arg. function returns
long error code 0 = no err. see gimmeback_meth typedef

A_DEFER A special signature for declaring methods. This is like A_GIMME, but
the call is deferred.

A_USURP A special signature for declaring methods. This is like A_GIMME, but
the call is deferred and multiple calls within one servicing of the queue are
filtered down to one call.

A_DEFER_LOW A special signature for declaring methods. This is like A_GIM-
ME, but the call is deferref to the back of the queue.

A_USURP_LOW A special signature for declaring methods. This is like A_GIM-
ME, but the call is deferred to the back of the queue and multiple calls within
one servicing of the queue are filtered down to one call.

34.17.2 Function Documentation

34.17.2.1 t_max_err atom alloc (long ∗ ac, t_atom ∗∗ av, char ∗ alloc)

Allocate a single atom.

If ac and av are both zero then memory is allocated. Otherwise it is presumed that
memory is already allocated and nothing will happen.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

384 Module Documentation

Parameters
ac The address of a variable that will contain the number of atoms allo-

cated (1).
av The address of a pointer that will be set with the new allocated memory

for the atom.
alloc Address of a variable that will be set true is memory is allocated, other-

wise false.

Returns

A Max error code.

34.17.2.2 t_max_err atom alloc array (long minsize, long ∗ ac, t_atom ∗∗ av, char ∗ alloc)

Allocate an array of atoms.

If ac and av are both zero then memory is allocated. Otherwise it is presumed that
memory is already allocated and nothing will happen.

Parameters
minsize The minimum number of atoms that this array will need to contain. This

determines the amount of memory allocated.
ac The address of a variable that will contain the number of atoms allo-

cated.
av The address of a pointer that will be set with the new allocated memory

for the atoms.
alloc Address of a variable that will be set true is memory is allocated, other-

wise false.

Returns

A Max error code.

34.17.2.3 long atom arg getdouble (double ∗ c, long idx, long ac, const t_atom ∗ av)

Retrieves the floating point value, as a double, of a particular t_atom from an atom list,
if the atom exists.

Parameters
c Pointer to a double variable to receive the atom’s data if the function is

successful. Otherwise the value is left unchanged.
idx Offset into the atom list of the atom of interest, starting from 0. For

instance, if you want data from the 3rd atom in the atom list, idx should
be set to 2.

ac Count of av.
av Pointer to the first t_atom of an atom list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 385

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.4 long atom arg getfloat (float ∗ c, long idx, long ac, const t_atom ∗ av)

Retrieves the floating point value of a particular t_atom from an atom list, if the atom
exists.

Parameters
c Pointer to a float variable to receive the atom’s data if the function is

successful. Otherwise, the value is left unchanged.
idx Offset into the atom list of the atom of interest, starting from 0. For

instance, if you want data from the 3rd atom in the atom list, idx should
be set to 2.

ac Count of av.
av Pointer to the first t_atom of an atom list.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.5 long atom arg getlong (long ∗ c, long idx, long ac, const t_atom ∗ av)

Retrieves the integer value of a particular t_atom from an atom list, if the atom exists.

Parameters
c Pointer to a long variable to receive the atom’s data if the function is

successful.
idx Offset into the atom list of the atom of interest, starting from 0. For

instance, if you want data from the 3rd atom in the atom list, idx should
be set to 2.

ac Count of av.
av Pointer to the first t_atom of an atom list.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

386 Module Documentation

Remarks

The atom_arg_getlong() function only changes the value of c if the function is suc-
cessful. For instance, the following code snippet illustrates a simple, but typical
use:

void myobject_mymessage(t_myobject *x, t_symbol *s, long ac, t_atom *av)
{

long var = -1;

// here, we are expecting a value of 0 or greater
atom_arg_getlong(&var, 0, ac, av);
if (val == -1) // i.e. unchanged

post("it is likely that the user did not provide a valid argument")
;

else {
...

}
}

34.17.2.6 t_max_err atom arg getobjclass (t_object ∗∗ x, long idx, long argc, t_atom ∗
argv, t_symbol ∗ cls)

Return a pointer to an object contained in an atom if it is of the specified class.

Parameters
x The address of a pointer to the object contained in av if it is of the

specified class upon return. Otherwise NULL upon return.
idx The index of the atom in the array from which to get the object pointer.

argc The count of atoms in argv.
argv The address to the first of an array of atoms.

cls A symbol containing the class name of which the object should be an
instance.

Returns

A Max error code.

34.17.2.7 long atom arg getsym (t_symbol ∗∗ c, long idx, long ac, const t_atom ∗ av)

Retrieves the t_symbol ∗ value of a particular t_atom from an atom list, if the atom
exists.

Parameters
c Pointer to a t_symbol ∗ variable to receive the atom’s data if the function

is successful. Otherwise, the value is left unchanged.
idx Offset into the atom list of the atom of interest, starting from 0. For

instance, if you want data from the 3rd atom in the atom list, idx should
be set to 2.

ac Count of av.
av Pointer to the first t_atom of an atom list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 387

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

The atom_arg_getsym() function only changes the value of c if the function is suc-
cessful. For instance, the following code snippet illustrates a simple, but typical
use:

void myobject_open(t_myobject *x, t_symbol *s, long ac, t_atom *av)
{

t_symbol *filename = _sym_nothing;

// here, we are expecting a file name.
// if we don’t get it, open a dialog box
atom_arg_getsym(&filename, 0, ac, av);
if (filename == _sym_nothing) { // i.e. unchanged

// open the file dialog box,
// get a value for filename

}
// do something with the filename

}

34.17.2.8 BEGIN USING C LINKAGE void atom copy (short argc1, t_atom ∗ argv1, t_atom
∗ argv2)

Copy an array of atoms.

Parameters
argc1 The count of atoms in argv1.
argv1 The address to the first of an array of atoms that is the source for the

copy.
argv2 The address to the first of an array of atoms that is the destination for

the copy. Note that this array must already by allocated using sysmem-
_newptr() or atom_alloc().

34.17.2.9 t_max_err atom getatom array (long ac, t_atom ∗ av, long count, t_atom ∗ vals
)

Fetch an array of t_atom values from an array of atoms.

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

388 Module Documentation

Returns

A Max error code.

34.17.2.10 t_max_err atom getchar array (long ac, t_atom ∗ av, long count, unsigned char
∗ vals)

Fetch an array of char values from an array of atoms.

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Returns

A Max error code.

34.17.2.11 long atom getcharfix (const t_atom ∗ a)

Retrieves an unsigned integer value between 0 and 255 from a t_atom.

Parameters
a Pointer to a t_atom whose value is of interest

Returns

This function returns the value of the specified t_atom as an integer between 0 and
255, if possible. Otherwise, it returns 0.

Remarks

If the t_atom is typed A_LONG, but the data falls outside of the range 0-255, the
data is truncated to that range before output.
If the t_atom is typed A_FLOAT, the floating point value is multiplied by 255. and
truncated to the range 0-255 before output. For example, the floating point value
0.5 would be output from atom_getcharfix as 127 (0.5 ∗ 255. = 127.5).
No attempt is also made to coerce t_symbol data.

34.17.2.12 t_max_err atom getdouble array (long ac, t_atom ∗ av, long count, double ∗
vals)

Fetch an array of 64bit float values from an array of atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 389

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Returns

A Max error code.

34.17.2.13 float atom getfloat (const t_atom ∗ a)

Retrieves a floating point value from a t_atom.

Parameters
a Pointer to a t_atom whose value is of interest

Returns

This function returns the value of the specified t_atom as a floating point number, if
possible. Otherwise, it returns 0.

Remarks

If the t_atom is not of the type specified by the function, the function will attempt to
coerce a valid value from the t_atom. For instance, if the t_atom at is set to type
A_LONG with a value of 5, the atom_getfloat() function will return the value of at
as a float, or 5.0. An attempt is also made to coerce t_symbol data.

34.17.2.14 t_max_err atom getfloat array (long ac, t_atom ∗ av, long count, float ∗ vals)

Fetch an array of 32bit float values from an array of atoms.

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

390 Module Documentation

34.17.2.15 t_max_err atom getformat (long ac, t_atom ∗ av, C74 CONST char ∗ fmt, ...)

Retrieve values from an array of atoms using sscanf-like syntax.

atom_getformat() supports clfdsoaCLFDSOA tokens (primitive type scalars and arrays
respectively for the char, long, float, double, t_symbol∗, t_object∗, t_atom∗). It does not
support vbp@ the tokens found in atom_setformat().

Parameters
ac The number of atoms to parse in av.
av The address of the first t_atom pointer in an array to parse.

fmt An sscanf-style format string specifying types for the atoms.
... One or more arguments which are address of variables to be set ac-

cording to the fmt string.

Returns

A Max error code.

See also

atom_setformat()

34.17.2.16 long atom getlong (const t_atom ∗ a)

Retrieves a long integer value from a t_atom.

Parameters
a Pointer to a t_atom whose value is of interest

Returns

This function returns the value of the specified t_atom as an integer, if possible.
Otherwise, it returns 0.

Remarks

If the t_atom is not of the type specified by the function, the function will attempt to
coerce a valid value from the t_atom. For instance, if the t_atom at is set to type
A_FLOAT with a value of 3.7, the atom_getlong() function will return the truncated
integer value of at, or 3. An attempt is also made to coerce t_symbol data.

34.17.2.17 t_max_err atom getlong array (long ac, t_atom ∗ av, long count, long ∗ vals)

Fetch an array of long integer values from an array of atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 391

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Returns

A Max error code.

34.17.2.18 void∗ atom getobj (const t_atom ∗ a)

Retrieves a generic pointer value from a t_atom.

Parameters
a Pointer to a t_atom whose value is of interest

Returns

This function returns the value of the specified A_OBJ-typed t_atom, if possible.
Otherwise, it returns NULL.

34.17.2.19 t_max_err atom getobj array (long ac, t_atom ∗ av, long count, t_object ∗∗
vals)

Fetch an array of t_object∗ values from an array of atoms.

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Returns

A Max error code.

34.17.2.20 void∗ atom getobjclass (t_atom ∗ av, t_symbol ∗ cls)

Return a pointer to an object contained in an atom if it is of the specified class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

392 Module Documentation

Parameters
av A pointer to the atom from which to get the t_object.
cls A symbol containing the class name of which the object should be an

instance.

Returns

A pointer to the object contained in av if it is of the specified class, otherwise NULL.

34.17.2.21 t_symbol∗ atom getsym (const t_atom ∗ a)

Retrieves a t_symbol ∗ value from a t_atom.

Parameters
a Pointer to a t_atom whose value is of interest

Returns

This function returns the value of the specified A_SYM-typed t_atom, if possible.
Otherwise, it returns an empty, but valid, t_symbol ∗, equivalent to gensym(""),
or _sym_nothing.

Remarks

No attempt is made to coerce non-matching data types.

34.17.2.22 t_max_err atom getsym array (long ac, t_atom ∗ av, long count, t_symbol ∗∗
vals)

Fetch an array of t_symbol∗ values from an array of atoms.

Parameters
ac The number of atoms allocated in the av parameter.
av The address to the first of an array of allocated atoms.

count The number of values to fetch from the array specified by vals.
vals The address of the array to which is copied the values from av.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 393

Returns

A Max error code.

34.17.2.23 t_max_err atom gettext (long ac, t_atom ∗ av, long ∗ textsize, char ∗∗ text,
long flags)

Convert an array of atoms into a C-string.

Parameters
ac The number of atoms to fetch in av.
av The address of the first t_atom pointer in an array to retrieve.

textsize The size of the string to which the atoms will be formatted and copied.
text The address of the string to which the text will be written.

flags Determines the rules by which atoms will be translated into text. Values
are bit mask as defined by e_max_atom_gettext_flags.

Returns

A Max error code.

See also

atom_setparse()

34.17.2.24 long atom gettype (const t_atom ∗ a)

Retrieves type from a t_atom.

Parameters
a Pointer to a t_atom whose type is of interest

Returns

This function returns the type of the specified t_atom as defined in e_max_-
atomtypes

34.17.2.25 t_max_err atom setatom array (long ac, t_atom ∗ av, long count, t_atom ∗
vals)

Assign an array of t_atom values to an array of atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

394 Module Documentation

Parameters
ac The number of atoms to try to fetch from the second array of atoms.

You should have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

34.17.2.26 t_max_err atom setchar array (long ac, t_atom ∗ av, long count, unsigned char
∗ vals)

Assign an array of char values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of chars. You should

have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

34.17.2.27 t_max_err atom setdouble array (long ac, t_atom ∗ av, long count, double ∗
vals)

Assign an array of 64bit float values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of doubles. You

should have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 395

34.17.2.28 t_max_err atom setfloat (t_atom ∗ a, double b)

Inserts a floating point number into a t_atom and change the t_atom’s type to A_FLOAT.

Parameters
a Pointer to a t_atom whose value and type will be modified
b Floating point value to copy into the t_atom

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.29 t_max_err atom setfloat array (long ac, t_atom ∗ av, long count, float ∗ vals)

Assign an array of 32bit float values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of floats. You should

have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

34.17.2.30 t_max_err atom setformat (long ∗ ac, t_atom ∗∗ av, C74 CONST char ∗ fmt, ...
)

Create an array of atoms populated with values using sprintf-like syntax.

atom_setformat() supports clfdsoaCLFDSOA tokens (primitive type scalars and arrays
respectively for the char, long, float, double, t_symbol∗, t_object∗, t_atom∗). It also
supports vbp@ tokens (obval, binbuf, parsestr, attribute).

This function allocates memory for the atoms if the ac and av parameters are NUL-
L. Otherwise it will attempt to use any memory already allocated to av. Any allocated
memory should be freed with sysmem_freeptr().

Parameters
ac The address of a variable to hold the number of returned atoms.
av The address of a t_atom pointer to which memory may be allocated and

atoms copied.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

396 Module Documentation

fmt An sprintf-style format string specifying values for the atoms.
... One or more arguments which are to be substituted into the format

string.

Returns

A Max error code.

See also

atom_getformat()
atom_setparse()

34.17.2.31 t_max_err atom setlong (t_atom ∗ a, long b)

Inserts an integer into a t_atom and change the t_atom’s type to A_LONG.

Parameters
a Pointer to a t_atom whose value and type will be modified
b Integer value to copy into the t_atom

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.32 t_max_err atom setlong array (long ac, t_atom ∗ av, long count, long ∗ vals)

Assign an array of long integer values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of longs. You should

have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 397

34.17.2.33 t_max_err atom setobj (t_atom ∗ a, void ∗ b)

Inserts a generic pointer value into a t_atom and change the t_atom’s type to A_OBJ.

Parameters
a Pointer to a t_atom whose value and type will be modified
b Pointer value to copy into the t_atom

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.34 t_max_err atom setobj array (long ac, t_atom ∗ av, long count, t_object ∗∗
vals)

Assign an array of t_object∗ values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of objects. You should

have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

34.17.2.35 t_max_err atom setparse (long ∗ ac, t_atom ∗∗ av, C74 CONST char ∗ parsestr
)

Parse a C-string into an array of atoms.

This function allocates memory for the atoms if the ac and av parameters are NUL-
L. Otherwise it will attempt to use any memory already allocated to av. Any allocated
memory should be freed with sysmem_freeptr().

Parameters
ac The address of a variable to hold the number of returned atoms.
av The address of a t_atom pointer to which memory may be allocated and

atoms copied.
parsestr The C-string to parse.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

398 Module Documentation

Returns

A Max error code.

Remarks

The following example will parse the string "foo bar 1 2 3.0" into an array of 5 atoms.
The atom types will be determined automatically as 2 A_SYM atoms, 2 A_LONG
atoms, and 1 A_FLOAT atom.

t_atom *av = NULL;
long ac = 0;
t_max_err err = MAX_ERR_NONE;

err = atom_setparse(&ac, &av, "foo bar 1 2 3.0");

34.17.2.36 t_max_err atom setsym (t_atom ∗ a, t_symbol ∗ b)

Inserts a t_symbol ∗ into a t_atom and change the t_atom’s type to A_SYM.

Parameters
a Pointer to a t_atom whose value and type will be modified
b Pointer to a t_symbol to copy into the t_atom

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.17.2.37 t_max_err atom setsym array (long ac, t_atom ∗ av, long count, t_symbol ∗∗
vals)

Assign an array of t_symbol∗ values to an array of atoms.

Parameters
ac The number of atoms to try to fetch from the array of symbols. You

should have at least this number of atoms allocated in av.
av The address to the first of an array of allocated atoms.

count The number of values in the array specified by vals.
vals The array from which to copy the values into the array of atoms at av.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.17 Atoms 399

34.17.2.38 long atomisatomarray (t_atom ∗ a)

Determines whether or not an atom represents a t_atomarray object.

Parameters
a The address of the atom to test.

Returns

Returns true if the t_atom contains a valid t_atomarray object.

34.17.2.39 long atomisdictionary (t_atom ∗ a)

Determines whether or not an atom represents a t_dictionary object.

Parameters
a The address of the atom to test.

Returns

Returns true if the t_atom contains a valid t_dictionary object.

34.17.2.40 long atomisstring (t_atom ∗ a)

Determines whether or not an atom represents a t_string object.

Parameters
a The address of the atom to test.

Returns

Returns true if the t_atom contains a valid t_string object.

34.17.2.41 void postargs (short argc, t_atom ∗ argv)

Print the contents of an array of atoms to the Max window.

Parameters
argc The count of atoms in argv.
argv The address to the first of an array of atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

400 Module Documentation

34.18 Atombufs

An Atombuf is an alternative to Binbufs for temporary storage of atoms.

Collaboration diagram for Atombufs:

Data Types Atombufs

Data Structures

• struct t_atombuf

The atombuf struct provides a way to pass a collection of atoms.

Functions

• void ∗ atombuf_new (long argc, t_atom ∗argv)

Use atombuf_new() to create a new Atombuf from an array of t_atoms.

• void atombuf_free (t_atombuf ∗x)

Use atombuf_free() to dispose of the memory used by a t_atombuf.

• void atombuf_text (t_atombuf ∗∗x, char ∗∗text, long size)

Use atombuf_text() to convert text to a t_atom array in a t_atombuf.

34.18.1 Detailed Description

An Atombuf is an alternative to Binbufs for temporary storage of atoms. Its principal
advantage is that the internal structure is publicly available so you can manipulate the
atoms in place. The standard Max text objects (message box, object box, comment)
use the Atombuf structure to store their text (each word of text is stored as a t_symbol
or a number).

34.18.2 Function Documentation

34.18.2.1 void atombuf free (t_atombuf ∗ x)

Use atombuf_free() to dispose of the memory used by a t_atombuf.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.18 Atombufs 401

Parameters
x The t_atombuf to free.

34.18.2.2 void∗ atombuf new (long argc, t_atom ∗ argv)

Use atombuf_new() to create a new Atombuf from an array of t_atoms.

Parameters
argc Number of t_atoms in the argv array. May be 0.
argv Array of t_atoms. If creating an empty Atombuf, you may pass 0.

Returns

atombuf_new() create a new t_atombuf and returns a pointer to it. If 0 is returned,
insufficient memory was available.

34.18.2.3 void atombuf text (t_atombuf ∗∗ x, char ∗∗ text, long size)

Use atombuf_text() to convert text to a t_atom array in a t_atombuf.

To use this routine to create a new Atombuf from the text buffer, first create a new empty
t_atombuf with a call to atombuf_new(0,NULL).

Parameters
x Pointer to existing atombuf variable. The variable will be replaced by a

new Atombuf containing the converted text.
text Handle to the text to be converted. It need not be zero-terminated.
size Number of characters in the text.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

402 Module Documentation

34.19 Binbufs

You won’t need to know about the internal structure of a Binbuf, so you can use the void
∗ type to refer to one.

Collaboration diagram for Binbufs:

BinbufsData Types

Functions

• void ∗ binbuf_new (void)

Use binbuf_new() to create and initialize a Binbuf.

• void binbuf_vinsert (void ∗x, char ∗fmt,...)

Use binbuf_vinsert() to append a Max message to a Binbuf adding a semicolon.

• void binbuf_insert (void ∗x, t_symbol ∗s, short argc, t_atom ∗argv)

Use binbuf_insert() to append a Max message to a Binbuf adding a semicolon.

• void ∗ binbuf_eval (void ∗x, short ac, t_atom ∗av, void ∗to)

Use binbuf_eval to evaluate a Max message in a Binbuf, passing it arguments.

• short binbuf_getatom (void ∗x, long ∗p1, long ∗p2, t_atom ∗ap)

Use binbuf_getatom to retrieve a single Atom from a Binbuf.

• short binbuf_text (void ∗x, char ∗∗srcText, long n)

Use binbuf_text() to convert a text handle to a Binbuf.

• short binbuf_totext (void ∗x, char ∗∗dstText, long ∗sizep)

Use binbuf_totext() to convert a Binbuf into a text handle.

• void binbuf_set (void ∗x, t_symbol ∗s, short argc, t_atom ∗argv)

Use binbuf_set() to change the entire contents of a Binbuf.

• void binbuf_append (void ∗x, t_symbol ∗s, short argc, t_atom ∗argv)

Use binbuf_append to append t_atoms to a Binbuf without modifying them.

• short readatom (char ∗outstr, char ∗∗text, long ∗n, long e, t_atom ∗ap)

Use readatom() to read a single Atom from a text buffer.

34.19.1 Detailed Description

You won’t need to know about the internal structure of a Binbuf, so you can use the void
∗ type to refer to one.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.19 Binbufs 403

34.19.2 Function Documentation

34.19.2.1 void binbuf append (void ∗ x, t_symbol ∗ s, short argc, t_atom ∗ argv)

Use binbuf_append to append t_atoms to a Binbuf without modifying them.

Parameters
x Binbuf to receive the items.
s Ignored. Pass NULL.

argc Count of items in the argv array.
argv Array of atoms to add to the Binbuf.

34.19.2.2 void∗ binbuf eval (void ∗ x, short ac, t_atom ∗ av, void ∗ to)

Use binbuf_eval to evaluate a Max message in a Binbuf, passing it arguments.

binbuf_eval() is an advanced function that evaluates the message in a Binbuf with argu-
ments in argv, and sends it to receiver.

Parameters
x Binbuf containing the message.

ac Count of items in the argv array.
av Array of t_atoms as the arguments to the message.
to Receiver of the message.

Returns

The result of sending the message.

34.19.2.3 short binbuf getatom (void ∗ x, long ∗ p1, long ∗ p2, t_atom ∗ ap)

Use binbuf_getatom to retrieve a single Atom from a Binbuf.

Parameters
x Binbuf containing the desired t_atom.

p1 Offset into the Binbuf’s array of types. Modified to point to the next
t_atom.

p2 Offset into the Binbuf’s array of data. Modified to point to the next t_-
atom.

ap Location of a t_atom where the retrieved data will be placed.

Returns

1 if there were no t_atoms at the specified offsets, 0 if there’s a legitimate t_atom
returned in result.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

404 Module Documentation

Remarks

To get the first t_atom, set both typeOffset and stuffOffset to 0. Here’s an example
of getting all the items in a Binbuf:

t_atom holder;
long to, so;

to = 0;
so = 0;
while (!binbuf_getatom(x, &to, &so, &holder)){

// do something with the t_atom
}

34.19.2.4 void binbuf insert (void ∗ x, t_symbol ∗ s, short argc, t_atom ∗ argv)

Use binbuf_insert() to append a Max message to a Binbuf adding a semicolon.

Parameters
x Binbuf to receive the items.
s Ignored. Pass NULL.

argc Count of items in the argv array.
argv Array of t_atoms to add to the Binbuf.

Remarks

You’ll use binbuf_insert() instead of binbuf_append() if you were saving your object
into a Binbuf and wanted a semicolon at the end. If the message is part of a file
that will later be evaluated, such as a Patcher file, the first argument argv[0] will be
the receiver of the message and must be a Symbol. binbuf_vinsert() is easier to
use than binbuf_insert(), since you don’t have to format your data into an array of
Atoms first.

binbuf_insert() will also convert the t_symbols #1 through #9 into $1 through $9. This
is used for saving patcher files that take arguments; you will probably never save these
symbols as part of anything you are doing.

34.19.2.5 void∗ binbuf new (void)

Use binbuf_new() to create and initialize a Binbuf.

Returns

Returns a new binbuf if successful, otherwise NULL.

34.19.2.6 void binbuf set (void ∗ x, t_symbol ∗ s, short argc, t_atom ∗ argv)

Use binbuf_set() to change the entire contents of a Binbuf.

The previous contents of the Binbuf are destroyed.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.19 Binbufs 405

Parameters
x Binbuf to receive the items.
s Ignored. Pass NULL.

argc Count of items in the argv array.
argv Array of t_atoms to put in the Binbuf.

34.19.2.7 short binbuf text (void ∗ x, char ∗∗ srcText, long n)

Use binbuf_text() to convert a text handle to a Binbuf.

binbuf_text() parses the text in the handle srcText and converts it into binary format. Use
it to evaluate a text file or text line entry into a Binbuf.

Parameters
x Binbuf to contain the converted text. It must have already been created

with binbuf_new. Its previous contents are destroyed.
srcText Handle to the text to be converted. It need not be terminated with a 0.

n Number of characters in the text.

Returns

If binbuf_text encounters an error during its operation, a non-zero result is returned,
otherwise it returns 0.

Remarks

Note: Commas, symbols containing a dollar sign followed by a number 1-9, and
semicolons are identified by special pseudo-type constants for you when your text
is binbuf-ized.

The following constants in the a_type field of Atoms returned by binbuf_getAtom identify
the special symbols A_SEMI, A_COMMA, and A_DOLLAR.

For a t_atom of the pseudo-type A_DOLLAR, the a_w.w_long field of the t_atom con-
tains the number after the dollar sign in the original text or symbol.

Using these pseudo-types may be helpful in separating ’sentences’ and ’phrases’ in the
input language you design. For example, the old pop-up umenu object allowed users to
have spaces in between words by requiring the menu items be separated by commas.
It’s reasonably easy, using binbuf_getatom(), to find the commas in a Binbuf in order to
determine the beginning of a new item when reading the atomized text to be displayed
in the menu.

If you want to use a literal comma or semicolon in a symbol, precede it with a backslash
(\) character. The backslash character can be included by using two backslashes in a
row.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

406 Module Documentation

34.19.2.8 short binbuf totext (void ∗ x, char ∗∗ dstText, long ∗ sizep)

Use binbuf_totext() to convert a Binbuf into a text handle.

binbuf_totext() converts a Binbuf into text and places it in a handle. Backslashes are
added to protect literal commas and semicolons contained in symbols. The pseudo-
types are converted into commas, semicolons, or dollar-sign and number, without back-
slashes preceding them. binbuf_text can read the output of binbuf_totext and make the
same Binbuf.

Parameters
x Binbuf with data to convert to text.

dstText Pre-existing handle where the text will be placed. dstText will be resized
to accomodate the text.

sizep Where binbuf_totext() returns the number of characters in the converted
text handle.

Returns

If binbuf_totext runs out of memory during its operation, it returns a non-zero result,
otherwise it returns 0.

34.19.2.9 void binbuf vinsert (void ∗ x, char ∗ fmt, ...)

Use binbuf_vinsert() to append a Max message to a Binbuf adding a semicolon.

Parameters
x Binbuf containing the desired Atom.

fmt A C-string containing one or more letters corresponding to the types of
each element of the message. s for t_symbol∗, l for long, or f for float.

... Elements of the message, passed directly to the function as Symbols,
longs, or floats.

Remarks

binbuf_vinsert() works somewhat like a printf() for Binbufs. It allows you to pass a
number of arguments of different types and insert them into a Binbuf. The entire
message will then be terminated with a semicolon. Only 16 items can be passed to
binbuf_vinsert().

The example below shows the implementation of a normal object’s save method. The
save method requires that you build a message that begins with #N (the new object) ,
followed by the name of your object (in this case, represented by the t_symbol myobject),
followed by any arguments your instance creation function requires. In this example, we
save the values of two fields m_val1 and m_val2 defined as longs.

void myobject_save (myObject *x, Binbuf *dstBuf)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.19 Binbufs 407

{
binbuf_vinsert(dstBuf, "ssll", gensym("#N"),

gensym("myobject"),
x->m_val1, x->m_val2);

}

Suppose that such an object had written this data into a file. If you opened the file as
text, you would see the following:

#N myobject 10 20;
#P newobj 218 82 30 myobject;

The first line will result in a new myobject object to be created; the creation function
receives the arguments 10 and 20. The second line contains the text of the object
box. The newobj message to a patcher creates the object box user interface object and
attaches it to the previously created myobject object. Normally, the newex message is
used. This causes the object to be created using the arguments that were typed into
the object box.

34.19.2.10 short readatom (char ∗ outstr, char ∗∗ text, long ∗ n, long e, t_atom ∗ ap)

Use readatom() to read a single Atom from a text buffer.

Parameters
outstr C-string of 256 characters that will receive the next text item read from

the buffer.
text Handle to the text buffer to be read.

n Starts at 0, and is modified by readatom to point to the next item in the
text buffer.

e Number of characters in text.
ap Where the resulting Atom read from the text buffer is placed.

Returns

readatom() returns non-zero if there is more text to read, and zero if it has reached
the end of the text. Note that this return value has the opposite logic from that of
binbuf_getatom().

Remarks

This function provides access to the low-level Max text evaluator used by binbuf_-
text(). It is designed to operate on a handle of characters (text) and called in a loop,
as in the example shown below.

long index = 0;
t_atom dst;
char outstr[256];

while (readatom(outstr,textHandle,&index,textLength,&dst))
{

// do something with the resulting Atom
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

408 Module Documentation

An alternative to using readatom is to turn your text into a Binbuf using binbuf_text(),
then call binbuf_getatom() in a loop.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.20 Symbols 409

34.20 Symbols

Max maintains a symbol table of all strings to speed lookup for message passing.

Collaboration diagram for Symbols:

Data Types Symbols

Data Structures

• struct t_symbol

The symbol.

Functions

• t_symbol ∗ gensym (C74_CONST char ∗s)

Given a C-string, fetch the matching t_symbol pointer from the symbol table, generat-
ing the symbol if neccessary.

• t_symbol ∗ gensym_tr (char ∗s)

Given a C-string, fetch the matching t_symbol pointer from the symbol table, generat-
ing and translating the symbol if neccessary.

34.20.1 Detailed Description

Max maintains a symbol table of all strings to speed lookup for message passing. If
you want to access the bang symbol for example, you’ll have to use the expression
gensym("bang"). For example, gensym() may be needed when sending messages di-
rectly to other Max objects such as with object_method() and outlet_anything(). These
functions expect a t_symbol∗, they don’t gensym() character strings for you.

The t_symbol data structure also contains a place to store an arbitrary value. The
following example shows how you can use this feature to use symbols to share values
among two different external object classes. (Objects of the same class can use the
code resource’s global variable space to share data.) The idea is that the s_thing field
of a t_symbol can be set to some value, and gensym() will return a reference to the
Symbol. Thus, the two classes just have to agree about the character string to be used.
Alternatively, each could be passed a t_symbol that will be used to share data.

Storing a value:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

410 Module Documentation

t_symbol *s;
s = gensym("some_weird_string");
s->s_thing = (t_object *)someValue;

Retrieving a value:

t_symbol *s;
s = gensym("some_weird_string");
someValue = s->s_thing;

34.20.2 Function Documentation

34.20.2.1 t_symbol∗ gensym (C74 CONST char ∗ s)

Given a C-string, fetch the matching t_symbol pointer from the symbol table, generating
the symbol if neccessary.

Parameters
s A C-string to be looked up in Max’s symbol table.

Returns

A pointer to the t_symbol in the symbol table.

34.20.2.2 t_symbol∗ gensym tr (char ∗ s)

Given a C-string, fetch the matching t_symbol pointer from the symbol table, generating
and translating the symbol if neccessary.

Parameters
s A C-string to be looked up in Max’s symbol table and then translated

Returns

A pointer to the t_symbol in the symbol table.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 411

34.21 Files and Folders

These routines assist your object in opening and saving files, as well as locating the
user’s files in the Max search path.

Data Structures

• struct t_fileinfo

Information about a file.

• struct t_path

The path data structure.

• struct t_pathlink

The pathlink data structure.

Defines

• #define MAX_PATH_CHARS

The size you should use when allocating strings for full paths.

• #define MAX_FILENAME_CHARS

The size you should use when allocating strings for filenames.

Typedefs

• typedef void ∗ t_filehandle

A t_filehandle is a cross-platform way of referring to an open file.

Enumerations

• enum e_max_path_styles { PATH_STYLE_MAX, PATH_STYLE_NATIVE, PAT-
H_STYLE_COLON, PATH_STYLE_SLASH, PATH_STYLE_NATIVE_WIN }

Constants that determine the output of path_nameconform().

• enum e_max_path_types { PATH_TYPE_IGNORE, PATH_TYPE_ABSOLUTE,
PATH_TYPE_RELATIVE, PATH_TYPE_BOOT, PATH_TYPE_C74, PATH_TY-
PE_PATH }

Constants that determine the output of path_nameconform().

• enum e_max_fileinfo_flags { PATH_FILEINFO_ALIAS, PATH_FILEINFO_FOLD-
ER, PATH_FILEINFO_PACKAGE }

Flags used to represent properties of a file in a t_fileinfo struct.

• enum e_max_path_folder_flags { PATH_REPORTPACKAGEASFOLDER, PAT-
H_FOLDER_SNIFF }

Flags used by functions such as path_foldernextfile() and path_openfolder().

• enum e_max_openfile_permissions { PATH_READ_PERM, PATH_WRITE_PE-
RM, PATH_RW_PERM }

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

412 Module Documentation

Permissions or mode with which to open a file.

• enum e_max_sysfile_posmodes { SYSFILE_ATMARK, SYSFILE_FROMSTART,
SYSFILE_FROMLEOF, SYSFILE_FROMMARK }

Modes used by sysfile_setpos()

• enum e_max_sysfile_textflags { TEXT_LB_NATIVE, TEXT_LB_MAC, TEXT_L-
B_PC, TEXT_LB_UNIX, TEXT_ENCODING_USE_FILE, TEXT_NULL_TERMI-
NATE }

Flags used reading and writing text files.

Functions

• short path_getapppath (void)

Retrieve the Path ID of the Max application.

• short locatefile (C74_CONST char ∗name, short ∗outvol, short ∗binflag)

Find a Max document by name in the search path.

• short locatefiletype (C74_CONST char ∗name, short ∗outvol, long filetype, long
creator)

Find a Max document by name in the search path.

• short locatefile_extended (char ∗name, short ∗outvol, long ∗outtype, C74_CON-
ST long ∗filetypelist, short numtypes)

Find a Max document by name in the search path.

• short path_resolvefile (char ∗name, C74_CONST short path, short ∗outpath)

Resolve a Path ID plus a (possibly extended) file name into a path that identifies the
file’s directory and a filename.

• short path_fileinfo (C74_CONST char ∗name, C74_CONST short path, void
∗info)

Retrive a t_fileinfo structure from a file/path combination.

• short path_topathname (C74_CONST short path, C74_CONST char ∗file, char
∗name)

Create a fully qualified file name from a Path ID/file name combination.

• short path_frompathname (C74_CONST char ∗name, short ∗path, char
∗filename)

Create a filename and Path ID combination from a fully qualified file name.

• void path_setdefault (short path, short recursive)

Install a path as the default search path.

• short path_getdefault (void)

Retrieve the Path ID of the default search path.

• short path_getmoddate (short path, unsigned long ∗date)

Determine the modification date of the selected path.

• short path_getfilemoddate (C74_CONST char ∗filename, C74_CONST short
path, unsigned long ∗date)

Determine the modification date of the selected file.

• void ∗ path_openfolder (short path)

Prepare a directory for iteration.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 413

• short path_foldernextfile (void ∗xx, long ∗filetype, char ∗name, short descend)

Get the next file in the directory.

• void path_closefolder (void ∗x)

Complete a directory iteration.

• short path_opensysfile (C74_CONST char ∗name, C74_CONST short path, t_-
filehandle ∗ref, short perm)

Open a file given a filename and Path ID.

• short path_createsysfile (C74_CONST char ∗name, C74_CONST short path,
long type, t_filehandle ∗ref)

Create a file given a type code, a filename, and a Path ID.

• short path_nameconform (C74_CONST char ∗src, char ∗dst, long style, long
type)

Convert a source path string to destination path string using the specified style and
type.

• short path_topotentialname (C74_CONST short path, C74_CONST char ∗file,
char ∗name, short check)

Create a fully qualified file name from a Path ID/file name combination, regardless of
whether or not the file exists on disk.

• short open_dialog (char ∗name, short ∗volptr, long ∗typeptr, long ∗types, short
ntypes)

Present the user with the standard open file dialog.

• short saveas_dialog (char ∗filename, short ∗path, short ∗binptr)

Present the user with the standard save file dialog.

• short saveasdialog_extended (char ∗name, short ∗vol, long ∗type, long ∗typelist,
short numtypes)

Present the user with the standard save file dialog with your own list of file types.

• void open_promptset (C74_CONST char ∗s)

Use open_promptset() to add a prompt message to the open file dialog displayed by
open_dialog().

• void saveas_promptset (C74_CONST char ∗s)

Use saveas_promptset() to add a prompt message to the open file dialog displayed by
saveas_dialog() or saveasdialog_extended().

• void ∗ filewatcher_new (t_object ∗owner, C74_CONST short path, C74_CONST
char ∗filename)

Create a new filewatcher.

• void fileusage_addfile (void ∗w, long flags, C74_CONST char ∗name, C74_CO-
NST short path)

Add a file to a collective.

• long sysfile_close (t_filehandle f)

Close a file opened with sysfile_open().

• long sysfile_read (t_filehandle f, long ∗count, void ∗bufptr)

Read a file from disk.

• long sysfile_readtohandle (t_filehandle f, char ∗∗∗h)

Read the contents of a file into a handle.

• long sysfile_readtoptr (t_filehandle f, char ∗∗p)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

414 Module Documentation

Read the contents of a file into a pointer.

• long sysfile_write (t_filehandle f, long ∗count, const void ∗bufptr)

Write part of a file to disk.

• long sysfile_seteof (t_filehandle f, long logeof)

Set the size of a file handle.

• long sysfile_geteof (t_filehandle f, long ∗logeof)

Get the size of a file handle.

• long sysfile_setpos (t_filehandle f, long mode, long offset)

Set the current file position of a file handle.

• long sysfile_getpos (t_filehandle f, long ∗filepos)

Get the current file position of a file handle.

• long sysfile_spoolcopy (t_filehandle src, t_filehandle dst, long size)

Copy the contents of one file handle to another file handle.

• long sysfile_readtextfile (t_filehandle f, t_handle htext, long maxlen, long flags)

Read a text file from disk.

• long sysfile_writetextfile (t_filehandle f, t_handle htext, long flags)

Write a text file to disk.

• short sysfile_openhandle (char ∗∗h, long flags, t_filehandle ∗fh)

Create a t_filehandle from a pre-existing handle.

• short sysfile_openptrsize (char ∗p, long length, long flags, t_filehandle ∗fh)

Create a t_filehandle from a pre-existing pointer.

34.21.1 Detailed Description

These routines assist your object in opening and saving files, as well as locating the
user’s files in the Max search path. There have been a significant number of changes
to these routines (as well as the addition of many functions), so some history may be
useful in understanding their use.

Prior to version 4, Max used a feature of Mac OS 9 called "working directories" to specify
files. When you used the locatefile() service routine, you would get back a file name and
a volume number. This name (converted to a Pascal string) and the volume number
could be passed to FSOpen() to open the located file for reading. The open_dialog()
routine worked similarly.

In Mac OSX, working directories are no longer supported. In addition, the use of these
"volume" numbers makes it somewhat difficult to port Max file routines to other operating
systems, such as Windows XP, that specify files using complete pathnames (i.e., "C-
:\dir1\dir2\file.pat").

However, it is useful to be able to refer to the path and the name of the file separately.
The solution involves the retention of the volume number (now called Path ID), but with
a platform- independent wrapper that determines its meaning. There are now calls to
locate, open, and choose files using C filename strings and Path IDs, as well as routines
to convert between a "native" format for specifying a file (such as a full pathname on
Windows or an FSRef on the Macintosh) to the C string and Path ID. As of Max version
5 FSSpecs, long ago deprecated by Apple, are no longer supported.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 415

Now that paths in Max have changed to use the slash style, as opposed to the old -
Macintosh colon style (see the Max 4.3 documentation for a description of the file path
styles), there is one function in particular that you will find useful for converting between
the various ways paths can be represented, including operating system native paths.
This function is path_nameconform(). Note that for compatibility purposes Path API
functions accept paths in any number of styles, but will typically return paths, or modify
paths inline to use the newer slash style. In addition to absolute paths, paths relative to
the Max Folder, the "Cycling ’74" folder and the boot volume are also supported. See
the conformpath.help and ext_path.h files for more information on the various styles and
types of paths. See the "filebyte" SDK example project for a demonstration of how to
use the path functions to convert a Max name and path ref pair to a Windows native
path for use with CreateFile().

There are a large number of service routine in the Max 4 kernel that support files, but
only a handful will be needed by most external objects. In addition to the descriptions
that follow, you should consult the movie, folder and filedate examples included with the
SDK.

34.21.2 The Sysfile API

The Sysfile API provides the means of reading and writing files opened by path_-
createsysfile() and similar. These functions all make use of an opaque structure, t-
_filehandle. See the path functions path_opensysfile() and path_createsysfile() de-
scribed earlier in this chapter for more information. The Sysfile API is relatively similar
to parts of the old Macintosh File Manager API, and not too different from Standard C
library file functions. The "filebyte" example project in the SDK shows how to use these
functions to read from a file. It is not safe to mix these routines with other file routines
(e.g. don’t use fopen() to open a file and sysfile_close() to close it).

In addition to being able to use these routines to write cross-platform code in your max
externals, another advantage of the Sysfile API is that it is able to read files stored in
the collective file format on both Windows XP and Mac OSX.

34.21.3 Example: filebyte (notes from the IRCAM workshop)

34.21.3.1 Paths

• A number that specifies a file location

• Returned by locatefile_extended() and open_dialog()

• Supply a path when opening a file with path_opensysfile()

• Can convert path to and from pathname

34.21.3.2 t filehandle

• Returned by path_opensysfile

• Refers to an open file you want to read or write using sysfile_read / sysfile_write

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

416 Module Documentation

• Could refer to a file in a collective

34.21.3.3 File Names

• C string

• Max 5 filenames are UTF-8

• Max 5 supports long (unicode) filenames on both Mac and Windows

34.21.3.4 File Path Names

• Max uses a platform-independent path string format: volume:/path1/path2/filename
returned by path_topathname

• Can convert to platform-specific format using path_nameconform (not needed if
using path_opensysfile)

• Platform-independent format must be used with path_frompathname

34.21.4 Collectives and Fileusage

Use the fileusage routines to add files to a collective when a user chooses to build a
collective. Your object can respond to a "fileusage" message, which is sent by Max
when the collective builder is building a collective using the following:

class_addmethod(c, (method)my_fileusage, "fileusage", A_CANT, 0L);

Where my file usage has the prototype:

void my_fileusage(t_myObject *x, void *w);

Then you can use fileusage_addfile() to add any requisite files to the collective.

34.21.5 Filewatchers

Your object can watch a file or folder and be notified of changes. Use filewatcher_new(),
filewatcher_start(), and filewatcher_stop() to implement this functionality. You may wish
to use filewatchers sparingly as they can potentially incur computational overhead in the
background.

34.21.6 Define Documentation

34.21.6.1 #define MAX FILENAME CHARS

The size you should use when allocating strings for filenames.

At the time of this writing it supports up to 256 UTF chars

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 417

34.21.7 Typedef Documentation

34.21.7.1 typedef void∗ t_filehandle

A t_filehandle is a cross-platform way of referring to an open file.

It is an opaque structure, meaning you don’t have access to the individual elements of
the data structure. You can use a t_filehandle only with the file routines in the Sysfile
API. Do not use other platform- specific file functions in conjunction with these functions.
The perm parameter can be either READ_PERM, WRITE_PERM, or RW_PERM.

34.21.8 Enumeration Type Documentation

34.21.8.1 enum e_max_fileinfo_flags

Flags used to represent properties of a file in a t_fileinfo struct.

Enumerator:

PATH_FILEINFO_ALIAS alias

PATH_FILEINFO_FOLDER folder

PATH_FILEINFO_PACKAGE package (Mac-only)

34.21.8.2 enum e_max_openfile_permissions

Permissions or mode with which to open a file.

Enumerator:

PATH_READ_PERM Read mode.

PATH_WRITE_PERM Write mode.

PATH_RW_PERM Read/Write mode.

34.21.8.3 enum e_max_path_folder_flags

Flags used by functions such as path_foldernextfile() and path_openfolder().

Enumerator:

PATH_REPORTPACKAGEASFOLDER if not true, then a Mac OS package will
be reported as a file rather than a folder.

PATH_FOLDER_SNIFF sniff

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

418 Module Documentation

34.21.8.4 enum e_max_path_styles

Constants that determine the output of path_nameconform().

See also

e_max_path_types
path_nameconform()

Enumerator:

PATH_STYLE_MAX use PATH_STYLE_MAX_PLAT

PATH_STYLE_NATIVE use PATH_STYLE_NATIVE_PLAT

PATH_STYLE_COLON ’:’ sep, "vol:" volume, ":" relative, "∧:" boot

PATH_STYLE_SLASH ’/’ sep, "vol:/" volume, "./" relative, "/" boot

PATH_STYLE_NATIVE_WIN ’\’ sep, "vol:\\" volume, ".\\" relative, "\\" boot

34.21.8.5 enum e_max_path_types

Constants that determine the output of path_nameconform().

See also

e_max_path_styles
path_nameconform()

Enumerator:

PATH_TYPE_IGNORE ignore

PATH_TYPE_ABSOLUTE absolute path

PATH_TYPE_RELATIVE relative path

PATH_TYPE_BOOT boot path

PATH_TYPE_C74 Cycling ’74 folder.

PATH_TYPE_PATH path

34.21.8.6 enum e_max_sysfile_posmodes

Modes used by sysfile_setpos()

Enumerator:

SYSFILE_ATMARK ?

SYSFILE_FROMSTART Calculate the file position from the start of the file.

SYSFILE_FROMLEOF Calculate the file position from the logical end of the file.

SYSFILE_FROMMARK Calculate the file position from the current file position.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 419

34.21.8.7 enum e_max_sysfile_textflags

Flags used reading and writing text files.

Enumerator:

TEXT_LB_NATIVE Use the linebreak format native to the current platform.

TEXT_LB_MAC Use Macintosh line breaks.

TEXT_LB_PC Use Windows line breaks.

TEXT_LB_UNIX Use Unix line breaks.

TEXT_ENCODING_USE_FILE If this flag is not set then the encoding is forced
to UTF8.

TEXT_NULL_TERMINATE Terminate memory returned from sysfile_-
readtextfile() with a NULL character.

34.21.9 Function Documentation

34.21.9.1 void fileusage addfile (void ∗ w, long flags, C74 CONST char ∗ name, C74 CONST
short path)

Add a file to a collective.

Parameters
w Handle for the collective builder.

flags If flags == 1, copy this file to support folder of an app instead of to the
collective in an app.

name The name of the file.
path The path of the file to add.

34.21.9.2 void∗ filewatcher new (t_object ∗ owner, C74 CONST short path, C74 CONST char
∗ filename)

Create a new filewatcher.

The file will not be actively watched until filewatcher_start() is called. The filewatcher
can be freed using object_free().

Parameters
owner Your object. This object will receive the message "filechanged" when

the watcher sees a change in the file or folder.
path The path in which the file being watched resides, or the path of the

folder being watched.
filename The name of the file being watched, or an empty string if you are simply

watching the folder specified by path.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

420 Module Documentation

Returns

A pointer to the new filewatcher.

Remarks

The "filechanged" method should have the prototype:

void myObject_filechanged(t_myObject *x, char *filename, short path);

34.21.9.3 short locatefile (C74 CONST char ∗ name, short ∗ outvol, short ∗ binflag)

Find a Max document by name in the search path.

This routine performs the same function as the routine path_getdefault(). locatefile()
searches through the directories specified by the user for Patcher files and tables in the
File Preferences dialog as well as the current default path (see path_getdefault) and the
directory containing the Max application

Parameters
name A C string that is the name of the file to look for.
outvol The Path ID containing the location of the file if it is found.

binflag If the file found is in binary format (it’s of type ’maxb’) 1 is returned here;
if it’s in text format, 0 is returned.

Returns

If a file is found with the name specified by filename, locatefile returns 0, otherwise
it returns non-zero.

Remarks

filename and vol can then be passed to binbuf_read to read and open file the file.
When using MAXplay, the search path consists of all subdirectories of the directory
containing the MAXplay application. locatefile only searches for files of type ’maxb’
and ’TEXT.’

See also

locatefile_extended()

34.21.9.4 short locatefile extended (char ∗ name, short ∗ outvol, long ∗ outtype, C74 CONST
long ∗ filetypelist, short numtypes)

Find a Max document by name in the search path.

This is the preferred method for file searching since its introduction in Max version 4.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 421

This routine performs the same function as the routine path_getdefault(). locatefile()
searches through the directories specified by the user for Patcher files and tables in the
File Preferences dialog as well as the current default path (see path_getdefault) and the
directory containing the Max application

Version

4.0

Parameters
name The file name for the search, receives actual filename.
outvol The Path ID of the file (if found).

outtype The file type of the file (if found).
filetypelist The file type(s) that you are searching for.
numtypes The number of file types in the typelist array (1 if a single entry).

Returns

If a file is found with the name specified by filename, locatefile returns 0, otherwise
it returns non-zero.

Remarks

The old file search routines locatefile() and locatefiletype() are still supported in -
Max 4, but the use of a new routine locatefile_extended() is highly recommended.
However, locatefile_extended() has an important difference from locatefile() and
locatefiletype() that may require some rewriting of your code. It modifies its name
parameter in certain cases, while locatefile() and locatefiletype() do not. The two
cases where it could modify the incoming filename string are 1) when an alias is
specified, the file pointed to by the alias is returned; and 2) when a full path is
specified, the output is the filename plus the path number of the folder it’s in.

This is important because many people pass the s_name field of a t_symbol to locate-
file(). If the name field of a t_symbol were to be modified, the symbol table would be
corrupted. To avoid this problem, use strncpy_zero() to copy the contents of a t_symbol
to a character string first, as shown below:

char filename[MAX_FILENAME_CHARS];
strncpy_zero(filename,str->s_name, MAX_FILENAME_CHARS);
result = locatefile_extended(filename,&path,&type,typelist,1);

34.21.9.5 short locatefiletype (C74 CONST char ∗ name, short ∗ outvol, long filetype, long
creator)

Find a Max document by name in the search path.

This function searches through the same directories as locatefile, but allows you to
specify a type and creator of your own.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

422 Module Documentation

Parameters
name A C string that is the name of the file to look for.
outvol The Path ID containing the location of the file if it is found.

filetype The filetype of the file to look for. If you pass 0L, files of all filetypes are
considered.

creator The creator of the file to look for. If you pass 0L, files with any creator
are considered.

Returns

If a file is found with the name specified by filename, locatefile returns 0, otherwise
it returns non-zero.

See also

locatefile_extended()

34.21.9.6 short open dialog (char ∗ name, short ∗ volptr, long ∗ typeptr, long ∗ types, short
ntypes)

Present the user with the standard open file dialog.

This function is convenient wrapper for using Mac OS Navigation Services or Standard
File for opening files.

The mapping of extensions to types is configured in the C74:/init/max-fileformats.txt file.
The standard types to use for Max files are ’maxb’ for old-format binary files, ’TEXT’ for
text files, and ’JSON’ for newer format patchers or other .json files.

Parameters
name A C-string that will receive the name of the file the user wants to open.

The C-string should be allocated with a size of at least MAX_FILENA-
ME_CHARS.

volptr Receives the Path ID of the file the user wants to open.
typeptr The file type of the file the user wants to open.

types A list of file types to display. This is not limited to 4 types as in the
SFGetFile() trap. Pass NULL to display all types.

ntypes The number of file types in typelist. Pass 0 to display all types.

Returns

0 if the user clicked Open in the dialog box. If the user cancelled, open_dialog()
returns a non-zero value.

See also

saveasdialog_extended()
locatefile_extended()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 423

34.21.9.7 void open promptset (C74 CONST char ∗ s)

Use open_promptset() to add a prompt message to the open file dialog displayed by
open_dialog().

Calling this function before open_dialog() permits a string to displayed in the dialog box
instructing the user as to the purpose of the file being opened. It will only apply to the
call of open_dialog() that immediately follows open_promptset().

Parameters
s A C-string containing the prompt you wish to display in the dialog box.

Returns

Ignore.

See also

open_dialog()

34.21.9.8 void path closefolder (void ∗ x)

Complete a directory iteration.

Parameters
x The "folder state" value originally returned by path_openfolder().

34.21.9.9 short path createsysfile (C74 CONST char ∗ name, C74 CONST short path, long
type, t_filehandle ∗ ref)

Create a file given a type code, a filename, and a Path ID.

Parameters
name The name of the file to be opened.
path The Path ID of the file to be opened.
type The file type of the created file.

ref A t_filehandle reference to the opened file will be returned in this pa-
rameter.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

424 Module Documentation

34.21.9.10 short path fileinfo (C74 CONST char ∗ name, C74 CONST short path, void ∗ info)

Retrive a t_fileinfo structure from a file/path combination.

Parameters
name The file name to be queried.
path The Path ID of the file.
info The address of a t_fileinfo structure to contain the file information.

Returns

Returns 0 if successful, otherwise it returns an OS-specific error code.

34.21.9.11 short path foldernextfile (void ∗ xx, long ∗ filetype, char ∗ name, short descend)

Get the next file in the directory.

In conjunction with path_openfolder() and path_closefolder(), this routine allows you to
iterate through all of the files in a path.

Parameters
xx The "folder state" value returned by path_openfolder().

filetype Contains the file type of the file type on return.
name Contains the file name of the next file on return.

descend Unused.

Returns

Returns non-zero if successful, and zero when there are no more files.

See also

e_max_path_folder_flags

34.21.9.12 short path frompathname (C74 CONST char ∗ name, short ∗ path, char ∗ filename
)

Create a filename and Path ID combination from a fully qualified file name.

Note that path_frompathname() does not require that the file actually exist. In this way
you can use it to convert a full path you may have received as an argument to a file
writing message to a form appropriate to provide to a routine such as path_createfile().

Parameters
name The extended file path to be converted.
path Contains the Path ID on return.

filename Contains the file name on return.Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 425

Returns

Returns 0 if successful, otherwise it returns an OS-specific error code.

34.21.9.13 short path getapppath (void)

Retrieve the Path ID of the Max application.

Returns

The path id.

34.21.9.14 short path getdefault (void)

Retrieve the Path ID of the default search path.

Returns

The path id of the default search path.

34.21.9.15 short path getfilemoddate (C74 CONST char ∗ filename, C74 CONST short path,
unsigned long ∗ date)

Determine the modification date of the selected file.

Parameters
filename The name of the file to query.

path The Path ID of the file.
date The last modification date of the file upon return.

Returns

An error code.

34.21.9.16 short path getmoddate (short path, unsigned long ∗ date)

Determine the modification date of the selected path.

Parameters
path The Path ID of the directory to check.
date The last modification date of the directory.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

426 Module Documentation

Returns

An error code.

34.21.9.17 short path nameconform (C74 CONST char ∗ src, char ∗ dst, long style, long type
)

Convert a source path string to destination path string using the specified style and type.

Parameters
src A pointer to source character string to be converted.
dst A pointer to destination character string.

style The destination filepath style, as defined in e_max_path_styles
type The destination filepath type, as defined in e_max_path_types

Returns

An error code.

See also

MAX_PATH_CHARS

34.21.9.18 void∗ path openfolder (short path)

Prepare a directory for iteration.

Parameters
path The directory Path ID to open.

Returns

The return value of this routine is an internal "folder state" structure used for
further folder manipulation. It should be saved and used for calls to path_-
foldernextfile() and path_closefolder(). If the folder cannot be found or accessed,
path_openfolder() returns 0.

34.21.9.19 short path opensysfile (C74 CONST char ∗ name, C74 CONST short path,
t_filehandle ∗ ref, short perm)

Open a file given a filename and Path ID.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 427

Parameters
name The name of the file to be opened.
path The Path ID of the file to be opened.

ref A t_filehandle reference to the opened file will be returned in this pa-
rameter.

perm The permission for the opened file as defined in e_max_openfile_-
permissions.

Returns

An error code.

34.21.9.20 short path resolvefile (char ∗ name, C74 CONST short path, short ∗ outpath)

Resolve a Path ID plus a (possibly extended) file name into a path that identifies the
file’s directory and a filename.

This routine converts a name and Path ID to a standard form in which the name has no
path information and does not refer to an aliased file.

Parameters
name A file name (which may be fully or partially qualified), will contain the file

name on return.
path The Path ID to be resolved.

outpath The Path ID of the returned file name.

Returns

Returns 0 if successful.

34.21.9.21 void path setdefault (short path, short recursive)

Install a path as the default search path.

The default path is searched before the Max search path. For instance, when loading a
patcher from a directory outside the search path, the patcher’s directory is searched for
files before the search path. path_setdefault() allows you to set a path as the default.

Parameters
path The path to use as the search path. If path is already part of the Max

Search path, it will not be added (since, by default, it will be searched
during file searches).

recursive If non-zero, all subdirectories will be installed in the default search list.
Be very careful with the use of the recursive argument. It has the ca-
pacity to slow down file searches dramatically as the list of folders is
being built. Max itself never creates a hierarchical default search path.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

428 Module Documentation

34.21.9.22 short path topathname (C74 CONST short path, C74 CONST char ∗ file, char ∗
name)

Create a fully qualified file name from a Path ID/file name combination.

Unlike path_topotentialname(), this routine will only convert a pathname pair to a valid
path string if the path exists.

Parameters
path The path to be used.

file The file name to be used.
name Loaded with the fully extended file name on return.

Returns

Returns 0 if successful, otherwise it returns an OS-specific error code.

34.21.9.23 short path topotentialname (C74 CONST short path, C74 CONST char ∗ file, char ∗
name, short check)

Create a fully qualified file name from a Path ID/file name combination, regardless of
whether or not the file exists on disk.

Parameters
path The path to be used.

file The file name to be used.
name Loaded with the fully extended file name on return.
check Flag to check if a file with the given path exists.

Returns

Returns 0 if successful, otherwise it returns an OS-specific error code.

See also

path_topathname()

34.21.9.24 short saveas dialog (char ∗ filename, short ∗ path, short ∗ binptr)

Present the user with the standard save file dialog.

The mapping of extensions to types is configured in the C74:/init/max-fileformats.txt file.
The standard types to use for Max files are ’maxb’ for old-format binary files, ’TEXT’ for
text files, and ’JSON’ for newer format patchers or other .json files.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 429

Parameters
filename A C-string containing a default name for the file to save. If the user

decides to save a file, its name is returned here. The C-string should
be allocated with a size of at least MAX_FILENAME_CHARS.

path If the user decides to save the file, the Path ID of the location chosen is
returned here.

binptr Pass NULL for this parameter. This parameter was used in Max 4 to
allow the choice of saving binary or text format patchers.

Returns

0 if the user choose to save the file. If the user cancelled, returns a non-zero value.

See also

open_dialog()
saveasdialog_extended()
locatefile_extended()

34.21.9.25 void saveas promptset (C74 CONST char ∗ s)

Use saveas_promptset() to add a prompt message to the open file dialog displayed by
saveas_dialog() or saveasdialog_extended().

Calling this function before saveasdialog_extended() permits a string to displayed in
the dialog box instructing the user as to the purpose of the file being opened. It will
only apply to the call of saveasdialog_extended() that immediately follows saveas_-
promptset().

Parameters
s A C-string containing the prompt you wish to display in the dialog box.

Returns

Ignore.

See also

open_dialog()

34.21.9.26 short saveasdialog extended (char ∗ name, short ∗ vol, long ∗ type, long ∗
typelist, short numtypes)

Present the user with the standard save file dialog with your own list of file types.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

430 Module Documentation

saveasdialog_extended() is similar to saveas_dialog(), but allows the additional feature
of specifying a list of possible types. These will be displayed in a pop-up menu.

File types found in the typelist argument that match known Max types will be displayed
with descriptive text. Unmatched types will simply display the type name (for example,
"foXx" is not a standard type so it would be shown in the pop-up menu as foXx)

Known file types include:

• TEXT: text file

• maxb: Max binary patcher

• maxc: Max collective

• Midi: MIDI file

• Sd2f: Sound Designer II audio file

• NxTS: NeXT/Sun audio file

• WAVE: WAVE audio file.

• AIFF: AIFF audio file

• mP3f: Max preference file

• PICT: PICT graphic file

• MooV: Quicktime movie file

• aPcs: VST plug-in

• AFxP: VST effect patch data file

• AFxB: VST effect bank data file

• DATA: Raw data audio file

• ULAW: NeXT/Sun audio file

Parameters
name A C-string containing a default name for the file to save. If the user

decides to save a file, its name is returned here. The C-string should
be allocated with a size of at least MAX_FILENAME_CHARS.

vol If the user decides to save the file, the Path ID of the location chosen is
returned here.

type Returns the type of file chosen by the user.
typelist The list of types provided to the user.

numtypes The number of file types in typelist.

Returns

0 if the user choose to save the file. If the user cancelled, returns a non-zero value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 431

See also

open_dialog()
locatefile_extended()

34.21.9.27 long sysfile close (t_filehandle f)

Close a file opened with sysfile_open().

This function is similar to FSClose() or fclose(). It should be used instead of system-
specific file closing routines in order to make max external code that will compile cross-
platform.

Parameters
f The t_filehandle structure of the file the user wants to close.

Returns

An error code.

34.21.9.28 long sysfile geteof (t_filehandle f, long ∗ logeof)

Get the size of a file handle.

This function is similar to and should be used instead of GetEOF(). The function gets
the size of file handle in bytes, and places it in “logeof”.

Parameters
f The file’s t_filehandle structure.

logeof The file size in bytes is returned to this value.

Returns

An error code.

34.21.9.29 long sysfile getpos (t_filehandle f, long ∗ filepos)

Get the current file position of a file handle.

This function is similar to and should be used instead of GetFPos(). The function gets
the current file position of file handle in bytes, and places it in "filepos".

Parameters
f The file’s t_filehandle structure.

filepos The address of a variable to hold the current file position of file handle
in bytes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

432 Module Documentation

Returns

An error code.

34.21.9.30 short sysfile openhandle (char ∗∗ h, long flags, t_filehandle ∗ fh)

Create a t_filehandle from a pre-existing handle.

Parameters
h A handle for some data.

flags Pass 0 (additional flags are private).
fh The address of a t_filehandle which will be allocated.

Returns

An error code.

34.21.9.31 short sysfile openptrsize (char ∗ p, long length, long flags, t_filehandle ∗ fh)

Create a t_filehandle from a pre-existing pointer.

Parameters
p A pointer to some data.

length The size of p.
flags Pass 0 (additional flags are private).

fh The address of a t_filehandle which will be allocated.

Returns

An error code.

34.21.9.32 long sysfile read (t_filehandle f, long ∗ count, void ∗ bufptr)

Read a file from disk.

This function is similar to FSRead() or fread(). It should be used instead of these func-
tions (or other system-specific file reading routines) in order to make max external code
that will compile cross-platform. It reads “count” bytes from file handle at current file
position into “bufptr”. The byte count actually read is set in “count”, and the file position
is updated by the actual byte count read.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 433

Parameters
f The t_filehandle structure of the file the user wants to open.

count Pointer to the number of bytes that will be read from the file at the cur-
rent file position. The byte count actually read is returned to this value.

bufptr Pointer to the buffer that the data will be read into.

Returns

An error code.

34.21.9.33 long sysfile readtextfile (t_filehandle f, t_handle htext, long maxlen, long flags
)

Read a text file from disk.

This function reads up to the maximum number of bytes given by maxlen from file handle
at current file position into the htext handle, performing linebreak translation if set in
flags.

Parameters
f The t_filehandle structure of the text file the user wants to open.

htext Handle that the data will be read into.
maxlen The maximum length in bytes to be read into the handle. Passing the

value 0L indicates no maximum (i.e. read the entire file).
flags Flags to set linebreak translation as defined in e_max_sysfile_textflags.

Returns

An error code.

34.21.9.34 long sysfile readtohandle (t_filehandle f, char ∗∗∗ h)

Read the contents of a file into a handle.

Parameters
f The open t_filehandle structure to read into the handle.

h The address of a handle into which the file will be read.

Returns

An error code.

Remarks

You should free the pointer, when you are done with it, using sysmem_freehandle().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

434 Module Documentation

34.21.9.35 long sysfile readtoptr (t_filehandle f, char ∗∗ p)

Read the contents of a file into a pointer.

Parameters
f The open t_filehandle structure to read into the handle.

p The address of a pointer into which the file will be read.

Returns

An error code.

Remarks

You should free the pointer, when you are done with it, using sysmem_freeptr().

34.21.9.36 long sysfile seteof (t_filehandle f, long logeof)

Set the size of a file handle.

This function is similar to and should be used instead of SetEOF(). The function sets
the size of file handle in bytes, specified by “logeof”.

Parameters
f The file’s t_filehandle structure.

logeof The file size in bytes.

Returns

An error code.

34.21.9.37 long sysfile setpos (t_filehandle f, long mode, long offset)

Set the current file position of a file handle.

This function is similar to and should be used instead of SetFPos(). It is used to set the
current file position of file handle to by the given number of offset bytes relative to the
mode used, as defined in e_max_sysfile_posmodes.

Parameters
f The file’s t_filehandle structure.

mode Mode from which the offset will be calculated, as defined in e_max_-
sysfile_posmodes.

offset The offset in bytes relative to the mode.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 435

Returns

An error code.

34.21.9.38 long sysfile spoolcopy (t_filehandle src, t_filehandle dst, long size)

Copy the contents of one file handle to another file handle.

Parameters
src The file handle from which to copy.
dst The file handle to which the copy is written.

size The number of bytes to copy. If 0 the size of src will be used.

Returns

An error code.

34.21.9.39 long sysfile write (t_filehandle f, long ∗ count, const void ∗ bufptr)

Write part of a file to disk.

This function is similar to FSWrite() or fwrite(). It should be used instead of these func-
tions (or other system-specific file reading routines) in order to make max external code
that will compile cross-platform. The function writes “count” bytes from “bufptr” into file
handle at current file position. The byte count actually written is set in "count", and the
file position is updated by the actual byte count written.

Parameters
f The t_filehandle structure of the file to which the user wants to write.

count Pointer to the number of bytes that will be written to the file at the current
file position. The byte count actually written is returned to this value.

bufptr Pointer to the buffer that the data will be read from.

Returns

An error code.

34.21.9.40 long sysfile writetextfile (t_filehandle f, t_handle htext, long flags)

Write a text file to disk.

This function writes a text handle to a text file performing linebreak translation if set in
flags.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

436 Module Documentation

Parameters
f The t_filehandle structure of the text file to which the user wants to write.

htext Handle that the data that will be read from.
flags Flags to set linebreak translation as defined in e_max_sysfile_textflags.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.21 Files and Folders 437

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

438 Module Documentation

34.22 Jitter

Collaboration diagram for Jitter:

Atom Module

Operator Vector Module

Attribute Module

MOP Module

Memory Module

OB3D Module

jit.qt.movie Module

jit.qt.record Module

Matrix Module

Parallel Utility Module

Linked List Module

QuickTime Codec Module

Max Wrapper Module

Jitter

QuickTime Utilties Module

MOP Max Wrapper Module

Miscellaneous Utility Module

Object Module

Class Module

Binary Module

Math Module

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 439

Modules

• Atom Module
• Attribute Module
• Binary Module
• Class Module
• Object Module
• Miscellaneous Utility Module
• Linked List Module
• Math Module
• Matrix Module
• Max Wrapper Module
• Memory Module
• MOP Module
• Parallel Utility Module
• MOP Max Wrapper Module
• OB3D Module
• Operator Vector Module
• QuickTime Codec Module
• jit.qt.movie Module
• jit.qt.record Module
• QuickTime Utilties Module

Defines

• #define JIT_ATTR_GET_OPAQUE

private getter (all)

• #define JIT_ATTR_SET_OPAQUE

private setter (all)

• #define JIT_ATTR_GET_OPAQUE_USER

private getter (user)

• #define JIT_ATTR_SET_OPAQUE_USER

private setter (user)

• #define JIT_ATTR_GET_DEFER

defer getter (deprecated)

• #define JIT_ATTR_GET_USURP

usurp getter (deprecated)

• #define JIT_ATTR_GET_DEFER_LOW

defer getter

• #define JIT_ATTR_GET_USURP_LOW

usurp getter

• #define JIT_ATTR_SET_DEFER

defer setter (deprecated)

• #define JIT_ATTR_SET_USURP

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

440 Module Documentation

usurp setter (deprecated)

• #define JIT_ATTR_SET_DEFER_LOW

defer setter

• #define JIT_ATTR_SET_USURP_LOW

usurp setter

• #define JIT_MATRIX_DATA_HANDLE

data is handle

• #define JIT_MATRIX_DATA_REFERENCE

data is reference to outside memory

• #define JIT_MATRIX_DATA_PACK_TIGHT

data is tightly packed (doesn’t use standard 16 byte alignment)

• #define JIT_MATRIX_DATA_FLAGS_USE

necessary if using handle/reference data flags when creating jit_matrix, however, it is
never stored in matrix

• #define JIT_MATRIX_MAX_DIMCOUNT

maximum dimension count

• #define JIT_MATRIX_MAX_PLANECOUNT

maximum plane count

• #define JIT_MATRIX_CONVERT_CLAMP

not currently used

• #define JIT_MATRIX_CONVERT_INTERP

use interpolation

• #define JIT_MATRIX_CONVERT_SRCDIM

use source dimensions

• #define JIT_MATRIX_CONVERT_DSTDIM

use destination dimensions

• #define JIT_OB3D_NO_ROTATION_SCALE

ob3d flag

• #define JIT_OB3D_NO_POLY_VARS

ob3d flag

• #define JIT_OB3D_NO_BLEND

ob3d flag

• #define JIT_OB3D_NO_TEXTURE

ob3d flag

• #define JIT_OB3D_NO_MATRIXOUTPUT

ob3d flag

• #define JIT_OB3D_AUTO_ONLY

ob3d flag

• #define JIT_OB3D_DOES_UI

ob3d flag

• #define JIT_OB3D_NO_DEPTH

ob3d flag

• #define JIT_OB3D_NO_ANTIALIAS

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 441

ob3d flag

• #define JIT_OB3D_NO_FOG

ob3d flag

• #define JIT_OB3D_NO_LIGHTING_MATERIAL

ob3d flag

• #define JIT_OB3D_HAS_LIGHTS

ob3d flag

• #define JIT_OB3D_HAS_CAMERA

ob3d flag

• #define JIT_OB3D_IS_RENDERER

ob3d flag

• #define JIT_OB3D_NO_COLOR

ob3d flag

• #define JIT_OB3D_IS_SLAB

ob3d flag

• #define MAX_JIT_MOP_FLAGS_NONE

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_ALL

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_JIT_MATRIX

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_BANG

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_OUTPUTMATRIX

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_NAME

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_TYPE

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_DIM

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_PLANECOUNT

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_CLEAR

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_NOTIFY

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_ADAPT

mop flag

• #define MAX_JIT_MOP_FLAGS_OWN_OUTPUTMODE

mop flag

• #define MAX_JIT_MOP_FLAGS_ONLY_MATRIX_PROBE

mop flag

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

442 Module Documentation

• #define JIT_MOP_INPUT

mop flag

• #define JIT_MOP_OUTPUT

mop flag

Typedefs

• typedef t_object t_jit_object

object header

Variables

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_raw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_cinepak

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_graphics

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_animation

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_video

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_componentvideo

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_jpeg

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_mjpega

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_mjpegb

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_sgi

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_planarrgb

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_macpaint

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_gif

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_photocd

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_qdgx

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_avrjpeg

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 443

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_opendmljpeg

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_bmp

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_winraw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_vector

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_qd

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_h261

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_h263

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_dvntsc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_dvpal

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_dvprontsc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_dvpropal

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_flc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_targa

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_png

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_tiff

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_componentvideosigned

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_componentvideounsigned

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_cmyk

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_microsoft

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_sorenson

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_sorenson3

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

444 Module Documentation

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_indeo4

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_argb64

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_rgb48

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_alphagrey32

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_grey16

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_mpegyuv420

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_yuv420

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_sorensonyuv9

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_mpeg4

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_yuv422

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_v308

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_v408

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_v216

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_v210

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_v410

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_r408

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_jpeg2000

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_pixlet

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_h264

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_lossless

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_max

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_min

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 445

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_low

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_normal

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_high

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_none

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_raw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_big16

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_little16

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_float32

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_float64

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_24bit

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_32bit

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_little32

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_mace3

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_mace6

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_cdxa4

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_cdxa2

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_ima

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_ulaw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_alaw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_adpcm

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_dviima

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

446 Module Documentation

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_dvaudio

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_qdesign

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_qdesign2

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_qualcomm

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_mp3

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_vdva

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_codec_a_mpeg4

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_nothing

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_new

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_free

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_classname

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getname

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getmethod

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_get

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_set

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_register

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_char

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_long

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_float32

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_float64

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_symbol

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 447

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_object

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_atom

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_list

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_type

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_dim

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_planecount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_val

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_plane

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_cell

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_matrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_class_jit_matrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_togworld

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_fromgworld

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_frommatrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_class_jit_attribute

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_attribute

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_attr_offset

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_attr_offset_array

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_rebuilding

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_modified

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_lock

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

448 Module Documentation

• JIT_EX_DATA t_symbol ∗ _jit_sym_setinfo

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_setinfo_ex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getinfo

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_data

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getdata

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_outputmatrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_clear

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_clear_custom

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_err_calculate

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_max_jit_classex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_setall

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_chuck

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getsize

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getindex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_objptr2index

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_append

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_insertindex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_deleteindex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_chuckindex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_makearray

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_reverse

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_rotate

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 449

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_shuffle

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_swap

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_findfirst

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_findall

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_methodall

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_methodindex

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_sort

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_matrix_calc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_genframe

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_filter

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_mop

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_newcopy

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_linklist

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_inputcount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_outputcount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getinput

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getoutput

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getinputlist

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getoutputlist

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_ioname

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_matrixname

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

450 Module Documentation

• JIT_EX_DATA t_symbol ∗ _jit_sym_outputmode

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_matrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getmatrix

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_typelink

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_dimlink

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_planelink

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_restrict_type

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_restrict_planecount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_restrict_dim

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_special

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getspecial

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_adapt

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_decorator

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_frommatrix_trunc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_ioproc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_getioproc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_name

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_types

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_minplanecount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_maxplanecount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_mindimcount

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_maxdimcount

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.22 Jitter 451

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_mindim

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_maxdim

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_points

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_point_sprite

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_lines

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_line_strip

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_line_loop

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_triangles

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_tri_strip

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_tri_fan

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_quads

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_quad_strip

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_polygon

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_tri_grid

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gl_quad_grid

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_err_lockout_stack

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_class_jit_namespace

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_jit_namespace

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_findsize

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_attach

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_detach

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

452 Module Documentation

• JIT_EX_DATA t_symbol ∗ _jit_sym_add

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_replace

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_gettype

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_ob_sym

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_resolve_name

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_resolve_raw

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_notifyall

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_block

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_unblock

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_position

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_rotatexyz

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_scale

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_quat

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_direction

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_lookat

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_anim

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_bounds

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_boundcalc

cached t_symbol

• JIT_EX_DATA t_symbol ∗ _jit_sym_calcbounds

cached t_symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.23 Memory Management 453

34.23 Memory Management

In the past, Max has provided two separate APIs for memory management.

Defines

• #define MM_UNIFIED

This macro being defined means that getbytes and sysmem APIs for memory man-
agement are unified.

Functions

• char ∗ getbytes (short size)

Allocate small amounts of non-relocatable memory.

• void freebytes (void ∗b, short size)

Free memory allocated with getbytes().

• char ∗ getbytes16 (short size)

Use getbytes16() to allocate small amounts of non-relocatable memory that is aligned
on a 16-byte boundary for use with vector optimization.

• void freebytes16 (char ∗mem, short size)

Free memory allocated with getbytes16().

• char ∗∗ newhandle (long size)

Allocate relocatable memory.

• short growhandle (void ∗h, long size)

Change the size of a handle.

• void disposhandle (char ∗∗h)

Free the memory used by a handle you no longer need.

• t_ptr sysmem_newptr (long size)

Allocate memory.

• t_ptr sysmem_newptrclear (long size)

Allocate memory and set it to zero.

• t_ptr sysmem_resizeptr (void ∗ptr, long newsize)

Resize an existing pointer.

• t_ptr sysmem_resizeptrclear (void ∗ptr, long newsize)

Resize an existing pointer and clear it.

• long sysmem_ptrsize (void ∗ptr)

Find the size of a pointer.

• void sysmem_freeptr (void ∗ptr)

Free memory allocated with sysmem_newptr().

• void sysmem_copyptr (const void ∗src, void ∗dst, long bytes)

Copy memory the contents of one pointer to another pointer.

• t_handle sysmem_newhandle (long size)

Allocate a handle (a pointer to a pointer).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

454 Module Documentation

• t_handle sysmem_newhandleclear (unsigned long size)

Allocate a handle (a pointer to a pointer) whose memory is set to zero.

• long sysmem_resizehandle (t_handle handle, long newsize)

Resize an existing handle.

• long sysmem_handlesize (t_handle handle)

Find the size of a handle.

• void sysmem_freehandle (t_handle handle)

Free memory allocated with sysmem_newhandle().

• long sysmem_lockhandle (t_handle handle, long lock)

Set the locked/unlocked state of a handle.

• long sysmem_ptrandhand (void ∗p, t_handle h, long size)

Add memory to an existing handle and copy memory to the resized portion from a
pointer.

• long sysmem_ptrbeforehand (void ∗p, t_handle h, unsigned long size)

Add memory to an existing handle and copy memory to the resized portion from a
pointer.

• long sysmem_nullterminatehandle (t_handle h)

Add a null terminator to a handle.

34.23.1 Detailed Description

In the past, Max has provided two separate APIs for memory management. One for
allocating memory on the stack so that it was interrupt safe, including the getbytes()
and freebytes() functions. The other, the "sysmem" API, were for allocating memory
on the heap where larger amounts of memory were needed and the code could be
guaranteed to operate at non-interrupt level.

Many things have changed in the environment of recent operating systems (MacOS X
and Windows XP/Vista), the memory routines function differently, and the scheduler is
no longer directly triggered by a hardware interrupt. In Max 5, the sysmem and getbytes
API’s have been unified, and thus may be used interchangeably.

The memory management unification can be switched on and off in the header files if
needed, to compile code for older versions of Max for example, by changing the use of
MM_UNIFIED in the Max headers.

34.23.2 Sysmem API

The Sysmem API provides a number of utilities for allocating and managing memory. It
is relatively similar to some of the Macintosh Memory Manager API, and not too different
from Standard C library memory functions. It is not safe to mix these routines with other
memory routines (e.g. don’t use malloc() to allocate a pointer, and sysmem_freeptr() to
free it).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.23 Memory Management 455

34.23.3 Define Documentation

34.23.3.1 #define MM UNIFIED

This macro being defined means that getbytes and sysmem APIs for memory manage-
ment are unified.

This is correct for Max 5, but should be commented out when compiling for old max
targets.

34.23.4 Function Documentation

34.23.4.1 void disposhandle (char ∗∗ h)

Free the memory used by a handle you no longer need.

Parameters
h The handle to dispose.

See also

sysmem_freehandle()

34.23.4.2 void freebytes (void ∗ b, short size)

Free memory allocated with getbytes().

As of Max 5 it is unified with sysmem_newptr(), which is the preferred method for allo-
cating memory.

Parameters
b A pointer to the block of memory previously allocated that you want to

free.
size The size the block specified (as parameter b) in bytes.

34.23.4.3 void freebytes16 (char ∗ mem, short size)

Free memory allocated with getbytes16().

As of Max 5 it is unified with sysmem_newptr(), which is the preferred method for allo-
cating memory.

Parameters
mem A pointer to the block of memory previously allocated that you want to

free.
size The size the block specified (as parameter b) in bytes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

456 Module Documentation

Remarks

Note that freebytes16() will cause memory corruption if you pass it memory that
was allocated with getbytes(). Use it only with memory allocated with getbytes16().

34.23.4.4 char∗ getbytes (short size)

Allocate small amounts of non-relocatable memory.

As of Max 5 it is unified with sysmem_newptr(), which is the preferred method for allo-
cating memory.

Parameters
size The size to allocate in bytes (up to 32767 bytes).

Returns

A pointer to the allocated memory.

34.23.4.5 char∗ getbytes16 (short size)

Use getbytes16() to allocate small amounts of non-relocatable memory that is aligned
on a 16-byte boundary for use with vector optimization.

Parameters
size The size to allocate in bytes (up to 32767 bytes).

Returns

A pointer to the allocated memory.

Remarks

getbytes16() is identical to getbytes except that it returns memory that is aligned
to a 16-byte boundary. This allows you to allocate storage for vector-optimized
memory at interrupt level. Note that any memory allocated with getbytes16() must
be freed with freebytes16(), not freebytes().

34.23.4.6 short growhandle (void ∗ h, long size)

Change the size of a handle.

Parameters
h The handle to resize.

size The new size to allocate in bytes.
Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.23 Memory Management 457

Returns

Ignored.

See also

sysmem_resizehandle()

34.23.4.7 char∗∗ newhandle (long size)

Allocate relocatable memory.

Parameters
size The size to allocate in bytes.

Returns

The allocated handle.

See also

sysmem_newhandle()

34.23.4.8 void sysmem copyptr (const void ∗ src, void ∗ dst, long bytes)

Copy memory the contents of one pointer to another pointer.

This function is similar to BlockMove() or memcpy(). It copies the contents of the mem-
ory from the source to the destination pointer.

Parameters
src A pointer to the memory whose bytes will be copied.
dst A pointer to the memory where the data will be copied.

bytes The size in bytes of the data to be copied.

34.23.4.9 void sysmem freehandle (t_handle handle)

Free memory allocated with sysmem_newhandle().

Parameters
handle The handle whose memory will be freed.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

458 Module Documentation

34.23.4.10 void sysmem freeptr (void ∗ ptr)

Free memory allocated with sysmem_newptr().

This function is similar to DisposePtr or free. It frees the memory that had been allocated
to the given pointer.

Parameters
ptr The pointer whose memory will be freed.

34.23.4.11 long sysmem handlesize (t_handle handle)

Find the size of a handle.

This function is similar to GetHandleSize().

Parameters
handle The handle whose size will be queried.

Returns

The number of bytes allocated to the specified handle.

34.23.4.12 long sysmem lockhandle (t_handle handle, long lock)

Set the locked/unlocked state of a handle.

This function is similar to HLock or HUnlock. It sets the lock state of a handle, using a
zero or non-zero number.

Parameters
handle The handle that will be locked.

lock The new lock state of the handle.

Returns

The previous lock state.

34.23.4.13 t_handle sysmem newhandle (long size)

Allocate a handle (a pointer to a pointer).

This function is similar to NewHandle(). It allocates a handle of a given number of bytes
and returns a t_handle.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.23 Memory Management 459

Parameters
size The size of the handle in bytes that will be allocated.

Returns

A new t_handle.

34.23.4.14 t_handle sysmem newhandleclear (unsigned long size)

Allocate a handle (a pointer to a pointer) whose memory is set to zero.

Parameters
size The size of the handle in bytes that will be allocated.

Returns

A new t_handle.

See also

sysmem_newhandle()

34.23.4.15 t_ptr sysmem newptr (long size)

Allocate memory.

This function is similar to NewPtr() or malloc(). It allocates a pointer of a given number
of bytes and returns a pointer to the memory allocated.

Parameters
size The amount of memory to allocate.

Returns

A pointer to the allocated memory, or NULL if the allocation fails.

34.23.4.16 t_ptr sysmem newptrclear (long size)

Allocate memory and set it to zero.

This function is similar to NewPtrClear() or calloc(). It allocates a pointer of a given
number of bytes, zeroing all memory, and returns a pointer to the memory allocated.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

460 Module Documentation

Parameters
size The amount of memory to allocate.

Returns

A pointer to the allocated memory, or NULL if the allocation fails.

34.23.4.17 long sysmem nullterminatehandle (t_handle h)

Add a null terminator to a handle.

Parameters
h A handle to null terminate.

Returns

An error code.

34.23.4.18 long sysmem ptrandhand (void ∗ p, t_handle h, long size)

Add memory to an existing handle and copy memory to the resized portion from a
pointer.

This function is similar to PtrAndHand(). It resizes an existing handle by adding a given
number of bytes to it and copies data from a pointer into those bytes.

Parameters
p The existing pointer whose data will be copied into the resized handle.
h The handle which will be enlarged by the size of the pointer.

size The size in bytes that will be added to the handle.

Returns

The number of bytes allocated to the specified handle.

34.23.4.19 long sysmem ptrbeforehand (void ∗ p, t_handle h, unsigned long size)

Add memory to an existing handle and copy memory to the resized portion from a
pointer.

Unlike sysmem_ptrandhand(), however, this copies the ptr before the previously exising
handle data.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.23 Memory Management 461

Parameters
p The existing pointer whose data will be copied into the resized handle.
h The handle which will be enlarged by the size of the pointer.

size The size in bytes that will be added to the handle.

Returns

An error code.

34.23.4.20 long sysmem ptrsize (void ∗ ptr)

Find the size of a pointer.

This function is similar to _msize().

Parameters
ptr The pointer whose size will be queried

Returns

The number of bytes allocated to the pointer specified.

34.23.4.21 long sysmem resizehandle (t_handle handle, long newsize)

Resize an existing handle.

This function is similar to SetHandleSize(). It resizes an existing handle to the size
specified.

Parameters
handle The handle that will be resized.

newsize The new size of the handle in bytes.

Returns

The number of bytes allocated to the specified handle.

34.23.4.22 t_ptr sysmem resizeptr (void ∗ ptr, long newsize)

Resize an existing pointer.

This function is similar to realloc(). It resizes an existing pointer and returns a new
pointer to the resized memory.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

462 Module Documentation

Parameters
ptr The pointer to the memory that will be resized.

newsize The new size of the pointer in bytes.

Returns

A pointer to the resized memory, or NULL if the allocation fails.

34.23.4.23 t_ptr sysmem resizeptrclear (void ∗ ptr, long newsize)

Resize an existing pointer and clear it.

Parameters
ptr The pointer to the memory that will be resized.

newsize The new size of the pointer in bytes.

Returns

A pointer to the resized memory, or NULL if the allocation fails.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 463

34.24 Miscellaneous

Collaboration diagram for Miscellaneous:

Monitors and Displays

Miscellaneous

Byte Ordering

Table Access

Loading Max Files

Extending expr

Windows

Mouse and Keyboard

Text Editor Windows

Presets

Console

Event and File Serial Numbers

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

464 Module Documentation

Modules

• Console
• Byte Ordering

Utilities for swapping the order of bytes to match the Endianness of the required plat-
form.

• Extending expr

If you want to use C-like variable expressions that are entered by a user of your object,
you can use the "guts" of Max’s expr object in your object.

• Table Access

You can use these functions to access named table objects.

• Text Editor Windows

Max has a simple built-in text editor object that can display and edit text in conjunction
with your object.

• Presets

Max contains a preset object that has the ability to send preset messages to some or
all of the objects (clients) in a Patcher window.

• Event and File Serial Numbers

If you call outlet_int(), outlet_float(), outlet_list(), or outlet_anything() inside a Qelem or
during some idle or interrupt time, you should increment Max’s Event Serial Number
beforehand.

• Loading Max Files

Several high-level functions permit you to load patcher files.

• Monitors and Displays

Functions for finding our information about the environment.

• Windows
• Mouse and Keyboard

Defines

• #define InRange(v, lo, hi)

If a value is within the specified range, then return true.

• #define MAX(a, b)

Return the higher of two values.

• #define MIN(a, b)

Return the lower of two values.

• #define CLIP(a, lo, hi)

Limit values to within a specified range.

• #define calcoffset(x, y)

Find byte offset of a named member of a struct, relative to the beginning of that struct.

• #define BEGIN_USING_C_LINKAGE

Ensure that any definitions following this macro use a C-linkage, not a C++ linkage.

• #define END_USING_C_LINKAGE

Close a definition section that was opened using BEGIN_USING_C_LINKAGE.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 465

Enumerations

• enum e_max_errorcodes { MAX_ERR_NONE, MAX_ERR_GENERIC, MAX_E-
RR_INVALID_PTR, MAX_ERR_DUPLICATE, MAX_ERR_OUT_OF_MEM }

Standard values returned by function calls with a return type of t_max_err.

• enum e_max_wind_advise_result { aaYes, aaNo, aaCancel }

Returned values from wind_advise()

Functions

• void ∗ globalsymbol_reference (t_object ∗x, C74_CONST char ∗name, C74_CO-
NST char ∗classname)

Get a reference to an object that is bound to a t_symbol.

• void globalsymbol_dereference (t_object ∗x, C74_CONST char ∗name, C74_C-
ONST char ∗classname)

Stop referencing an object that is bound to a t_symbol, previously referenced using
globalsymbol_reference().

• t_max_err globalsymbol_bind (t_object ∗x, C74_CONST char ∗name, long
flags)

Bind an object to a t_symbol.

• void globalsymbol_unbind (t_object ∗x, C74_CONST char ∗name, long flags)

Remove an object from being bound to a t_symbol.

• long method_true (void ∗x)

A method that always returns true.

• long method_false (void ∗x)

A method that always returns false.

• t_symbol ∗ symbol_unique ()

Generates a unique t_symbol ∗.
• void error_sym (void ∗x, t_symbol ∗s)

Posts an error message to the Max window.

• void post_sym (void ∗x, t_symbol ∗s)

Posts a message to the Max window.

• t_max_err symbolarray_sort (long ac, t_symbol ∗∗av)

Performs an ASCII sort on an array of t_symbol ∗s.

• void object_obex_quickref (void ∗x, long ∗numitems, t_symbol ∗∗items)

Developers do not need to directly use the object_obex_quickref() function.

• void error_subscribe (t_object ∗x)

Receive messages from the error handler.

• void error_unsubscribe (t_object ∗x)

Remove an object as an error message recipient.

• void quittask_install (method m, void ∗a)

Register a function that will be called when Max exits.

• void quittask_remove (method m)

Unregister a function previously registered with quittask_install().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

466 Module Documentation

• short maxversion (void)

Determine version information about the current Max environment.

• char ∗ strncpy_zero (char ∗dst, const char ∗src, long size)

Copy the contents of one string to another, in a manner safer than the standard strcpy()
or strncpy().

• char ∗ strncat_zero (char ∗dst, const char ∗src, long size)

Concatenate the contents of one string onto the end of another, in a manner safer than
the standard strcat() or strncat().

• int snprintf_zero (char ∗buffer, size_t count, const char ∗format,...)

Copy the contents of a string together with value substitutions, in a manner safer than
the standard sprintf() or snprintf().

• short wind_advise (t_object ∗w, char ∗s,...)

Throw a dialog which may have text and up to three buttons.

• void wind_setcursor (short which)

Change the cursor.

34.24.1 Define Documentation

34.24.1.1 #define BEGIN USING C LINKAGE

Ensure that any definitions following this macro use a C-linkage, not a C++ linkage.

The Max API uses C-linkage. This is important for objects written in C++ or that use
a C++ compiler. This macro must be balanced with the END_USING_C_LINKAGE
macro.

34.24.1.2 #define calcoffset(x, y)

Find byte offset of a named member of a struct, relative to the beginning of that struct.

Parameters
x The name of the struct
y The name of the member

Returns

A long integer representing the number of bytes into the struct where the member
begins.

34.24.1.3 #define CLIP(a, lo, hi)

Limit values to within a specified range.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 467

Parameters
a The value to constrain.
lo The low bound for the range.
hi The high bound for the range.

Returns

Returns the value a constrained to the range specified by lo and hi.

34.24.1.4 #define InRange(v, lo, hi)

If a value is within the specified range, then return true.

Otherwise return false.

Parameters
v The value to test.

lo The low bound for the range.
hi The high bound for the range.

Returns

Returns true if within range, otherwise false.

34.24.1.5 #define MAX(a, b)

Return the higher of two values.

Parameters
a The first value to compare.
b The second value to compare.

Returns

Returns the higher of a or b.

34.24.1.6 #define MIN(a, b)

Return the lower of two values.

Parameters
a The first value to compare.
b The second value to compare.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

468 Module Documentation

Returns

Returns the lower of a or b.

34.24.2 Enumeration Type Documentation

34.24.2.1 enum e_max_errorcodes

Standard values returned by function calls with a return type of t_max_err.

Enumerator:

MAX_ERR_NONE No error.

MAX_ERR_GENERIC Generic error.

MAX_ERR_INVALID_PTR Invalid Pointer.

MAX_ERR_DUPLICATE Duplicate.

MAX_ERR_OUT_OF_MEM Out of memory.

34.24.2.2 enum e_max_wind_advise_result

Returned values from wind_advise()

Enumerator:

aaYes Yes button was choosen.

aaNo No button was choosen.

aaCancel Cancel button was choosen.

34.24.3 Function Documentation

34.24.3.1 void error subscribe (t_object ∗ x)

Receive messages from the error handler.

Parameters
x The object to be subscribed to the error handler.

Remarks

error_subscribe() enables your object to receive a message (error), followed by the
list of atoms in the error message posted to the Max window.

Prior to calling error_subscribe(), you should bind the error message to an internal error
handling routine:

addmess((method)myobject_error, "error", A_GIMME, 0);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 469

Your error handling routine should be declared as follows:

void myobject_error(t_myobject *x, t_symbol *s, short argc, t_atom *argv);

34.24.3.2 void error sym (void ∗ x, t_symbol ∗ s)

Posts an error message to the Max window.

This function is interrupt safe.

Parameters
x The object’s pointer
s Symbol to be posted as an error in the Max window

34.24.3.3 void error unsubscribe (t_object ∗ x)

Remove an object as an error message recipient.

Parameters
x The object to unsubscribe.

34.24.3.4 t_max_err globalsymbol bind (t_object ∗ x, C74 CONST char ∗ name, long flags
)

Bind an object to a t_symbol.

Parameters
x The object to bind to the t_symbol.

name The name of the t_symbol to which the object will be bound.
flags Pass 0.

Returns

A Max error code.

34.24.3.5 void globalsymbol dereference (t_object ∗ x, C74 CONST char ∗ name,
C74 CONST char ∗ classname)

Stop referencing an object that is bound to a t_symbol, previously referenced using
globalsymbol_reference().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

470 Module Documentation

Parameters
x The object that is getting the reference to the symbol.

name The name of the symbol to reference.
classname The name of the class of which the object we are referencing should be

an instance.

See also

globalsymbol_reference()

34.24.3.6 void∗ globalsymbol reference (t_object ∗ x, C74 CONST char ∗ name, C74 CONST
char ∗ classname)

Get a reference to an object that is bound to a t_symbol.

Parameters
x The object that is getting the reference to the symbol.

name The name of the symbol to reference.
classname The name of the class of which the object we are referencing should be

an instance.

Returns

The s_thing of the t_symbol.

Remarks

An example of real-world use is to get the buffer∼ object associated with a symbol.

// the struct of our object
typedef struct _myobject {

t_object obj;
t_symbol *buffer_name;
t_buffer *buffer_object;

} t_myobject;

void myobject_setbuffer(t_myobject *x, t_symbol *s, long argc, t_atom *argv
)

{
if(s != x->buffer_name){

// Reference the buffer associated with the incoming name
x->buffer_object = (t_buffer *)globalsymbol_reference((t_object *)x

, s->s_name, "buffer~");

// If we were previously referencing another buffer, we should not
longer reference it.

globalsymbol_dereference((t_object *)x, x->buffer_name->s_name, "
buffer~");

x->buffer_name = s;
}

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 471

34.24.3.7 void globalsymbol unbind (t_object ∗ x, C74 CONST char ∗ name, long flags)

Remove an object from being bound to a t_symbol.

Parameters
x The object from which to unbind the t_symbol.

name The name of the t_symbol from which the object will be unbound.
flags Pass 0.

34.24.3.8 short maxversion (void)

Determine version information about the current Max environment.

This function returns the version number of Max. In Max versions 2.1.4 and later, this
number is the version number of the Max kernel application in binary-coded decimal.
Thus, 2.1.4 would return 214 hex or 532 decimal. Version 3.0 returns 300 hex.

Use this to check for the existence of particular function macros that are only present in
more recent Max versions. Versions before 2.1.4 returned 1, except for versions 2.1.1 -
2.1.3 which returned 2.

Bit 14 (counting from left) will be set if Max is running as a standalone application, so
you should mask the lower 12 bits to get the version number.

Returns

The Max environment’s version number.

34.24.3.9 void object obex quickref (void ∗ x, long ∗ numitems, t_symbol ∗∗ items)

Developers do not need to directly use the object_obex_quickref() function.

It was used in Max 4 to add support for attributes to the quickref, but this is automatic in
Max 5.

34.24.3.10 void post sym (void ∗ x, t_symbol ∗ s)

Posts a message to the Max window.

This function is interrupt safe.

Parameters
x The object’s pointer
s Symbol to be posted in the Max window

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

472 Module Documentation

34.24.3.11 void quittask install (method m, void ∗ a)

Register a function that will be called when Max exits.

Parameters
m A function that will be called on Max exit.
a Argument to be used with method m.

Remarks

quittask_install() provides a mechanism for your external to register a routine to
be called prior to Max shutdown. This is useful for objects that need to provide
disk-based persistance outside the standard Max storage mechanisms, or need to
shut down hardware or their connection to system software and cannot do so in the
termination routine of a code fragment.

34.24.3.12 void quittask remove (method m)

Unregister a function previously registered with quittask_install().

Parameters
m Function to be removed as a shutdown method.

34.24.3.13 int snprintf zero (char ∗ buffer, size t count, const char ∗ format, ...)

Copy the contents of a string together with value substitutions, in a manner safer than
the standard sprintf() or snprintf().

This is the prefered function to use for this operation in Max.

Parameters
buffer The destination string (already allocated) for the copy.
count The number of chars allocated to the buffer string.

format The source string that will be copied, which may include sprintf() for-
matting codes for substitutions.

... An array of arguments to be substituted into the format string.

34.24.3.14 char∗ strncat zero (char ∗ dst, const char ∗ src, long size)

Concatenate the contents of one string onto the end of another, in a manner safer than
the standard strcat() or strncat().

This is the prefered function to use for this operation in Max.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.24 Miscellaneous 473

Parameters
dst The destination string onto whose end the src string will be appended.
src The source string that will be copied.

size The number of chars allocated to the dst string.

34.24.3.15 char∗ strncpy zero (char ∗ dst, const char ∗ src, long size)

Copy the contents of one string to another, in a manner safer than the standard strcpy()
or strncpy().

This is the prefered function to use for this operation in Max.

Parameters
dst The destination string (already allocated) for the copy.
src The source string that will be copied.

size The number of chars allocated to the dst string.

34.24.3.16 t_symbol∗ symbol unique ()

Generates a unique t_symbol ∗.

The symbol will be formatted somewhat like "u123456789".

Returns

This function returns a unique t_symbol ∗.

34.24.3.17 t_max_err symbolarray sort (long ac, t_symbol ∗∗ av)

Performs an ASCII sort on an array of t_symbol ∗s.

Parameters
ac The count of t_symbol ∗s in av
av An array of t_symbol ∗s to be sorted

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.24.3.18 short wind advise (t_object ∗ w, char ∗ s, ...)

Throw a dialog which may have text and up to three buttons.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

474 Module Documentation

For example, this can be used to ask "Save changes before..."

Parameters
w The window with which this dialog is associated.
s A string with any sprintf()-like formatting to be displayed.

... Any variables that should be substituted in the string defined by s.

Returns

One of the values defined in e_max_wind_advise_result, depending on what the
user selected.

34.24.3.19 void wind setcursor (short which)

Change the cursor.

Parameters
which One of the following predefined cursors:

#define C_ARROW 1
#define C_WATCH 2
#define C_IBEAM 3
#define C_HAND 4
#define C_CROSS 5
#define C_PENCIL 6
#define C_GROW 8

Remarks

wind_setcursor() keeps track of what the cursor was previously set to, so if some-
thing else has changed the cursor, you may not see a new cursor if you set it to the
previous argument to wind_setcursor().

The solution is to call wind_setcursor(0) before calling it with the desired cursor con-
stant. Use wind_setcursor(-1) to tell Max you’ll set the cursor to your own cursor directly.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.25 Console 475

34.25 Console

Collaboration diagram for Console:

Miscellaneous Console

Functions

• void post (C74_CONST char ∗fmt,...)

Print text to the Max window.

• void cpost (C74_CONST char ∗fmt,...)

Print text to the system console.

• void error (C74_CONST char ∗fmt,...)

Print an error to the Max window.

• void ouchstring (C74_CONST char ∗s,...)

Put up an error or advisory alert box on the screen.

• void postatom (t_atom ∗ap)

Print multiple items in the same line of text in the Max window.

• void object_post (t_object ∗x, C74_CONST char ∗s,...)

Print text to the Max window, linked to an instance of your object.

• void object_error (t_object ∗x, C74_CONST char ∗s,...)

Print text to the Max window, linked to an instance of your object, and flagged as an
error (highlighted with a red background).

• void object_warn (t_object ∗x, C74_CONST char ∗s,...)

Print text to the Max window, linked to an instance of your object, and flagged as a
warning (highlighted with a yellow background).

• void object_error_obtrusive (t_object ∗x, char ∗s,...)

Print text to the Max window, linked to an instance of your object, and flagged as an
error (highlighted with a red background), and grab the user’s attention by displaying a
banner in the patcher window.

34.25.1 Function Documentation

34.25.1.1 void cpost (C74 CONST char ∗ fmt, ...)

Print text to the system console.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

476 Module Documentation

On the Mac this post will be visible by launching Console.app in the /Applications/Utilities
folder. On Windows this post will be visible by launching the dbgView.exe program,
which is a free download as a part of Microsoft’s SysInternals.

Parameters
fmt A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

Remarks

Particularly on MacOS 10.5, posting to Console.app can be a computationally ex-
pensive operation. Use with care.

See also

post()
object_post()

34.25.1.2 void error (C74 CONST char ∗ fmt, ...)

Print an error to the Max window.

Max 5 introduced object_error(), which provides several enhancements to error() where
a valid t_object pointer is available.

error() is very similar to post(), thought it offers two additional features:

• the post to the Max window is highlighted (with a red background).

• the post can be trapped with the error object in a patcher.

Parameters
fmt A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

See also

object_post()
post()
cpost()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.25 Console 477

34.25.1.3 void object error (t_object ∗ x, C74 CONST char ∗ s, ...)

Print text to the Max window, linked to an instance of your object, and flagged as an
error (highlighted with a red background).

Max window rows which are generated using object_post() or object_error() can be
double-clicked by the user to have Max assist with locating the object in a patcher. -
Rows created with object_post() and object_error() will also automatically provide the
name of the object’s class in the correct column in the Max window.

Parameters
x A pointer to your object.
s A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

See also

object_post()
object_warn()

34.25.1.4 void object error obtrusive (t_object ∗ x, char ∗ s, ...)

Print text to the Max window, linked to an instance of your object, and flagged as an
error (highlighted with a red background), and grab the user’s attention by displaying a
banner in the patcher window.

This function should be used exceedingly sparingly, with preference given to object_-
error() when a problem occurs.

Parameters
x A pointer to your object.
s A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

See also

object_post()
object_error()

34.25.1.5 void object post (t_object ∗ x, C74 CONST char ∗ s, ...)

Print text to the Max window, linked to an instance of your object.

Max window rows which are generated using object_post() or object_error() can be
double-clicked by the user to have Max assist with locating the object in a patcher. -

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

478 Module Documentation

Rows created with object_post() and object_error() will also automatically provide the
name of the object’s class in the correct column in the Max window.

Parameters
x A pointer to your object.
s A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

Remarks

Example:

void myMethod(myObject *x, long someArgument)
{

object_post((t_object*)x, "This is my argument: %ld", someArgument);
}

See also

object_error()

34.25.1.6 void object warn (t_object ∗ x, C74 CONST char ∗ s, ...)

Print text to the Max window, linked to an instance of your object, and flagged as a
warning (highlighted with a yellow background).

Max window rows which are generated using object_post(), object_error(), or object_-
warn can be double-clicked by the user to have Max assist with locating the object in
a patcher. Rows created with object_post(), object_error(), or object_warn() will also
automatically provide the name of the object’s class in the correct column in the Max
window.

Parameters
x A pointer to your object.
s A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

See also

object_post()
object_error()

34.25.1.7 void ouchstring (C74 CONST char ∗ s, ...)

Put up an error or advisory alert box on the screen.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.25 Console 479

Don’t use this function. Instead use error(), object_error(), or object_error_obtrusive().

This function performs an sprintf() on fmtstring and items, then puts up an alert box.
ouchstring() will queue the message to a lower priority level if it’s called in an interrupt
and there is no alert box request already pending.

Parameters
s A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

See also

error()
object_error()
object_error_obtrusive()

34.25.1.8 void post (C74 CONST char ∗ fmt, ...)

Print text to the Max window.

Max 5 introduced object_post(), which provides several enhancements to post() where
a valid t_object pointer is available.

post() is a printf() for the Max window. It even works from non-main threads, queuing
up multiple lines of text to be printed when the main thread processing resumes. post()
can be quite useful in debugging your external object.

Parameters
fmt A C-string containing text and printf-like codes specifying the sizes and

formatting of the additional arguments.
... Arguments of any type that correspond to the format codes in fmtString.

Remarks

Note that post only passes 16 bytes of arguments to sprintf, so if you want additional
formatted items on a single line, use postatom().

Example:

short whatIsIt;

whatIsIt = 999;
post ("the variable is %ld",(long)whatIsIt);

Remarks

The Max Window output when this code is executed.

the variable is 999

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

480 Module Documentation

See also

object_post()
error()
cpost()

34.25.1.9 void postatom (t_atom ∗ ap)

Print multiple items in the same line of text in the Max window.

This function prints a single t_atom on a line in the Max window without a carriage return
afterwards, as post() does. Each t_atom printed is followed by a space character.

Parameters
ap The address of a t_atom to print.

See also

object_post()
post()
cpost()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.26 Byte Ordering 481

34.26 Byte Ordering

Utilities for swapping the order of bytes to match the Endianness of the required plat-
form.

Collaboration diagram for Byte Ordering:

Miscellaneous Byte Ordering

Defines

• #define C74_LITTLE_ENDIAN

A macro that indicates whether or not the current architecture uses Litte-endian byte
ordering (such as is used on an i386 processor).

• #define C74_BIG_ENDIAN

A macro that indicates whether or not the current architecture uses Big-endian byte
ordering (such as is used on a PPC processor).

• #define BYTEORDER_SWAPW16(x)

Switch the byte ordering of a short integer.
• #define BYTEORDER_SWAPW32(x)

Switch the byte ordering of an integer.
• #define BYTEORDER_SWAPF32

Switch the byte ordering of a float.
• #define BYTEORDER_SWAPF64

Switch the byte ordering of a double.

34.26.1 Detailed Description

Utilities for swapping the order of bytes to match the Endianness of the required plat-
form. An introduction to the issue of endianness can be found at http://en.-
wikipedia.org/wiki/Endianness.

Of particular relevance is that a Macintosh with a PPC processor uses a Big-endian
byte ordering, whereas an Intel processor in a Mac or Windows machine will use a
Little-endian byte ordering.

These utilities are defined to assist with cases where byte ordering needs to be ma-
nipulated for floats or ints. Note that floats are subject to the same byte ordering rules
as integers. While the IEEE defines the bits, the machine still defines how the bits are
arranged with regard to bytes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://en.wikipedia.org/wiki/Endianness.
http://en.wikipedia.org/wiki/Endianness.

482 Module Documentation

34.26.2 Define Documentation

34.26.2.1 #define BYTEORDER SWAPF32

Switch the byte ordering of a float.

Parameters
x A float.

Returns

A float with the byte-ordering swapped.

34.26.2.2 #define BYTEORDER SWAPF64

Switch the byte ordering of a double.

Parameters
x A double.

Returns

A double.

34.26.2.3 #define BYTEORDER SWAPW16(x)

Switch the byte ordering of a short integer.

Parameters
x A short integer.

Returns

A short integer with the byte-ordering swapped.

34.26.2.4 #define BYTEORDER SWAPW32(x)

Switch the byte ordering of an integer.

Parameters
x An integer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.26 Byte Ordering 483

Returns

An integer with the byte-ordering swapped.

34.26.2.5 #define C74 BIG ENDIAN

A macro that indicates whether or not the current architecture uses Big-endian byte
ordering (such as is used on a PPC processor).

Note that this macro is always defined; it will be either a 0 or a 1.

34.26.2.6 #define C74 LITTLE ENDIAN

A macro that indicates whether or not the current architecture uses Litte-endian byte
ordering (such as is used on an i386 processor).

Note that this macro is always defined; it will be either a 0 or a 1.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

484 Module Documentation

34.27 Extending expr

If you want to use C-like variable expressions that are entered by a user of your object,
you can use the "guts" of Max’s expr object in your object.

Collaboration diagram for Extending expr:

Miscellaneous Extending expr

Data Structures

• struct Ex_ex

ex_ex.

• struct t_expr

Struct for an instance of expr.

Defines

• #define ex_int

shortcut for accessing members of an Ex_ex struct’s ex_cont union.

• #define ex_flt

shortcut for accessing members of an Ex_ex struct’s ex_cont union.

• #define ex_op

shortcut for accessing members of an Ex_ex struct’s ex_cont union.

• #define ex_ptr

shortcut for accessing members of an Ex_ex struct’s ex_cont union.

Enumerations

• enum e_max_expr_types { ET_INT, ET_FLT, ET_OP, ET_STR, ET_TBL, ET_-
FUNC, ET_SYM, ET_VSYM, ET_LP, ET_LB, ET_II, ET_FI, ET_SI }

Defines for ex_type.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.27 Extending expr 485

Functions

• void ∗ expr_new (short argc, t_atom ∗argv, t_atom ∗types)

Create a new expr object.
• short expr_eval (t_expr ∗x, short argc, t_atom ∗argv, t_atom ∗result)

Evaluate an expression in an expr object.

34.27.1 Detailed Description

If you want to use C-like variable expressions that are entered by a user of your object,
you can use the "guts" of Max’s expr object in your object. For example, the if object
uses expr routines for evaluating a conditional expression, so it can decide whether
to send the message after the words then or else. The following functions provide an
interface to expr.

34.27.2 Enumeration Type Documentation

34.27.2.1 enum e_max_expr_types

Defines for ex_type.

We treat parenthesis and brackets special to keep a pointer to their match in the con-
tent.

Enumerator:

ET_INT an int

ET_FLT a float

ET_OP operator

ET_STR string

ET_TBL a table, the content is a pointer

ET_FUNC a function

ET_SYM symbol ("string")

ET_VSYM variable symbol ("$s?")

ET_LP left parenthesis

ET_LB left bracket

ET_II and integer inlet

ET_FI float inlet

ET_SI string inlet

34.27.3 Function Documentation

34.27.3.1 short expr eval (t_expr ∗ x, short argc, t_atom ∗ argv, t_atom ∗ result)

Evaluate an expression in an expr object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

486 Module Documentation

Parameters
x The expr object to evaluate.

argc Count of arguments in argv.
argv Array of nine Atoms that will be substituted for variable arguments (such

as $i1) in the expression. Unused arguments should be of type A_NO-
THING.

result A pre-existing Atom that will hold the type and value of the result of
evaluating the expression.

Returns

.

Remarks

Evaluates the expression in an expr object with arguments in argv and returns the
type and value of the evaluated expression as a t_atom in result. result need only
point to a single t_atom, but argv should contain at least argc Atoms. If, as in
the example shown above under expr_new(), there are “gaps” between arguments,
they should be filled in with t_atom of type A_NOTHING.

34.27.3.2 void∗ expr new (short argc, t_atom ∗ argv, t_atom ∗ types)

Create a new expr object.

Parameters
argc Count of arguments in argv.
argv Arguments that are used to create the expr. See the example below for

details.
types A pre-existing array of nine t_atoms, that will hold the types of any vari-

able arguments created in the expr. The types are returned in the a_-
type field of each t_atom. If an argument was not present, A_NOTHING
is returned.

Returns

expr_new() creates an expr object from the arguments in argv and returns the type
of any expr-style arguments contained in argv (i.e. $i1, etc.) in atoms in an array
pointed to by types.

Remarks

types should already exist as an array of nine Atoms, all of which will be filled in
by expr_new(). If an argument was not present, it will set to type A_NOTHING. For
example, suppose argv pointed to the following atoms:

$i1 (A_SYM)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.27 Extending expr 487

+ (A_SYM)
$f3 (A_SYM)
+ (A_SYM)
3 (A_LONG)

After calling expr_new, types would contain the following:

Index Argument Type Value
0 1 ($i1) A_LONG 0
1 2 A_NOTHING 0
2 3 ($f3) A_FLOAT 0.0
3 4 A_NOTHING 0
4 5 A_NOTHING 0
5 6 A_NOTHING 0
6 7 A_NOTHING 0
7 8 A_NOTHING 0
8 9 A_NOTHING 0

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

488 Module Documentation

34.28 Table Access

You can use these functions to access named table objects.

Collaboration diagram for Table Access:

Miscellaneous Table Access

Functions

• short table_get (t_symbol ∗s, long ∗∗∗hp, long ∗sp)

Get a handle to the data in a named table object.

• short table_dirty (t_symbol ∗s)

Mark a table object as having changed data.

34.28.1 Detailed Description

You can use these functions to access named table objects. Tables have names when
the user creates a table with an argument.

The scenario for knowing the name of a table but not the object itself is if you were
passed a t_symbol, either as an argument to your creation function or in some message,
with the implication being "do your thing with the data in the table named norris."

34.28.2 Function Documentation

34.28.2.1 short table dirty (t_symbol ∗ s)

Mark a table object as having changed data.

Parameters
s Symbol containing the name of a table object.

Returns

If no table is associated with tableName, table_dirty returns a non-zero result.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.28 Table Access 489

34.28.2.2 short table get (t_symbol ∗ s, long ∗∗∗ hp, long ∗ sp)

Get a handle to the data in a named table object.

Parameters
s Symbol containing the name of the table object to find.

hp Address of a handle where the table’s data will be returned if the named
table object is found.

sp Number of elements in the table (its size in longs).

Returns

If no table object is associated with the symbol tableName, table_get() returns a
non-zero result.

Remarks

table_get searches for a table associated with the t_symbol tableName. If one is
found, a Handle to its elements (stored as an array of long integers) is returned and
the function returns 0. Never count on a table to exist across calls to one of your
methods. Call table_get and check the result each time you wish to use a table.

Here is an example of retrieving the 40th element of a table:

long **storage,size,value;
if (!table_get(gensym("somename"),&storage,&size)) {

if (size > 40)
value = *((*storage)+40);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

490 Module Documentation

34.29 Text Editor Windows

Max has a simple built-in text editor object that can display and edit text in conjunction
with your object.

Collaboration diagram for Text Editor Windows:

Miscellaneous Text Editor Windows

Max has a simple built-in text editor object that can display and edit text in conjunction
with your object. The routines described here let you create a text editor.

When the editor window is about to be closed, your object could receive as many as
three messages. The first one, okclose, will be sent if the user has changed the text
in the window. This is the standard okclose message that is sent to all "dirty" windows
when they are about to be closed, but the text editor window object passes it on to
you instead of doing anything itself. Refer to the section on Window Messages for a
description of how to write a method for the okclose message. It’s not required that you
write one—if you don’t, the behavior of the window will be determined by the setting
of the window’s w_scratch bit. If it’s set, no confirmation will be asked when a dirty
window is closed (and no okclose message will be sent to the text editor either). The
second message, edclose, requires a method that should be added to your object at
initialization time. The third message, edSave, allows you to gain access to the text
before it is saved, or save it yourself.

See also

Showing a Text Editor

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.30 Presets 491

34.30 Presets

Max contains a preset object that has the ability to send preset messages to some or
all of the objects (clients) in a Patcher window.

Collaboration diagram for Presets:

Miscellaneous Presets

Functions

• void preset_store (char ∗fmt,...)

Give the preset object a general message to restore the current state of your object.

• void preset_set (t_object ∗obj, long val)

Restore the state of your object with a set message.

• void preset_int (void ∗x, long n)

Restore the state of your object with an int message.

34.30.1 Detailed Description

Max contains a preset object that has the ability to send preset messages to some or all
of the objects (clients) in a Patcher window. The preset message, sent when the user is
storing a preset, is just a request for your object to tell the preset object how to restore
your internal state to what it is now. Later, when the user executes a preset, the preset
object will send you back the message you had previously said you wanted.

The dialog goes something like this:

• During a store. . . preset object to Client object(s): hello, this is the preset mes-
sage—tell me how to restore your stateClient object to preset object: send me int
34 (for example)

• During an execute. . . preset object to Client object: int 34

The client object won’t know the difference between receiving int 34 from a preset object
and receiving a 34 in its leftmost inlet.

It’s not mandatory for your object to respond to the preset message, but it is something
that will make users happy. All Max user interface objects currently respond to preset
messages. Note that if your object is not a user interface object and implements a preset

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

492 Module Documentation

method, the user will need to connect the outlet of the preset object to its leftmost inlet
in order for it to be sent a preset message when the user stores a preset.

Here’s an example of using preset_store() that specifies that the object would like to
receive a set message. We assume it has one field, myvalue, which it would like to save
and restore.

void myobject_preset(myobject *x)
{

preset_store("ossl",x,ob_sym(x),gensym("set"),x->myvalue);
}

When this preset is executed, the object will receive a set message whose argument
will be the value of myvalue. Note that the same thing can be accomplished more easily
with preset_set() and preset_int().

Don’t pass more than 12 items to preset_store(). If you want to store a huge amount of
data in a preset, use binbuf_insert().

The following example locates the Binbuf into which the preset data is being collected,
then calls binbuf_insert() on a previously prepared array of Atoms. It assumes that the
state of your object can be restored with a set message.

void myobject_preset(myObject *x)
{

void *preset_buf;// Binbuf that stores the preset
short atomCount; // number of atoms you’re storing
t_atom atomArray[SOMESIZE];// array of atoms to be stored

// 1. prepare the preset "header" information
atom_setobj(atomArray,x);
atom_setsym(atomArray+1,ob_sym(x));
atom_setsym(atomArray+2,gensym("set"));
// fill atomArray+3 with object’s state here and set atomCount

// 2. find the Binbuf
preset_buf = gensym("_preset")->s_thing;

// 3. store the data
if (preset_buf) {

binbuf_insert(preset_buf,NIL,atomCount,atomArray);
}

}

34.30.2 Function Documentation

34.30.2.1 void preset int (void ∗ x, long n)

Restore the state of your object with an int message.

This function causes an int message with the argument value to be sent to your object
from the preset object when the user executes a preset. All of the existing user interface
objects use the int message for restoring their state when a preset is executed.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.30 Presets 493

Parameters
x Your object.
n Current value of your object.

34.30.2.2 void preset set (t_object ∗ obj, long val)

Restore the state of your object with a set message.

This function causes a set message with the argument value to be sent to your object
from the preset object when the user executes a preset.

Parameters
obj Your object.
val Current value of your object.

34.30.2.3 void preset store (char ∗ fmt, ...)

Give the preset object a general message to restore the current state of your object.

This is a general preset function for use when your object’s state cannot be restored
with a simple int or set message. The example below shows the expected format for
specifying what your current state is to a preset object. The first thing you supply is your
object itself, followed by the symbol that is the name of your object’s class (which you
can retrieve from your object using the macro ob_sym, declared in ext_mess.h). Next,
supply the symbol that specifies the message you want receive (a method for which had
better be defined in your class), followed by the arguments to this message—the current
values of your object’s fields.

Parameters
fmt C string containing one or more letters corresponding to the types of

each element of the message. s for Symbol, l for long, or f for float.
... Elements of the message used to restore the state of your object,

passed directly to the function as Symbols, longs, or floats. See be-
low for an example that conforms to what the preset object expects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

494 Module Documentation

34.31 Event and File Serial Numbers

If you call outlet_int(), outlet_float(), outlet_list(), or outlet_anything() inside a Qelem or
during some idle or interrupt time, you should increment Max’s Event Serial Number
beforehand.

Collaboration diagram for Event and File Serial Numbers:

Miscellaneous Event and File Serial Numbers

Functions

• void evnum_incr (void)

Increment the event serial number.

• long evnum_get (void)

Get the current value of the event serial number.

• long serialno (void)

Get a unique number for each Patcher file saved.

34.31.1 Detailed Description

If you call outlet_int(), outlet_float(), outlet_list(), or outlet_anything() inside a Qelem or
during some idle or interrupt time, you should increment Max’s Event Serial Number
beforehand. This number can be read by objects that want to know if two messages
they have received occurred at the same logical "time" (in response to the same event).
Max increments the serial number for each tick of the clock, each key press, mouse
click, and MIDI event. Note that this is different from the file serial number returned by
the serialno() function. The file serial number is only incremented when patchers are
saved in files. If more than one patcher is saved in a file, the file serial number will
change but the event serial number will not.

34.31.2 Using Event Serial Numbers

Here is a Max patch that includes an object called simul that would use the information
returned by evnum_get to return a 1 if the right and left inlets receive messages at the
same time, 0 if not. The number boxes below show the results of clicking on the button
objects or typing a key.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.31 Event and File Serial Numbers 495

34.31.3 Function Documentation

34.31.3.1 long evnum get (void)

Get the current value of the event serial number.

Returns

The current value of the event serial number.

34.31.3.2 long serialno (void)

Get a unique number for each Patcher file saved.

This function returns a serial number that is incremented each time a Patcher file is
saved. This routine is useful for objects like table and coll that have multiple objects
that refer to the same data, and can embed the data inside a Patcher file. If the serial
number hasn’t changed since your object was last saved, you can detect this and avoid
saving multiple copies of the object’s data.

Returns

The serial number.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

496 Module Documentation

34.32 Loading Max Files

Several high-level functions permit you to load patcher files.

Collaboration diagram for Loading Max Files:

Miscellaneous Loading Max Files

Functions

• short readtohandle (C74_CONST char ∗name, short volume, char ∗∗∗h, long
∗sizep)

Load a data file into a handle.

• void ∗ fileload (C74_CONST char ∗name, short vol)

Load a patcher file by name and volume reference number.

• void ∗ intload (C74_CONST char ∗name, short volume, t_symbol ∗s, short ac,
t_atom ∗av, short couldedit)

Pass arguments to Max files when you open them.

• void ∗ stringload (C74_CONST char ∗name)

Load a patcher file located in the Max search path by name.

34.32.1 Detailed Description

Several high-level functions permit you to load patcher files. These can be used in
sophisticated objects that use Patcher objects to perform specific tasks.

34.32.2 Function Documentation

34.32.2.1 void∗ fileload (C74 CONST char ∗ name, short vol)

Load a patcher file by name and volume reference number.

Parameters
name Filename of the patcher file to load (C string).

vol Path ID specifying the location of the file.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.32 Loading Max Files 497

Returns

If the file is found, fileload tries to open the file, evaluate it, open a window, and
bring it to the front. A pointer to the newly created Patcher is returned if loading is
successful, otherwise, if the file is not found or there is insufficient memory, zero is
returned.

34.32.2.2 void∗ intload (C74 CONST char ∗ name, short volume, t_symbol ∗ s, short ac,
t_atom ∗ av, short couldedit)

Pass arguments to Max files when you open them.

This function loads the specified file and returns a pointer to the created object. -
Historically, intload() is was used to open patcher files, whether they are in text or Max
binary format. It could also open table files whose contents begin with the word "table".

Parameters
name Name of the file to open.

volume Path ID specifying the location of the file.
s A symbol.

ac Count of t_atoms in av. To properly open a patcher file, ac should be 9.
av Array of t_atoms that will replace the changeable arguments 1-9. The

default behavior could be to set all these to t_atoms of type A_LONG
with a value of 0.

couldedit If non-zero and the file is not a patcher file, the file is opened as a text
file.

Returns

If couldedit is non-zero and the file is not a patcher file, it is made into a text editor,
and intoad() returns 0. If couldedit is non-zero, intload() will alert the user to an error
and return 0. If there is no error, the value returned will be a pointer to a patcher or
table object.

34.32.2.3 short readtohandle (C74 CONST char ∗ name, short volume, char ∗∗∗ h, long ∗
sizep)

Load a data file into a handle.

This is a low-level routine used for reading text and data files. You specify the file’s name
and Path ID, as well as a pointer to a Handle.

Parameters
name Name of the patcher file to load.

volume Path ID specifying the location of the file.
h Pointer to a handle variable that will receive the handle that contains the

data in the file.
sizep Size of the handle returned in h.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

498 Module Documentation

Returns

If the file is found, readtohandle creates a Handle, reads all the data in the file into
it, assigns the handle to the variable hp, and returns the size of the data in size.
readtohandle returns 0 if the file was opened and read successfully, and non-zero
if there was an error.

34.32.2.4 void∗ stringload (C74 CONST char ∗ name)

Load a patcher file located in the Max search path by name.

This function searches for a patcher file, opens it, evaluates it as a patcher file, opens a
window for the patcher and brings it to the front. You need only specify a filename and
Max will look through its search path for the file. The search path begins with the current
’default volume’ that is often the volume of the last opened patcher file, then the folders
specified in the File Preferences dialog, searched depth first, then finally the folder that
contains the Max application.

Parameters
name Filename of the patcher file to load (C string).

Returns

If stringload() returns a non-zero result, you can later use freeobject() to close the
patcher, or just let users do it themselves. If stringload() returns zero, no file with
the specified name was found or there was insufficient memory to open it.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.33 Monitors and Displays 499

34.33 Monitors and Displays

Functions for finding our information about the environment.

Collaboration diagram for Monitors and Displays:

Monitors and DisplaysMiscellaneous

Functions

• long jmonitor_getnumdisplays ()

Return the number of monitors on which can be displayed.

• void jmonitor_getdisplayrect (long workarea, long displayindex, t_rect ∗rect)

Return the t_rect for a given display.

• void jmonitor_getdisplayrect_foralldisplays (long workarea, t_rect ∗rect)

Return a union of all display rects.

• void jmonitor_getdisplayrect_forpoint (long workarea, t_pt pt, t_rect ∗rect)

Return the t_rect for the display on which a point exists.

34.33.1 Detailed Description

Functions for finding our information about the environment.

34.33.2 Function Documentation

34.33.2.1 void jmonitor getdisplayrect (long workarea, long displayindex, t_rect ∗ rect)

Return the t_rect for a given display.

Parameters
workarea Set workarea non-zero to clip out things like dock / task bar.

displayindex The index number for a monitor. The primary monitor has an index of 0.
rect The address of a valid t_rect whose values will be filled-in upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

500 Module Documentation

34.33.2.2 void jmonitor getdisplayrect foralldisplays (long workarea, t_rect ∗ rect)

Return a union of all display rects.

Parameters
workarea Set workarea non-zero to clip out things like dock / task bar.

rect The address of a valid t_rect whose values will be filled-in upon return.

34.33.2.3 void jmonitor getdisplayrect forpoint (long workarea, t_pt pt, t_rect ∗ rect)

Return the t_rect for the display on which a point exists.

Parameters
workarea Set workarea non-zero to clip out things like dock / task bar.

pt A point, for which the monitor will be determined and the rect recturned.
rect The address of a valid t_rect whose values will be filled-in upon return.

34.33.2.4 long jmonitor getnumdisplays ()

Return the number of monitors on which can be displayed.

Returns

The number of monitors.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.34 Windows 501

34.34 Windows

Collaboration diagram for Windows:

Miscellaneous Windows

Functions

• t_object ∗ jwind_getactive (void)

Get the current window, if any.

• long jwind_getcount (void)

Determine how many windows exist.

• t_object ∗ jwind_getat (long index)

Return a pointer to the window with a given index.

34.34.1 Function Documentation

34.34.1.1 t_object∗ jwind getactive (void)

Get the current window, if any.

Returns

A pointer to the current window, if there is one. Otherwise returns NULL.

34.34.1.2 t_object∗ jwind getat (long index)

Return a pointer to the window with a given index.

Parameters
index Get window at index (0 to count-1).

Returns

A pointer to a window object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

502 Module Documentation

34.34.1.3 long jwind getcount (void)

Determine how many windows exist.

Returns

The number of windows.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.35 Mouse and Keyboard 503

34.35 Mouse and Keyboard

Collaboration diagram for Mouse and Keyboard:

Miscellaneous Mouse and Keyboard

Enumerations

• enum t_modifiers { eCommandKey, eShiftKey, eControlKey, eAltKey, eLeft-
Button, eRightButton, eMiddleButton, ePopupMenu, eCapsLock, eAutoRepeat
}

Bit mask values for various meta-key presses on the keyboard.

• enum t_jmouse_cursortype { JMOUSE_CURSOR_NONE, JMOUSE_CURSOR-
_ARROW, JMOUSE_CURSOR_WAIT, JMOUSE_CURSOR_IBEAM, JMOUSE-
_CURSOR_CROSSHAIR, JMOUSE_CURSOR_COPYING, JMOUSE_CURSO-
R_POINTINGHAND, JMOUSE_CURSOR_DRAGGINGHAND, JMOUSE_CUR-
SOR_RESIZE_LEFTRIGHT, JMOUSE_CURSOR_RESIZE_UPDOWN, JMOU-
SE_CURSOR_RESIZE_FOURWAY, JMOUSE_CURSOR_RESIZE_TOPEDGE,
JMOUSE_CURSOR_RESIZE_BOTTOMEDGE, JMOUSE_CURSOR_RESIZE-

_LEFTEDGE, JMOUSE_CURSOR_RESIZE_RIGHTEDGE, JMOUSE_CURSO-
R_RESIZE_TOPLEFTCORNER, JMOUSE_CURSOR_RESIZE_TOPRIGHTC-
ORNER, JMOUSE_CURSOR_RESIZE_BOTTOMLEFTCORNER, JMOUSE_C-
URSOR_RESIZE_BOTTOMRIGHTCORNER }

Mouse cursor types.

Functions

• t_modifiers jkeyboard_getcurrentmodifiers ()

Return the last known combination of modifier keys being held by the user.

• t_modifiers jkeyboard_getcurrentmodifiers_realtime ()

Return the current combination of modifier keys being held by the user.

• void jmouse_getposition_global (int ∗x, int ∗y)

Get the position of the mouse cursor in screen coordinates.

• void jmouse_setposition_global (int x, int y)

Set the position of the mouse cursor in screen coordinates.

• void jmouse_setposition_view (t_object ∗patcherview, double cx, double cy)

Set the position of the mouse cursor relative to the patcher canvas coordinates.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

504 Module Documentation

• void jmouse_setposition_box (t_object ∗patcherview, t_object ∗box, double bx,
double by)

Set the position of the mouse cursor relative to a box within the patcher canvas coor-
dinates.

• void jmouse_setcursor (t_object ∗patcherview, t_object ∗box, t_jmouse_-
cursortype type)

Set the mouse cursor.

34.35.1 Enumeration Type Documentation

34.35.1.1 enum t_jmouse_cursortype

Mouse cursor types.

Enumerator:

JMOUSE_CURSOR_NONE None.

JMOUSE_CURSOR_ARROW Arrow.

JMOUSE_CURSOR_WAIT Wait.

JMOUSE_CURSOR_IBEAM I-Beam.

JMOUSE_CURSOR_CROSSHAIR Crosshair.

JMOUSE_CURSOR_COPYING Copying.

JMOUSE_CURSOR_POINTINGHAND Pointing Hand.

JMOUSE_CURSOR_DRAGGINGHAND Dragging Hand.

JMOUSE_CURSOR_RESIZE_LEFTRIGHT Left-Right.

JMOUSE_CURSOR_RESIZE_UPDOWN Up-Down.

JMOUSE_CURSOR_RESIZE_FOURWAY Four Way.

JMOUSE_CURSOR_RESIZE_TOPEDGE Top Edge.

JMOUSE_CURSOR_RESIZE_BOTTOMEDGE Bottom Edge.

JMOUSE_CURSOR_RESIZE_LEFTEDGE Left Edge.

JMOUSE_CURSOR_RESIZE_RIGHTEDGE Right Edge.

JMOUSE_CURSOR_RESIZE_TOPLEFTCORNER Top-Left Corner.

JMOUSE_CURSOR_RESIZE_TOPRIGHTCORNER Top-Right Corner.

JMOUSE_CURSOR_RESIZE_BOTTOMLEFTCORNER Bottom-Left Corner.

JMOUSE_CURSOR_RESIZE_BOTTOMRIGHTCORNER Bottom-Right Corner.

34.35.1.2 enum t_modifiers

Bit mask values for various meta-key presses on the keyboard.

Enumerator:

eCommandKey Command Key.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.35 Mouse and Keyboard 505

eShiftKey Shift Key.

eControlKey Control Key.

eAltKey Alt Key.

eLeftButton Left mouse button.

eRightButton Right mouse button.

eMiddleButton Middle mouse button.

ePopupMenu Popup Menu (contextual menu requested)

eCapsLock Caps lock.

eAutoRepeat Key is generated by key press auto-repeat.

34.35.2 Function Documentation

34.35.2.1 t_modifiers jkeyboard getcurrentmodifiers ()

Return the last known combination of modifier keys being held by the user.

Returns

The current modifier keys that are activated.

34.35.2.2 t_modifiers jkeyboard getcurrentmodifiers realtime ()

Return the current combination of modifier keys being held by the user.

Returns

The current modifier keys that are activated.

34.35.2.3 void jmouse getposition global (int ∗ x, int ∗ y)

Get the position of the mouse cursor in screen coordinates.

Parameters
x The address of a variable to hold the x-coordinate upon return.
y The address of a variable to hold the y-coordinate upon return.

34.35.2.4 void jmouse setcursor (t_object ∗ patcherview, t_object ∗ box,
t_jmouse_cursortype type)

Set the mouse cursor.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

506 Module Documentation

Parameters
patcherview The patcherview for which the cursor should be applied.

box The box for which the cursor should be applied.
type The type of cursor for the mouse to use.

34.35.2.5 void jmouse setposition box (t_object ∗ patcherview, t_object ∗ box, double bx,
double by)

Set the position of the mouse cursor relative to a box within the patcher canvas coordi-
nates.

Parameters
patcherview The patcherview containing the box upon which the mouse coordinates

are based.
box The box upon which the mouse coordinates are based.
bx The new x-coordinate of the mouse cursor position.
by The new y-coordinate of the mouse cursor position.

34.35.2.6 void jmouse setposition global (int x, int y)

Set the position of the mouse cursor in screen coordinates.

Parameters
x The new x-coordinate of the mouse cursor position.
y The new y-coordinate of the mouse cursor position.

34.35.2.7 void jmouse setposition view (t_object ∗ patcherview, double cx, double cy)

Set the position of the mouse cursor relative to the patcher canvas coordinates.

Parameters
patcherview The patcherview upon which the mouse coordinates are based.

cx The new x-coordinate of the mouse cursor position.
cy The new y-coordinate of the mouse cursor position.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.36 MSP 507

34.36 MSP

Collaboration diagram for MSP:

PFFT

MSP Poly

Buffers

Data Structures

• struct t_pxdata

Common struct for MSP objects.

• struct t_pxobject

Header for any non-ui signal processing object.

• struct t_signal

The signal data structure.

• struct t_pxjbox

Header for any ui signal processing object.

Modules

• Buffers

Your object can access shared data stored in an MSP buffer∼ object.

• PFFT

When an object is instantiated, it is possible to determine if it is being created in pfft∼
context in the new method.

• Poly

If your object is instatiated as a voice of a poly∼ object, it is possible both to determine
this context and to determine information about the specific voice.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

508 Module Documentation

Defines

• #define Z_NO_INPLACE

flag indicating the object doesn’t want signals in place

• #define Z_PUT_LAST

when list of ugens is resorted, put this object at end

• #define Z_PUT_FIRST

when list of ugens is resorted, put this object at beginning

• #define PI

The pi constant.

• #define TWOPI

Twice the pi constant.

• #define PIOVERTWO

Half of the pi constant.

• #define dsp_setup

This is commonly used rather than directly calling z_dsp_setup() in MSP objects.

• #define dsp_free

This is commonly used rather than directly calling z_dsp_free() in MSP objects.

Typedefs

• typedef int t_int

An integer.

• typedef void ∗ t_vptr

A void pointer.

• typedef void ∗ vptr

A void pointer.

• typedef float t_float

A float -- always a 32 bit floating point number.

• typedef double t_double

A double -- always a 64 bit floating point number.

• typedef double t_sample

A sample value -- width determined by MSP version.

Enumerations

• enum { SYS_MAXBLKSIZE, SYS_MAXSIGS }

MSP System Properties.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.36 MSP 509

Functions

• int sys_getmaxblksize (void)

Query MSP for the maximum global vector (block) size.

• int sys_getblksize (void)

Query MSP for the current global vector (block) size.

• float sys_getsr (void)

Query MSP for the global sample rate.

• int sys_getdspstate (void)

Query MSP to determine whether or not it is running.

• int sys_getdspobjdspstate (t_object ∗o)

Query MSP to determine whether or not a given audio object is in a running dsp chain.

• void dsp_add (t_perfroutine f, int n,...)

Call this function in your MSP object’s dsp method.

• void dsp_addv (t_perfroutine f, int n, void ∗∗vector)

Call this function in your MSP object’s dsp method.

• void z_dsp_setup (t_pxobject ∗x, long nsignals)

Call this routine after creating your object in the new instance routine with object_-
alloc().

• void z_dsp_free (t_pxobject ∗x)

This function disposes of any memory used by proxies allocated by dsp_setup().

• void class_dspinit (t_class ∗c)

This routine must be called in your object’s initialization routine.

• void class_dspinitjbox (t_class ∗c)

This routine must be called in your object’s initialization routine.

Variables

• BEGIN_USING_C_LINKAGE typedef t_int ∗(∗ t_perfroutine)(t_int ∗args)

A function pointer for the audio perform routine used by MSP objects to process blocks
of samples.

34.36.1 Define Documentation

34.36.1.1 #define PI

The pi constant.

34.36.1.2 #define PIOVERTWO

Half of the pi constant.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

510 Module Documentation

34.36.1.3 #define TWOPI

Twice the pi constant.

34.36.2 Typedef Documentation

34.36.2.1 typedef double t_double

A double -- always a 64 bit floating point number.

34.36.2.2 typedef float t_float

A float -- always a 32 bit floating point number.

34.36.2.3 typedef int t_int

An integer.

34.36.2.4 typedef double t_sample

A sample value -- width determined by MSP version.

34.36.2.5 typedef void∗ t_vptr

A void pointer.

34.36.2.6 typedef void∗ vptr

A void pointer.

34.36.3 Enumeration Type Documentation

34.36.3.1 anonymous enum

MSP System Properties.

Enumerator:

SYS_MAXBLKSIZE a good number for a maximum signal vector size

SYS_MAXSIGS number of signal inlets you can have in an object

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.36 MSP 511

34.36.4 Function Documentation

34.36.4.1 void class dspinit (t_class ∗ c)

This routine must be called in your object’s initialization routine.

It adds a set of methods to your object’s class that are called by MSP to build the DSP
call chain. These methods function entirely transparently to your object so you don’t
have to worry about them. However, you should avoid binding anything to their names:
signal, userconnect, nsiginlets, and enable.

This routine is for non-user-interface objects only (where the first item in your object’s
struct is a t_pxobject). It must be called prior to calling class_register() for your class.

Parameters
c The class to make dsp-ready.

See also

class_dspinitjbox()

34.36.4.2 void class dspinitjbox (t_class ∗ c)

This routine must be called in your object’s initialization routine.

It adds a set of methods to your object’s class that are called by MSP to build the DSP
call chain. These methods function entirely transparently to your object so you don’t
have to worry about them. However, you should avoid binding anything to their names:
signal, userconnect, nsiginlets, and enable.

This routine is for user-interface objects only (where the first item in your object’s struct
is a t_jbox).

Parameters
c The class to make dsp-ready.

See also

class_dspinit()

34.36.4.3 void dsp add (t_perfroutine f, int n, ...)

Call this function in your MSP object’s dsp method.

This function adds your object’s perform method to the DSP call chain and specifies
the arguments it will be passed. n, the number of arguments to your perform method,
should be followed by n additional arguments, all of which must be the size of a pointer
or a long.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

512 Module Documentation

Parameters
f The perform routine to use for processing audio.

n The number of arguments that will follow
... The arguments that will be passed to the perform routine.

See also

The DSP Method and Perform Routine
Using Connection Information

34.36.4.4 void dsp addv (t_perfroutine f, int n, void ∗∗ vector)

Call this function in your MSP object’s dsp method.

Use dsp_addv() to add your object’s perform routine to the DSP call chain and specify
its arguments in an array rather than as arguments to a function.

Parameters
f The perform routine to use for processing audio.

n The number of arguments that will follow in the vector parameter.
vector The arguments that will be passed to the perform routine.

See also

The DSP Method and Perform Routine
Using Connection Information

34.36.4.5 int sys getblksize (void)

Query MSP for the current global vector (block) size.

Returns

The current global vector size for the MSP environment.

34.36.4.6 int sys getdspobjdspstate (t_object ∗ o)

Query MSP to determine whether or not a given audio object is in a running dsp chain.

This is preferable over sys_getdspstate() since global audio can be on but an object
could be in a patcher that is not running.

Returns

Returns true if the MSP object is in a patcher that has audio on, otherwise returns
false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.36 MSP 513

34.36.4.7 int sys getdspstate (void)

Query MSP to determine whether or not it is running.

Returns

Returns true if the DSP is turned on, otherwise returns false.

34.36.4.8 int sys getmaxblksize (void)

Query MSP for the maximum global vector (block) size.

Returns

The maximum global vector size for the MSP environment.

34.36.4.9 float sys getsr (void)

Query MSP for the global sample rate.

Returns

The global sample rate of the MSP environment.

34.36.4.10 void z dsp free (t_pxobject ∗ x)

This function disposes of any memory used by proxies allocated by dsp_setup().

It also notifies the signal compiler that the DSP call chain needs to be rebuilt if signal
processing is active. You should be sure to call this before de-allocating any memory
that might be in use by your object’s perform routine, in the event that signal processing
is on when your object is freed.

Parameters
x The object to free.

See also

dsp_free

34.36.4.11 void z dsp setup (t_pxobject ∗ x, long nsignals)

Call this routine after creating your object in the new instance routine with object_alloc().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

514 Module Documentation

Cast your object to t_pxobject as the first argument, then specify the number of signal
inputs your object will have. dsp_setup() initializes fields of the t_pxobject header and
allocates any proxies needed (if num_signal_inputs is greater than 1).

Some signal objects have no inputs; you should pass 0 for num_signal_inputs in this
case. After calling dsp_setup(), you can create additional non-signal inlets using intin(),
floatin(), or inlet_new().

Parameters
x Your object’s pointer.

nsignals The number of signal/proxy inlets to create for the object.

See also

dsp_setup

34.36.5 Variable Documentation

34.36.5.1 BEGIN USING C LINKAGE typedef t_int∗(∗ t_perfroutine)(t_int ∗args)

A function pointer for the audio perform routine used by MSP objects to process blocks
of samples.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.37 Buffers 515

34.37 Buffers

Your object can access shared data stored in an MSP buffer∼ object.

Collaboration diagram for Buffers:

MSP Buffers

Data Structures

• struct t_buffer

Data structure for the buffer∼ object.

34.37.1 Detailed Description

Your object can access shared data stored in an MSP buffer∼ object. Similar to table
and coll objects, buffer∼ objects are bound to a t_symbol from which you can gain
access to the t_buffer struct. Consider the following example.

t_symbol *s;
t_object *o;

s = gensym("foo");
o = s->s_thing;

// if an object is bound to the symbol "foo", then o is that object.
if (ob_sym(o) == gensym("buffer~")) {

// that object is a buffer~, so we can use it
x->x_buffer = (t_buffer*)o;

}

Having stored a pointer to the buffer∼ is the first step toward working with its data. -
However, you must not go accessing the data directly without taking some precautions
regarding thread-safety.

To access the data in a buffer you first increment the b_inuse member of the t_buffer’s
struct. Then you perform the requisite operations on the data, which is stored in the
b_samples member. When you are done you decrement the b_inuse member to return
it to the state in which you found it.

In the past you may have set the buffer’s b_inuse flag directly and cleared it when you
were done. This is no longer good enough, and you must instead use the threadsafe

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

516 Module Documentation

macros ATOMIC_INCREMENT and ATOMIC_DECREMENT for modifying the b_inuse
flag. The example below demonstrates what this might look like in an MSP object’s
perform routine. Notice that extra care has been taken to ensure that the ATOMIC_IN-
CREMENT is always balanced with an ATOMIC_DECREMENT call.

ATOMIC_INCREMENT(&x->w_buf->b_inuse);
if (!x->w_buf->b_valid) {

ATOMIC_DECREMENT(&x->w_buf->b_inuse);
goto byebye;

}

// do something with the buffer

ATOMIC_DECREMENT(&x->w_buf->b_inuse);
byebye:

return (w + 7);

A class that accesses buffer∼ objects is the simpwave∼ object that is included with
Max 5 SDK example projects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.38 PFFT 517

34.38 PFFT

When an object is instantiated, it is possible to determine if it is being created in pfft∼
context in the new method.

Collaboration diagram for PFFT:

PFFTMSP

Data Structures

• struct t_pfftpub

Public FFT Patcher struct.

34.38.1 Detailed Description

When an object is instantiated, it is possible to determine if it is being created in pfft∼
context in the new method. In the new method (and only at this time), you can check
the s_thing member of the t_symbol ’__pfft∼__’. If this is non-null, then you will have a
pointer to a t_pfftpub struct.

t_pfftpub *pfft_parent = (t_pfftpub*) gensym("__pfft~__")->s_thing;

if (pfft_parent) {
// in a pfft~ context

}
else {

// not in a pfft~
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

518 Module Documentation

34.39 Poly

If your object is instatiated as a voice of a poly∼ object, it is possible both to determine
this context and to determine information about the specific voice.

Collaboration diagram for Poly:

MSP Poly

If your object is instatiated as a voice of a poly∼ object, it is possible both to determine
this context and to determine information about the specific voice. This is done by
querying the patcher in which your object exists for an associated object, and then
calling methods on that object.

t_object *patcher = NULL;
t_max_err err = MAX_ERR_NONE;
t_object *assoc = NULL;
method m = NULL;
long voices = -1;
long index = -1;

err = object_obex_lookup(x, gensym("#P"), &patcher);
if (err == MAX_ERR_NONE) {

object_method(patcher, gensym("getassoc"), &assoc);
if (assoc) {

post("found %s", object_classname(assoc)->s_name);

voices = object_attr_getlong(assoc, gensym("voices"));
post("total amount of voices: %ld", voices);

if(m = zgetfn(assoc, gensym("getindex")))
index = (long)(*m)(assoc, patcher);

post("index: %ld", index);
}

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 519

34.40 Objects

Data Structures

• struct t_messlist

A list of symbols and their corresponding methods, complete with typechecking infor-
mation.

• struct t_tinyobject

The tiny object structure sits at the head of any object to which you may pass mes-
sages (and which you may feed to freeobject()).

• struct t_object

The structure for the head of any object which wants to have inlets or outlets, or support
attributes.

Defines

• #define MAGIC

Magic number used to determine if memory pointed to by a t_object∗ is valid.

• #define NOGOOD(x)

Returns true if a pointer is not a valid object.

• #define MAXARG

Maximum number of arguments that can be passed as a typed-list rather than using
A_GIMME.

Functions

• t_object ∗ newobject_sprintf (t_object ∗patcher, C74_CONST char ∗fmt,...)

Create a new object in a specified patcher with values using a combination of attribute
and sprintf syntax.

• t_object ∗ newobject_fromdictionary (t_object ∗patcher, t_dictionary ∗d)

Place a new object into a patcher.

• long object_classname_compare (void ∗x, t_symbol ∗name)

Determines if a particular object is an instance of a given class.

• void ∗ object_alloc (t_class ∗c)

Allocates the memory for an instance of an object class and initialize its object header.

• void ∗ object_new (t_symbol ∗name_space, t_symbol ∗classname,...)

Allocates the memory for an instance of an object class and initialize its object header
internal to Max.

• void ∗ object_new_typed (t_symbol ∗name_space, t_symbol ∗classname, long
ac, t_atom ∗av)

Allocates the memory for an instance of an object class and initialize its object header
internal to Max.

• t_max_err object_free (void ∗x)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

520 Module Documentation

Call the free function and release the memory for an instance of an internal object
class previously instantiated using object_new(), object_new_typed() or other new-
style object constructor functions (e.g.

• void ∗ object_method (void ∗x, t_symbol ∗s,...)

Sends an untyped message to an object.

• t_max_err object_method_typed (void ∗x, t_symbol ∗s, long ac, t_atom ∗av, t_-
atom ∗rv)

Sends a type-checked message to an object.

• t_max_err object_method_typedfun (void ∗x, t_messlist ∗mp, t_symbol ∗s, long
ac, t_atom ∗av, t_atom ∗rv)

Currently undocumented.

• method object_getmethod (void ∗x, t_symbol ∗s)

Retrieves an object’s method for a particular message selector.

• t_symbol ∗ object_classname (void ∗x)

Retrieves an object instance’s class name.

• void ∗ object_register (t_symbol ∗name_space, t_symbol ∗s, void ∗x)

Registers an object in a namespace.

• void ∗ object_findregistered (t_symbol ∗name_space, t_symbol ∗s)

Determines a registered object’s pointer, given its namespace and name.

• t_max_err object_findregisteredbyptr (t_symbol ∗∗name_space, t_symbol ∗∗s,
void ∗x)

Determines the namespace and/or name of a registered object, given the object’s
pointer.

• void ∗ object_attach (t_symbol ∗name_space, t_symbol ∗s, void ∗x)

Attaches a client to a registered object.

• t_max_err object_detach (t_symbol ∗name_space, t_symbol ∗s, void ∗x)

Detach a client from a registered object.

• t_max_err object_attach_byptr (void ∗x, void ∗registeredobject)

Attaches a client to a registered object.

• t_max_err object_attach_byptr_register (void ∗x, void ∗object_to_attach, t_-
symbol ∗reg_name_space)

A convenience function wrapping object_register() and object_attach_byptr().

• t_max_err object_detach_byptr (void ∗x, void ∗registeredobject)

Detach a client from a registered object.

• void ∗ object_subscribe (t_symbol ∗name_space, t_symbol ∗s, t_symbol
∗classname, void ∗x)

Subscribes a client to wait for an object to register.

• t_max_err object_unsubscribe (t_symbol ∗name_space, t_symbol ∗s, t_symbol
∗classname, void ∗x)

Unsubscribe a client from a registered object, detaching if the object is registered.

• t_max_err object_unregister (void ∗x)

Removes a registered object from a namespace.

• t_max_err object_register_getnames (t_symbol ∗name_space, long ∗namecount,
t_symbol ∗∗∗names)

Returns all registered names in a namespace.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 521

• t_max_err object_notify (void ∗x, t_symbol ∗s, void ∗data)

Broadcast a message (with an optional argument) from a registered object to any
attached client objects.

• t_class ∗ object_class (void ∗x)

Determines the class of a given object.

• t_max_err object_getvalueof (void ∗x, long ∗ac, t_atom ∗∗av)

Retrieves the value of an object which supports the getvalueof/setvalueof
interface.

• t_max_err object_setvalueof (void ∗x, long ac, t_atom ∗av)

Sets the value of an object which supports the getvalueof/setvalueof inter-
face.

• t_max_err object_obex_lookup (void ∗x, t_symbol ∗key, t_object ∗∗val)

Retrieves the value of a data stored in the obex.

• t_max_err object_obex_store (void ∗x, t_symbol ∗key, t_object ∗val)

Stores data in the object’s obex.

• void object_obex_dumpout (void ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Sends data from the object’s dumpout outlet.

• t_dictionary ∗ object_dictionaryarg (long ac, t_atom ∗av)

Retrieve a pointer to a dictionary passed in as an atom argument.

• void ∗ object_super_method (t_object ∗x, t_symbol ∗s,...)

Sends an untyped message to an object using superclass methods.

• void ∗ object_this_method (t_object ∗x, t_symbol ∗s,...)

Sends an untyped message to an object, respects a thread specific class stack from
object_super_method() calls.

• t_max_err object_attr_touch (t_object ∗x, t_symbol ∗attrname)

Mark an attribute as being touched by some code not from the attribute setter.

• t_max_err object_attr_touch_parse (t_object ∗x, char ∗attrnames)

Mark one or more attributes as being touched by some code not from the attribute
setter.

• t_max_err object_method_parse (t_object ∗x, t_symbol ∗s, C74_CONST char
∗parsestr, t_atom ∗rv)

Convenience wrapper for object_method_typed() that uses atom_setparse() to define
the arguments.

• t_max_err object_method_format (t_object ∗x, t_symbol ∗s, t_atom ∗rv, C74_C-
ONST char ∗fmt,...)

Convenience wrapper for object_method_typed() that uses atom_setformat() to define
the arguments.

• t_max_err object_method_char (t_object ∗x, t_symbol ∗s, unsigned char v, t_-
atom ∗rv)

Convenience wrapper for object_method_typed() that passes a single char as an ar-
gument.

• t_max_err object_method_long (t_object ∗x, t_symbol ∗s, long v, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes a single long integer as
an argument.

• t_max_err object_method_float (t_object ∗x, t_symbol ∗s, float v, t_atom ∗rv)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

522 Module Documentation

Convenience wrapper for object_method_typed() that passes a single 32bit float as an
argument.

• t_max_err object_method_double (t_object ∗x, t_symbol ∗s, double v, t_atom
∗rv)

Convenience wrapper for object_method_typed() that passes a single 64bit float as an
argument.

• t_max_err object_method_sym (t_object ∗x, t_symbol ∗s, t_symbol ∗v, t_atom
∗rv)

Convenience wrapper for object_method_typed() that passes a single t_symbol∗ as
an argument.

• t_max_err object_method_obj (t_object ∗x, t_symbol ∗s, t_object ∗v, t_atom
∗rv)

Convenience wrapper for object_method_typed() that passes a single t_object∗ as an
argument.

• t_max_err object_method_char_array (t_object ∗x, t_symbol ∗s, long ac, un-
signed char ∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of char values
as an argument.

• t_max_err object_method_long_array (t_object ∗x, t_symbol ∗s, long ac, long
∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of long integers
values as an argument.

• t_max_err object_method_float_array (t_object ∗x, t_symbol ∗s, long ac, float
∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of 32bit floats
values as an argument.

• t_max_err object_method_double_array (t_object ∗x, t_symbol ∗s, long ac, dou-
ble ∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of 64bit float
values as an argument.

• t_max_err object_method_sym_array (t_object ∗x, t_symbol ∗s, long ac, t_-
symbol ∗∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of t_symbol∗
values as an argument.

• t_max_err object_method_obj_array (t_object ∗x, t_symbol ∗s, long ac, t_object
∗∗av, t_atom ∗rv)

Convenience wrapper for object_method_typed() that passes an array of t_object∗
values as an argument.

• void object_openhelp (t_object ∗x)

Open the help patcher for a given instance of an object.

• void object_openrefpage (t_object ∗x)

Open the reference page for a given instance of an object.

• void object_openquery (t_object ∗x)

Open a search in the file browser for files with the name of the given object.

• void classname_openhelp (char ∗classname)

Open the help patcher for a given object class name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 523

• void classname_openrefpage (char ∗classname)

Open the reference page for a given object class name.

• void classname_openquery (char ∗classname)

Open a search in the file browser for files with the name of the given class.

34.40.1 Detailed Description

See also

http://www.cycling74.com/twiki/bin/view/ProductDocumentation/-
JitterSdkObjectModel
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/-
JitterSdkRegNotify

34.40.2 Define Documentation

34.40.2.1 #define MAXARG

Maximum number of arguments that can be passed as a typed-list rather than using
A_GIMME.

It is generally recommended to use A_GIMME.

34.40.3 Function Documentation

34.40.3.1 void classname openhelp (char ∗ classname)

Open the help patcher for a given object class name.

Parameters
classname The class name for which to open the help patcher.

34.40.3.2 void classname openquery (char ∗ classname)

Open a search in the file browser for files with the name of the given class.

Parameters
classname The class name for which to query.

34.40.3.3 void classname openrefpage (char ∗ classname)

Open the reference page for a given object class name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkObjectModel
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkObjectModel
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkRegNotify
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkRegNotify

524 Module Documentation

Parameters
classname The class name for which to open the reference page.

34.40.3.4 t_object∗ newobject fromdictionary (t_object ∗ patcher, t_dictionary ∗ d)

Place a new object into a patcher.

The new object will be created based on a specification contained in a Dictionary.

Create a new dictionary populated with values using a combination of attribute and
sprintf syntax.

Parameters
patcher An instance of a patcher object.

d A dictionary containing an object specification.

Returns

A pointer to the newly created object instance, or NULL if creation of the object fails.

Remarks

Max attribute syntax is used to define key-value pairs. For example,

"@key1 value @key2 another_value"

The example below creates a new object that in a patcher whose object pointer is
stored in a variable called "aPatcher".

t_dictionary *d;
t_object *o;
char text[4];

strncpy_zero(text, "foo", 4);

d = dictionary_sprintf("@maxclass comment @varname _name \
@text \"%s\" @patching_rect %.2f %.2f %.2f %.2f \
@fontsize %f @textcolor %f %f %f 1.0 \
@fontname %s @bgcolor 0.001 0.001 0.001 0.",
text, 20.0, 20.0, 200.0, 24.0,
18, 0.9, 0.9, 0.9, "Arial");

o = newobject_fromdictionary(aPatcher, d);

See also

newobject_sprintf()
newobject_fromdictionary()
atom_setparse()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 525

34.40.3.5 t_object∗ newobject sprintf (t_object ∗ patcher, C74 CONST char ∗ fmt, ...)

Create a new object in a specified patcher with values using a combination of attribute
and sprintf syntax.

Parameters
patcher An instance of a patcher object.

fmt An sprintf-style format string specifying key-value pairs with attribute
nomenclature.

... One or more arguments which are to be substituted into the format
string.

Returns

A pointer to the newly created object instance, or NULL if creation of the object fails.

Remarks

Max attribute syntax is used to define key-value pairs. For example,

"@key1 value @key2 another_value"

The example below creates a new object that in a patcher whose object pointer is
stored in a variable called "aPatcher".

t_object *my_comment;
char text[4];

strncpy_zero(text, "foo", 4);

my_comment = newobject_sprintf(aPatcher, "@maxclass comment @varname _name
\
@text \"%s\" @patching_rect %.2f %.2f %.2f %.2f \
@fontsize %f @textcolor %f %f %f 1.0 \
@fontname %s @bgcolor 0.001 0.001 0.001 0.",
text, 20.0, 20.0, 200.0, 24.0,
18, 0.9, 0.9, 0.9, "Arial");

See also

dictionary_sprintf()
newobject_fromdictionary()
atom_setparse()

34.40.3.6 void∗ object alloc (t_class ∗ c)

Allocates the memory for an instance of an object class and initialize its object header.

It is used like the traditional function newobject, inside of an object’s new method, but
its use is required with obex-class objects.

Parameters

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

526 Module Documentation

c The class pointer, returned by class_new()

Returns

This function returns a new instance of an object class if successful, or NULL if
unsuccessful.

34.40.3.7 void∗ object attach (t_symbol ∗ name space, t_symbol ∗ s, void ∗ x)

Attaches a client to a registered object.

Once attached, the object will receive notifications sent from the registered object (via
the object_notify() function), if it has a notify method defined and implemented.

Parameters
name_space The namespace of the registered object. This should be the same value

used in object_register() to register the object. If you don’t know the
registered object’s namespace, the object_findregisteredbyptr() func-
tion can be used to determine it.

s The name of the registered object in the namespace. If you don’t know
the name of the registered object, the object_findregisteredbyptr() func-
tion can be used to determine it.

x The client object to attach. Generally, this is the pointer to your Max
object.

Returns

This function returns a pointer to the registered object (to the object referred to
by the combination of name_space and s arguments) if successful, or NULL if
unsuccessful.

Remarks

You should not attach an object to itself if the object is a UI object. UI objects
automatically register and attach to themselves in jbox_new().

See also

object_notify()
object_detach()
object_attach_byptr()
object_register()

34.40.3.8 t_max_err object attach byptr (void ∗ x, void ∗ registeredobject)

Attaches a client to a registered object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 527

Unlike object_attach(), the client is specified by providing a pointer to that object rather
than the registered name of that object.

Once attached, the object will receive notifications sent from the registered object (via
the object_notify() function), if it has a notify method defined and implemented.

Parameters
x The attaching client object. Generally, this is the pointer to your Max

object.
registere-

dobject
A pointer to the registered object to which you wish to attach.

Returns

A Max error code.

Remarks

You should not attach an object to itself if the object is a UI object. UI objects
automatically register and attach to themselves in jbox_new().

See also

object_notify()
object_detach()
object_attach()
object_register()
object_attach_byptr_register()

34.40.3.9 t_max_err object attach byptr register (void ∗ x, void ∗ object to attach,
t_symbol ∗ reg name space)

A convenience function wrapping object_register() and object_attach_byptr().

Parameters
x The attaching client object. Generally, this is the pointer to your Max

object.
object_to_-

attach
A pointer to the object to which you wish to registered and then to which
to attach.

reg_name_-
space

The namespace in which to register the object_to_attach.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

528 Module Documentation

See also

object_register()
object_attach_byptr()

34.40.3.10 t_max_err object attr touch (t_object ∗ x, t_symbol ∗ attrname)

Mark an attribute as being touched by some code not from the attribute setter.

This will notify clients that the attribute has changed.

Parameters
x The object whose attribute has been changed

attrname The attribute name

Returns

A Max error code

34.40.3.11 t_max_err object attr touch parse (t_object ∗ x, char ∗ attrnames)

Mark one or more attributes as being touched by some code not from the attribute setter.

This will notify clients that the attributes have changed. Utility to call object_attr_touch()
for several attributes

Parameters
x The object whose attribute has been changed

attrnames The attribute names as a space separated string

Returns

A Max error code

34.40.3.12 t_class∗ object class (void ∗ x)

Determines the class of a given object.

Parameters
x The object to test

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 529

Returns

This function returns the t_class ∗ of the object’s class, if successful, or NULL, if
unsuccessful.

34.40.3.13 t_symbol∗ object classname (void ∗ x)

Retrieves an object instance’s class name.

Parameters
x The object instance whose class name is being queried

Returns

The classname, or NULL if unsuccessful.

34.40.3.14 long object classname compare (void ∗ x, t_symbol ∗ name)

Determines if a particular object is an instance of a given class.

Parameters
x The object to test

name The name of the class to test this object against

Returns

This function returns 1 if the object is an instance of the named class. Otherwise, 0
is returned.

Remarks

For instance, to determine whether an unknown object pointer is a pointer to a print
object, one would call:

long isprint = object_classname_compare(x, gensym("print"));

34.40.3.15 t_max_err object detach (t_symbol ∗ name space, t_symbol ∗ s, void ∗ x)

Detach a client from a registered object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

530 Module Documentation

Parameters
name_space The namespace of the registered object. This should be the same value

used in object_register() to register the object. If you don’t know the
registered object’s namespace, the object_findregisteredbyptr() func-
tion can be used to determine it.

s The name of the registered object in the namespace. If you don’t know
the name of the registered object, the object_findregisteredbyptr() func-
tion can be used to determine it.

x The client object to attach. Generally, this is the pointer to your Max
object.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.40.3.16 t_max_err object detach byptr (void ∗ x, void ∗ registeredobject)

Detach a client from a registered object.

Parameters
x The attaching client object. Generally, this is the pointer to your Max

object.
registere-

dobject
The object from which to detach.

Returns

A Max error code.

See also

object_detach()
object_attach_byptr()

34.40.3.17 t_dictionary∗ object dictionaryarg (long ac, t_atom ∗ av)

Retrieve a pointer to a dictionary passed in as an atom argument.

Use this function when working with classes that have dictionary constructors to fetch
the dictionary.

Parameters
ac The number of atoms.
av A pointer to the first atom in the array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 531

Returns

The dictionary retrieved from the atoms.

See also

attr_dictionary_process()

34.40.3.18 void∗ object findregistered (t_symbol ∗ name space, t_symbol ∗ s)

Determines a registered object’s pointer, given its namespace and name.

Parameters
name_space The namespace of the registered object

s The name of the registered object in the namespace

Returns

This function returns the pointer of the registered object, if successful, or NULL, if
unsuccessful.

34.40.3.19 t_max_err object findregisteredbyptr (t_symbol ∗∗ name space, t_symbol ∗∗
s, void ∗ x)

Determines the namespace and/or name of a registered object, given the object’s
pointer.

Parameters
name_space Pointer to a t_symbol ∗, to receive the namespace of the registered

object
s Pointer to a t_symbol ∗, to receive the name of the registered object

within the namespace
x Pointer to the registered object

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.40.3.20 t_max_err object free (void ∗ x)

Call the free function and release the memory for an instance of an internal object
class previously instantiated using object_new(), object_new_typed() or other new-style
object constructor functions (e.g.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

532 Module Documentation

hashtab_new()). It is, at the time of this writing, a wrapper for the traditional function
freeobject(), but its use is suggested with obex-class objects.

Parameters
x The pointer to the object to be freed.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.40.3.21 method object getmethod (void ∗ x, t_symbol ∗ s)

Retrieves an object’s method for a particular message selector.

Parameters
x The object whose method is being queried
s The message selector

Returns

This function returns the method if successful, or method_false() if unsuccessful.

34.40.3.22 t_max_err object getvalueof (void ∗ x, long ∗ ac, t_atom ∗∗ av)

Retrieves the value of an object which supports the getvalueof/setvalueof
interface.

See part 2 of the pattr SDK for more information on this interface.

Parameters
x The object whose value is of interest

ac Pointer to a long variable to receive the count of arguments in av. The
long variable itself should be set to 0 previous to calling this function.

av Pointer to a t_atom ∗, to receive object data. The t_atom ∗ itself should
be set to NULL previous to calling this function.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 533

Remarks

Calling the object_getvalueof() function allocates memory for any data it returns. It
is the developer’s responsibility to free it, using the freebytes() function.
Developers wishing to design objects which will support this function being called
on them must define and implement a special method, getvalueof, like so:

class_addmethod(c, (method)myobject_getvalueof, "getvalueof", A_CANT, 0);

The getvalueof method should be prototyped as:

t_max_err myobject_getvalueof(t_myobject *x, long *ac, t_atom **av);

And implemented, generally, as:

t_max_err myobj_getvalueof(t_myobj *x, long *ac, t_atom **av)
{

if (ac && av) {
if (*ac && *av) {

// memory has been passed in; use it.
} else {

// allocate enough memory for your data

*av = (t_atom *)getbytes(sizeof(t_atom));
}

*ac = 1; // our data is a single floating point value
atom_setfloat(*av, x->objvalue);

}
return MAX_ERR_NONE;

}

@remark By convention, and to permit the interoperability of
objects using the obex API,

developers should allocate memory in their <tt>getvalueof</
tt> methods using the getbytes() function.

34.40.3.23 void∗ object method (void ∗ x, t_symbol ∗ s, ...)

Sends an untyped message to an object.

Parameters
x The object that will receive the message
s The message selector

... Any arguments to the message

Returns

If the receiver object can respond to the message, object_method() returns the
result. Otherwise, the function will return 0.

Remarks

Example: To send the message bang to the object bang_me:

void *bang_result;
bang_result = object_method(bang_me, gensym("bang"));

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

534 Module Documentation

34.40.3.24 t_max_err object method char (t_object ∗ x, t_symbol ∗ s, unsigned char v,
t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes a single char as an argu-
ment.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.25 t_max_err object method char array (t_object ∗ x, t_symbol ∗ s, long ac,
unsigned char ∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of char values as
an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.26 t_max_err object method double (t_object ∗ x, t_symbol ∗ s, double v,
t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes a single 64bit float as an
argument.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 535

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.27 t_max_err object method double array (t_object ∗ x, t_symbol ∗ s, long ac,
double ∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of 64bit float val-
ues as an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.28 t_max_err object method float (t_object ∗ x, t_symbol ∗ s, float v, t_atom ∗
rv)

Convenience wrapper for object_method_typed() that passes a single 32bit float as an
argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

536 Module Documentation

Returns

A Max error code.

See also

object_method_typed()

34.40.3.29 t_max_err object method float array (t_object ∗ x, t_symbol ∗ s, long ac,
float ∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of 32bit floats
values as an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.30 t_max_err object method format (t_object ∗ x, t_symbol ∗ s, t_atom ∗ rv,
C74 CONST char ∗ fmt, ...)

Convenience wrapper for object_method_typed() that uses atom_setformat() to define
the arguments.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

rv The address of an atom to hold a return value.
fmt An sprintf-style format string specifying values for the atoms.
... One or more arguments which are to be substituted into the format

string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 537

Returns

A Max error code.

See also

object_method_typed()
atom_setformat()

34.40.3.31 t_max_err object method long (t_object ∗ x, t_symbol ∗ s, long v, t_atom ∗
rv)

Convenience wrapper for object_method_typed() that passes a single long integer as
an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.32 t_max_err object method long array (t_object ∗ x, t_symbol ∗ s, long ac,
long ∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of long integers
values as an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

538 Module Documentation

Returns

A Max error code.

See also

object_method_typed()

34.40.3.33 t_max_err object method obj (t_object ∗ x, t_symbol ∗ s, t_object ∗ v,
t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes a single t_object∗ as an
argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.34 t_max_err object method obj array (t_object ∗ x, t_symbol ∗ s, long ac,
t_object ∗∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of t_object∗ val-
ues as an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 539

See also

object_method_typed()

34.40.3.35 t_max_err object method parse (t_object ∗ x, t_symbol ∗ s, C74 CONST char
∗ parsestr, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that uses atom_setparse() to define
the arguments.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

parsestr A C-string to parse into an array of atoms to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()
atom_setparse()

34.40.3.36 t_max_err object method sym (t_object ∗ x, t_symbol ∗ s, t_symbol ∗ v,
t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes a single t_symbol∗ as an
argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.
v An argument to pass to the method.

rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

540 Module Documentation

34.40.3.37 t_max_err object method sym array (t_object ∗ x, t_symbol ∗ s, long ac,
t_symbol ∗∗ av, t_atom ∗ rv)

Convenience wrapper for object_method_typed() that passes an array of t_symbol∗
values as an argument.

Parameters
x The object to which the message will be sent.
s The name of the method to call on the object.

ac The number of arguments to pass to the method.
av The address of the first of the array of arguments to pass to the method.
rv The address of an atom to hold a return value.

Returns

A Max error code.

See also

object_method_typed()

34.40.3.38 t_max_err object method typed (void ∗ x, t_symbol ∗ s, long ac, t_atom ∗ av,
t_atom ∗ rv)

Sends a type-checked message to an object.

Parameters
x The object that will receive the message
s The message selector

ac Count of message arguments in av
av Array of t_atoms; the message arguments
rv Return value of function, if available

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

If the receiver object can respond to the message, object_method_typed() returns
the result in rv. Otherwise, rv will contain an A_NOTHING atom.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 541

34.40.3.39 t_max_err object method typedfun (void ∗ x, t_messlist ∗ mp, t_symbol ∗ s,
long ac, t_atom ∗ av, t_atom ∗ rv)

Currently undocumented.

Parameters
x The object that will receive the message

mp Undocumented
s The message selector

ac Count of message arguments in av
av Array of t_atoms; the message arguments
rv Return value of function, if available

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

If the receiver object can respond to the message, object_method_typedfun() re-
turns the result in rv. Otherwise, rv will contain an A_NOTHING atom.

34.40.3.40 void∗ object new (t_symbol ∗ name space, t_symbol ∗ classname, ...)

Allocates the memory for an instance of an object class and initialize its object header
internal to Max .

It is used similarly to the traditional function newinstance(), but its use is required with
obex-class objects.

Parameters
name_space The desired object’s name space. Typically, either the constant CLAS-

S_BOX, for obex classes which can instantiate inside of a Max patcher
(e.g. boxes, UI objects, etc.), or the constant CLASS_NOBOX, for
classes which will only be used internally. Developers can define their
own name spaces as well, but this functionality is currently undocu-
mented.

classname The name of the class of the object to be created
... Any arguments expected by the object class being instantiated

Returns

This function returns a new instance of the object class if successful, or NULL if
unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

542 Module Documentation

34.40.3.41 void∗ object new typed (t_symbol ∗ name space, t_symbol ∗ classname, long
ac, t_atom ∗ av)

Allocates the memory for an instance of an object class and initialize its object header
internal to Max .

It is used similarly to the traditional function newinstance(), but its use is required with
obex-class objects. The object_new_typed() function differs from object_new() by its
use of an atom list for object arguments—in this way, it more resembles the effect of
typing something into an object box from the Max interface.

Parameters
name_space The desired object’s name space. Typically, either the constant CLAS-

S_BOX, for obex classes which can instantiate inside of a Max patcher
(e.g. boxes, UI objects, etc.), or the constant CLASS_NOBOX, for
classes which will only be used internally. Developers can define their
own name spaces as well, but this functionality is currently undocu-
mented.

classname The name of the class of the object to be created
ac Count of arguments in av
av Array of t_atoms; arguments to the class’s instance creation function.

Returns

This function returns a new instance of the object class if successful, or NULL if
unsuccessful.

34.40.3.42 t_max_err object notify (void ∗ x, t_symbol ∗ s, void ∗ data)

Broadcast a message (with an optional argument) from a registered object to any at-
tached client objects.

Parameters
x Pointer to the registered object
s The message to send

data An optional argument which will be passed with the message. Sets this
argument to NULL if it will be unused.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

In order for client objects to receive notifications, they must define and implement a
special method, notify, like so:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 543

class_addmethod(c, (method)myobject_notify, "notify", A_CANT, 0);

The notify method should be prototyped as:

void myobject_notify(t_myobject *x, t_symbol *s, t_symbol *msg, void *
sender, void *data);

where x is the pointer to the receiving object, s is the name of the sending (regis-
tered) object in its namespace, msg is the sent message, sender is the pointer to
the sending object, and data is an optional argument sent with the message. This
value corresponds to the data argument in the object_notify() method.

34.40.3.43 void object obex dumpout (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv)

Sends data from the object’s dumpout outlet.

The dumpout outlet is stored in the obex using the object_obex_store() function (see
above). It is used approximately like outlet_anything().

Parameters
x The object pointer. This function should only be called on instantiated

objects (i.e. in the new method or later), not directly on classes (i.e. in
main()).

s The message selector t_symbol ∗
argc Number of elements in the argument list in argv
argv t_atoms constituting the message arguments

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.40.3.44 t_max_err object obex lookup (void ∗ x, t_symbol ∗ key, t_object ∗∗ val)

Retrieves the value of a data stored in the obex.

Parameters
x The object pointer. This function should only be called on instantiated

objects (i.e. in the new method or later), not directly on classes (i.e. in
main()).

key The symbolic name for the data to be retrieved
val A pointer to a t_object ∗, to be filled with the data retrieved from the

obex.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

544 Module Documentation

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

By default, pointers to the object’s containing patcher and box objects are stored in
the obex, under the keys ’#P’ and ’#B’, respectively. To retrieve them, the developer
could do something like the following:

void post_containers(t_obexobj *x)
{

t_patcher *p;
t_box *b;
t_max_err err;

err = object_obex_lookup(x, gensym("#P"), (t_object **)&p);
err = object_obex_lookup(x, gensym("#B"), (t_object **)&b);

post("my patcher is located at 0x%X", p);
post("my box is located at 0x%X", b);

}

34.40.3.45 t_max_err object obex store (void ∗ x, t_symbol ∗ key, t_object ∗ val)

Stores data in the object’s obex.

Parameters
x The object pointer. This function should only be called on instantiated

objects (i.e. in the new method or later), not directly on classes (i.e. in
main()).

key A symbolic name for the data to be stored
val A t_object ∗, to be stored in the obex, referenced under the key.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

Most developers will need to use this function for the specific purpose of storing the
dumpout outlet in the obex (the dumpout outlet is used by attributes to report data
in response to ’get’ queries). For this, the developer should use something like the
following in the object’s new method:

object_obex_store(x, _sym_dumpout, outlet_new(x, NULL));

34.40.3.46 void object openhelp (t_object ∗ x)

Open the help patcher for a given instance of an object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 545

Parameters
x The object instance for which to open the help patcher.

34.40.3.47 void object openquery (t_object ∗ x)

Open a search in the file browser for files with the name of the given object.

Parameters
x The object instance for which to query.

34.40.3.48 void object openrefpage (t_object ∗ x)

Open the reference page for a given instance of an object.

Parameters
x The object instance for which to open the reference page.

34.40.3.49 void∗ object register (t_symbol ∗ name space, t_symbol ∗ s, void ∗ x)

Registers an object in a namespace.

Parameters
name_space The namespace in which to register the object. The namespace can

be any symbol. If the namespace does not already exist, it is created
automatically.

s The name of the object in the namespace. This name will be used by
other objects to attach and detach from the registered object.

x The object to register

Returns

The function returns a pointer to the registered object. Under some circumstances,
object_register will duplicate the object, and return a pointer to the duplicate—the
developer should not assume that the pointer passed in is the same pointer that
has been registered. To be safe, the returned pointer should be stored and used
with the bject_unregister() function.

Remarks

You should not register an object if the object is a UI object. UI objects automatically
register and attach to themselves in jbox_new().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

546 Module Documentation

34.40.3.50 t_max_err object register getnames (t_symbol ∗ name space, long ∗
namecount, t_symbol ∗∗∗ names)

Returns all registered names in a namespace.

Parameters
name_space Pointer to a t_symbol, the namespace to lookup names in

namecount Pointer to a long, to receive the count of the registered names within
the namespace

names Pointer to a t_symbol ∗∗, to receive the allocated names. This pointer
should be freed after use

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in "ext_obex.h" if unsuccessful.

34.40.3.51 t_max_err object setvalueof (void ∗ x, long ac, t_atom ∗ av)

Sets the value of an object which supports the getvalueof/setvalueof inter-
face.

Parameters
x The object whose value is of interest

ac The count of arguments in av
av Array of t_atoms; the new desired data for the object

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

Remarks

Developers wishing to design objects which will support this function being called
on them must define and implement a special method, setvalueof, like so:

class_addmethod(c, (method)myobject_setvalueof, "setvalueof", A_CANT, 0);

The setvalueof method should be prototyped as:

t_max_err myobject_setvalueof(t_myobject *x, long *ac, t_atom **av);

And implemented, generally, as:

t_max_err myobject_setvalueof(t_myobject *x, long ac, t_atom *av)
{

if (ac && av) {
// simulate receipt of a float value
myobject_float(x, atom_getfloat(av));

}
return MAX_ERR_NONE;

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 547

34.40.3.52 void∗ object subscribe (t_symbol ∗ name space, t_symbol ∗ s, t_symbol ∗
classname, void ∗ x)

Subscribes a client to wait for an object to register.

Upon registration, the object will attach. Once attached, the object will receive notifi-
cations sent from the registered object (via the object_notify function), if it has
a notify method defined and implemented. See below for more information, in the
reference for object_notify.

Parameters
name_space The namespace of the registered object. This should be the

same value used in object_register to register the object. -
If you don’t know the registered object’s namespace, the object_-
findregisteredbyptr function can be used to determine it.

s The name of the registered object in the namespace. If you
don’t know the name of the registered object, the object_-
findregisteredbyptr function can be used to determine it.

classname The classname of the registered object in the namespace to use as a
filter. If NULL, then it will attach to any class of object.

x The client object to attach. Generally, this is the pointer to your Max
object.

Returns

This function returns a pointer to the object if registered (to the object referred to by
the combination of name_space and s arguments) if successful, or NULL if the
object is not yet registered.

34.40.3.53 void∗ object super method (t_object ∗ x, t_symbol ∗ s, ...)

Sends an untyped message to an object using superclass methods.

Uses a thread specific stack to ensure traversal up the class hierarchy.

Parameters
x The object that will receive the message
s The message selector

... Any arguments to the message

Returns

If the receiver object can respond to the message, object_method() returns the
result. Otherwise, the function will return 0.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

548 Module Documentation

34.40.3.54 void∗ object this method (t_object ∗ x, t_symbol ∗ s, ...)

Sends an untyped message to an object, respects a thread specific class stack from
object_super_method() calls.

Parameters
x The object that will receive the message
s The message selector

... Any arguments to the message

Returns

If the receiver object can respond to the message, object_method() returns the
result. Otherwise, the function will return 0.

34.40.3.55 t_max_err object unregister (void ∗ x)

Removes a registered object from a namespace.

Parameters
x The object to unregister. This should be the pointer returned from the

object_register() function.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.40.3.56 t_max_err object unsubscribe (t_symbol ∗ name space, t_symbol ∗ s,
t_symbol ∗ classname, void ∗ x)

Unsubscribe a client from a registered object, detaching if the object is registered.

Parameters
name_space The namespace of the registered object. This should be the

same value used in object_register to register the object. -
If you don’t know the registered object’s namespace, the object_-
findregisteredbyptr function can be used to determine it.

s The name of the registered object in the namespace. If you
don’t know the name of the registered object, the object_-
findregisteredbyptr function can be used to determine it.

classname The classname of the registered object in the namespace to use as a
filter. Currently unused for unsubscribe.

x The client object to detach. Generally, this is the pointer to your Max
object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.40 Objects 549

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in "ext_obex.h" if unsuccessful.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

550 Module Documentation

34.41 Patcher

Max’s patcher represents a graph of objects that communicate with messages.

Collaboration diagram for Patcher:

jbox

jpatchline

jpatcher

jpatcherview

Patcher

Data Structures

• struct t_jbox

The t_jbox struct provides the header for a Max user-interface object.

Modules

• jpatcher

The patcher.

• jbox

A box in the patcher.

• jpatchline

A patch cord.

• jpatcherview

A view of a patcher.

Typedefs

• typedef t_object t_patcher

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.41 Patcher 551

A patcher.

• typedef t_object t_box

A box.

Enumerations

• enum { PI_DEEP, PI_REQUIREFIRSTIN, PI_WANTBOX }

patcher iteration flags

34.41.1 Detailed Description

Max’s patcher represents a graph of objects that communicate with messages. This is
the public interface to the jpatcher -- the new patcher object in Max 5. The jpatcher is
fully controllable via obex attributes and methods.

The jpatcher_api.h header defines constants, enumerations, symbols, structs, and func-
tions for working with the jpatcher. It also includes utility functions for getting/setting
attributes and for calling methods. These utilities are just wrapping the obex interface
and thus loosely connect your code to the jpatcher implementation.

Finally methods are defined for implementing your own boxes.

34.41.2 Typedef Documentation

34.41.2.1 typedef t_object t_box

A box.

As of Max 5, the box struct is opaque. Messages can be sent to a box using object_-
method() or object_method_typed(), or by using Attributes accessors.

34.41.2.2 typedef t_object t_patcher

A patcher.

As of Max 5, the patcher struct is opaque. Messages can be sent to a patcher using
object_method() or object_method_typed(), or by using Attributes accessors.

34.41.3 Enumeration Type Documentation

34.41.3.1 anonymous enum

patcher iteration flags

Enumerator:

PI_DEEP descend into subpatchers (not used by audio library)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

552 Module Documentation

PI_REQUIREFIRSTIN if b->b_firstin is NULL, do not call function

PI_WANTBOX instead, of b->b_firstin, pass b to function, whether or not b->b-
_firstin is NULL

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 553

34.42 jpatcher

The patcher.

Collaboration diagram for jpatcher:

jpatcherPatcher

Functions

• int jpatcher_is_patcher (t_object ∗p)

Determine of a t_object∗ is a patcher object.

• t_object ∗ jpatcher_get_box (t_object ∗p)

If a patcher is inside a box, return its box.

• long jpatcher_get_count (t_object ∗p)

Determine the number of boxes in a patcher.

• t_max_err jpatcher_set_locked (t_object ∗p, char c)

Lock or unlock a patcher.

• char jpatcher_get_presentation (t_object ∗p)

Determine whether a patcher is currently in presentation mode.

• t_max_err jpatcher_set_presentation (t_object ∗p, char c)

Set a patcher to presentation mode.

• t_object ∗ jpatcher_get_firstobject (t_object ∗p)

Get the first box in a patcher.

• t_object ∗ jpatcher_get_lastobject (t_object ∗p)

Get the last box in a patcher.

• t_object ∗ jpatcher_get_firstline (t_object ∗p)

Get the first line (patch-cord) in a patcher.

• t_object ∗ jpatcher_get_firstview (t_object ∗p)

Get the first view (jpatcherview) for a given patcher.

• t_symbol ∗ jpatcher_get_title (t_object ∗p)

Retrieve a patcher’s title.

• t_max_err jpatcher_set_title (t_object ∗p, t_symbol ∗ps)

Set a patcher’s title.

• t_symbol ∗ jpatcher_get_name (t_object ∗p)

Retrieve a patcher’s name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

554 Module Documentation

• t_symbol ∗ jpatcher_get_filepath (t_object ∗p)

Retrieve a patcher’s file path.

• t_symbol ∗ jpatcher_get_filename (t_object ∗p)

Retrieve a patcher’s file name.

• char jpatcher_get_dirty (t_object ∗p)

Determine whether a patcher’s dirty bit has been set.

• t_max_err jpatcher_set_dirty (t_object ∗p, char c)

Set a patcher’s dirty bit.

• char jpatcher_get_bglocked (t_object ∗p)

Determine whether a patcher’s background layer is locked.

• t_max_err jpatcher_set_bglocked (t_object ∗p, char c)

Set whether a patcher’s background layer is locked.

• char jpatcher_get_bghidden (t_object ∗p)

Determine whether a patcher’s background layer is hidden.

• t_max_err jpatcher_set_bghidden (t_object ∗p, char c)

Set whether a patcher’s background layer is hidden.

• char jpatcher_get_fghidden (t_object ∗p)

Determine whether a patcher’s foreground layer is hidden.

• t_max_err jpatcher_set_fghidden (t_object ∗p, char c)

Set whether a patcher’s foreground layer is hidden.

• t_max_err jpatcher_get_editing_bgcolor (t_object ∗p, t_jrgba ∗prgba)

Retrieve a patcher’s editing background color.

• t_max_err jpatcher_set_editing_bgcolor (t_object ∗p, t_jrgba ∗prgba)

Set a patcher’s editing background color.

• t_max_err jpatcher_get_bgcolor (t_object ∗p, t_jrgba ∗prgba)

Retrieve a patcher’s locked background color.

• t_max_err jpatcher_set_bgcolor (t_object ∗p, t_jrgba ∗prgba)

Set a patcher’s locked background color.

• t_max_err jpatcher_get_gridsize (t_object ∗p, double ∗gridsizeX, double
∗gridsizeY)

Retrieve a patcher’s grid size.

• t_max_err jpatcher_set_gridsize (t_object ∗p, double gridsizeX, double gridsize-
Y)

Set a patcher’s grid size.

• void jpatcher_deleteobj (t_object ∗p, t_jbox ∗b)

Delete an object that is in a patcher.

• t_object ∗ jpatcher_get_parentpatcher (t_object ∗p)

Given a patcher, return its parent patcher.

• t_object ∗ jpatcher_get_toppatcher (t_object ∗p)

Given a patcher, return the top-level patcher for the tree in which it exists.

• t_max_err jpatcher_get_rect (t_object ∗p, t_rect ∗pr)

Query a patcher to determine its location and size.

• t_max_err jpatcher_set_rect (t_object ∗p, t_rect ∗pr)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 555

Set a patcher’s location and size.

• t_max_err jpatcher_get_defrect (t_object ∗p, t_rect ∗pr)

Query a patcher to determine the location and dimensions of its window when initially
opened.

• t_max_err jpatcher_set_defrect (t_object ∗p, t_rect ∗pr)

Set a patcher’s default location and size.

• t_symbol ∗ jpatcher_uniqueboxname (t_object ∗p, t_symbol ∗classname)

Generate a unique name for a box in patcher.

• t_symbol ∗ jpatcher_get_default_fontname (t_object ∗p)

Return the name of the default font used for new objects in a patcher.

• float jpatcher_get_default_fontsize (t_object ∗p)

Return the size of the default font used for new objects in a patcher.

• long jpatcher_get_default_fontface (t_object ∗p)

Return the index of the default font face used for new objects in a patcher.

• long jpatcher_get_fileversion (t_object ∗p)

Return the file version of the patcher.

• long jpatcher_get_currentfileversion (void)

Return the file version for any new patchers, e.g.

34.42.1 Detailed Description

The patcher.

34.42.2 Function Documentation

34.42.2.1 void jpatcher deleteobj (t_object ∗ p, t_jbox ∗ b)

Delete an object that is in a patcher.

Parameters
p The patcher.
b The object box to delete.

34.42.2.2 t_max_err jpatcher get bgcolor (t_object ∗ p, t_jrgba ∗ prgba)

Retrieve a patcher’s locked background color.

Parameters
p The patcher to be queried.

prgba The address of a valid t_jrgba struct that will be filled-in with the current
patcher color values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

556 Module Documentation

Returns

A Max error code.

34.42.2.3 char jpatcher get bghidden (t_object ∗ p)

Determine whether a patcher’s background layer is hidden.

Parameters
p The patcher to be queried.

Returns

True if the background layer is hidden, otherwise false.

34.42.2.4 char jpatcher get bglocked (t_object ∗ p)

Determine whether a patcher’s background layer is locked.

Parameters
p The patcher to be queried.

Returns

True if the background layer is locked, otherwise false.

34.42.2.5 t_object∗ jpatcher get box (t_object ∗ p)

If a patcher is inside a box, return its box.

Parameters
p The patcher to be queried.

Returns

A pointer to the box containing the patcher, otherwise NULL.

34.42.2.6 long jpatcher get count (t_object ∗ p)

Determine the number of boxes in a patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 557

Parameters
p The patcher to be queried.

Returns

The number of boxes in the patcher.

34.42.2.7 long jpatcher get currentfileversion (void)

Return the file version for any new patchers, e.g.

the current version created by Max.

Returns

The file version number.

34.42.2.8 long jpatcher get default fontface (t_object ∗ p)

Return the index of the default font face used for new objects in a patcher.

Parameters
p A pointer to a patcher instance.

Returns

The index of the default font face used for new objects in a patcher.

34.42.2.9 t_symbol∗ jpatcher get default fontname (t_object ∗ p)

Return the name of the default font used for new objects in a patcher.

Parameters
p A pointer to a patcher instance.

Returns

The name of the default font used for new objects in a patcher.

34.42.2.10 float jpatcher get default fontsize (t_object ∗ p)

Return the size of the default font used for new objects in a patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

558 Module Documentation

Parameters
p A pointer to a patcher instance.

Returns

The size of the default font used for new objects in a patcher.

34.42.2.11 t_max_err jpatcher get defrect (t_object ∗ p, t_rect ∗ pr)

Query a patcher to determine the location and dimensions of its window when initially
opened.

Parameters
p A pointer to a patcher instance.

pr The address of valid t_rect whose values will be filled-in upon return.

Returns

A Max error code.

34.42.2.12 char jpatcher get dirty (t_object ∗ p)

Determine whether a patcher’s dirty bit has been set.

Parameters
p The patcher to be queried.

Returns

True if the patcher is dirty, otherwise false.

34.42.2.13 t_max_err jpatcher get editing bgcolor (t_object ∗ p, t_jrgba ∗ prgba)

Retrieve a patcher’s editing background color.

Parameters
p The patcher to be queried.

prgba The address of a valid t_jrgba struct that will be filled-in with the current
patcher color values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 559

Returns

A Max error code.

34.42.2.14 char jpatcher get fghidden (t_object ∗ p)

Determine whether a patcher’s foreground layer is hidden.

Parameters
p The patcher to be queried.

Returns

True if the foreground layer is hidden, otherwise false.

34.42.2.15 t_symbol∗ jpatcher get filename (t_object ∗ p)

Retrieve a patcher’s file name.

Parameters
p The patcher to be queried.

Returns

The patcher’s file name.

34.42.2.16 t_symbol∗ jpatcher get filepath (t_object ∗ p)

Retrieve a patcher’s file path.

Parameters
p The patcher to be queried.

Returns

The patcher’s file path.

34.42.2.17 long jpatcher get fileversion (t_object ∗ p)

Return the file version of the patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

560 Module Documentation

Parameters
p A pointer to the patcher whose version number is desired.

Returns

The file version number.

34.42.2.18 t_object∗ jpatcher get firstline (t_object ∗ p)

Get the first line (patch-cord) in a patcher.

All lines in a patcher are maintained internally in a t_linklist. Use this function to begin
traversing a patcher’s lines.

Parameters
p The patcher to be queried.

Returns

The first jpatchline in a patcher.

34.42.2.19 t_object∗ jpatcher get firstobject (t_object ∗ p)

Get the first box in a patcher.

All boxes in a patcher are maintained internally in a t_linklist. Use this function together
with jbox_get_nextobject() to traverse a patcher.

Parameters
p The patcher to be queried.

Returns

The first box in a patcher.

See also

jbox_get_prevobject() jbox_get_nextobject() jpatcher_get_lastobject()

34.42.2.20 t_object∗ jpatcher get firstview (t_object ∗ p)

Get the first view (jpatcherview) for a given patcher.

All views of a patcher are maintained internally as a t_linklist. Use this function to begin
traversing a patcher’s views.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 561

Parameters
p The patcher to be queried.

Returns

The first view of a patcher.

34.42.2.21 t_max_err jpatcher get gridsize (t_object ∗ p, double ∗ gridsizeX, double ∗
gridsizeY)

Retrieve a patcher’s grid size.

Parameters
p The patcher to be queried.

gridsizeX The address of a double that will be set to the current horizontal grid
spacing for the patcher.

gridsizeY The address of a double that will be set to the current vertical grid spac-
ing for the patcher.

Returns

A Max error code.

34.42.2.22 t_object∗ jpatcher get lastobject (t_object ∗ p)

Get the last box in a patcher.

All boxes in a patcher are maintained internally in a t_linklist. Use this function together
with jbox_get_prevobject() to traverse a patcher.

Parameters
p The patcher to be queried.

Returns

The last box in a patcher.

See also

jbox_get_prevobject() jbox_get_nextobject() jpatcher_get_firstobject()

34.42.2.23 t_symbol∗ jpatcher get name (t_object ∗ p)

Retrieve a patcher’s name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

562 Module Documentation

Parameters
p The patcher to be queried.

Returns

The patcher’s name.

34.42.2.24 t_object∗ jpatcher get parentpatcher (t_object ∗ p)

Given a patcher, return its parent patcher.

Parameters
p The patcher to be queried.

Returns

The patcher’s parent patcher, if there is one. If there is no parent patcher (this is a
top-level patcher) then NULL is returned.

34.42.2.25 char jpatcher get presentation (t_object ∗ p)

Determine whether a patcher is currently in presentation mode.

Parameters
p The patcher to be queried.

Returns

True if the patcher is in presentation mode, otherwise false.

34.42.2.26 t_max_err jpatcher get rect (t_object ∗ p, t_rect ∗ pr)

Query a patcher to determine its location and size.

Parameters
p A pointer to a patcher instance.

pr The address of valid t_rect whose values will be filled-in upon return.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 563

34.42.2.27 t_symbol∗ jpatcher get title (t_object ∗ p)

Retrieve a patcher’s title.

Parameters
p The patcher to be queried.

Returns

The patcher’s title.

34.42.2.28 t_object∗ jpatcher get toppatcher (t_object ∗ p)

Given a patcher, return the top-level patcher for the tree in which it exists.

Parameters
p The patcher to be queried.

Returns

The patcher’s top-level parent patcher.

34.42.2.29 int jpatcher is patcher (t_object ∗ p)

Determine of a t_object∗ is a patcher object.

Parameters
p The object pointer to test.

Returns

Returns true if the object is a patcher, otherwise returns non-zero.

34.42.2.30 t_max_err jpatcher set bgcolor (t_object ∗ p, t_jrgba ∗ prgba)

Set a patcher’s locked background color.

Parameters
p The patcher to be queried.

prgba The address of a t_jrgba struct containing the new color to use.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

564 Module Documentation

Returns

A Max error code.

34.42.2.31 t_max_err jpatcher set bghidden (t_object ∗ p, char c)

Set whether a patcher’s background layer is hidden.

Parameters
p The patcher whose dirty bit will be set.
c Pass true to hide the patcher’s background layer, otherwise pass false.

Returns

A Max error code.

34.42.2.32 t_max_err jpatcher set bglocked (t_object ∗ p, char c)

Set whether a patcher’s background layer is locked.

Parameters
p The patcher whose dirty bit will be set.
c Pass true to lock the patcher’s background layer, otherwise pass false.

Returns

A Max error code.

34.42.2.33 t_max_err jpatcher set defrect (t_object ∗ p, t_rect ∗ pr)

Set a patcher’s default location and size.

Parameters
p A pointer to a patcher instance.

pr The address of a t_rect with the new position and size.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 565

Returns

A Max error code.

34.42.2.34 t_max_err jpatcher set dirty (t_object ∗ p, char c)

Set a patcher’s dirty bit.

Parameters
p The patcher whose dirty bit will be set.
c The new value for the patcher’s dirty bit (pass true or false).

Returns

A Max error code.

34.42.2.35 t_max_err jpatcher set editing bgcolor (t_object ∗ p, t_jrgba ∗ prgba)

Set a patcher’s editing background color.

Parameters
p The patcher to be queried.

prgba The address of a t_jrgba struct containing the new color to use.

Returns

A Max error code.

34.42.2.36 t_max_err jpatcher set fghidden (t_object ∗ p, char c)

Set whether a patcher’s foreground layer is hidden.

Parameters
p The patcher whose dirty bit will be set.
c Pass true to hide the patcher’s foreground layer, otherwise pass false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

566 Module Documentation

Returns

A Max error code.

34.42.2.37 t_max_err jpatcher set gridsize (t_object ∗ p, double gridsizeX, double
gridsizeY)

Set a patcher’s grid size.

Parameters
p The patcher to be queried.

gridsizeX The new horizontal grid spacing for the patcher.
gridsizeY The new vertical grid spacing for the patcher.

Returns

A Max error code.

34.42.2.38 t_max_err jpatcher set locked (t_object ∗ p, char c)

Lock or unlock a patcher.

Parameters
p The patcher whose locked state will be changed.
c Pass true to lock a patcher, otherwise pass false.

Returns

A Max error code.

34.42.2.39 t_max_err jpatcher set presentation (t_object ∗ p, char c)

Set a patcher to presentation mode.

Parameters
p The patcher whose locked state will be changed.
c Pass true to switch the patcher to presentation mode, otherwise pass

false.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.42 jpatcher 567

34.42.2.40 t_max_err jpatcher set rect (t_object ∗ p, t_rect ∗ pr)

Set a patcher’s location and size.

Parameters
p A pointer to a patcher instance.

pr The address of a t_rect with the new position and size.

Returns

A Max error code.

34.42.2.41 t_max_err jpatcher set title (t_object ∗ p, t_symbol ∗ ps)

Set a patcher’s title.

Parameters
p The patcher whose locked state will be changed.

ps The new title for the patcher.

Returns

A Max error code.

34.42.2.42 t_symbol∗ jpatcher uniqueboxname (t_object ∗ p, t_symbol ∗ classname)

Generate a unique name for a box in patcher.

Parameters
p A pointer to a patcher instance.

classname The name of an object’s class.

Returns

The newly-generated unique name.

Remarks

This is the function used by pattr to assign names to objects in a patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

568 Module Documentation

34.43 jbox

A box in the patcher.

Collaboration diagram for jbox:

jboxPatcher

Data Structures

• struct t_jboxdrawparams

The t_jboxdrawparams structure.

Defines

• #define JBOX_DRAWFIRSTIN

draw first inlet

• #define JBOX_NODRAWBOX

don’t draw the frame

• #define JBOX_DRAWINLAST

draw inlets after update method

• #define JBOX_TRANSPARENT

don’t make transparent unless you need it (for efficiency)

• #define JBOX_NOGROW

don’t even draw grow thingie

• #define JBOX_GROWY

can grow in y direction by dragging

• #define JBOX_GROWBOTH

can grow independently in both x and y

• #define JBOX_IGNORELOCKCLICK

box should ignore a click if patcher is locked

• #define JBOX_HILITE

flag passed to jbox_new() to tell max that the UI object can receive the focus when
clicked on -- may be replaced by JBOX_FOCUS in the future

• #define JBOX_BACKGROUND

immediately set box into the background

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 569

• #define JBOX_NOFLOATINSPECTOR

no floating inspector window

• #define JBOX_TEXTFIELD

save/load text from textfield, unless JBOX_BINBUF flag is set

• #define JBOX_FIXWIDTH

give the box a textfield based fix-width (bfixwidth) method

• #define JBOX_FONTATTR

if you want font related attribute you must add this to jbox_initclass()

• #define JBOX_BINBUF

save/load text from b_binbuf

• #define JBOX_MOUSEDRAGDELTA

hides mouse cursor in drag and sends mousedragdelta instead of mousedrag (for
infinite scrolling like number)

• #define JBOX_COLOR

support the "color" method for color customization

• #define JBOX_DRAWIOLOCKED

draw inlets and outlets when locked (default is not to draw them)

• #define JBOX_DRAWBACKGROUND

set to have box bg filled in for you based on getdrawparams method or brgba attribute

• #define JBOX_NOINSPECTFIRSTIN

flag for objects such as bpatcher that have a different b_firstin,

• #define JBOX_DEFAULTNAMES

flag instructing jbox_new to attach object to the defaults object for live defaults updating

• #define JBOX_FOCUS

more advanced focus support (passed to jbox_initclass() to add "nextfocus" and "pre-
vfocus" attributes to the UI object). Not implemented as of 2009-05-11

Enumerations

• enum { JBOX_FONTFACE_REGULAR, JBOX_FONTFACE_BOLD, JBOX_FO-
NTFACE_ITALIC, JBOX_FONTFACE_BOLDITALIC }

actual numerical values of the b_fontface attribute; use jbox_fontface() to weight

• enum HitTestResult { HitNothing, HitBox, HitInlet, HitOutlet, HitGrowBox, Hit-
Line, HitLineLocked }

enumerations used for box decorators

Functions

• t_max_err jbox_get_rect_for_view (t_object ∗box, t_object ∗patcherview, t_rect
∗rect)

Find the rect for a box in a given patcherview.

• t_max_err jbox_set_rect_for_view (t_object ∗box, t_object ∗patcherview, t_rect
∗rect)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

570 Module Documentation

Change the rect for a box in a given patcherview.

• t_max_err jbox_get_rect_for_sym (t_object ∗box, t_symbol ∗which, t_rect ∗pr)

Find the rect for a box with a given attribute name.

• t_max_err jbox_set_rect_for_sym (t_object ∗box, t_symbol ∗which, t_rect ∗pr)

Change the rect for a box with a given attribute name.

• t_max_err jbox_set_rect (t_object ∗box, t_rect ∗pr)

Set both the presentation rect and the patching rect.

• t_max_err jbox_get_patching_rect (t_object ∗box, t_rect ∗pr)

Retrieve the patching rect of a box.

• t_max_err jbox_set_patching_rect (t_object ∗box, t_rect ∗pr)

Change the patching rect of a box.

• t_max_err jbox_get_presentation_rect (t_object ∗box, t_rect ∗pr)

Retrieve the presentation rect of a box.

• t_max_err jbox_set_presentation_rect (t_object ∗box, t_rect ∗pr)

Change the presentation rect of a box.

• t_max_err jbox_set_position (t_object ∗box, t_pt ∗pos)

Set the position of a box for both the presentation and patching views.

• t_max_err jbox_get_patching_position (t_object ∗box, t_pt ∗pos)

Fetch the position of a box for the patching view.

• t_max_err jbox_set_patching_position (t_object ∗box, t_pt ∗pos)

Set the position of a box for the patching view.

• t_max_err jbox_get_presentation_position (t_object ∗box, t_pt ∗pos)

Fetch the position of a box for the presentation view.

• t_max_err jbox_set_presentation_position (t_object ∗box, t_pt ∗pos)

Set the position of a box for the presentation view.

• t_max_err jbox_set_size (t_object ∗box, t_size ∗size)

Set the size of a box for both the presentation and patching views.

• t_max_err jbox_get_patching_size (t_object ∗box, t_size ∗size)

Fetch the size of a box for the patching view.

• t_max_err jbox_set_patching_size (t_object ∗box, t_size ∗size)

Set the size of a box for the patching view.

• t_max_err jbox_get_presentation_size (t_object ∗box, t_size ∗size)

Fetch the size of a box for the presentation view.

• t_max_err jbox_set_presentation_size (t_object ∗box, t_size ∗size)

Set the size of a box for the presentation view.

• t_symbol ∗ jbox_get_maxclass (t_object ∗b)

Retrieve the name of the class of the box’s object.

• t_object ∗ jbox_get_object (t_object ∗b)

Retrieve a pointer to the box’s object.

• t_object ∗ jbox_get_patcher (t_object ∗b)

Retrieve a box’s patcher.

• char jbox_get_hidden (t_object ∗b)

Retrieve a box’s ’hidden’ attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 571

• t_max_err jbox_set_hidden (t_object ∗b, char c)

Set a box’s ’hidden’ attribute.

• t_symbol ∗ jbox_get_fontname (t_object ∗b)

Retrieve a box’s ’fontname’ attribute.

• t_max_err jbox_set_fontname (t_object ∗b, t_symbol ∗ps)

Set a box’s ’fontname’ attribute.

• double jbox_get_fontsize (t_object ∗b)

Retrieve a box’s ’fontsize’ attribute.

• t_max_err jbox_set_fontsize (t_object ∗b, double d)

Set a box’s ’fontsize’ attribute.

• t_max_err jbox_get_color (t_object ∗b, t_jrgba ∗prgba)

Retrieve a box’s ’color’ attribute.

• t_max_err jbox_set_color (t_object ∗b, t_jrgba ∗prgba)

Set a box’s ’color’ attribute.

• t_symbol ∗ jbox_get_hint (t_object ∗b)

Retrieve a box’s hint text as a symbol.

• t_max_err jbox_set_hint (t_object ∗b, t_symbol ∗s)

Set a box’s hint text using a symbol.

• char ∗ jbox_get_hintstring (t_object ∗bb)

Retrieve a box’s hint text as a C-string.

• void jbox_set_hintstring (t_object ∗bb, char ∗s)

Set a box’s hint text using a C-string.

• char ∗ jbox_get_annotation (t_object ∗bb)

Retrieve a box’s annotation string, if the user has given it an annotation.

• void jbox_set_annotation (t_object ∗bb, char ∗s)

Set a box’s annotation string.

• t_object ∗ jbox_get_nextobject (t_object ∗b)

The next box in the patcher’s (linked) list of boxes.

• t_object ∗ jbox_get_prevobject (t_object ∗b)

The previous box in the patcher’s (linked) list of boxes.

• t_symbol ∗ jbox_get_varname (t_object ∗b)

Retrieve a box’s scripting name.

• t_max_err jbox_set_varname (t_object ∗b, t_symbol ∗ps)

Set a box’s scripting name.

• t_symbol ∗ jbox_get_id (t_object ∗b)

Retrieve a boxes unique id.

• char jbox_get_canhilite (t_object ∗b)

Retrieve a box flag value from a box.

• char jbox_get_background (t_object ∗b)

Determine whether a box is located in the patcher’s background layer.

• t_max_err jbox_set_background (t_object ∗b, char c)

Set whether a box should be in the background or foreground layer of a patcher.

• char jbox_get_ignoreclick (t_object ∗b)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

572 Module Documentation

Determine whether a box ignores clicks.

• t_max_err jbox_set_ignoreclick (t_object ∗b, char c)

Set whether a box ignores clicks.

• char jbox_get_drawfirstin (t_object ∗b)

Determine whether a box draws its first inlet.

• char jbox_get_outline (t_object ∗b)

Determine whether a box draws an outline.

• t_max_err jbox_set_outline (t_object ∗b, char c)

Set whether a box draws an outline.

• char jbox_get_growy (t_object ∗b)

Retrieve a box flag value from a box.

• char jbox_get_growboth (t_object ∗b)

Retrieve a box flag value from a box.

• char jbox_get_nogrow (t_object ∗b)

Retrieve a box flag value from a box.

• char jbox_get_drawinlast (t_object ∗b)

Retrieve a box flag value from a box.

• t_object ∗ jbox_get_textfield (t_object ∗b)

Retrieve a pointer to a box’s textfield.

• char jbox_get_presentation (t_object ∗b)

Determine if a box is included in the presentation view.

• t_max_err jbox_set_presentation (t_object ∗b, char c)

Determine if a box is included in the presentation view.

• t_max_err jbox_new (t_jbox ∗b, long flags, long argc, t_atom ∗argv)

Set up your UI object’s t_jbox member.

• void jbox_free (t_jbox ∗b)

Tear down your UI object’s t_jbox member.

• void jbox_ready (t_jbox ∗b)

Mark the box ready to be accessed and drawn by Max.

• void jbox_redraw (t_jbox ∗b)

Request that your object/box be re-drawn by Max.

• t_max_err jbox_notify (t_jbox ∗b, t_symbol ∗s, t_symbol ∗msg, void ∗sender, void
∗data)

Send a notification to a box.

34.43.1 Detailed Description

A box in the patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 573

34.43.2 Define Documentation

34.43.2.1 #define JBOX NOINSPECTFIRSTIN

flag for objects such as bpatcher that have a different b_firstin,

but the attrs of the b_firstin should not be shown in the inspector

34.43.3 Enumeration Type Documentation

34.43.3.1 anonymous enum

actual numerical values of the b_fontface attribute; use jbox_fontface() to weight

Enumerator:

JBOX_FONTFACE_REGULAR normal

JBOX_FONTFACE_BOLD bold

JBOX_FONTFACE_ITALIC italic

JBOX_FONTFACE_BOLDITALIC bold and italic

34.43.3.2 enum HitTestResult

enumerations used for box decorators

Enumerator:

HitNothing a hole in the box

HitBox the body of the box

HitInlet an inlet

HitOutlet an outlet

HitGrowBox the grow handle

HitLine a line

HitLineLocked a line in a locked patcher (for probing)

34.43.4 Function Documentation

34.43.4.1 void jbox free (t_jbox ∗ b)

Tear down your UI object’s t_jbox member.

This should be called from your UI object’s free method.

Parameters
b The address of your object’s t_jbox member (which should be the first

member of the object’s struct).
Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

574 Module Documentation

34.43.4.2 char∗ jbox get annotation (t_object ∗ bb)

Retrieve a box’s annotation string, if the user has given it an annotation.

Parameters
bb The box to query.

Returns

The user-created annotation string for a box, or NULL if no string exists.

34.43.4.3 char jbox get background (t_object ∗ b)

Determine whether a box is located in the patcher’s background layer.

Parameters
b The box to query.

Returns

Zero if the object is in the foreground, otherwise non-zero.

34.43.4.4 char jbox get canhilite (t_object ∗ b)

Retrieve a box flag value from a box.

Parameters
b The box to query.

Returns

The value of the canhilite bit in the box’s flags.

34.43.4.5 t_max_err jbox get color (t_object ∗ b, t_jrgba ∗ prgba)

Retrieve a box’s ’color’ attribute.

Parameters
b The box to query.

prgba The address of a valid t_rect whose values will be filled-in upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 575

Returns

A Max error code.

34.43.4.6 char jbox get drawfirstin (t_object ∗ b)

Determine whether a box draws its first inlet.

Parameters
b The box to query.

Returns

Zero if the inlet is not drawn, otherwise non-zero.

34.43.4.7 char jbox get drawinlast (t_object ∗ b)

Retrieve a box flag value from a box.

Parameters
b The box to query.

Returns

The value of the drawinlast bit in the box’s flags.

34.43.4.8 t_symbol∗ jbox get fontname (t_object ∗ b)

Retrieve a box’s ’fontname’ attribute.

Parameters
b The box to query.

Returns

The font name.

34.43.4.9 double jbox get fontsize (t_object ∗ b)

Retrieve a box’s ’fontsize’ attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

576 Module Documentation

Parameters
b The box to query.

Returns

The font size in points.

34.43.4.10 char jbox get growboth (t_object ∗ b)

Retrieve a box flag value from a box.

Parameters
b The box to query.

Returns

The value of the growboth bit in the box’s flags.

34.43.4.11 char jbox get growy (t_object ∗ b)

Retrieve a box flag value from a box.

Parameters
b The box to query.

Returns

The value of the growy bit in the box’s flags.

34.43.4.12 char jbox get hidden (t_object ∗ b)

Retrieve a box’s ’hidden’ attribute.

Parameters
b The box to query.

Returns

True if the box is hidden, otherwise false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 577

34.43.4.13 t_symbol∗ jbox get hint (t_object ∗ b)

Retrieve a box’s hint text as a symbol.

Parameters
b The box to query.

Returns

The box’s hint text.

34.43.4.14 char∗ jbox get hintstring (t_object ∗ bb)

Retrieve a box’s hint text as a C-string.

Parameters
bb The box to query.

Returns

The box’s hint text.

34.43.4.15 t_symbol∗ jbox get id (t_object ∗ b)

Retrieve a boxes unique id.

Parameters
b The box to query.

Returns

The unique id of the object. This is a symbol that is referenced, for example, by
patchlines.

34.43.4.16 char jbox get ignoreclick (t_object ∗ b)

Determine whether a box ignores clicks.

Parameters
b The box to query.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

578 Module Documentation

Returns

Zero if the object responds to clicks, otherwise non-zero.

34.43.4.17 t_symbol∗ jbox get maxclass (t_object ∗ b)

Retrieve the name of the class of the box’s object.

Parameters
b The box to query.

Returns

The name of the class of the box’s object.

34.43.4.18 t_object∗ jbox get nextobject (t_object ∗ b)

The next box in the patcher’s (linked) list of boxes.

Parameters
b The box to query.

Returns

The next box in the list.

34.43.4.19 char jbox get nogrow (t_object ∗ b)

Retrieve a box flag value from a box.

Parameters
b The box to query.

Returns

The value of the nogrow bit in the box’s flags.

34.43.4.20 t_object∗ jbox get object (t_object ∗ b)

Retrieve a pointer to the box’s object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 579

Parameters
b The box to query.

Returns

A pointer to the box’s object.

34.43.4.21 char jbox get outline (t_object ∗ b)

Determine whether a box draws an outline.

Parameters
b The box to query.

Returns

Zero if the outline is not drawn, otherwise non-zero.

34.43.4.22 t_object∗ jbox get patcher (t_object ∗ b)

Retrieve a box’s patcher.

Parameters
b The box to query.

Returns

If the box has a patcher, the patcher’s pointer is returned. Otherwise NULL is
returned.

34.43.4.23 t_max_err jbox get patching position (t_object ∗ box, t_pt ∗ pos)

Fetch the position of a box for the patching view.

Parameters
box The box whose position will be retrieved.
pos The address of a valid t_pt whose x and y values will be filled in.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

580 Module Documentation

34.43.4.24 t_max_err jbox get patching rect (t_object ∗ box, t_rect ∗ pr)

Retrieve the patching rect of a box.

Parameters
box The box whose rect values will be retrieved.

pr The address of a valid t_rect whose values will be filled in.

Returns

A Max error code.

34.43.4.25 t_max_err jbox get patching size (t_object ∗ box, t_size ∗ size)

Fetch the size of a box for the patching view.

Parameters
box The box whose size will be retrieved.
size The address of a valid t_size whose width and height values will be

filled in.

Returns

A Max error code.

34.43.4.26 char jbox get presentation (t_object ∗ b)

Determine if a box is included in the presentation view.

Parameters
b The box to query.

Returns

Non-zero if in presentation mode, otherwise zero.

34.43.4.27 t_max_err jbox get presentation position (t_object ∗ box, t_pt ∗ pos)

Fetch the position of a box for the presentation view.

Parameters
box The box whose position will be retrieved.
pos The address of a valid t_pt whose x and y values will be filled in.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 581

Returns

A Max error code.

34.43.4.28 t_max_err jbox get presentation rect (t_object ∗ box, t_rect ∗ pr)

Retrieve the presentation rect of a box.

Parameters
box The box whose rect values will be retrieved.

pr The address of a valid t_rect whose values will be filled in.

Returns

A Max error code.

34.43.4.29 t_max_err jbox get presentation size (t_object ∗ box, t_size ∗ size)

Fetch the size of a box for the presentation view.

Parameters
box The box whose size will be retrieved.
size The address of a valid t_size whose width and height values will be

filled in.

Returns

A Max error code.

34.43.4.30 t_object∗ jbox get prevobject (t_object ∗ b)

The previous box in the patcher’s (linked) list of boxes.

Parameters
b The box to query.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

582 Module Documentation

Returns

The next box in the list.

34.43.4.31 t_max_err jbox get rect for sym (t_object ∗ box, t_symbol ∗ which, t_rect ∗
pr)

Find the rect for a box with a given attribute name.

Parameters
box The box whose rect will be fetched.

which The name of the rect attribute to be fetched, for example _sym_-
presentation_rect or _sym_patching_rect.

pr The address of a valid t_rect whose members will be filled in by this
function.

Returns

A Max error code.

34.43.4.32 t_max_err jbox get rect for view (t_object ∗ box, t_object ∗ patcherview,
t_rect ∗ rect)

Find the rect for a box in a given patcherview.

Parameters
box The box whose rect will be fetched.

patcherview A patcherview in which the box exists.
rect The address of a valid t_rect whose members will be filled in by this

function.

Returns

A Max error code.

34.43.4.33 t_object∗ jbox get textfield (t_object ∗ b)

Retrieve a pointer to a box’s textfield.

Parameters
b The box to query.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 583

Returns

The textfield for the box, assuming it has one. If the box does not own a textfield
then NULL is returned.

34.43.4.34 t_symbol∗ jbox get varname (t_object ∗ b)

Retrieve a box’s scripting name.

Parameters
b The box to query.

Returns

The box’s scripting name.

34.43.4.35 t_max_err jbox new (t_jbox ∗ b, long flags, long argc, t_atom ∗ argv)

Set up your UI object’s t_jbox member.

This should be called from your UI object’s free method.

Parameters
b The address of your UI object’s t_jbox member (which should be the

first member of the object’s struct).
flags Flags to set the box’s behavior, such as JBOX_NODRAWBOX.
argc The count of atoms in the argv parameter.
argv The address of the first in an array of atoms to be passed to the box

constructor. Typically these are simply the argument passed to your
object when it is created.

Returns

A Max error code.

34.43.4.36 t_max_err jbox notify (t_jbox ∗ b, t_symbol ∗ s, t_symbol ∗ msg, void ∗
sender, void ∗ data)

Send a notification to a box.

This is the same as calling object_notify() for a box.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

584 Module Documentation

Parameters
b The address of your object’s t_jbox member.
s The name of the send object.

msg The notification name.
sender The sending object’s address.

data A pointer to some data passed to the box’s notify method.

Returns

A Max error code.

34.43.4.37 void jbox ready (t_jbox ∗ b)

Mark the box ready to be accessed and drawn by Max.

This should typically be called at the end of your UI object’s new method.

Parameters
b The address of your object’s t_jbox member.

34.43.4.38 void jbox redraw (t_jbox ∗ b)

Request that your object/box be re-drawn by Max.

Parameters
b The address of your object’s t_jbox member.

34.43.4.39 void jbox set annotation (t_object ∗ bb, char ∗ s)

Set a box’s annotation string.

Parameters
bb The box to query.

s The annotation string for the box.

Returns

A Max error code.

34.43.4.40 t_max_err jbox set background (t_object ∗ b, char c)

Set whether a box should be in the background or foreground layer of a patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 585

Parameters
b The box to query.
c Pass zero to tell the box to appear in the foreground, or non-zero to

indicate that the box should be in the background layer.

Returns

A Max error code.

34.43.4.41 t_max_err jbox set color (t_object ∗ b, t_jrgba ∗ prgba)

Set a box’s ’color’ attribute.

Parameters
b The box to query.

prgba The address of a t_rect containing the desired color for the box/object.

Returns

A Max error code.

34.43.4.42 t_max_err jbox set fontname (t_object ∗ b, t_symbol ∗ ps)

Set a box’s ’fontname’ attribute.

Parameters
b The box to query.

ps The font name. Note that the font name may be case-sensitive.

Returns

A Max error code.

34.43.4.43 t_max_err jbox set fontsize (t_object ∗ b, double d)

Set a box’s ’fontsize’ attribute.

Parameters
b The box to query.
d The fontsize in points.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

586 Module Documentation

Returns

A Max error code.

34.43.4.44 t_max_err jbox set hidden (t_object ∗ b, char c)

Set a box’s ’hidden’ attribute.

Parameters
b The box to query.
c Set to true to hide the box, otherwise false.

Returns

A Max error code.

34.43.4.45 t_max_err jbox set hint (t_object ∗ b, t_symbol ∗ s)

Set a box’s hint text using a symbol.

Parameters
b The box to query.
s The new text to use for the box’s hint.

Returns

A Max error code.

34.43.4.46 void jbox set hintstring (t_object ∗ bb, char ∗ s)

Set a box’s hint text using a C-string.

Parameters
bb The box to query.

s The new text to use for the box’s hint.

Returns

A Max error code.

34.43.4.47 t_max_err jbox set ignoreclick (t_object ∗ b, char c)

Set whether a box ignores clicks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 587

Parameters
b The box to query.
c Pass zero to tell the box to respond to clicks, or non-zero to indicate

that the box should ignore clicks.

Returns

A Max error code.

34.43.4.48 t_max_err jbox set outline (t_object ∗ b, char c)

Set whether a box draws an outline.

Parameters
b The box to query.
c Pass zero to hide the outline, or non-zero to indicate that the box should

draw the outline.

Returns

A Max error code.

34.43.4.49 t_max_err jbox set patching position (t_object ∗ box, t_pt ∗ pos)

Set the position of a box for the patching view.

Parameters
box The box whose positon will be changed.
pos The address of a t_pt with the new x and y values.

Returns

A Max error code.

34.43.4.50 t_max_err jbox set patching rect (t_object ∗ box, t_rect ∗ pr)

Change the patching rect of a box.

Parameters
box The box whose rect will be changed.

pr The address of a t_rect with the new rect values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

588 Module Documentation

Returns

A Max error code.

34.43.4.51 t_max_err jbox set patching size (t_object ∗ box, t_size ∗ size)

Set the size of a box for the patching view.

Parameters
box The box whose size will be changed.
size The address of a t_size with the new width and height values.

Returns

A Max error code.

34.43.4.52 t_max_err jbox set position (t_object ∗ box, t_pt ∗ pos)

Set the position of a box for both the presentation and patching views.

Parameters
box The box whose position will be changed.
pos The address of a t_pt with the new x and y values.

Returns

A Max error code.

34.43.4.53 t_max_err jbox set presentation (t_object ∗ b, char c)

Determine if a box is included in the presentation view.

Parameters
b The box to query.
c Pass zero to remove a box from the presention view, or non-zero to add

it to the presentation view.

Returns

Non-zero if in presentation mode, otherwise zero.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 589

34.43.4.54 t_max_err jbox set presentation position (t_object ∗ box, t_pt ∗ pos)

Set the position of a box for the presentation view.

Parameters
box The box whose rect will be changed.
pos The address of a t_pt with the new x and y values.

Returns

A Max error code.

34.43.4.55 t_max_err jbox set presentation rect (t_object ∗ box, t_rect ∗ pr)

Change the presentation rect of a box.

Parameters
box The box whose rect will be changed.

pr The address of a t_rect with the new rect values.

Returns

A Max error code.

34.43.4.56 t_max_err jbox set presentation size (t_object ∗ box, t_size ∗ size)

Set the size of a box for the presentation view.

Parameters
box The box whose size will be changed.
size The address of a t_size with the new width and height values.

Returns

A Max error code.

34.43.4.57 t_max_err jbox set rect (t_object ∗ box, t_rect ∗ pr)

Set both the presentation rect and the patching rect.

Parameters
box The box whose rect will be changed.

pr The address of a t_rect with the new rect values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

590 Module Documentation

Returns

A Max error code.

34.43.4.58 t_max_err jbox set rect for sym (t_object ∗ box, t_symbol ∗ which, t_rect ∗
pr)

Change the rect for a box with a given attribute name.

Parameters
box The box whose rect will be changed.

which The name of the rect attribute to be changed, for example _sym_-
presentation_rect or _sym_patching_rect.

pr The address of a valid t_rect that will replace the current values used
by the box.

Returns

A Max error code.

34.43.4.59 t_max_err jbox set rect for view (t_object ∗ box, t_object ∗ patcherview,
t_rect ∗ rect)

Change the rect for a box in a given patcherview.

Parameters
box The box whose rect will be changed.

patcherview A patcherview in which the box exists.
rect The address of a valid t_rect that will replace the current values used

by the box in the given view.

Returns

A Max error code.

34.43.4.60 t_max_err jbox set size (t_object ∗ box, t_size ∗ size)

Set the size of a box for both the presentation and patching views.

Parameters
box The box whose size will be changed.
size The address of a t_size with the new size values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.43 jbox 591

Returns

A Max error code.

34.43.4.61 t_max_err jbox set varname (t_object ∗ b, t_symbol ∗ ps)

Set a box’s scripting name.

Parameters
b The box to query.

ps The new scripting name for the box.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

592 Module Documentation

34.44 jpatchline

A patch cord.

Collaboration diagram for jpatchline:

jpatchlinePatcher

Functions

• t_max_err jpatchline_get_startpoint (t_object ∗l, double ∗x, double ∗y)

Retrieve a patchline’s starting point.

• t_max_err jpatchline_get_endpoint (t_object ∗l, double ∗x, double ∗y)

Retrieve a patchline’s ending point.

• long jpatchline_get_nummidpoints (t_object ∗l)
Determine the number of midpoints (segments) in a patchline.

• t_object ∗ jpatchline_get_box1 (t_object ∗l)
Return the object box from which a patchline originates.

• long jpatchline_get_outletnum (t_object ∗l)
Return the outlet number of the originating object box from which a patchline begins.

• t_object ∗ jpatchline_get_box2 (t_object ∗l)
Return the destination object box for a patchline.

• long jpatchline_get_inletnum (t_object ∗l)
Return the inlet number of the destination object box to which a patchline is connected.

• t_object ∗ jpatchline_get_nextline (t_object ∗b)

Given a patchline, traverse to the next patchline in the (linked) list.

• char jpatchline_get_hidden (t_object ∗l)
Determine if a patch line is hidden.

• t_max_err jpatchline_set_hidden (t_object ∗l, char c)

Set a patchline’s visibility.

• t_max_err jpatchline_get_color (t_object ∗l, t_jrgba ∗prgba)

Get the color of a patch line.

• t_max_err jpatchline_set_color (t_object ∗l, t_jrgba ∗prgba)

Set the color of a patch line.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.44 jpatchline 593

34.44.1 Detailed Description

A patch cord.

34.44.2 Function Documentation

34.44.2.1 t_object∗ jpatchline get box1 (t_object ∗ l)

Return the object box from which a patchline originates.

Parameters
l A pointer to the patchline’s instance.

Returns

The object box from which the patchline originates.

34.44.2.2 t_object∗ jpatchline get box2 (t_object ∗ l)

Return the destination object box for a patchline.

Parameters
l A pointer to the patchline’s instance.

Returns

The destination object box for a patchline.

34.44.2.3 t_max_err jpatchline get color (t_object ∗ l, t_jrgba ∗ prgba)

Get the color of a patch line.

Parameters
l A patchline instance.

prgba The address of a valid t_jrgba struct that will be filled with the color
values of the patch line.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

594 Module Documentation

34.44.2.4 t_max_err jpatchline get endpoint (t_object ∗ l, double ∗ x, double ∗ y)

Retrieve a patchline’s ending point.

Parameters
l A pointer to the patchline’s instance.

x The address of a variable to hold the x-coordinate of the ending point’s
position upon return.

y The address of a variable to hold the y-coordinate of the ending point’s
position upon return.

Returns

A Max error code.

34.44.2.5 char jpatchline get hidden (t_object ∗ l)

Determine if a patch line is hidden.

Parameters
l A patchline instance.

Returns

Zero if the patchline is visible, non-zero if it is hidden.

34.44.2.6 long jpatchline get inletnum (t_object ∗ l)

Return the inlet number of the destination object box to which a patchline is connected.

Parameters
l A pointer to the patchline’s instance.

Returns

The inlet number.

34.44.2.7 t_object∗ jpatchline get nextline (t_object ∗ b)

Given a patchline, traverse to the next patchline in the (linked) list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.44 jpatchline 595

Parameters
b A patchline instance.

Returns

The next patchline. If the current patchline is at the end (tail) of the list, then NULL
is returned.

34.44.2.8 long jpatchline get nummidpoints (t_object ∗ l)

Determine the number of midpoints (segments) in a patchline.

Parameters
l A pointer to the patchline’s instance.

Returns

The number of midpoints in the patchline.

34.44.2.9 long jpatchline get outletnum (t_object ∗ l)

Return the outlet number of the originating object box from which a patchline begins.

Parameters
l A pointer to the patchline’s instance.

Returns

The outlet number.

34.44.2.10 t_max_err jpatchline get startpoint (t_object ∗ l, double ∗ x, double ∗ y)

Retrieve a patchline’s starting point.

Parameters
l A pointer to the patchline’s instance.
x The address of a variable to hold the x-coordinate of the starting point’s

position upon return.
y The address of a variable to hold the y-coordinate of the starting point’s

position upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

596 Module Documentation

Returns

A Max error code.

34.44.2.11 t_max_err jpatchline set color (t_object ∗ l, t_jrgba ∗ prgba)

Set the color of a patch line.

Parameters
l A patchline instance.

prgba The address of a valid t_jrgba struct containing the color to use.

Returns

An error code.

34.44.2.12 t_max_err jpatchline set hidden (t_object ∗ l, char c)

Set a patchline’s visibility.

Parameters
l A patchline instance.

c Pass 0 to make a patchline visible, or non-zero to hide it.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.45 jpatcherview 597

34.45 jpatcherview

A view of a patcher.

Collaboration diagram for jpatcherview:

jpatcherviewPatcher

Functions

• t_object ∗ patcherview_findpatcherview (int x, int y)

Find a patcherview at the given screen coords.

• char patcherview_get_visible (t_object ∗pv)

Query a patcherview to determine whether it is visible.

• t_max_err patcherview_set_visible (t_object ∗pv, char c)

Set the ’visible’ attribute of a patcherview.

• t_max_err patcherview_get_rect (t_object ∗pv, t_rect ∗pr)

Get the value of the rect attribute for a patcherview.

• t_max_err patcherview_set_rect (t_object ∗pv, t_rect ∗pr)

Set the value of the rect attribute for a patcherview.

• char patcherview_get_locked (t_object ∗p)

Find out if a patcherview is locked.

• t_max_err patcherview_set_locked (t_object ∗p, char c)

Lock or unlock a patcherview.

• char patcherview_get_presentation (t_object ∗pv)

Find out if a patcherview is a presentation view.

• t_max_err patcherview_set_presentation (t_object ∗p, char c)

Set whether or not a patcherview is a presentation view.

• double patcherview_get_zoomfactor (t_object ∗pv)

Fetch the zoom-factor of a patcherview.

• t_max_err patcherview_set_zoomfactor (t_object ∗pv, double d)

Set the zoom-factor of a patcherview.

• t_object ∗ patcherview_get_nextview (t_object ∗pv)

Given a patcherview, find the next patcherview.

• t_object ∗ patcherview_get_jgraphics (t_object ∗pv)

Given a patcherview, return the t_jgraphics context for that view.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

598 Module Documentation

• t_object ∗ patcherview_get_patcher (t_object ∗pv)

Given a patcherview, return its patcher.

• t_object ∗ patcherview_get_topview (t_object ∗pv)

Given a patcherview, return the top patcherview (possibly itself).

34.45.1 Detailed Description

A view of a patcher.

34.45.2 Function Documentation

34.45.2.1 t_object∗ patcherview findpatcherview (int x, int y)

Find a patcherview at the given screen coords.

Parameters
x The horizontal coordinate at which to find a patcherview.
y The vertical coordinate at which to find a patcherview.

Returns

A pointer to the patcherview at the specified location, or NULL if no patcherview
exists at that location.

34.45.2.2 t_object∗ patcherview get jgraphics (t_object ∗ pv)

Given a patcherview, return the t_jgraphics context for that view.

Parameters
pv The patcherview instance.

Returns

The t_jgraphics context for the view.

34.45.2.3 char patcherview get locked (t_object ∗ p)

Find out if a patcherview is locked.

Parameters
p The patcherview instance whose attribute value will be fetched.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.45 jpatcherview 599

Returns

Returns 0 if unlocked, otherwise returns non-zero.

34.45.2.4 t_object∗ patcherview get nextview (t_object ∗ pv)

Given a patcherview, find the next patcherview.

The views of a patcher are maintained internally as a t_linklist, and so the views can be
traversed should you need to perform operations on all of a patcher’s patcherviews.

Parameters
pv The patcherview instance from which to find the next patcherview.

Returns

The next patcherview in the list, or NULL if the patcherview passed in pv is the tail.

34.45.2.5 t_object∗ patcherview get patcher (t_object ∗ pv)

Given a patcherview, return its patcher.

Parameters
pv The patcherview instance for which to fetch the patcher.

Returns

The patcher.

34.45.2.6 char patcherview get presentation (t_object ∗ pv)

Find out if a patcherview is a presentation view.

Parameters
pv The patcherview instance whose attribute value will be fetched.

Returns

Returns 0 if the view is not a presentation view, otherwise returns non-zero.

34.45.2.7 t_max_err patcherview get rect (t_object ∗ pv, t_rect ∗ pr)

Get the value of the rect attribute for a patcherview.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

600 Module Documentation

Parameters
pv The patcherview instance whose attribute value will be fetched.
pr The address of a valid t_rect struct, whose contents will be filled upon

return.

Returns

An error code.

34.45.2.8 t_object∗ patcherview get topview (t_object ∗ pv)

Given a patcherview, return the top patcherview (possibly itself).

If the patcherview is inside a bpatcher which is in a patcher then this will give you the
view the bpatcher view is inside of.

Parameters
pv The patcherview instance whose top view you want to get.

Returns

The top patcherview.

34.45.2.9 char patcherview get visible (t_object ∗ pv)

Query a patcherview to determine whether it is visible.

Parameters
pv The patcherview instance to query.

Returns

Returns zero if the patcherview is invisible, otherwise returns non-zero.

34.45.2.10 double patcherview get zoomfactor (t_object ∗ pv)

Fetch the zoom-factor of a patcherview.

Parameters
pv The patcherview instance whose attribute value will be fetched.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.45 jpatcherview 601

Returns

The factor by which the view is zoomed.

34.45.2.11 t_max_err patcherview set locked (t_object ∗ p, char c)

Lock or unlock a patcherview.

Parameters
p The patcherview instance whose attribute value will be set.
c Set this value to zero to unlock the patcherview, otherwise pass a non-

zero value.

Returns

An error code.

34.45.2.12 t_max_err patcherview set presentation (t_object ∗ p, char c)

Set whether or not a patcherview is a presentation view.

Parameters
p The patcherview instance whose attribute value will be set.
c Set this value to non-zero to make the patcherview a presentation view,

otherwise pass zero.

Returns

An error code.

34.45.2.13 t_max_err patcherview set rect (t_object ∗ pv, t_rect ∗ pr)

Set the value of the rect attribute for a patcherview.

Parameters
pv The patcherview instance whose attribute value will be set.
pr The address of a valid t_rect struct.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

602 Module Documentation

34.45.2.14 t_max_err patcherview set visible (t_object ∗ pv, char c)

Set the ’visible’ attribute of a patcherview.

Parameters
pv The patcherview instance whose attribute will be set.

c Whether or not the patcherview should be made visible.

Returns

An error code.

34.45.2.15 t_max_err patcherview set zoomfactor (t_object ∗ pv, double d)

Set the zoom-factor of a patcherview.

Parameters
pv The patcherview instance whose attribute value will be set.
d The zoom-factor at which the patcherview should display the patcher.

Returns

An error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.46 Timing 603

34.46 Timing

Collaboration diagram for Timing:

Qelems

Clocks

ITM Time Objects

Timing

Systime API

Modules

• Clocks

Clock objects are your interface to Max’s scheduler.

• Qelems

Your object’s methods may be called at interrupt level.

• Systime API

The Systime API provides the means of getting the system time, instead of the sched-
uler time as you would with functions like gettime().

• ITM Time Objects

ITM Time Objects are a high-level interface to ITM, a tempo-based scheduler API.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

604 Module Documentation

34.47 Clocks

Clock objects are your interface to Max’s scheduler.

Collaboration diagram for Clocks:

ClocksTiming

Typedefs

• typedef t_object t_clock

A clock.

Functions

• void ∗ clock_new (void ∗obj, method fn)

Create a new Clock object.

• void clock_delay (void ∗x, long n)

Schedule the execution of a Clock.

• void clock_unset (void ∗x)

Cancel the scheduled execution of a Clock.

• void clock_fdelay (void ∗c, double time)

Schedule the execution of a Clock using a floating-point argument.

• void clock_getftime (double ∗time)

Find out the current logical time of the scheduler in milliseconds as a floating-point
number.

• void setclock_delay (t_object ∗x, void ∗c, long time)

Schedule a Clock on a scheduler.

• void setclock_unset (t_object ∗x, void ∗c)

Remove a Clock from a scheduler.

• long setclock_gettime (t_object ∗x)

Find out the current time value of a setclock object.

• void setclock_fdelay (t_object ∗s, void ∗c, double time)

Schedule a Clock on a scheduler, using a floating-point time argument.

• void setclock_getftime (t_object ∗s, double ∗time)

Find out the current time value of a setclock object in floating-point milliseconds.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 605

• double systimer_gettime (void)

While most Max timing references "logical" time derived from Max’s millisecond sched-
uler, time values produced by the systimer_gettime() are referenced from the CPU
clock and can be used to time real world events with microsecond precision.

• long gettime (void)

Find out the current logical time of the scheduler in milliseconds.

• void ∗ scheduler_new (void)

Create a new local scheduler.

• void ∗ scheduler_set (void ∗x)

Make a scheduler current, so that future related calls (such as clock_delay()) will affect
the appropriate scheduler.

• void ∗ scheduler_get ()

Get the currently set scheduler.

• void ∗ scheduler_fromobject (t_object ∗o)

Get the scheduler associated with a given object, if any.

• void scheduler_run (void ∗x, double until)

Run scheduler events to a selected time.

• void scheduler_settime (void ∗x, double time)

Set the current time of the scheduler.

• void scheduler_gettime (void ∗x, double ∗time)

Retrieve the current time of the selected scheduler.

• void scheduler_shift (void ∗x, double amount)

Shift scheduler’s current time and run time for all pending clock.

34.47.1 Detailed Description

Clock objects are your interface to Max’s scheduler. To use the scheduler, you create a
new Clock object using clock_new in your instance creation function. You also have to
write a clock function that will be executed when the clock goes off, declared as follows:

void myobject_tick (myobject *x);

The argument x is determined by the arg argument to clock_new(). Almost always it
will be pointer to your object. Then, in one of your methods, use clock_delay() or clock-
_fdelay() to schedule yourself. If you want unschedule yourself, call clock_unset(). To
find out what time it is now, use gettime() or clock_getftime(). More advanced clock
operations are possible with the setclock object interface described in Chapter 9. We
suggest you take advantage of the higher timing precision of the floating-point clock
routines—all standard Max 4 timing objects such as metro use them.

When the user has Overdrive mode enabled, your clock function will execute at interrupt
level.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

606 Module Documentation

34.47.2 Using Clocks

Under normal circumstances, gettime or clock_getftime will not be necessary for
scheduling purposes if you use clock_delay or clock_fdelay, but it may be useful for
recording the timing of messages or events.

As an example, here’s a fragment of how one might go about writing a metronome using
the Max scheduler. First, here’s the data structure we’ll use.

typedef struct mymetro {
t_object *m_obj;
void *m_clock;
double m_interval;
void *m_outlet;

} t_mymetro;

We’ll assume that the class has been initialized already. Here’s the instance creation
function that will allocate a new Clock.

void *mymetro_create (double defaultInterval)
{

t_mymetro *x;
x = (t_mymetro *)newobject(mymetro_class); // allocate space
x->m_clock = clock_new(x,(method)mymetro_tick); // make a clock
x->m_interval = defaultInterval; // store the interval
x->m_outlet = bangout(x); // outlet for ticks
return x; // return the new object

}

Here’s the method written to respond to the bang message that starts the metronome.

void mymetro_bang (t_mymetro *x)
{

clock_fdelay(x->m_clock,0.);
}

Here’s the Clock function.

void mymetro_tick(t_mymetro *x)
{

clock_fdelay(x->m_clock, x->m_interval);
// schedule another metronome tick
outlet_bang(x->m_outlet); // send out a bang

}

You may also want to stop the metronome at some point. Here’s a method written to
respond to the message stop. It uses clock_unset.

void mymetro_stop (t_mymetro *x)
{

clock_unset(x->m_clock);
}

In your object’s free function, you should call freeobject on any Clocks you’ve created.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 607

void mymetro_free (MyMetro *x)
{

freeobject((t_object *)x->m_clock);
}

34.47.3 Scheduling with setclock Objects

The setclock object allows a more general way of scheduling Clocks by generalizing
the advancement of the time associated with a scheduler. Each setclock object’s "time"
can be changed by a process other than the internal millisecond clock. In addition, the
object implements routines that modify the mapping of the internal millisecond clock
onto the current value of time in an object. Your object can call a set of routines that use
either setclock or the normal millisecond clock transparently. Many Max objects accept
the message clock followed by an optional symbol to set their internal scheduling to
a named setclock object. The typical implementation passes the binding of a Symbol
(the s_thing field) to the Setclock functions. By default, the empty symbol is passed. If
the binding has been linked to a setclock object, it will be used to schedule the Clock.
Otherwise, the Clock is scheduled using the main internal millisecond scheduler. The
Setclock data structure is a replacement for void ∗ since there will be no reason for
external objects to access it directly.

34.47.3.1 Using the setclock Object Routines

Here’s an example implementation of the relevant methods of a metronome object using
the Setclock routines.

typedef struct metro
{

t_object m_ob;
long m_interval;
long m_running;
void *m_clock;
t_symbol *m_setclock;

} t_metro;

Here’s the implementation of the routines for turning the metronome on and off. Assume
that in the instance creation function, the t_symbol m_setclock has been set to the
empty symbol (gensym ("")) and m_clock has been created; the clock function metro_-
tick() is defined further on.

void metro_bang(Metro *x) // turn metronome on
{

x->m_running = 1;
setclock_delay(x->m_setclock->s_thing,x->m_clock,0);

}

void metro_stop(Metro *x)
{

x->m_running = 0;
setclock_unset(x->m_setclock->s_thing,x->m_clock);

}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

608 Module Documentation

Here is the implementation of the clock function metro_tick() that runs periodically.

void metro_tick(Metro *x)
{

outlet_bang(x->m_ob.o_outlet);
if (x->m_running)

setclock_delay(x->m_setclock->s_thing,x->m_clock,x->m_interval);
}

Finally, here is an implementation of the method to respond to the clock message. Note
that the function tries to verify that a non-zero value bound to the t_symbol passed as
an argument is in fact an instance of setclock by checking to see if it responds to the
unset message. If not, the metronome refuses to assign the t_symbol to its internal
m_setclock field.

void metro_clock(Metro *x, t_symbol *s)
{

void *old = x->m_setclock->s_thing;
void *c = 0;

// the line below can be restated as:
// if s is the empty symbol
// or s->s_thing is zero
// or s->s_thing is non-zero and a setclock object
if ((s == gensym("")) || ((c = s->s_thing) && zgetfn(c,&s_unset)))
{

if (old)
setclock_unset(old,x->m_clock);

x->m_setclock = s;
if (x->m_running)

setclock_delay(c,x->m_clock,0L);
}

}

34.47.4 Creating Schedulers

If you want to schedule events independently of the time of the global Max scheduler,
you can create your own scheduler with scheduler_new(). By calling scheduler_set()
with the newly created scheduler, calls to clock_new() will create Clocks tied to your
scheduler instead of Max’s global one. You can then control the time of the sched-
uler (using scheduler_settime()) as well as when it executes clock functions (using
scheduler_run()). This is a more general facility than the setclock object routines, but
unlike using the time from a setclock object to determine when a Clock function runs,
once a Clock is tied to a scheduler.

34.47.5 Function Documentation

34.47.5.1 void clock delay (void ∗ x, long n)

Schedule the execution of a Clock.

clock_delay() sets a clock to go off at a certain number of milliseconds from the current
logical time.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 609

Parameters
x Clock to schedule.
n Delay, in milliseconds, before the Clock will execute.

See also

clock_fdelay()

34.47.5.2 void clock fdelay (void ∗ c, double time)

Schedule the execution of a Clock using a floating-point argument.

clock_delay() sets a clock to go off at a certain number of milliseconds from the current
logical time.

Parameters
c Clock to schedule.

time Delay, in milliseconds, before the Clock will execute.

See also

clock_delay()

34.47.5.3 void clock getftime (double ∗ time)

Find out the current logical time of the scheduler in milliseconds as a floating-point
number.

Parameters
time Returns the current time.

See also

gettime()
setclock_getftime()
setclock_gettime()

34.47.5.4 void∗ clock new (void ∗ obj, method fn)

Create a new Clock object.

Normally, clock_new() is called in your instance creation function—and it cannot be
called from a thread other than the main thread. To get rid of a clock object you created,
use freeobject().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

610 Module Documentation

Parameters
obj Argument that will be passed to clock function fn when it is called. This

will almost always be a pointer to your object.
fn Function to be called when the clock goes off, declared to take a single

argument as shown in Using Clocks.

Returns

A pointer to a newly created Clock object.

34.47.5.5 void clock unset (void ∗ x)

Cancel the scheduled execution of a Clock.

clock_unset() will do nothing (and not complain) if the Clock passed to it has not been
set.

Parameters
x Clock to cancel.

34.47.5.6 long gettime (void)

Find out the current logical time of the scheduler in milliseconds.

Returns

Returns the current time.

See also

clock_getftime()

34.47.5.7 void∗ scheduler fromobject (t_object ∗ o)

Get the scheduler associated with a given object, if any.

Parameters
o The object who’s scheduler is to be returned.

Returns

This routine returns a pointer to the scheduler or the passed in object,

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 611

See also

Creating Schedulers

34.47.5.8 void∗ scheduler get ()

Get the currently set scheduler.

Returns

This routine returns a pointer to the current scheduler,

See also

Creating Schedulers

34.47.5.9 void scheduler gettime (void ∗ x, double ∗ time)

Retrieve the current time of the selected scheduler.

Parameters
x The scheduler to query.

time The current time of the selected scheduler.

See also

Creating Schedulers

34.47.5.10 void∗ scheduler new (void)

Create a new local scheduler.

Returns

A pointer to the newly created scheduler.

See also

Creating Schedulers

34.47.5.11 void scheduler run (void ∗ x, double until)

Run scheduler events to a selected time.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

612 Module Documentation

Parameters
x The scheduler to advance.

until The ending time for this run (in milliseconds).

See also

Creating Schedulers

34.47.5.12 void∗ scheduler set (void ∗ x)

Make a scheduler current, so that future related calls (such as clock_delay()) will affect
the appropriate scheduler.

Parameters
x The scheduler to make current.

Returns

This routine returns a pointer to the previously current scheduler, saved and re-
stored when local scheduling is complete.

See also

Creating Schedulers

34.47.5.13 void scheduler settime (void ∗ x, double time)

Set the current time of the scheduler.

Parameters
x The scheduler to set.

time The new current time for the selected scheduler (in milliseconds).

See also

Creating Schedulers

34.47.5.14 void scheduler shift (void ∗ x, double amount)

Shift scheduler’s current time and run time for all pending clock.

Could be used to change scheduler’s time reference without impacting current clocks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 613

Parameters
x The scheduler to affect.

amount Number of milliseconds to shift by.

See also

Creating Schedulers

34.47.5.15 void setclock delay (t_object ∗ x, void ∗ c, long time)

Schedule a Clock on a scheduler.

Schedules the Clock c to execute at time units after the current time. If scheduler x
is 0 or does not point to a setclock object, the internal millisecond scheduler is used.
Otherwise c is scheduled on the setclock object’s list of Clocks. The Clock should be
created with clock_new(), the same as for a Clock passed to clock_delay().

Parameters
x A setclock object to be used for scheduling this clock.
c Clock object containing the function to be executed.

time Time delay (in the units of the Setclock) from the current time when the
Clock will be executed.

See also

Scheduling with setclock Objects
setclock_fdelay()

34.47.5.16 void setclock fdelay (t_object ∗ s, void ∗ c, double time)

Schedule a Clock on a scheduler, using a floating-point time argument.

Parameters
s A setclock object to be used for scheduling this clock.
c Clock object containing the function to be executed.

time Time delay (in the units of the Setclock) from the current time when the
Clock will be executed.

See also

Scheduling with setclock Objects
setclock_delay()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

614 Module Documentation

34.47.5.17 void setclock getftime (t_object ∗ s, double ∗ time)

Find out the current time value of a setclock object in floating-point milliseconds.

Parameters
s A setclock object.

time The current time in milliseconds.

See also

Scheduling with setclock Objects
setclock_gettime()

34.47.5.18 long setclock gettime (t_object ∗ x)

Find out the current time value of a setclock object.

Parameters
x A setclock object.

Returns

Returns the current time value of the setclock object scheduler. If scheduler is 0,
setclock_gettime is equivalent to the function gettime that returns the current value
of the internal millisecond clock.

See also

Scheduling with setclock Objects
setclock_getftime()

34.47.5.19 void setclock unset (t_object ∗ x, void ∗ c)

Remove a Clock from a scheduler.

This function unschedules the Clock c in the list of Clocks in the setclock object x, or the
internal millisecond scheduler if scheduler is 0.

Parameters
x The setclock object that was used to schedule this clock. If 0, the clock

is unscheduled from the internal millisecond scheduler.
c Clock object to be removed from the scheduler.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.47 Clocks 615

See also

Scheduling with setclock Objects

34.47.5.20 double systimer gettime (void)

While most Max timing references "logical" time derived from Max’s millisecond sched-
uler, time values produced by the systimer_gettime() are referenced from the CPU clock
and can be used to time real world events with microsecond precision.

The standard ’cpuclock’ external in Max is a simple wrapper around this function.

Returns

Returns the current real-world time.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

616 Module Documentation

34.48 Qelems

Your object’s methods may be called at interrupt level.

Collaboration diagram for Qelems:

QelemsTiming

Typedefs

• typedef void ∗ t_qelem

A qelem.

Functions

• void ∗ qelem_new (void ∗obj, method fn)

Create a new Qelem.

• void qelem_set (void ∗q)

Cause a Qelem to execute.

• void qelem_unset (void ∗q)

Cancel a Qelem’s execution.

• void qelem_free (void ∗x)

Free a Qelem object created with qelem_new().

• void qelem_front (void ∗x)

Cause a Qelem to execute with a higher priority.

34.48.1 Detailed Description

Your object’s methods may be called at interrupt level. This happens when the user
has Overdrive mode enabled and one of your methods is called, directly or indirectly,
from a scheduler Clock function. This means that you cannot count on doing certain
things—like drawing, asking the user what file they would like opened, or calling any
Macintosh toolbox trap that allocates or purges memory—from within any method that
responds to any message that could be sent directly from another Max object. The
mechanism you’ll use to get around this limitation is the Qelem (queue element) struc-
ture. Qelems also allow processor-intensive tasks to be done at a lower priority than in

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.48 Qelems 617

an interrupt. As an example, drawing on the screen, especially in color, takes a long
time in comparison with a task like sending MIDI data.

A Qelem works very much like a Clock. You create a new Qelem in your creation
function with qelem_new and store a pointer to it in your object. Then you write a queue
function, very much like the clock function (it takes the same single argument that will
usually be a pointer to your object) that will be called when the Qelem has been set.
You set the Qelem to run its function by calling qelem_set().

Often you’ll want to use Qelems and Clocks together. For example, suppose you want
to update the display for a counter that changes 20 times a second. This can be accom-
plished by writing a Clock function that calls qelem_set() and then reschedules itself
for 50 milliseconds later using the technique shown in the metronome example above.
This scheme works even if you call qelem_set() faster than the computer can draw the
counter, because if a Qelem is already set, qelem_set() will not set it again. However,
when drawing the counter, you’ll display its current value, not a specific value generated
in the Clock function.

Note that the Qelem-based defer mechanism discussed later in this chapter may be
easier for lowering the priority of one-time events, such as opening a standard file dialog
box in response to a read message.

If your Qelem routine sends messages using outlet_int() or any other of the outlet
functions, it needs to use the lockout mechanism described in the Interrupt Level -
Considerations section.

34.48.2 Function Documentation

34.48.2.1 void qelem free (void ∗ x)

Free a Qelem object created with qelem_new().

Typically this will be in your object’s free funtion.

Parameters
x The Qelem to destroy.

34.48.2.2 void qelem front (void ∗ x)

Cause a Qelem to execute with a higher priority.

This function is identical to qelem_set(), except that the Qelem’s function is placed at
the front of the list of routines to execute in the main thread instead of the back. Be
polite and only use qelem_front() only for special time-critical applications.

Parameters
x The Qelem whose function will be executed in the main thread.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

618 Module Documentation

34.48.2.3 void∗ qelem new (void ∗ obj, method fn)

Create a new Qelem.

The created Qelem will need to be freed using qelem_free(), do not use freeobject().

Parameters
obj Argument to be passed to function fun when the Qelem executes. -

Normally a pointer to your object.
fn Function to execute.

Returns

A pointer to a Qelem instance. You need to store this value to pass to qelem_set().

Remarks

Any kind of drawing or calling of Macintosh Toolbox routines that allocate or purge
memory should be done in a Qelem function.

34.48.2.4 void qelem set (void ∗ q)

Cause a Qelem to execute.

Parameters
q The Qelem whose function will be executed in the main thread.

Remarks

The key behavior of qelem_set() is this: if the Qelem object has already been set,
it will not be set again. (If this is not what you want, see defer().) This is useful if
you want to redraw the state of some data when it changes, but not in response
to changes that occur faster than can be drawn. A Qelem object is unset after its
queue function has been called.

34.48.2.5 void qelem unset (void ∗ q)

Cancel a Qelem’s execution.

If the Qelem’s function is set to be called, qelem_unset() will stop it from being called.
Otherwise, qelem_unset() does nothing.

Parameters
q The Qelem whose execution you wish to cancel.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.49 Systime API 619

34.49 Systime API

The Systime API provides the means of getting the system time, instead of the sched-
uler time as you would with functions like gettime().

Collaboration diagram for Systime API:

Timing Systime API

Data Structures

• struct t_datetime

The Systime data structure.

Enumerations

• enum e_max_dateflags { SYSDATEFORMAT_FLAGS_SHORT, SYSDATEFOR-
MAT_FLAGS_MEDIUM, SYSDATEFORMAT_FLAGS_LONG }

Flags for the sysdateformat_formatdatetime() function.

Functions

• unsigned long systime_ticks (void)

Find out the operating system’s time in ticks.

• unsigned long systime_ms (void)

Find out the operating system’s time in milliseconds.

• void systime_datetime (t_datetime ∗d)

Find out the operating system’s date and time.

• unsigned long systime_seconds (void)

Find out the operating system’s time in seconds.

• void systime_secondstodate (unsigned long secs, t_datetime ∗d)

Convert a time in seconds into a t_datetime representation.

• unsigned long systime_datetoseconds (t_datetime ∗d)

Convert a t_datetime representation of time into seconds.

• void sysdateformat_strftimetodatetime (char ∗strf, t_datetime ∗d)

Fill a t_datetime struct with a datetime formatted string.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

620 Module Documentation

• void sysdateformat_formatdatetime (t_datetime ∗d, long dateflags, long time-
flags, char ∗s, long buflen)

Get a human friendly string representation of a t_datetime.

34.49.1 Detailed Description

The Systime API provides the means of getting the system time, instead of the sched-
uler time as you would with functions like gettime().

34.49.2 Enumeration Type Documentation

34.49.2.1 enum e_max_dateflags

Flags for the sysdateformat_formatdatetime() function.

Enumerator:

SYSDATEFORMAT_FLAGS_SHORT short

SYSDATEFORMAT_FLAGS_MEDIUM medium

SYSDATEFORMAT_FLAGS_LONG long

34.49.3 Function Documentation

34.49.3.1 void sysdateformat formatdatetime (t_datetime ∗ d, long dateflags, long timeflags,
char ∗ s, long buflen)

Get a human friendly string representation of a t_datetime.

For example: "Today", "Yesterday", etc.

Parameters
d The address of a t_datetime to fill.

dateflags One of the values defined in e_max_dateflags.
timeflags Currently unused. Pass 0.

s An already allocated string to hold the human friendly result.
buflen The number of characters allocated to the string s.

34.49.3.2 void sysdateformat strftimetodatetime (char ∗ strf, t_datetime ∗ d)

Fill a t_datetime struct with a datetime formatted string.

For example, the string "2007-12-24 12:21:00".

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.49 Systime API 621

Parameters
strf A string containing the datetime.

d The address of a t_datetime to fill.

34.49.3.3 void systime datetime (t_datetime ∗ d)

Find out the operating system’s date and time.

Parameters
d Returns the system’s date and time in a t_datetime data structure.

34.49.3.4 unsigned long systime datetoseconds (t_datetime ∗ d)

Convert a t_datetime representation of time into seconds.

Parameters
d The address of a t_datetime that contains a valid period of time.

Returns

The number of seconds represented by d.

34.49.3.5 unsigned long systime ms (void)

Find out the operating system’s time in milliseconds.

Returns

the system time in milliseconds.

34.49.3.6 unsigned long systime seconds (void)

Find out the operating system’s time in seconds.

Returns

the system time in seconds.

34.49.3.7 void systime secondstodate (unsigned long secs, t_datetime ∗ d)

Convert a time in seconds into a t_datetime representation.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

622 Module Documentation

Parameters
secs A number of seconds to be represented as a t_datetime.

d The address of a t_datetime that will be filled with the converted value.

34.49.3.8 unsigned long systime ticks (void)

Find out the operating system’s time in ticks.

Returns

the system time in ticks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 623

34.50 ITM Time Objects

ITM Time Objects are a high-level interface to ITM, a tempo-based scheduler API.

Collaboration diagram for ITM Time Objects:

ITM Time ObjectsTiming

Enumerations

• enum { TIME_FLAGS_LOCATION, TIME_FLAGS_TICKSONLY, TIME_FLAG-
S_FIXEDONLY, TIME_FLAGS_LOOKAHEAD, TIME_FLAGS_USECLOCK, TI-
ME_FLAGS_USEQELEM, TIME_FLAGS_FIXED, TIME_FLAGS_PERMANENT,
TIME_FLAGS_TRANSPORT, TIME_FLAGS_EVENTLIST, TIME_FLAGS_CH-

ECKSCHEDULE, TIME_FLAGS_LISTENTICKS, TIME_FLAGS_NOUNITS, TI-
ME_FLAGS_BBUSOURCE, TIME_FLAGS_POSITIVE }

Flags that determine attribute and time object behavior.

Functions

• void ∗ itm_getglobal (void)

Return the global (default / unnamed) itm object.

• void ∗ itm_getnamed (t_symbol ∗s, void ∗scheduler, t_symbol ∗defaultclocksourcename,
long create)

Return a named itm object.

• void itm_reference (t_itm ∗x)

Reference an itm object.

• void itm_dereference (t_itm ∗x)

Stop referencing an itm object.

• double itm_gettime (t_itm ∗x)

Report the current internal time.

• double itm_getticks (t_itm ∗x)

Report the current time of the itm in ticks.

• void itm_dump (t_itm ∗x)

Print diagnostic information about an itm object to the Max window.

• void itm_settimesignature (t_itm ∗x, long num, long denom, long flags)

Set an itm object’s current time signature.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

624 Module Documentation

• void itm_gettimesignature (t_itm ∗x, long ∗num, long ∗denom)

Query an itm object for its current time signature.

• void itm_pause (t_itm ∗x)

Pause the passage of time for an itm object.

• void itm_resume (t_itm ∗x)

Start the passage of time for an itm object, from it’s current location.

• long itm_getstate (t_itm ∗x)

Find out if time is currently progressing for a given itm object.

• void itm_setresolution (double res)

Set the number of ticks-per-quarter-note globally for the itm system.

• double itm_getresolution (void)

Get the number of ticks-per-quarter-note globally from the itm system.

• t_symbol ∗ itm_getname (t_itm ∗x)

Given an itm object, return its name.

• double itm_tickstoms (t_itm ∗x, double ticks)

Convert a time value in ticks to the equivalent value in milliseconds, given the context
of a specified itm object.

• double itm_mstoticks (t_itm ∗x, double ms)

Convert a time value in milliseconds to the equivalent value in ticks, given the context
of a specified itm object.

• double itm_mstosamps (t_itm ∗x, double ms)

Convert a time value in milliseconds to the equivalent value in samples, given the
context of a specified itm object.

• double itm_sampstoms (t_itm ∗x, double samps)

Convert a time value in samples to the equivalent value in milliseconds, given the
context of a specified itm object.

• void itm_barbeatunitstoticks (t_itm ∗x, long bars, long beats, double units, double
∗ticks, char position)

Convert a time value in bbu to the equivalent value in ticks, given the context of a
specified itm object.

• void itm_tickstobarbeatunits (t_itm ∗x, double ticks, long ∗bars, long ∗beats, dou-
ble ∗units, char position)

Convert a time value in bbu to the equivalent value in ticks, given the context of a
specified itm object.

• long itm_isunitfixed (t_symbol ∗u)

Given the name of a time unit (e.g.

• void time_stop (t_timeobject ∗x)

Stop a currently scheduled time object.

• void time_tick (t_timeobject ∗x)

Execute a time object’s task, then if it was already set to execute, reschedule for the
current interval value of the object.

• double time_getms (t_timeobject ∗x)

Convert the value of a time object to milliseconds.

• double time_getticks (t_timeobject ∗x)

Convert the value of a time object to ticks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 625

• void time_getphase (t_timeobject ∗tx, double ∗phase, double ∗slope, double
∗ticks)

Return the phase of the ITM object (transport) associated with a time object.

• void time_listen (t_timeobject ∗x, t_symbol ∗attr, long flags)

Specify that a millisecond-based attribute to be updated automatically when the con-
verted milliseconds of the time object’s value changes.

• void time_setvalue (t_timeobject ∗tx, t_symbol ∗s, long argc, t_atom ∗argv)

Set the current value of a time object (either an interval or a position) using a Max
message.

• void class_time_addattr (t_class ∗c, char ∗attrname, char ∗attrlabel, long flags)

Create an attribute permitting a time object to be changed in a user-friendly way.

• void ∗ time_new (t_object ∗owner, t_symbol ∗attrname, method tick, long flags)

Create a new time object.

• t_object ∗ time_getnamed (t_object ∗owner, t_symbol ∗attrname)

Return a time object associated with an attribute of an owning object.

• long time_isfixedunit (t_timeobject ∗x)

Return whether this time object currently holds a fixed (millisecond-based) value.

• void time_schedule (t_timeobject ∗x, t_timeobject ∗quantize)

Schedule a task, with optional quantization.

• void time_schedule_limit (t_timeobject ∗x, t_timeobject ∗quantize)

Schedule a task, with optional minimum interval,.

• void time_now (t_timeobject ∗x, t_timeobject ∗quantize)

Schedule a task for right now, with optional quantization.

• void ∗ time_getitm (t_timeobject ∗ox)

Return the ITM object associated with this time object.

• double time_calcquantize (t_timeobject ∗ox, t_itm ∗vitm, t_timeobject ∗oq)

Calculate the quantized interval (in ticks) if this time object were to be scheduled at the
current time.

• void time_setclock (t_timeobject ∗tx, t_symbol ∗sc)

Associate a named setclock object with a time object (unsupported).

Variables

• BEGIN_USING_C_LINKAGE typedef t_object t_itm

A low-level object for tempo-based scheduling.

• BEGIN_USING_C_LINKAGE typedef t_object t_timeobject

A high-level time object for tempo-based scheduling.

34.50.1 Detailed Description

ITM Time Objects are a high-level interface to ITM, a tempo-based scheduler API. -
They provide an abtraction so your object can schedule events either in milliseconds
(as traditional clock objects) or ticks (tempo-relative units).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

626 Module Documentation

34.50.2 Enumeration Type Documentation

34.50.2.1 anonymous enum

Flags that determine attribute and time object behavior.

Enumerator:

TIME_FLAGS_LOCATION 1 1 0 location-based bar/beat/unit values (as op-
posed to interval values, which are 0 0 0 relative)

TIME_FLAGS_TICKSONLY only ticks-based values (not ms) are acceptable

TIME_FLAGS_FIXEDONLY only fixed values (ms, hz, samples) are acceptable

TIME_FLAGS_LOOKAHEAD add lookahead attribute (unsupported)

TIME_FLAGS_USECLOCK this time object will schedule events, not just hold a
value

TIME_FLAGS_USEQELEM this time object will defer execution of scheduled
events to low priority thread

TIME_FLAGS_FIXED will only use normal clock (i.e., will never execute out of
ITM)

TIME_FLAGS_PERMANENT event will be scheduled in the permanent list (tied
to a specific time)

TIME_FLAGS_TRANSPORT add a transport attribute

TIME_FLAGS_EVENTLIST add an eventlist attribute (unsupported)

TIME_FLAGS_CHECKSCHEDULE internal use only

TIME_FLAGS_LISTENTICKS flag for time_listen: only get notifications if the
time object holds tempo-relative values

TIME_FLAGS_NOUNITS internal use only

TIME_FLAGS_BBUSOURCE source time was in bar/beat/unit values, need to
recalculate when time sig changes

TIME_FLAGS_POSITIVE constrain any values < 0 to 0

34.50.3 Function Documentation

34.50.3.1 void class time addattr (t_class ∗ c, char ∗ attrname, char ∗ attrlabel, long flags)

Create an attribute permitting a time object to be changed in a user-friendly way.

Parameters
c Class being initialized.

attrname Name of the attribute associated with the time object.
attrlabel Descriptive label for the attribute (appears in the inspector)

flags Options, see "Flags that determine time object behavior" above

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 627

34.50.3.2 void itm barbeatunitstoticks (t_itm ∗ x, long bars, long beats, double units, double
∗ ticks, char position)

Convert a time value in bbu to the equivalent value in ticks, given the context of a
specified itm object.

Parameters
x An itm object.

bars The measure number of the location/position.
beats The beat number of the location/position.
units The number of ticks past the beat of the location/position.
ticks The address of a variable to hold the number of ticks upon return.

position Set this parameter to TIME_FLAGS_LOCATION or to zero (for position
mode).

34.50.3.3 void itm dereference (t_itm ∗ x)

Stop referencing an itm object.

When you are done using an itm object, you must call this function to decrement its
reference count.

Parameters
x The itm object.

34.50.3.4 void itm dump (t_itm ∗ x)

Print diagnostic information about an itm object to the Max window.

Parameters
x The itm object.

34.50.3.5 void∗ itm getglobal (void)

Return the global (default / unnamed) itm object.

Returns

The global t_itm object.

34.50.3.6 t_symbol∗ itm getname (t_itm ∗ x)

Given an itm object, return its name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

628 Module Documentation

Parameters
x The itm object.

Returns

The name of the itm.

34.50.3.7 void∗ itm getnamed (t_symbol ∗ s, void ∗ scheduler, t_symbol ∗
defaultclocksourcename, long create)

Return a named itm object.

Parameters
s The name of the itm to return.

scheduler
defaultclock-
sourcename

create If non-zero, then create this named itm should it not already exist.

Returns

The global t_itm object.

34.50.3.8 double itm getresolution (void)

Get the number of ticks-per-quarter-note globally from the itm system.

Returns

The number of ticks-per-quarter-note.

See also

itm_setresolution()

34.50.3.9 long itm getstate (t_itm ∗ x)

Find out if time is currently progressing for a given itm object.

Parameters
x The itm object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 629

Returns

Returns non-zero if the time is running, or zero if it is paused.

See also

itm_pause()
itm_resume()

34.50.3.10 double itm getticks (t_itm ∗ x)

Report the current time of the itm in ticks.

You can use functions such as itm_tickstobarbeatunits() or itm_tickstoms() to convert to
a different representation of the time.

Parameters
x The itm object.

Returns

The current time in ticks.

34.50.3.11 double itm gettime (t_itm ∗ x)

Report the current internal time.

This is the same as calling clock_getftime();

Parameters
x The itm object.

Returns

The current internal time.

34.50.3.12 void itm gettimesignature (t_itm ∗ x, long ∗ num, long ∗ denom)

Query an itm object for its current time signature.

Parameters
x The itm object.

num The address of a variable to hold the top number of the time signature
upon return.

denom The address of a variable to hold the bottom number of the time signa-
ture upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

630 Module Documentation

34.50.3.13 long itm isunitfixed (t_symbol ∗ u)

Given the name of a time unit (e.g.

’ms’, ’ticks’, ’bbu’, ’samples’, etc.), determine whether the unit is fixed (doesn’t change
with tempo, time-signature, etc.) or whether it is flexible.

Parameters
u The name of the time unit.

Returns

Zero if the unit is fixed (milliseconds, for example) or non-zero if it is flexible (ticks,
for example).

34.50.3.14 double itm mstosamps (t_itm ∗ x, double ms)

Convert a time value in milliseconds to the equivalent value in samples, given the con-
text of a specified itm object.

Parameters
x An itm object.

ms A time specified in ms.

Returns

The time specified in samples.

34.50.3.15 double itm mstoticks (t_itm ∗ x, double ms)

Convert a time value in milliseconds to the equivalent value in ticks, given the context of
a specified itm object.

Parameters
x An itm object.

ms A time specified in ms.

Returns

The time specified in ticks.

34.50.3.16 void itm pause (t_itm ∗ x)

Pause the passage of time for an itm object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 631

This is the equivalent to setting the state of a transport object to 0 with a toggle.

Parameters
x The itm object.

34.50.3.17 void itm reference (t_itm ∗ x)

Reference an itm object.

When you are using an itm object, you must call this function to increment its reference
count.

Parameters
x The itm object.

34.50.3.18 void itm resume (t_itm ∗ x)

Start the passage of time for an itm object, from it’s current location.

This is the equivalent to setting the state of a transport object to 0 with a toggle.

Parameters
x The itm object.

34.50.3.19 double itm sampstoms (t_itm ∗ x, double samps)

Convert a time value in samples to the equivalent value in milliseconds, given the con-
text of a specified itm object.

Parameters
x An itm object.

samps A time specified in samples.

Returns

The time specified in ms.

34.50.3.20 void itm setresolution (double res)

Set the number of ticks-per-quarter-note globally for the itm system.

The default is 480.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

632 Module Documentation

Parameters
res The number of ticks-per-quarter-note.

See also

itm_getresolution()

34.50.3.21 void itm settimesignature (t_itm ∗ x, long num, long denom, long flags)

Set an itm object’s current time signature.

Parameters
x The itm object.

num The top number of the time signature.
denom The bottom number of the time signature.

flags Currently unused -- pass zero.

34.50.3.22 void itm tickstobarbeatunits (t_itm ∗ x, double ticks, long ∗ bars, long ∗ beats,
double ∗ units, char position)

Convert a time value in bbu to the equivalent value in ticks, given the context of a
specified itm object.

Parameters
x An itm object.

ticks The number of ticks to translate into a time represented as bars, beats,
and ticks.

bars The address of a variable to hold the measure number of the location/-
position upon return.

beats The address of a variable to hold the beat number of the location/posi-
tion upon return.

units The address of a variable to hold the number of ticks past the beat of
the location/position upon return.

position Set this parameter to TIME_FLAGS_LOCATION or to zero (for position
mode).

34.50.3.23 double itm tickstoms (t_itm ∗ x, double ticks)

Convert a time value in ticks to the equivalent value in milliseconds, given the context of
a specified itm object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 633

Parameters
x An itm object.

ticks A time specified in ticks.

Returns

The time specified in ms.

34.50.3.24 double time calcquantize (t_timeobject ∗ ox, t_itm ∗ vitm, t_timeobject ∗ oq
)

Calculate the quantized interval (in ticks) if this time object were to be scheduled at the
current time.

Parameters
ox Time object.

vitm The associated ITM object (use time_getitm() to determine it).
oq A time object that holds a quantization interval, can be NULL.

Returns

Interval (in ticks) for scheduling this object.

34.50.3.25 void∗ time getitm (t_timeobject ∗ ox)

Return the ITM object associated with this time object.

Parameters
ox Time object.

Returns

The associated t_itm object.

34.50.3.26 double time getms (t_timeobject ∗ x)

Convert the value of a time object to milliseconds.

Parameters
x The time object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

634 Module Documentation

Returns

The time object’s value, converted to milliseconds.

34.50.3.27 t_object∗ time getnamed (t_object ∗ owner, t_symbol ∗ attrname)

Return a time object associated with an attribute of an owning object.

Parameters
owner Object that owns this time object (task routine, if any, will pass owner

as argument).
attrname Name of the attribute associated with the time object.

Returns

The t_timeobject associated with the named attribute.

34.50.3.28 void time getphase (t_timeobject ∗ tx, double ∗ phase, double ∗ slope, double ∗
ticks)

Return the phase of the ITM object (transport) associated with a time object.

Parameters
tx The time object.

phase Pointer to a double to receive the progress within the specified time
value of the associated ITM object.

slope Pointer to a double to receive the slope (phase difference) within the
specified time value of the associated ITM object.

ticks

34.50.3.29 double time getticks (t_timeobject ∗ x)

Convert the value of a time object to ticks.

Parameters
x The time object.

Returns

The time object’s value, converted to ticks.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 635

34.50.3.30 long time isfixedunit (t_timeobject ∗ x)

Return whether this time object currently holds a fixed (millisecond-based) value.

Parameters
x Time object.

Returns

True if time object’s current value is fixed, false if it is tempo-relative.

34.50.3.31 void time listen (t_timeobject ∗ x, t_symbol ∗ attr, long flags)

Specify that a millisecond-based attribute to be updated automatically when the con-
verted milliseconds of the time object’s value changes.

Parameters
x The time object.

attr Name of the millisecond based attribute in the owning object that will be
updated

flags If TIME_FLAGS_LISTENTICKS is passed here, updating will not hap-
pen if the time value is fixed (ms) based

34.50.3.32 void∗ time new (t_object ∗ owner, t_symbol ∗ attrname, method tick, long
flags)

Create a new time object.

Parameters
owner Object that will own this time object (task routine, if any, will pass owner

as argument).
attrname Name of the attribute associated with the time object.

tick Task routine that will be executed (can be NULL)
flags Options, see "Flags that determine time object behavior" above

Returns

The newly created t_timeobject.

34.50.3.33 void time now (t_timeobject ∗ x, t_timeobject ∗ quantize)

Schedule a task for right now, with optional quantization.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

636 Module Documentation

Parameters
x The time object that schedules temporary events. The time interval is

ignored and 0 ticks is used instead.
quantize A time object that holds a quantization interval, can be NULL for no

quantization.

34.50.3.34 void time schedule (t_timeobject ∗ x, t_timeobject ∗ quantize)

Schedule a task, with optional quantization.

Parameters
x The time object that schedules temporary events (must have been cre-

ated with TIME_FLAGS_USECLOCK but not TIME_FLAGS_PERMA-
NENT)

quantize A time object that holds a quantization interval, can be NULL for no
quantization.

34.50.3.35 void time schedule limit (t_timeobject ∗ x, t_timeobject ∗ quantize)

Schedule a task, with optional minimum interval,.

Parameters
x The time object that schedules temporary events (must have been cre-

ated with TIME_FLAGS_USECLOCK but not TIME_FLAGS_PERMA-
NENT)

quantize The minimum interval into the future when the event can occur, can be
NULL if there is no minimum interval.

34.50.3.36 void time setclock (t_timeobject ∗ tx, t_symbol ∗ sc)

Associate a named setclock object with a time object (unsupported).

Parameters
tx Time object.
sc Name of an associated setclock object.

34.50.3.37 void time setvalue (t_timeobject ∗ tx, t_symbol ∗ s, long argc, t_atom ∗ argv
)

Set the current value of a time object (either an interval or a position) using a Max
message.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.50 ITM Time Objects 637

Parameters
tx The time object.
s Message selector.

argc Count of arguments.
argv Message arguments.

34.50.3.38 void time stop (t_timeobject ∗ x)

Stop a currently scheduled time object.

Parameters
x The time object.

34.50.3.39 void time tick (t_timeobject ∗ x)

Execute a time object’s task, then if it was already set to execute, reschedule for the
current interval value of the object.

Parameters
x The time object.

34.50.4 Variable Documentation

34.50.4.1 BEGIN USING C LINKAGE typedef t_object t_itm

A low-level object for tempo-based scheduling.

See also

t_timeobject
ITM

34.50.4.2 BEGIN USING C LINKAGE typedef t_object t_timeobject

A high-level time object for tempo-based scheduling.

See also

t_itm
ITM

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

638 Module Documentation

34.51 Threads

In Max, there are several threads of execution.

Collaboration diagram for Threads:

Threads

Critical Regions

Mutexes

Modules

• Critical Regions

A critical region is a simple mechanism that prevents multiple threads from accessing
at once code protected by the same critical region.

• Mutexes

Defines

• #define ATOMIC_INCREMENT(atomicptr)

Use this routine for incrementing a global counter using a threadsafe and multiproces-
sor safe method.

• #define ATOMIC_DECREMENT(atomicptr)

Use this routine for decrementing a global counter using a threadsafe and multipro-
cessor safe method.

• #define ATOMIC_COMPARE_SWAP32(oldvalue, newvalue, atomicptr)

atomic compare exchange does this:

Typedefs

• typedef void t_thread

A Max thread.

• typedef void ∗ t_systhread

An opaque thread instance pointer.

• typedef void ∗ t_systhread_mutex

An opaque mutex handle.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.51 Threads 639

• typedef void ∗ t_systhread_cond

An opaque cond handle.

Enumerations

• enum e_max_systhread_mutex_flags { SYSTHREAD_MUTEX_NORMAL, SYS-
THREAD_MUTEX_ERRORCHECK, SYSTHREAD_MUTEX_RECURSIVE }

systhread_mutex_new() flags

Functions

• void schedule (void ∗ob, method fun, long when, t_symbol ∗sym, short argc, Atom
∗argv)

Cause a function to be executed at the timer level at some time in the future.

• void schedule_delay (void ∗ob, method fun, long delay, t_symbol ∗sym, short
argc, t_atom ∗argv)

Cause a function to be executed at the timer level at some time in the future specified
by a delay offset.

• long isr (void)

Determine whether your code is executing in the Max scheduler thread.

• void ∗ defer (void ∗ob, method fn, t_symbol ∗sym, short argc, t_atom ∗argv)

Defer execution of a function to the main thread if (and only if) your function is executing
in the scheduler thread.

• void ∗ defer_low (void ∗ob, method fn, t_symbol ∗sym, short argc, t_atom
∗argv)

Defer execution of a function to the back of the queue on the main thread.

• long systhread_create (method entryproc, void ∗arg, long stacksize, long priority,
long flags, t_systhread ∗thread)

Create a new thread.

• long systhread_terminate (t_systhread thread)

Forcefully kill a thread -- not recommended.

• void systhread_sleep (long milliseconds)

Suspend the execution of the calling thread.

• void systhread_exit (long status)

Exit the calling thread.

• long systhread_join (t_systhread thread, unsigned int ∗retval)

Wait for thread to quit and get return value from systhread_exit().

• t_systhread systhread_self (void)

Return the thread instance pointer for the calling thread.

• void systhread_setpriority (t_systhread thread, int priority)

Set the thread priority for the given thread.

• int systhread_getpriority (t_systhread thread)

Get the thread priority for the given thread.

• short systhread_ismainthread (void)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

640 Module Documentation

Check to see if the function currently being executed is in the main thread.

• short systhread_istimerthread (void)

Check to see if the function currently being executed is in the scheduler thread.

34.51.1 Detailed Description

In Max, there are several threads of execution. The details of these threads are high-
lighted in the article "Event Priority in Max (Scheduler vs. Queue)" located online at
http://www.cycling74.com/story/2005/5/2/133649/9742.

Not all of the details of Max’s threading model are expounded here. Most important to
understand is that we typically deal the scheduler (which when overdrive is on runs in a
separate and high priority thread) and the low priority queue (which always runs in the
main application thread).

See also

http://www.cycling74.com/twiki/bin/view/ProductDocumentation/-
JitterSdkSchedQueue
http://www.cycling74.com/story/2005/5/2/133649/9742

34.51.2 Define Documentation

34.51.2.1 #define ATOMIC COMPARE SWAP32(oldvalue, newvalue, atomicptr)

atomic compare exchange does this:

• if (∗atomicptr == oldvalue) ∗atomicptr = newvalue;

• all of above done atomically

• return value is boolean: true if exchange was done

Parameters
atomicptr pointer to the atomic value
newvalue value that will be assigned to ∗atomicptr if test succeeds
oldvalue newvalue is only stored if original value equals oldvalue

34.51.2.2 #define ATOMIC DECREMENT(atomicptr)

Use this routine for decrementing a global counter using a threadsafe and multiproces-
sor safe method.

Parameters
atomicptr pointer to the (int) counter.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://www.cycling74.com/story/2005/5/2/133649/9742.
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkSchedQueue
http://www.cycling74.com/twiki/bin/view/ProductDocumentation/JitterSdkSchedQueue
http://www.cycling74.com/story/2005/5/2/133649/9742

34.51 Threads 641

34.51.2.3 #define ATOMIC INCREMENT(atomicptr)

Use this routine for incrementing a global counter using a threadsafe and multiprocessor
safe method.

Parameters
atomicptr pointer to the (int) counter.

34.51.3 Enumeration Type Documentation

34.51.3.1 enum e_max_systhread_mutex_flags

systhread_mutex_new() flags

Enumerator:

SYSTHREAD_MUTEX_NORMAL Normal.

SYSTHREAD_MUTEX_ERRORCHECK Error-checking.

SYSTHREAD_MUTEX_RECURSIVE Recursive.

34.51.4 Function Documentation

34.51.4.1 void∗ defer (void ∗ ob, method fn, t_symbol ∗ sym, short argc, t_atom ∗ argv)

Defer execution of a function to the main thread if (and only if) your function is executing
in the scheduler thread.

Parameters
ob First argument passed to the function fun when it executes.
fn Function to be called, see below for how it should be declared.

sym Second argument passed to the function fun when it executes.
argc Count of arguments in argv. argc is also the third argument passed to

the function fun when it executes.
argv Array containing a variable number of t_atom function arguments. If

this argument is non-zero, defer allocates memory to make a copy of
the arguments (according to the size passed in argc) and passes the
copied array to the function fun when it executes as the fourth argument.

Returns

Return values is for internal Cycling ’74 use only.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

642 Module Documentation

Remarks

This function uses the isr() routine to determine whether you’re at the Max timer in-
terrupt level (in the scheduler thread). If so, defer() creates a Qelem (see Qelems),
calls qelem_front(), and its queue function calls the function fn you passed with the
specified arguments. If you’re not in the scheduler thread, the function is executed
immediately with the arguments. Note that this implies that defer() is not appropri-
ate for using in situations such as Device or File manager I/0 completion routines.
The defer_low() function is appropriate however, because it always defers.

The deferred function should be declared as follows:

void myobject_do (myObject *client, t_symbol *s, short argc, t_atom *argv);

See also

defer_low()

34.51.4.2 void∗ defer low (void ∗ ob, method fn, t_symbol ∗ sym, short argc, t_atom ∗
argv)

Defer execution of a function to the back of the queue on the main thread.

Parameters
ob First argument passed to the function fun when it executes.
fn Function to be called, see below for how it should be declared.

sym Second argument passed to the function fun when it executes.
argc Count of arguments in argv. argc is also the third argument passed to

the function fun when it executes.
argv Array containing a variable number of t_atom function arguments. If

this argument is non-zero, defer allocates memory to make a copy of
the arguments (according to the size passed in argc) and passes the
copied array to the function fun when it executes as the fourth argument.

Returns

Return values is for internal Cycling ’74 use only.

Remarks

defer_low() always defers a call to the function fun whether you are already in the
main thread or not, and uses qelem_set(), not qelem_front(). This function is rec-
ommended for responding to messages that will cause your object to open a dialog
box, such as read and write.

The deferred function should be declared as follows:

void myobject_do (myObject *client, t_symbol *s, short argc, t_atom *argv);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.51 Threads 643

See also

defer()

34.51.4.3 long isr (void)

Determine whether your code is executing in the Max scheduler thread.

Returns

This function returns non-zero if you are within Max’s scheduler thread, zero other-
wise. Note that if your code sets up other types of interrupt-level callbacks, such as
for other types of device drivers used in asynchronous mode, isr will return false.

34.51.4.4 void schedule (void ∗ ob, method fun, long when, t_symbol ∗ sym, short argc,
Atom ∗ argv)

Cause a function to be executed at the timer level at some time in the future.

Parameters
ob First argument passed to the function fun when it executes.
fun Function to be called, see below for how it should be declared.

when The logical time that the function fun will be executed.
sym Second argument passed to the function fun when it executes.
argc Count of arguments in argv. argc is also the third argument passed to

the function fun when it executes.
argv Array containing a variable number of t_atom function arguments. If

this argument is non-zero, defer allocates memory to make a copy of
the arguments (according to the size passed in argc) and passes the
copied array to the function fun when it executes as the fourth argument.

Remarks

schedule() calls a function at some time in the future. Unlike defer(), the function is
called in the scheduling loop when logical time is equal to the specified value when.
This means that the function could be called at interrupt level, so it should follow the
usual restrictions on interrupt-level conduct. The function fun passed to schedule
should be declared as follows:

void myobject_do (myObject *client, t_symbol *s, short argc, t_atom *argv);

Remarks

One use of schedule() is as an alternative to using the lockout flag.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

644 Module Documentation

See also

defer()

34.51.4.5 void schedule delay (void ∗ ob, method fun, long delay, t_symbol ∗ sym, short
argc, t_atom ∗ argv)

Cause a function to be executed at the timer level at some time in the future specified
by a delay offset.

Parameters
ob First argument passed to the function fun when it executes.

fun Function to be called, see below for how it should be declared.
delay The delay from the current time before the function will be executed.
sym Second argument passed to the function fun when it executes.
argc Count of arguments in argv. argc is also the third argument passed to

the function fun when it executes.
argv Array containing a variable number of t_atom function arguments. If

this argument is non-zero, schedule_delay() allocates memory to make
a copy of the arguments (according to the size passed in argc) and
passes the copied array to the function fun when it executes as the
fourth argument.

Remarks

schedule_delay() is similar to schedule() but allows you to specify the time as a
delay rather than a specific logical time.

void myobject_click (t_myobject *x, Point pt, short modifiers)
{

t_atom a[1];
a[0].a_type = A_LONG;
a[0].a_w.w_long = Random();
schedule_delay(x, myobject_sched, 0 ,0, 1, a);

}

void myobject_sched (t_myobject *x, t_symbol *s, short ac, t_atom *av)
{

outlet_int(x->m_out,av->a_w.w_long);
}

See also

schedule()

34.51.4.6 long systhread create (method entryproc, void ∗ arg, long stacksize, long priority,
long flags, t_systhread ∗ thread)

Create a new thread.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.51 Threads 645

Parameters
entryproc A method to call in the new thread when the thread is created.

arg An argument to pass to the method specified for entryproc. Typically
this might be a pointer to your object’s struct.

stacksize Not used. Pass 0 for this argument.
priority Pass 0 for default priority. The priority can range from -32 to 32 where

-32 is low, 0 is default and 32 is high.
flags Not used. Pass 0 for this argument.

thread The address of a t_systhread where this thread’s instance pointer will
be stored.

Returns

A Max error code as defined in e_max_errorcodes.

34.51.4.7 void systhread exit (long status)

Exit the calling thread.

Call this from within a thread made using systhread_create() when the thread is no
longer needed.

Parameters
status You will typically pass 0 for status. This value will be accessible by

systhread_join(), if needed.

34.51.4.8 int systhread getpriority (t_systhread thread)

Get the thread priority for the given thread.

Parameters
thread The thread for which to find the priority.

Returns

The current priority value for the given thread.

34.51.4.9 short systhread ismainthread (void)

Check to see if the function currently being executed is in the main thread.

Returns

Returns true if the function is being executed in the main thread, otherwise false.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

646 Module Documentation

34.51.4.10 short systhread istimerthread (void)

Check to see if the function currently being executed is in the scheduler thread.

Returns

Returns true if the function is being executed in the main thread, otherwise false.

34.51.4.11 long systhread join (t_systhread thread, unsigned int ∗ retval)

Wait for thread to quit and get return value from systhread_exit().

Parameters
thread The thread to join.
retval The address of a long to hold the return value (status) from systhread-

_exit().

Returns

A Max error code as defined in e_max_errorcodes.

Remarks

If your object is freed, and your thread function accesses memory from your object,
then you will obviously have a memory violation. A common use of systhread_join()
is to prevent this situation by waiting (in your free method) for the thread to exit.

34.51.4.12 t_systhread systhread self (void)

Return the thread instance pointer for the calling thread.

Returns

The thread instance pointer for the thread from which this function is called.

34.51.4.13 void systhread setpriority (t_systhread thread, int priority)

Set the thread priority for the given thread.

Parameters
thread The thread for which to set the priority.
priority A value in the range -32 to 32 where -32 is lowest, 0 is default, and 32

is highest.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.51 Threads 647

34.51.4.14 void systhread sleep (long milliseconds)

Suspend the execution of the calling thread.

Parameters
milliseconds The number of milliseconds to suspend the execution of the calling

thread. The actual amount of time may be longer depending on vari-
ous factors.

34.51.4.15 long systhread terminate (t_systhread thread)

Forcefully kill a thread -- not recommended.

Parameters
thread The thread to kill.

Returns

A Max error code as defined in e_max_errorcodes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

648 Module Documentation

34.52 Critical Regions

A critical region is a simple mechanism that prevents multiple threads from accessing
at once code protected by the same critical region.

Collaboration diagram for Critical Regions:

Threads Critical Regions

Typedefs

• typedef void t_critical

A Max critical region.

Functions

• void critical_new (t_critical ∗x)

Create a new critical region.

• void critical_enter (t_critical x)

Enter a critical region.

• void critical_exit (t_critical x)

Leave a critical region.

• void critical_free (t_critical x)

Free a critical region created with critical_new().

• short critical_tryenter (t_critical x)

Try to enter a critical region if it is not locked.

34.52.1 Detailed Description

A critical region is a simple mechanism that prevents multiple threads from accessing at
once code protected by the same critical region. The code fragments could be different,
and in completely different modules, but as long as the critical region is the same, no
two threads should call the protected code at the same time. If one thread is inside a
critical region, and another thread wants to execute code protected by the same critical
region, the second thread must wait for the first thread to exit the critical region. In some
implementations a critical region can be set so that if it takes too long for the first thread
to exit said critical region, the second thread is allowed to execute, dangerously and

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.52 Critical Regions 649

potentially causing crashes. This is the case for the critical regions exposed by Max and
the default upper limit for a given thread to remain inside a critical region is two seconds.
Despite the fact that there are two seconds of leeway provided before two threads can
dangerously enter a critical region, it is important to only protect as small a portion of
code as necessary with a critical region.

Under Max 4.1 and earlier there was a simple protective mechanism called "lockout"
that would prevent the scheduler from interrupting the low priority thread during sensi-
tive operations such as sending data out an outlet or modifying members of a linked list.
This lockout mechanism has been deprecated, and under the Mac OS X and Windows
XP versions (Max 4.2 and later) does nothing. So how do you protect thread sensitive
operations? Use critical regions (also known as critical sections). However, it is very
important to mention that all outlet calls are now thread safe and should never be con-
tained inside a critical region. Otherwise, this could result in serious timing problems.
For other tasks which are not thread safe, such as accessing a linked list, critical regions
or some other thread protection mechanism are appropriate.

In Max, the critical_enter() function is used to enter a critical region, and the critical_-
exit() function is used to exit a critical region. It is important that in any function which
uses critical regions, all control paths protected by the critical region, exit the critical
region (watch out for goto or return statements). The critical_enter() and critical_exit()
functions take a critical region as an argument. However, for almost all purposes, we
recommend using the global critical region in which case this argument is zero. The
use of multiple critical regions can cause problems such as deadlock, i.e. when thread
#1 is inside critical region A waiting on critical region B, but thread #2 is inside critical
region B and is waiting on critical region A. In a flexible programming environment such
as Max, deadlock conditions are easier to generate than you might think. So unless you
are completely sure of what you are doing, and absolutely need to make use of multiple
critical regions to protect your code, we suggest you use the global critical region.

In the following example code we show how one might use critical regions to protect the
traversal of a linked list, testing to find the first element whose values is equal to "val". If
this code were not protected, another thread which was modifying the linked list could
invalidate assumptions in the traversal code.

critical_enter(0);
for (p = head; p; p = p->next) {

if (p->value == val)
break;

}
critical_exit(0);
return p;

And just to illustrate how to ensure a critical region is exited when multiple control paths
are protected by a critical region, here’s a slight variant.

critical_enter(0);
for (p = head; p; p = p->next) {

if (p->value == val) {
critical_exit(0);
return p;

}
}
critical_exit(0);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

650 Module Documentation

return NULL;

For more information on multi-threaded programming, hardware interrupts, and related
topics, we suggest you perform some research online or read the relevant chapters of
"Modern Operating Systems" by Andrew S. Tanenbaum (Prentice Hall). At the time of
writing, some relevant chapters from this book are available for download in PDF format
on Prentice Hall’s web site. See:

http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/mos2e/

Look under "sample sections".

34.52.2 Function Documentation

34.52.2.1 void critical enter (t_critical x)

Enter a critical region.

Typically you will want the argument to be zero to enter the global critical region, al-
though you could pass your own critical created with critical_new(). It is important to try
to keep the amount of code in the critical region to a minimum. Exit the critical region
with critical_exit().

Parameters
x A pointer to a t_critical struct, or zero to uses Max’s global critical region.

See also

critical_exit()

34.52.2.2 void critical exit (t_critical x)

Leave a critical region.

Typically you will want the argument to be zero to exit the global critical region, although,
you if you are using your own critical regions you will want to pass the same one that
you previously passed to critical_enter().

Parameters
x A pointer to a t_critical struct, or zero to uses Max’s global critical region.

34.52.2.3 void critical free (t_critical x)

Free a critical region created with critical_new().

If you created your own critical region, you will need to free it in your object’s free
method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/mos2e/

34.52 Critical Regions 651

Parameters
x The t_critical struct that will be freed.

34.52.2.4 void critical new (t_critical ∗ x)

Create a new critical region.

Normally, you do not need to create your own critical region, because you can use Max’s
global critical region. Only use this function (in your object’s instance creation method)
if you are certain you are not able to use the global critical region.

Parameters
x A t_critical struct will be returned to you via this pointer.

34.52.2.5 short critical tryenter (t_critical x)

Try to enter a critical region if it is not locked.

Parameters
x A pointer to a t_critical struct, or zero to uses Max’s global critical region.

Returns

returns non-zero if there was a problem entering

See also

critical_enter()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

652 Module Documentation

34.53 Mutexes

Collaboration diagram for Mutexes:

Threads Mutexes

Functions

• long systhread_mutex_new (t_systhread_mutex ∗pmutex, long flags)

Create a new mutex, which can be used to place thread locks around critical code.

• long systhread_mutex_free (t_systhread_mutex pmutex)

Free a mutex created with systhread_mutex_new().

• long systhread_mutex_lock (t_systhread_mutex pmutex)

Enter block of locked code code until a systhread_mutex_unlock() is reached.

• long systhread_mutex_unlock (t_systhread_mutex pmutex)

Exit a block of code locked with systhread_mutex_lock().

• long systhread_mutex_trylock (t_systhread_mutex pmutex)

Try to enter block of locked code code until a systhread_mutex_unlock() is reached.

• long systhread_mutex_newlock (t_systhread_mutex ∗pmutex, long flags)

Convenience utility that combines systhread_mutex_new() and systhread_mutex_-
lock().

34.53.1 Detailed Description

See also

Critical Regions

34.53.2 Function Documentation

34.53.2.1 long systhread mutex free (t_systhread_mutex pmutex)

Free a mutex created with systhread_mutex_new().

Parameters
pmutex The mutex instance pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.53 Mutexes 653

Returns

A Max error code as defined in e_max_errorcodes.

34.53.2.2 long systhread mutex lock (t_systhread_mutex pmutex)

Enter block of locked code code until a systhread_mutex_unlock() is reached.

It is important to keep the code in this block as small as possible.

Parameters
pmutex The mutex instance pointer.

Returns

A Max error code as defined in e_max_errorcodes.

See also

systhread_mutex_trylock()

34.53.2.3 long systhread mutex new (t_systhread_mutex ∗ pmutex, long flags)

Create a new mutex, which can be used to place thread locks around critical code.

The mutex should be freed with systhread_mutex_free().

Parameters
pmutex The address of a variable to store the mutex pointer.

flags Flags to determine the behaviour of the mutex, as defined in e_max_-
systhread_mutex_flags.

Returns

A Max error code as defined in e_max_errorcodes.

Remarks

One reason to use systhread_mutex_new() instead of Critical Regions is to create
non-recursive locks, which are lighter-weight than recursive locks.

34.53.2.4 long systhread mutex newlock (t_systhread_mutex ∗ pmutex, long flags)

Convenience utility that combines systhread_mutex_new() and systhread_mutex_-
lock().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

654 Module Documentation

Parameters
pmutex The address of a variable to store the mutex pointer.

flags Flags to determine the behaviour of the mutex, as defined in e_max_-
systhread_mutex_flags.

Returns

A Max error code as defined in e_max_errorcodes.

34.53.2.5 long systhread mutex trylock (t_systhread_mutex pmutex)

Try to enter block of locked code code until a systhread_mutex_unlock() is reached.

If the lock cannot be entered, this function will return non-zero.

Parameters
pmutex The mutex instance pointer.

Returns

Returns non-zero if there was a problem entering.

See also

systhread_mutex_lock()

34.53.2.6 long systhread mutex unlock (t_systhread_mutex pmutex)

Exit a block of code locked with systhread_mutex_lock().

Parameters
pmutex The mutex instance pointer.

Returns

A Max error code as defined in e_max_errorcodes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.54 User Interface 655

34.54 User Interface

Collaboration diagram for User Interface:

JGraphics

DataView

User Interface

Modules

• JGraphics

JGraphics is the API for creating user interface objects introduced with Max 5.

• DataView

The jdataview object provides a mechanism to display data in a tabular format.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

656 Module Documentation

34.55 JGraphics

JGraphics is the API for creating user interface objects introduced with Max 5.

Collaboration diagram for JGraphics:

Popup Menus

Colors

JPattern

TextField

JGraphics

Scalable Vector Graphics

Box Layer

JSurface

JGraphics Matrix Transformations

TextLayout

JFont

User Interface

Data Structures

• struct t_jgraphics_font_extents

A structure for holding information related to how much space the rendering of a given
font will use.

Modules

• JSurface

A surface is an abstract base class for something you render to.

• Scalable Vector Graphics

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 657

• JFont
• JGraphics Matrix Transformations

The t_jmatrix is one way to represent a transformation.

• JPattern

A pattern is like a brush that is used to fill a path with.

• Colors
• TextField

The textfield is a high-level text display object that may be used by a UI object to
represent text in a patcher.

• TextLayout

A textlayout is lower-level text rendering object used by higher-level entities such as
TextField.

• Popup Menus

Popup menu API so externals can create popup menus that can also be drawn into.

• Box Layer

The boxlayer functions provide way to make it easier to use cached offscreen images
(layers) in your drawing.

Defines

• #define JGRAPHICS_RECT_BOTTOM(rect)

Determine the coordinate of the bottom of a rect.

• #define JGRAPHICS_RECT_RIGHT(rect)

Determine the coordinate of the right side of a rect.

• #define JGRAPHICS_PI

Utility macro to return the value of Pi.

• #define JGRAPHICS_2PI

Utility macro to return the value of twice Pi.

• #define JGRAPHICS_PIOVER2

Utility macro to return the value of half of Pi.

• #define JGRAPHICS_3PIOVER2

Utility macro to return the 270º Case.

Typedefs

• typedef typedefBEGIN_USING_C_LINKAGE struct _jgraphics t_jgraphics

An instance of a jgraphics drawing context.

• typedef struct _jpath t_jpath

An instance of a jgraphics path.

• typedef struct _jtextlayout t_jtextlayout

An instance of a jgraphics text layout object.

• typedef struct _jtransform t_jtransform

An instance of a jgraphics transform.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

658 Module Documentation

• typedef struct _jdesktopui t_jdesktopui

An instance of a transparent UI window on the desktop.

• typedef struct _jpopupmenu t_jpopupmenu

An instance of a pop-up menu.

• typedef struct _jsvg t_jsvg

An instance of an SVG object.

Enumerations

• enum t_jgraphics_format { JGRAPHICS_FORMAT_ARGB32, JGRAPHICS_FO-
RMAT_RGB24, JGRAPHICS_FORMAT_A8 }

Enumeration of color formats used by jgraphics surfaces.

• enum t_jgraphics_fileformat { JGRAPHICS_FILEFORMAT_PNG, JGRAPHICS_-
FILEFORMAT_JPEG }

Enumeration of file formats usable for jgraphics surfaces.

• enum t_jgraphics_text_justification { JGRAPHICS_TEXT_JUSTIFICATION_L-
EFT, JGRAPHICS_TEXT_JUSTIFICATION_RIGHT, JGRAPHICS_TEXT_JUS-
TIFICATION_HCENTERED, JGRAPHICS_TEXT_JUSTIFICATION_TOP, JGR-
APHICS_TEXT_JUSTIFICATION_BOTTOM, JGRAPHICS_TEXT_JUSTIFICAT-
ION_VCENTERED, JGRAPHICS_TEXT_JUSTIFICATION_HJUSTIFIED, JGR-
APHICS_TEXT_JUSTIFICATION_CENTERED }

Enumeration of text justification options, which are specified as a bitmask.

Functions

• int jgraphics_round (double d)

Utility for rounding a double to an int.

• t_jgraphics ∗ jgraphics_reference (t_jgraphics ∗g)

Get a reference to a graphics context.

• void jgraphics_destroy (t_jgraphics ∗g)

Release or free a graphics context.

• void jgraphics_new_path (t_jgraphics ∗g)

Begin a new path.

• t_jpath ∗ jgraphics_copy_path (t_jgraphics ∗g)

Get a copy of the current path from a context.

• t_jpath ∗ jgraphics_path_createstroked (t_jpath ∗p, double thickness, t_jgraphics-
_line_join join, t_jgraphics_line_cap cap)

Create a new path consisting of the original path stroked with a given thickness.

• void jgraphics_path_destroy (t_jpath ∗path)

Release/free a path.

• void jgraphics_append_path (t_jgraphics ∗g, t_jpath ∗path)

Add a path to a graphics context.

• void jgraphics_close_path (t_jgraphics ∗g)

Close the current path in a context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 659

• void jgraphics_path_roundcorners (t_jgraphics ∗g, double cornerRadius)

Round out any corners in a path.

• long jgraphics_path_contains (t_jpath ∗path, double x, double y)

Test if the path contains the point x,y.

• long jgraphics_path_intersectsline (t_jpath ∗path, double x1, double y1, double
x2, double y2)

Test if the path intersects the line defined by x1,y1 and x2,y2.

• double jgraphics_path_getlength (t_jpath ∗path)

Return the length of a path.

• void jgraphics_path_getpointalongpath (t_jpath ∗path, double distancefromstart,
double ∗x, double ∗y)

Return a point that lies a given distance from the start of the path.

• double jgraphics_path_getnearestpoint (t_jpath ∗path, double x, double y, double
∗path_x, double ∗path_y)

Finds the point on the path that is nearest to the point x,y passed in.

• void jgraphics_get_current_point (t_jgraphics ∗g, double ∗x, double ∗y)

Get the current location of the cursor in a graphics context.

• void jgraphics_arc (t_jgraphics ∗g, double xc, double yc, double radius, double
angle1, double angle2)

Add a circular, clockwise, arc to the current path.

• void jgraphics_ovalarc (t_jgraphics ∗g, double xc, double yc, double radiusx, dou-
ble radiusy, double angle1, double angle2)

Add a non-circular arc to the current path.

• void jgraphics_arc_negative (t_jgraphics ∗g, double xc, double yc, double radius,
double angle1, double angle2)

Add a circular, counter-clockwise, arc to the current path.

• void jgraphics_curve_to (t_jgraphics ∗g, double x1, double y1, double x2, double
y2, double x3, double y3)

Add a cubic Bezier spline to the current path.

• void jgraphics_rel_curve_to (t_jgraphics ∗g, double x1, double y1, double x2, dou-
ble y2, double x3, double y3)

Add a cubic Bezier spline to the current path, using coordinates relative to the current
point.

• void jgraphics_line_to (t_jgraphics ∗g, double x, double y)

Add a line segment to the current path.

• void jgraphics_rel_line_to (t_jgraphics ∗g, double x, double y)

Add a line segment to the current path, using coordinates relative to the current point.

• void jgraphics_move_to (t_jgraphics ∗g, double x, double y)

Move the cursor to a new point and begin a new subpath.

• void jgraphics_rel_move_to (t_jgraphics ∗g, double x, double y)

Move the cursor to a new point and begin a new subpath, using coordinates relative to
the current point.

• void jgraphics_rectangle (t_jgraphics ∗g, double x, double y, double width, double
height)

Add a closed rectangle path in the context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

660 Module Documentation

• void jgraphics_oval (t_jgraphics ∗g, double x, double y, double width, double
height)

Deprecated -- do not use.

• void jgraphics_rectangle_rounded (t_jgraphics ∗g, double x, double y, double
width, double height, double ovalwidth, double ovalheight)

Add a closed rounded-rectangle path in the context.

• void jgraphics_ellipse (t_jgraphics ∗g, double x, double y, double width, double
height)

Add a closed elliptical path in the context.

• void jgraphics_bubble (t_jgraphics ∗g, double bodyx, double bodyy, double body-
width, double bodyheight, double cornersize, double arrowtipx, double arrowtipy,
t_jgraphics_bubble_side whichside, double arrowedgeprop, double arrowwidth)

Add a closed bubble path in the context.

• void jgraphics_select_font_face (t_jgraphics ∗g, const char ∗family, t_jgraphics_-
font_slant slant, t_jgraphics_font_weight weight)

Specify a font for a graphics context.

• void jgraphics_select_jfont (t_jgraphics ∗g, t_jfont ∗jfont)

Specify a font for a graphics context by passing a t_jfont object.

• void jgraphics_set_font_size (t_jgraphics ∗g, double size)

Specify the font size for a context.

• void jgraphics_set_underline (t_jgraphics ∗g, char underline)

Turn underlining on/off for text in a context.

• void jgraphics_show_text (t_jgraphics ∗g, const char ∗utf8)

Display text at the current position in a context.

• void jgraphics_text_path (t_jgraphics ∗g, const char ∗utf8)

Add a path of text to the current path.

• void jgraphics_font_extents (t_jgraphics ∗g, t_jgraphics_font_extents ∗extents)

Return the extents of the currently selected font for a given graphics context.

• void jgraphics_text_measure (t_jgraphics ∗g, const char ∗utf8, double ∗width,
double ∗height)

Return the height and width of a string given current graphics settings in a context.

• void jgraphics_text_measuretext_wrapped (t_jgraphics ∗g, const char ∗utf8, dou-
ble wrapwidth, long includewhitespace, double ∗width, double ∗height, long
∗numlines)

Return the height, width, and number of lines that will be used to render a given string.

• long jgraphics_system_canantialiastexttotransparentbg ()

Determine if you can anti-alias text to a transparent background.

• void jgraphics_user_to_device (t_jgraphics ∗g, double ∗x, double ∗y)

User coordinates are those passed to drawing functions in a given t_jgraphics context.

• void jgraphics_device_to_user (t_jgraphics ∗g, double ∗x, double ∗y)

User coordinates are those passed to drawing functions in a given t_jgraphics context.

• void jgraphics_getfiletypes (void ∗dummy, long ∗count, long ∗∗filetypes, char
∗alloc)

Get a list of of filetypes appropriate for use with jgraphics surfaces.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 661

• long jgraphics_rectintersectsrect (t_rect ∗r1, t_rect ∗r2)

Simple utility to test for rectangle intersection.

• long jgraphics_rectcontainsrect (t_rect ∗outer, t_rect ∗inner)

Simple utility to test for rectangle containment.

• void jgraphics_position_one_rect_near_another_rect_but_keep_inside_a_third_-
rect (t_rect ∗positioned_rect, const t_rect ∗positioned_near_this_rect, const t_-
rect ∗keep_inside_this_rect)

Generate a t_rect according to positioning rules.

34.55.1 Detailed Description

JGraphics is the API for creating user interface objects introduced with Max 5. It includes
functions for drawing vector-based shapes, managing pop-up menus, rendering text,
and importing graphics resources. The API design is inspired by and analogous to the
Cairo API, though the underlying implementation is actually drawn using JUCE (JUCE
functions, however, cannot be called directly).

34.55.2 Define Documentation

34.55.2.1 #define JGRAPHICS 2PI

Utility macro to return the value of twice Pi.

34.55.2.2 #define JGRAPHICS 3PIOVER2

Utility macro to return the 270º Case.

34.55.2.3 #define JGRAPHICS PI

Utility macro to return the value of Pi.

34.55.2.4 #define JGRAPHICS PIOVER2

Utility macro to return the value of half of Pi.

34.55.3 Enumeration Type Documentation

34.55.3.1 enum t_jgraphics_fileformat

Enumeration of file formats usable for jgraphics surfaces.

Enumerator:

JGRAPHICS_FILEFORMAT_PNG Portable Network Graphics (PNG) format.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://cairographics.org
http://rawmaterialsoftware.com/juce

662 Module Documentation

JGRAPHICS_FILEFORMAT_JPEG JPEG format.

34.55.3.2 enum t_jgraphics_format

Enumeration of color formats used by jgraphics surfaces.

Enumerator:

JGRAPHICS_FORMAT_ARGB32 Color is represented using 32 bits, 8 bits each
for the components, and including an alpha component.

JGRAPHICS_FORMAT_RGB24 Color is represented using 32 bits, 8 bits each
for the components. There is no alpha component.

JGRAPHICS_FORMAT_A8 The color is represented only as an 8-bit alpha
mask.

34.55.3.3 enum t_jgraphics_text_justification

Enumeration of text justification options, which are specified as a bitmask.

Enumerator:

JGRAPHICS_TEXT_JUSTIFICATION_LEFT Justify left.

JGRAPHICS_TEXT_JUSTIFICATION_RIGHT Justify right.

JGRAPHICS_TEXT_JUSTIFICATION_HCENTERED Centered horizontally.

JGRAPHICS_TEXT_JUSTIFICATION_TOP Justified to the top.

JGRAPHICS_TEXT_JUSTIFICATION_BOTTOM Justified to the bottom.

JGRAPHICS_TEXT_JUSTIFICATION_VCENTERED Centered vertically.

JGRAPHICS_TEXT_JUSTIFICATION_HJUSTIFIED Horizontally justified.

JGRAPHICS_TEXT_JUSTIFICATION_CENTERED Shortcut for Centering both
vertically and horizontally.

34.55.4 Function Documentation

34.55.4.1 void jgraphics append path (t_jgraphics ∗ g, t_jpath ∗ path)

Add a path to a graphics context.

Parameters
g The graphics context.

path The path to add.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 663

34.55.4.2 void jgraphics arc (t_jgraphics ∗ g, double xc, double yc, double radius, double
angle1, double angle2)

Add a circular, clockwise, arc to the current path.

Parameters
g The graphics context.

xc The horizontal coordinate of the arc’s center.
yc The vertical coordinate of the arc’s center.

radius The radius of the arc.
angle1 The starting angle of the arc in radians. Zero radians is center right

(positive x axis).
angle2 The terminal angle of the arc in radians. Zero radians is center right

(positive x axis).

34.55.4.3 void jgraphics arc negative (t_jgraphics ∗ g, double xc, double yc, double radius,
double angle1, double angle2)

Add a circular, counter-clockwise, arc to the current path.

Parameters
g The graphics context.

xc The horizontal coordinate of the arc’s center.
yc The vertical coordinate of the arc’s center.

radius The radius of the arc.
angle1 The starting angle of the arc in radians. Zero radians is center right

(positive x axis).
angle2 The terminal angle of the arc in radians. Zero radians is center right

(positive x axis).

34.55.4.4 void jgraphics bubble (t_jgraphics ∗ g, double bodyx, double bodyy, double
bodywidth, double bodyheight, double cornersize, double arrowtipx, double
arrowtipy, t jgraphics bubble side whichside, double arrowedgeprop, double
arrowwidth)

Add a closed bubble path in the context.

Parameters
g The graphics context.

bodyx Horizontal body origin.
bodyy The vertical origin.

bodywidth The width of the rect.
bodyheight The height of the rect.
cornersize Body rounded corners

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

664 Module Documentation

arrowtipx X position of arrow tip
arrowtipy Y position of arrow tip

whichside side to connect arrow, 0 = top, 1 = left, 2 = bottom, 3 = right,
arrowedge-

prop
Arrow proportion along edge (0-1)

arrowwidth Arrow base width

34.55.4.5 void jgraphics close path (t_jgraphics ∗ g)

Close the current path in a context.

This will add a line segment to close current subpath.

Parameters
g The graphics context.

34.55.4.6 t_jpath∗ jgraphics copy path (t_jgraphics ∗ g)

Get a copy of the current path from a context.

Parameters
g the graphics context containing the current path

Returns

A copy of the current path.

34.55.4.7 void jgraphics curve to (t_jgraphics ∗ g, double x1, double y1, double x2, double
y2, double x3, double y3)

Add a cubic Bezier spline to the current path.

Parameters
g The graphics context.

x1 The first control point.
y1 The first control point.
x2 The second control point.
y2 The second control point.
x3 The destination point.
y3 The destination point.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 665

34.55.4.8 void jgraphics destroy (t_jgraphics ∗ g)

Release or free a graphics context.

Parameters
g The context to release.

34.55.4.9 void jgraphics device to user (t_jgraphics ∗ g, double ∗ x, double ∗ y)

User coordinates are those passed to drawing functions in a given t_jgraphics context.

Device coordinates refer to patcher canvas coordinates, before any zooming.

34.55.4.10 void jgraphics ellipse (t_jgraphics ∗ g, double x, double y, double width, double
height)

Add a closed elliptical path in the context.

Parameters
g The graphics context.
x The horizontal origin.
y The vertical origin.

width The width of the rect.
height The height of the rect.

34.55.4.11 void jgraphics font extents (t_jgraphics ∗ g, t_jgraphics_font_extents ∗
extents)

Return the extents of the currently selected font for a given graphics context.

Parameters
g Pointer to a jgraphics context.

extents The address of a t_jgraphics_font_extents structure to be filled with the
results.

34.55.4.12 void jgraphics get current point (t_jgraphics ∗ g, double ∗ x, double ∗ y)

Get the current location of the cursor in a graphics context.

Parameters
g The graphics context.
x The address of a variable that will be set to the horizontal cursor location

upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

666 Module Documentation

y The address of a variable that will be set to the vertical cursor location
upon return.

34.55.4.13 void jgraphics getfiletypes (void ∗ dummy, long ∗ count, long ∗∗ filetypes, char ∗
alloc)

Get a list of of filetypes appropriate for use with jgraphics surfaces.

Parameters
dummy Unused.

count The address of a variable to be set with the number of types in filetypes
upon return.

filetypes The address of a variable that will represent the array of file types upon
return.

alloc The address of a char that will be flagged with a 1 or a 0 depending on
whether or not memory was allocated for the filetypes member.

Remarks

This example shows a common usage of jgraphics_getfiletypes().

char filename[MAX_PATH_CHARS];
long *type = NULL;
long ntype;
long outtype;
t_max_err err;
char alloc;
short path;
t_jsurface *surface;

if (want_to_show_dialog) {
jgraphics_getfiletypes(x, &ntype, &type, &alloc);
err = open_dialog(filename, &path,(void *)&outtype, (void *)type, ntype

);
if (err)

goto out;
}
else {

strncpy_zero(filename, s->s_name, MAX_PATH_CHARS);
err = locatefile_extended(filename, &path, &outtype, type, ntype);
if (err)

goto out;
}
surface = jgraphics_image_surface_create_referenced(filename, path);

out:
if (alloc)

sysmem_freeptr((char *)type);

34.55.4.14 void jgraphics line to (t_jgraphics ∗ g, double x, double y)

Add a line segment to the current path.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 667

Parameters
g The graphics context.
x The destination point.
y The destination point.

34.55.4.15 void jgraphics move to (t_jgraphics ∗ g, double x, double y)

Move the cursor to a new point and begin a new subpath.

Parameters
g The graphics context.
x The new location.
y The new location.

34.55.4.16 void jgraphics new path (t_jgraphics ∗ g)

Begin a new path.

This action clears any current path in the context.

Parameters
g The graphics context.

34.55.4.17 void jgraphics oval (t_jgraphics ∗ g, double x, double y, double width, double
height)

Deprecated -- do not use.

Adds a closed oval path in the context, however, it does not scale appropriately.

Parameters
g The graphics context.
x The horizontal origin.
y The vertical origin.

width The width of the oval.
height The height of the oval.

34.55.4.18 void jgraphics ovalarc (t_jgraphics ∗ g, double xc, double yc, double radiusx,
double radiusy, double angle1, double angle2)

Add a non-circular arc to the current path.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

668 Module Documentation

Parameters
g The graphics context.

xc The horizontal coordinate of the arc’s center.
yc The vertical coordinate of the arc’s center.

radiusx The horizontal radius of the arc.
radiusy The vertical radius of the arc.
angle1 The starting angle of the arc in radians. Zero radians is center right

(positive x axis).
angle2 The terminal angle of the arc in radians. Zero radians is center right

(positive x axis).

34.55.4.19 long jgraphics path contains (t_jpath ∗ path, double x, double y)

Test if the path contains the point x,y.

Parameters
path the path

x the x-coordinate of the point to test
y the y-coordinate of the point to test

34.55.4.20 t_jpath∗ jgraphics path createstroked (t_jpath ∗ p, double thickness,
t jgraphics line join join, t jgraphics line cap cap)

Create a new path consisting of the original path stroked with a given thickness.

Parameters
p the path to be stroked

thickness thickness of the stroke
join the style to join segments together at corners
cap the style of end cap to use

Returns

the new path, which must be freed with jgraphics_path_destroy() when done

34.55.4.21 void jgraphics path destroy (t_jpath ∗ path)

Release/free a path.

Parameters
path The path to release.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 669

34.55.4.22 double jgraphics path getlength (t_jpath ∗ path)

Return the length of a path.

Parameters
path the path

Returns

the length of the path

34.55.4.23 double jgraphics path getnearestpoint (t_jpath ∗ path, double x, double y, double
∗ path x, double ∗ path y)

Finds the point on the path that is nearest to the point x,y passed in.

Parameters
path the path to search

x x position of the target point
y y position of the target point

path_x pointer to double to receive the x position of closest point on path
path_y pointer to double to receive the y position of the closest point on path

Returns

returns the distance from the path start position to the found point on the path

34.55.4.24 void jgraphics path getpointalongpath (t_jpath ∗ path, double distancefromstart,
double ∗ x, double ∗ y)

Return a point that lies a given distance from the start of the path.

Parameters
path the path

distance-
fromstart

distance from the start point

x pointer to double to receive the x position of the point
y pointer to double to receive the y position of the point

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

670 Module Documentation

34.55.4.25 long jgraphics path intersectsline (t_jpath ∗ path, double x1, double y1, double
x2, double y2)

Test if the path intersects the line defined by x1,y1 and x2,y2.

Parameters
path the path

x1 the x-coordinate of the first point on the line
y1 the y-coordinate of the first point on the line
x2 the x-coordinate of the second point on the line
y2 the y-coordinate of the second point on the line

34.55.4.26 void jgraphics path roundcorners (t_jgraphics ∗ g, double cornerRadius)

Round out any corners in a path.

This action clears any current path in the context.

Parameters
g The graphics context.

corner-
Radius

The amount by which to round corners.

34.55.4.27 void jgraphics position one rect near another rect but keep inside a third rect (
t_rect ∗ positioned rect, const t_rect ∗ positioned near this rect, const t_rect ∗
keep inside this rect)

Generate a t_rect according to positioning rules.

Parameters
positioned_-

rect
The address of a valid t_rect whose members will be filled in upon re-
turn.

positioned_-
near_this_-

rect

A pointer to a rect near which this rect should be positioned.

keep_inside-
_this_rect

A pointer to a rect defining the limits within which the new rect must
reside.

34.55.4.28 void jgraphics rectangle (t_jgraphics ∗ g, double x, double y, double width,
double height)

Add a closed rectangle path in the context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 671

Parameters
g The graphics context.
x The horizontal origin.
y The vertical origin.

width The width of the rect.
height The height of the rect.

34.55.4.29 void jgraphics rectangle rounded (t_jgraphics ∗ g, double x, double y, double
width, double height, double ovalwidth, double ovalheight)

Add a closed rounded-rectangle path in the context.

Parameters
g The graphics context.
x The horizontal origin.
y The vertical origin.

width The width of the rect.
height The height of the rect.

ovalwidth The width of the oval used for the round corners.
ovalheight The height of the oval used for the round corners.

34.55.4.30 long jgraphics rectcontainsrect (t_rect ∗ outer, t_rect ∗ inner)

Simple utility to test for rectangle containment.

Parameters
outer The address of the first rect for the test.
inner The address of the second rect for the test.

Returns

Returns true if the inner rect is completely inside the outer rect, otherwise false.

34.55.4.31 long jgraphics rectintersectsrect (t_rect ∗ r1, t_rect ∗ r2)

Simple utility to test for rectangle intersection.

Parameters
r1 The address of the first rect for the test.
r2 The address of the second rect for the test.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

672 Module Documentation

Returns

Returns true if the rects intersect, otherwise false.

34.55.4.32 t_jgraphics∗ jgraphics reference (t_jgraphics ∗ g)

Get a reference to a graphics context.

When you are done you should release your reference with jgraphics_destroy().

Parameters
g The context you wish to reference.

Returns

A new reference to the context.

34.55.4.33 void jgraphics rel curve to (t_jgraphics ∗ g, double x1, double y1, double x2,
double y2, double x3, double y3)

Add a cubic Bezier spline to the current path, using coordinates relative to the current
point.

Parameters
g The graphics context.

x1 The first control point.
y1 The first control point.
x2 The second control point.
y2 The second control point.
x3 The destination point.
y3 The destination point.

34.55.4.34 void jgraphics rel line to (t_jgraphics ∗ g, double x, double y)

Add a line segment to the current path, using coordinates relative to the current point.

Parameters
g The graphics context.
x The destination point.
y The destination point.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 673

34.55.4.35 void jgraphics rel move to (t_jgraphics ∗ g, double x, double y)

Move the cursor to a new point and begin a new subpath, using coordinates relative to
the current point.

Parameters
g The graphics context.
x The new location.
y The new location.

34.55.4.36 int jgraphics round (double d)

Utility for rounding a double to an int.

Parameters
d floating-point input.

Returns

rounded int output.

34.55.4.37 void jgraphics select font face (t_jgraphics ∗ g, const char ∗ family,
t_jgraphics_font_slant slant, t_jgraphics_font_weight weight)

Specify a font for a graphics context.

Parameters
g The graphics context.

family The name of the font family (e.g. "Arial").
slant Define the slant to use for the font.

weight Define the weight to use for the font.

34.55.4.38 void jgraphics select jfont (t_jgraphics ∗ g, t_jfont ∗ jfont)

Specify a font for a graphics context by passing a t_jfont object.

Parameters
g The graphics context.

jfont A jfont object whose attributes will be copied to the context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

674 Module Documentation

34.55.4.39 void jgraphics set font size (t_jgraphics ∗ g, double size)

Specify the font size for a context.

Parameters
g The graphics context.

size The font size.

34.55.4.40 void jgraphics set underline (t_jgraphics ∗ g, char underline)

Turn underlining on/off for text in a context.

Parameters
g The graphics context.

underline Pass true or false to set the appropriate behavior.

34.55.4.41 void jgraphics show text (t_jgraphics ∗ g, const char ∗ utf8)

Display text at the current position in a context.

Parameters
g The graphics context.

utf8 The text to display.

34.55.4.42 long jgraphics system canantialiastexttotransparentbg ()

Determine if you can anti-alias text to a transparent background.

You might want to call this and then disable "useimagebuffer" if false ∗and∗ you are
rendering text on a transparent background.

Returns

Non-zero if you can anti-alias text to a transparent background.

34.55.4.43 void jgraphics text measure (t_jgraphics ∗ g, const char ∗ utf8, double ∗ width,
double ∗ height)

Return the height and width of a string given current graphics settings in a context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.55 JGraphics 675

Parameters
g Pointer to a jgraphics context.

utf8 A string containing the text whose dimensions we wish to find.
width The address of a variable to be filled with the width of the rendered text.

height The address of a variable to be filled with the height of the rendered
text.

34.55.4.44 void jgraphics text measuretext wrapped (t_jgraphics ∗ g, const char ∗ utf8,
double wrapwidth, long includewhitespace, double ∗ width, double ∗ height, long ∗
numlines)

Return the height, width, and number of lines that will be used to render a given string.

Parameters
g Pointer to a jgraphics context.

utf8 A string containing the text whose dimensions we wish to find.
wrapwidth The number of pixels in width at which the text should be wrapped if it

is too long.
include-

whitespace
Set zero to not include white space in the calculation, otherwise set this
parameter to 1.

width The address of a variable to be filled with the width of the rendered text.
height The address of a variable to be filled with the height of the rendered

text.
numlines The address of a variable to be filled with the number of lines required

to render the text.

34.55.4.45 void jgraphics text path (t_jgraphics ∗ g, const char ∗ utf8)

Add a path of text to the current path.

Parameters
g The graphics context.

utf8 The text to generate path for.

34.55.4.46 void jgraphics user to device (t_jgraphics ∗ g, double ∗ x, double ∗ y)

User coordinates are those passed to drawing functions in a given t_jgraphics context.

Device coordinates refer to patcher canvas coordinates, before any zooming.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

676 Module Documentation

34.56 JSurface

A surface is an abstract base class for something you render to.

Collaboration diagram for JSurface:

JGraphics JSurface

Typedefs

• typedef struct _jsurface t_jsurface

An instance of a jgraphics surface.

Functions

• t_jsurface ∗ jgraphics_image_surface_create (t_jgraphics_format format, int
width, int height)

Create an image surface.

• t_jsurface ∗ jgraphics_image_surface_create_referenced (const char ∗filename,
short path)

Create an image surface, filling it with the contents of a file, and get a reference to the
surface.

• t_jsurface ∗ jgraphics_image_surface_create_from_file (const char ∗filename,
short path)

Create an image surface, filling it with the contents of a file.

• t_jsurface ∗ jgraphics_image_surface_create_for_data (unsigned char ∗data, t-
_jgraphics_format format, int width, int height, int stride, method freefun, void
∗freearg)

Create an image surface from given pixel data.

• t_jsurface ∗ jgraphics_image_surface_create_from_filedata (const void ∗data,
unsigned long datalen)

Create a new surface from file data.

• t_jsurface ∗ jgraphics_image_surface_create_from_resource (const void
∗moduleRef, const char ∗resname)

Create a new surface from a resource in your external.

• t_max_err jgraphics_get_resource_data (const void ∗moduleRef, const char
∗resname, long extcount, t_atom ∗exts, void ∗∗data, unsigned long ∗datasize)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.56 JSurface 677

Low-level routine to access an object’s resource data.

• t_jsurface ∗ jgraphics_surface_reference (t_jsurface ∗s)

Create a reference to an existing surface.

• void jgraphics_surface_destroy (t_jsurface ∗s)

Release or free a surface.

• t_max_err jgraphics_image_surface_writepng (t_jsurface ∗surface, const char
∗filename, short path, long dpi)

Export a PNG file of the contents of a surface.

• int jgraphics_image_surface_get_width (t_jsurface ∗s)

Retrieve the width of a surface.

• int jgraphics_image_surface_get_height (t_jsurface ∗s)

Retrieve the height of a surface.

• void jgraphics_image_surface_set_pixel (t_jsurface ∗s, int x, int y, t_jrgba color)

Set the color of an individual pixel in a surface.

• void jgraphics_image_surface_get_pixel (t_jsurface ∗s, int x, int y, t_jrgba
∗color)

Retrieve the color of an individual pixel in a surface.

• void jgraphics_image_surface_scroll (t_jsurface ∗s, int x, int y, int width, int height,
int dx, int dy, t_jpath ∗∗path)

• void jgraphics_image_surface_draw (t_jgraphics ∗g, t_jsurface ∗s, t_rect srcRect,
t_rect destRect)

Draw an image surface.

• void jgraphics_image_surface_draw_fast (t_jgraphics ∗g, t_jsurface ∗s)

Draw an image surface quickly.

• void jgraphics_write_image_surface_to_filedata (t_jsurface ∗surf, long fmt, void
∗∗data, long ∗size)

Get surface data ready for manually writing to a file.

• void jgraphics_image_surface_clear (t_jsurface ∗s, int x, int y, int width, int
height)

Set all pixels in rect to 0.

• t_jgraphics ∗ jgraphics_create (t_jsurface ∗target)

Create a context to draw on a particular surface.

34.56.1 Detailed Description

A surface is an abstract base class for something you render to. An image surface is a
concrete instance that renders to an image in memory, essentially an offscreen bitmap.

34.56.2 Function Documentation

34.56.2.1 t_jgraphics∗ jgraphics create (t_jsurface ∗ target)

Create a context to draw on a particular surface.

When you are done, call jgraphics_destroy().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

678 Module Documentation

Parameters
target The surface to which to draw.

Returns

The new graphics context.

34.56.2.2 t_max_err jgraphics get resource data (const void ∗ moduleRef, const char ∗
resname, long extcount, t_atom ∗ exts, void ∗∗ data, unsigned long ∗ datasize)

Low-level routine to access an object’s resource data.

Parameters
moduleRef A pointer to your external’s module, which is passed to your external’s

main() function when the class is loaded.
resname Base name of the resource data (without an extension)
extcount Count of possible extensions (ignored on Windows)

exts Array of symbol atoms containing possible filename extensions (ignored
on Windows)

data Returned resource data assigned to a pointer you supply
datasize Size of the data returned

Remarks

You are responsible for freeing any data returned in the data pointer

Returns

A Max error code.

34.56.2.3 void jgraphics image surface clear (t_jsurface ∗ s, int x, int y, int width, int height
)

Set all pixels in rect to 0.

Parameters
s The surface to clear.
x The horizontal origin of the rect to clear.
y The vertical origin of the rect to clear.

width The width of the rect to clear.
height The height of the rect to clear.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.56 JSurface 679

34.56.2.4 t_jsurface∗ jgraphics image surface create (t_jgraphics_format format, int
width, int height)

Create an image surface.

Use jgraphics_surface_destroy() to free it when you are done.

Parameters
format Defines the color format for the new surface.
width Defines the width of the new surface.

height Defines the height of the new surface.

Returns

A pointer to the new surface.

34.56.2.5 t_jsurface∗ jgraphics image surface create for data (unsigned char ∗ data,
t_jgraphics_format format, int width, int height, int stride, method freefun, void
∗ freearg)

Create an image surface from given pixel data.

Data should point to start of top line of bitmap, stride tells how to get to next line. For
upside down windows bitmaps, data = (pBits-(height-1)∗stride) and stride is a negative
number.

Parameters
data The data. For example, an RGBA image loaded in memory.

format The format of the data.
width The width of the new surface.

height The height of the new surface.
stride The number of bytes between the start of rows in the dat buffer.

freefun If not NULL, freefun will be called when the surface is destroyed
freearg This will be passed to freefun if/when freefun is called.

Returns

A pointer to the new surface.

34.56.2.6 t_jsurface∗ jgraphics image surface create from file (const char ∗ filename, short
path)

Create an image surface, filling it with the contents of a file.

Use jgraphics_surface_destroy() to free it when you are done.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

680 Module Documentation

Parameters
filename The name of the file.

path The path id of the file.

Returns

A pointer to the new surface.

34.56.2.7 t_jsurface∗ jgraphics image surface create from filedata (const void ∗ data,
unsigned long datalen)

Create a new surface from file data.

Parameters
data A pointer to the raw PNG or JPG bits.

datalen The number of bytes in data.

Returns

The new surface.

See also

jgraphics_write_image_surface_to_filedata()

34.56.2.8 t_jsurface∗ jgraphics image surface create from resource (const void ∗
moduleRef, const char ∗ resname)

Create a new surface from a resource in your external.

Parameters
moduleRef A pointer to your external’s module, which is passed to your external’s

main() function when the class is loaded.
resname The name of the resource in the external.

Remarks

The following example shows an example of how this might be used in an external.

static s_my_surface = NULL;

int main(void *moduleRef)
{

// (Do typical class initialization here)

// now create the surface from a resource that we added to the

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.56 JSurface 681

Xcode/VisualStudio project
s_my_surface = jgraphics_image_surface_create_from_resource(moduleRef,

"myCoolImage");

return 0;
}

34.56.2.9 t_jsurface∗ jgraphics image surface create referenced (const char ∗ filename,
short path)

Create an image surface, filling it with the contents of a file, and get a reference to the
surface.

Use jgraphics_surface_destroy() to release your reference to the surface when you are
done.

Parameters
filename The name of the file.

path The path id of the file.

Returns

A pointer to the new surface.

34.56.2.10 void jgraphics image surface draw (t_jgraphics ∗ g, t_jsurface ∗ s, t_rect
srcRect, t_rect destRect)

Draw an image surface.

This not in cairo, but, it seems silly to have to make a brush to just draw an image. This
doesn’t support rotations, however.

Parameters
g The graphics context in which to draw the surface.
s The surface to draw.

srcRect The rect within the surface that should be drawn.
destRect The rect in the context to which to draw the srcRect.

See also

jgraphics_image_surface_draw_fast()

34.56.2.11 void jgraphics image surface draw fast (t_jgraphics ∗ g, t_jsurface ∗ s)

Draw an image surface quickly.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

682 Module Documentation

The draw_fast version won’t scale based on zoom factor or user transforms so make
sure that this is what you want! Draws entire image, origin ∗can∗ be shifted via zoom
and user transforms (even though image is not scaled based on those same transforms)

Parameters
g The graphics context in which to draw the surface.
s The surface to draw.

See also

jgraphics_image_surface_draw

34.56.2.12 int jgraphics image surface get height (t_jsurface ∗ s)

Retrieve the height of a surface.

Parameters
s The surface to query.

Returns

The height of the surface.

34.56.2.13 void jgraphics image surface get pixel (t_jsurface ∗ s, int x, int y, t_jrgba ∗
color)

Retrieve the color of an individual pixel in a surface.

Parameters
s The surface.
x The horizontal coordinate of the pixel.
y The vertical coordinate of the pixel.

color The address of a valid t_jrgba struct whose values will be filled in with
the color of the pixel upon return.

34.56.2.14 int jgraphics image surface get width (t_jsurface ∗ s)

Retrieve the width of a surface.

Parameters
s The surface to query.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.56 JSurface 683

Returns

The width of the surface.

34.56.2.15 void jgraphics image surface scroll (t_jsurface ∗ s, int x, int y, int width, int
height, int dx, int dy, t_jpath ∗∗ path)

Parameters
s The surface to scroll.
x The origin of the rect to scroll.
y The origin of the rect to scroll.

width The width of the rect to scroll.
height The height of the rect to scroll.

dx The amount to scroll the surface horizontally.
dy The amount to scroll the surface vertically.

path Can pass NULL if you are not interested in this info. Otherwise pass a
pointer and it will be returned with a path containing the invalid region.

34.56.2.16 void jgraphics image surface set pixel (t_jsurface ∗ s, int x, int y, t_jrgba color
)

Set the color of an individual pixel in a surface.

Parameters
s The surface.
x The horizontal coordinate of the pixel.
y The vertical coordinate of the pixel.

color The color of the pixel.

34.56.2.17 t_max_err jgraphics image surface writepng (t_jsurface ∗ surface, const char
∗ filename, short path, long dpi)

Export a PNG file of the contents of a surface.

Parameters
surface The surface to export.

filename Specify the name of the file to create.
path Specify the path id for where to create the file.

dpi Define the resolution of the image (e.g. 72).

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

684 Module Documentation

34.56.2.18 void jgraphics surface destroy (t_jsurface ∗ s)

Release or free a surface.

Parameters
s The surface to release.

34.56.2.19 t_jsurface∗ jgraphics surface reference (t_jsurface ∗ s)

Create a reference to an existing surface.

Use jgraphics_surface_destroy() to release your reference to the surface when you are
done.

Parameters
s The surface to reference.

Returns

The new reference to the surface.

34.56.2.20 void jgraphics write image surface to filedata (t_jsurface ∗ surf, long fmt, void
∗∗ data, long ∗ size)

Get surface data ready for manually writing to a file.

Parameters
surf The surface whose data will be retrieved.
fmt The format for the data. This should be a selection from t_jgraphics_-

fileformat.
data The address of a pointer that will be allocated and filled. When you are

done with this data you should free it using sysmem_freeptr().
size The address of a variable to hold the size of the data upon return.

Remarks

A good example of this is to embed the surface as a PNG in a patcher file.

long size = 0;
void *data = NULL;

jgraphics_write_image_surface_to_filedata(x->j_surface,
JGRAPHICS_FILEFORMAT_PNG, &data, &size);

if (size) {
x->j_format = gensym("png");
binarydata_appendtodictionary(data, size, gensym("data"), x->j_format,

d);
x->j_imagedata = data;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.56 JSurface 685

x->j_imagedatasize = size;
}

See also

jgraphics_image_surface_create_from_filedata()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

686 Module Documentation

34.57 Scalable Vector Graphics

Collaboration diagram for Scalable Vector Graphics:

JGraphics Scalable Vector Graphics

Functions

• t_jsvg ∗ jsvg_create_from_file (const char ∗filename, short path)

Read an SVG file, return a t_jsvg object.

• t_jsvg ∗ jsvg_create_from_resource (const void ∗moduleRef, const char
∗resname)

Read an SVG file from a resource.

• t_jsvg ∗ jsvg_create_from_xmlstring (const char ∗svgXML)

Create an SVG object from a string containing the SVG’s XML.

• void jsvg_get_size (t_jsvg ∗svg, double ∗width, double ∗height)

Retrieve the size of an SVG object.

• void jsvg_destroy (t_jsvg ∗svg)

Free a t_jsvg object.

• void jsvg_render (t_jsvg ∗svg, t_jgraphics ∗g)

Render an SVG into a graphics context.

34.57.1 Function Documentation

34.57.1.1 t_jsvg∗ jsvg create from file (const char ∗ filename, short path)

Read an SVG file, return a t_jsvg object.

Parameters
filename The name of the file to read.

path The path id of the file to read.

Returns

A new SVG object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.57 Scalable Vector Graphics 687

34.57.1.2 t_jsvg∗ jsvg create from resource (const void ∗ moduleRef, const char ∗ resname
)

Read an SVG file from a resource.

Parameters
moduleRef The external’s moduleRef.

resname The name of the SVG resource.

Returns

A new SVG object.

See also

jgraphics_image_surface_create_from_resource()

34.57.1.3 t_jsvg∗ jsvg create from xmlstring (const char ∗ svgXML)

Create an SVG object from a string containing the SVG’s XML.

Parameters
svgXML The SVG source.

Returns

A new SVG object.

34.57.1.4 void jsvg destroy (t_jsvg ∗ svg)

Free a t_jsvg object.

Parameters
svg The object to free.

34.57.1.5 void jsvg get size (t_jsvg ∗ svg, double ∗ width, double ∗ height)

Retrieve the size of an SVG object.

Parameters
svg An SVG object.

width The address of a variable that will be set to the width upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

688 Module Documentation

height The address of a variable that will be set to the width upon return.

34.57.1.6 void jsvg render (t_jsvg ∗ svg, t_jgraphics ∗ g)

Render an SVG into a graphics context.

Parameters
svg The SVG object to render.

g The graphics context in which to render.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.58 JFont 689

34.58 JFont

Collaboration diagram for JFont:

JGraphics JFont

Typedefs

• typedef struct _jfont t_jfont

An instance of a jgraphics font.

Enumerations

• enum t_jgraphics_font_slant { JGRAPHICS_FONT_SLANT_NORMAL, JGRAP-
HICS_FONT_SLANT_ITALIC }

Enumeration of slanting options for font display.

• enum t_jgraphics_font_weight { JGRAPHICS_FONT_WEIGHT_NORMAL, JGR-
APHICS_FONT_WEIGHT_BOLD }

Enumeration of font weight options for font display.

Functions

• t_jfont ∗ jfont_create (const char ∗family, t_jgraphics_font_slant slant, t_jgraphics-
_font_weight weight, double size)

Create a new font object.

• t_jfont ∗ jfont_reference (t_jfont ∗font)

Create new reference to an existing font object.

• void jfont_destroy (t_jfont ∗font)

Release or free a font object.

• long jfont_isequalto (t_jfont ∗font, t_jfont ∗other)

Compare two fonts to see if they are equivalent.

• void jfont_set_font_size (t_jfont ∗font, double size)

Set the size of a font object.

• void jfont_set_underline (t_jfont ∗font, char ul)

Set the underlining of a font object.

• void jfont_extents (t_jfont ∗font, t_jgraphics_font_extents ∗extents)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

690 Module Documentation

Get extents of this font.

• void jfont_text_measure (t_jfont ∗font, const char ∗utf8, double ∗width, double
∗height)

Given a font, find out how much area is required to render a string of text.

• void jfont_text_measuretext_wrapped (t_jfont ∗font, const char ∗utf8, dou-
ble wrapwidth, long includewhitespace, double ∗width, double ∗height, long
∗numlines)

Given a font, find out how much area is required to render a string of text, provided a
horizontal maximum limit at which the text is wrapped.

• void jfont_get_em_dimensions (t_jfont ∗font, double ∗width, double ∗height)

Given a font, find out the width and height of the ’M’ character.

• t_max_err jfont_getfontlist (long ∗count, t_symbol ∗∗∗list)

Get a list of font names.

• long jbox_get_font_weight (t_object ∗b)

Get the slant box’s font.

• long jbox_get_font_slant (t_object ∗b)

Get the slant box’s font.

34.58.1 Enumeration Type Documentation

34.58.1.1 enum t_jgraphics_font_slant

Enumeration of slanting options for font display.

Enumerator:

JGRAPHICS_FONT_SLANT_NORMAL Normal slanting (typically this means no
slanting)

JGRAPHICS_FONT_SLANT_ITALIC Italic slanting.

34.58.1.2 enum t_jgraphics_font_weight

Enumeration of font weight options for font display.

Enumerator:

JGRAPHICS_FONT_WEIGHT_NORMAL Normal font weight.

JGRAPHICS_FONT_WEIGHT_BOLD Bold font weight.

34.58.2 Function Documentation

34.58.2.1 long jbox get font slant (t_object ∗ b)

Get the slant box’s font.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.58 JFont 691

Parameters
b An object’s box.

Returns

A value from the t_jgraphics_font_slant enum.

34.58.2.2 long jbox get font weight (t_object ∗ b)

Get the slant box’s font.

Parameters
b An object’s box.

Returns

A value from the t_jgraphics_font_weight enum.

34.58.2.3 t_jfont∗ jfont create (const char ∗ family, t_jgraphics_font_slant slant,
t_jgraphics_font_weight weight, double size)

Create a new font object.

Parameters
family The name of the font family (e.g. Arial).
slant The type of slant for the font.

weight The type of weight for the font.
size The size of the font.

Returns

The new font object.

34.58.2.4 void jfont destroy (t_jfont ∗ font)

Release or free a font object.

Parameters
font The font object to release.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

692 Module Documentation

34.58.2.5 void jfont extents (t_jfont ∗ font, t_jgraphics_font_extents ∗ extents)

Get extents of this font.

Parameters
font The font object.

extents The font extents upon return/

34.58.2.6 void jfont get em dimensions (t_jfont ∗ font, double ∗ width, double ∗ height)

Given a font, find out the width and height of the ’M’ character.

This is equivalent to jfont_text_measure(font, "M", width, height) but is faster.

Parameters
font The font object.

width The address of a variable to hold the width upon return.
height The address of a variable to hold the height upon return.

34.58.2.7 t_max_err jfont getfontlist (long ∗ count, t_symbol ∗∗∗ list)

Get a list of font names.

Parameters
count The addres of a variable to hold the count of font names in list upon

return.
list The address of a t_symbol∗∗ initialized to NULL. Upon return this will

be set to an array of count t_symbol pointers. This array should be freed
using sysmem_freeptr() when you are done with it.

Returns

A Max error code.

34.58.2.8 long jfont isequalto (t_jfont ∗ font, t_jfont ∗ other)

Compare two fonts to see if they are equivalent.

Parameters
font The first font object that is being compared.

other The second font object that is being compared.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.58 JFont 693

Returns

Nonzero value if the two fonts are equivalent.

34.58.2.9 t_jfont∗ jfont reference (t_jfont ∗ font)

Create new reference to an existing font object.

Parameters
font The font object for which to obtain a reference.

Returns

The new font object reference.

34.58.2.10 void jfont set font size (t_jfont ∗ font, double size)

Set the size of a font object.

Parameters
font The font object.
size The new size for the font object.

34.58.2.11 void jfont set underline (t_jfont ∗ font, char ul)

Set the underlining of a font object.

Parameters
font The font object.

ul Pass true to underline, or false for no underlining.

34.58.2.12 void jfont text measure (t_jfont ∗ font, const char ∗ utf8, double ∗ width, double
∗ height)

Given a font, find out how much area is required to render a string of text.

Parameters
font The font object.
utf8 The text whose rendering will be measured.

width The address of a variable to hold the width upon return.
height The address of a variable to hold the height upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

694 Module Documentation

34.58.2.13 void jfont text measuretext wrapped (t_jfont ∗ font, const char ∗ utf8, double
wrapwidth, long includewhitespace, double ∗ width, double ∗ height, long ∗
numlines)

Given a font, find out how much area is required to render a string of text, provided a
horizontal maximum limit at which the text is wrapped.

Parameters
font The font object.
utf8 The text whose rendering will be measured.

wrapwidth The maximum width, above which text should wrap onto a new line.
include-

whitespace
If non-zero, include whitespace in the measurement.

width The address of a variable to hold the width upon return.
height The address of a variable to hold the height upon return.

numlines The address of a variable to hold the number of lines of text after wrap-
ping upon return.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.59 JGraphics Matrix Transformations 695

34.59 JGraphics Matrix Transformations

The t_jmatrix is one way to represent a transformation.

Collaboration diagram for JGraphics Matrix Transformations:

JGraphics JGraphics Matrix Transformations

Data Structures

• struct t_jmatrix

An affine transformation (such as scale, shear, etc).

Functions

• void jgraphics_matrix_init (t_jmatrix ∗x, double xx, double yx, double xy, double
yy, double x0, double y0)

Set a t_jmatrix to an affine transformation.

• void jgraphics_matrix_init_identity (t_jmatrix ∗x)

Modify a matrix to be an identity transform.

• void jgraphics_matrix_init_translate (t_jmatrix ∗x, double tx, double ty)

Initialize a t_jmatrix to translate (offset) a point.

• void jgraphics_matrix_init_scale (t_jmatrix ∗x, double sx, double sy)

Initialize a t_jmatrix to scale (offset) a point.

• void jgraphics_matrix_init_rotate (t_jmatrix ∗x, double radians)

Initialize a t_jmatrix to rotate (offset) a point.

• void jgraphics_matrix_translate (t_jmatrix ∗x, double tx, double ty)

Apply a translation to an existing matrix.

• void jgraphics_matrix_scale (t_jmatrix ∗x, double sx, double sy)

Apply a scaling to an existing matrix.

• void jgraphics_matrix_rotate (t_jmatrix ∗x, double radians)

Apply a rotation to an existing matrix.

• void jgraphics_matrix_invert (t_jmatrix ∗x)

Invert an existing matrix.

• void jgraphics_matrix_multiply (t_jmatrix ∗result, const t_jmatrix ∗a, const t_-
jmatrix ∗b)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

696 Module Documentation

Multiply two matrices: resulting matrix has effect of first applying a and then applying
b.

• void jgraphics_matrix_transform_point (const t_jmatrix ∗matrix, double ∗x, double
∗y)

Transform a point using a t_jmatrix transormation.

34.59.1 Detailed Description

The t_jmatrix is one way to represent a transformation. You can use the t_jmatrix in the
call to jgraphics_transform(), jgraphics_setmatrix(), and jgraphics_pattern_set_matrix
for specifying transformations.

34.59.2 Function Documentation

34.59.2.1 void jgraphics matrix init (t_jmatrix ∗ x, double xx, double yx, double xy, double
yy, double x0, double y0)

Set a t_jmatrix to an affine transformation.

Parameters
x

xx
yx
xy
yy
x0
y0

Remarks

given x,y the matrix specifies the following transformation:

xnew = xx * x + xy * y + x0;
ynew = yx * x + yy * y + y0;

34.59.2.2 void jgraphics matrix init identity (t_jmatrix ∗ x)

Modify a matrix to be an identity transform.

Parameters
x The t_jmatrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.59 JGraphics Matrix Transformations 697

34.59.2.3 void jgraphics matrix init rotate (t_jmatrix ∗ x, double radians)

Initialize a t_jmatrix to rotate (offset) a point.

Parameters
x The t_jmatrix.

radians The angle or rotation in radians.

34.59.2.4 void jgraphics matrix init scale (t_jmatrix ∗ x, double sx, double sy)

Initialize a t_jmatrix to scale (offset) a point.

Parameters
x The t_jmatrix.

sx The horizontal scale factor.
sy The vertical scale factor.

34.59.2.5 void jgraphics matrix init translate (t_jmatrix ∗ x, double tx, double ty)

Initialize a t_jmatrix to translate (offset) a point.

Parameters
x The t_jmatrix.

tx The amount of x-axis translation.
ty The amount of y-axis translation.

34.59.2.6 void jgraphics matrix invert (t_jmatrix ∗ x)

Invert an existing matrix.

Parameters
x The t_jmatrix.

34.59.2.7 void jgraphics matrix multiply (t_jmatrix ∗ result, const t_jmatrix ∗ a, const
t_jmatrix ∗ b)

Multiply two matrices: resulting matrix has effect of first applying a and then applying b.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

698 Module Documentation

Parameters
result The resulting product t_jmatrix.

a The first operand.
b The second operand.

34.59.2.8 void jgraphics matrix rotate (t_jmatrix ∗ x, double radians)

Apply a rotation to an existing matrix.

Parameters
x The t_jmatrix.

radians The angle or rotation in radians.

34.59.2.9 void jgraphics matrix scale (t_jmatrix ∗ x, double sx, double sy)

Apply a scaling to an existing matrix.

Parameters
x The t_jmatrix.

sx The horizontal scale factor.
sy The vertical scale factor.

34.59.2.10 void jgraphics matrix transform point (const t_jmatrix ∗ matrix, double ∗ x,
double ∗ y)

Transform a point using a t_jmatrix transormation.

Parameters
matrix The t_jmatrix.

x The address of the variable holding the x coordinate.
y The address of the variable holding the y coordinate.

34.59.2.11 void jgraphics matrix translate (t_jmatrix ∗ x, double tx, double ty)

Apply a translation to an existing matrix.

Parameters
x The t_jmatrix.

tx The amount of x-axis translation.
ty The amount of y-axis translation.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.60 JPattern 699

34.60 JPattern

A pattern is like a brush that is used to fill a path with.

Collaboration diagram for JPattern:

JPatternJGraphics

Typedefs

• typedef struct _jpattern t_jpattern

An instance of a jgraphics pattern.

34.60.1 Detailed Description

A pattern is like a brush that is used to fill a path with. It could be a solid color but it
could also be an image. You can draw to a surface and then from that surface create a
pattern that can be used to fill another surface. For example, jgraphics_patter_create-
_for_surface(). There are also gradients: see jgraphics_pattern_create_linear() and
jgraphics_pattern_create_radial().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

700 Module Documentation

34.61 Colors

Collaboration diagram for Colors:

ColorsJGraphics

Data Structures

• struct t_jrgb

A color composed of red, green, and blue components.

• struct t_jrgba

A color composed of red, green, blue, and alpha components.

Functions

• void jrgba_to_atoms (t_jrgba ∗c, t_atom ∗argv)

Get the components of a color in an array of pre-allocated atoms.

• t_max_err atoms_to_jrgba (long argc, t_atom ∗argv, t_jrgba ∗c)

Set the components of a color by providing an array of atoms.

• void jrgba_set (t_jrgba ∗prgba, double r, double g, double b, double a)

Set the components of a color.

• void jrgba_copy (t_jrgba ∗dest, t_jrgba ∗src)

Copy a color.

• long jrgba_compare (t_jrgba ∗rgba1, t_jrgba ∗rgba2)

Compare two colors for equality.

• t_max_err jrgba_attr_get (t_jrgba ∗jrgba, long ∗argc, t_atom ∗∗argv)

Get the value of a t_jrgba struct, returned as an array of atoms with the values for each
component.

• t_max_err jrgba_attr_set (t_jrgba ∗jrgba, long argc, t_atom ∗argv)

Set the value of a t_jrgba struct, given an array of atoms with the values to use.

34.61.1 Function Documentation

34.61.1.1 t_max_err atoms to jrgba (long argc, t_atom ∗ argv, t_jrgba ∗ c)

Set the components of a color by providing an array of atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.61 Colors 701

If it is an array of 3 atoms, then the atoms provided should define the red, green, and
blue components (in this order) in a range of [0.0, 1.0]. If a 4th atom is provided, it will
define the alpha channel. If the alpha channel is not defined then it is assumed to be
1.0.

Parameters
argc The number of atoms in the array provided in argv. This should be 3 or

4 depending on whether or not the alpha channel is being provided.
argv The address to the first of an array of atoms that define the color.

c The address of a t_jrgba struct for which the color will be defined.

Returns

A Max error code.

34.61.1.2 t_max_err jrgba attr get (t_jrgba ∗ jrgba, long ∗ argc, t_atom ∗∗ argv)

Get the value of a t_jrgba struct, returned as an array of atoms with the values for each
component.

Parameters
jrgba The color struct whose color will be retrieved.
argc The address of a variable that will be set with the number of atoms in

the argv array. The returned value should be 4. The value of the int
should be set to 0 prior to calling this function.

argv The address of a t_atom pointer that will receive the a new array of
atoms set to the values of the jrgba struct. The pointer should be set to
NULL prior to calling this function. There should be 4 atoms returned,
representing alpha, red, green, and blue components. When you are
done using the atoms, you are responsible for freeing the pointer using
sysmem_freeptr().

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.61.1.3 t_max_err jrgba attr set (t_jrgba ∗ jrgba, long argc, t_atom ∗ argv)

Set the value of a t_jrgba struct, given an array of atoms with the values to use.

Parameters
jrgba The color struct whose color will be set.
argc The number of atoms in the array. This must be 4.
argv The address of the first of the atoms in the array. There must be 4

atoms, representing alpha, red, green, and blue components.
Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

702 Module Documentation

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in e_max_errorcodes if unsuccessful.

34.61.1.4 long jrgba compare (t_jrgba ∗ rgba1, t_jrgba ∗ rgba2)

Compare two colors for equality.

Parameters
rgba1 The address of a t_jrgba struct to compare.
rgba2 The address of another t_jrgba struct to compare.

Returns

returns 1 if rgba1 == rgba2.

34.61.1.5 void jrgba copy (t_jrgba ∗ dest, t_jrgba ∗ src)

Copy a color.

Parameters
dest The address of a t_jrgba struct to which the color will be copied.

src The address of a t_jrgba struct from which the color will be copied.

34.61.1.6 void jrgba set (t_jrgba ∗ prgba, double r, double g, double b, double a)

Set the components of a color.

Parameters
prgba The address of a t_jrgba struct for which the color will be defined.

r The value of the red component in a range of [0.0, 1.0].
g The value of the green component in a range of [0.0, 1.0].
b The value of the blue component in a range of [0.0, 1.0].
a The value of the alpha component in a range of [0.0, 1.0].

34.61.1.7 void jrgba to atoms (t_jrgba ∗ c, t_atom ∗ argv)

Get the components of a color in an array of pre-allocated atoms.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.61 Colors 703

Parameters
argv The address to the first of an array of atoms that will hold the result. At

least 4 atoms must be allocated, as 4 atoms will be set by this function
for the red, green, blue, and alpha components.

c The address of a t_jrgba struct from which the color components will be
fetched.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

704 Module Documentation

34.62 TextField

The textfield is a high-level text display object that may be used by a UI object to repre-
sent text in a patcher.

Collaboration diagram for TextField:

TextFieldJGraphics

Functions

• t_object ∗ textfield_get_owner (t_object ∗tf)
Return the object that owns a particular textfield.

• t_max_err textfield_get_textcolor (t_object ∗tf, t_jrgba ∗prgba)

Retrieve the color of the text in a textfield.

• t_max_err textfield_set_textcolor (t_object ∗tf, t_jrgba ∗prgba)

Set the color of the text in a textfield.

• t_max_err textfield_get_bgcolor (t_object ∗tf, t_jrgba ∗prgba)

Retrieve the background color of a textfield.

• t_max_err textfield_set_bgcolor (t_object ∗tf, t_jrgba ∗prgba)

Set the background color of a textfield.

• t_max_err textfield_get_textmargins (t_object ∗tf, double ∗pleft, double ∗ptop,
double ∗pright, double ∗pbottom)

Retrieve the margins from the edge of the textfield to the text itself in a textfield.

• t_max_err textfield_set_textmargins (t_object ∗tf, double left, double top, double
right, double bottom)

Set the margins from the edge of the textfield to the text itself in a textfield.

• char textfield_get_editonclick (t_object ∗tf)
Return the value of the ’editonclick’ attribute of a textfield.

• t_max_err textfield_set_editonclick (t_object ∗tf, char c)

Set the ’editonclick’ attribute of a textfield.

• char textfield_get_selectallonedit (t_object ∗tf)
Return the value of the ’selectallonedit’ attribute of a textfield.

• t_max_err textfield_set_selectallonedit (t_object ∗tf, char c)

Set the ’selectallonedit’ attribute of a textfield.

• char textfield_get_noactivate (t_object ∗tf)
Return the value of the ’noactivate’ attribute of a textfield.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.62 TextField 705

• t_max_err textfield_set_noactivate (t_object ∗tf, char c)

Set the ’noactivate’ attribute of a textfield.

• char textfield_get_readonly (t_object ∗tf)
Return the value of the ’readonly’ attribute of a textfield.

• t_max_err textfield_set_readonly (t_object ∗tf, char c)

Set the ’readonly’ attribute of a textfield.

• char textfield_get_wordwrap (t_object ∗tf)
Return the value of the ’wordwrap’ attribute of a textfield.

• t_max_err textfield_set_wordwrap (t_object ∗tf, char c)

Set the ’wordwrap’ attribute of a textfield.

• char textfield_get_useellipsis (t_object ∗tf)
Return the value of the ’useellipsis’ attribute of a textfield.

• t_max_err textfield_set_useellipsis (t_object ∗tf, char c)

Set the ’useellipsis’ attribute of a textfield.

• char textfield_get_autoscroll (t_object ∗tf)
Return the value of the ’autoscroll’ attribute of a textfield.

• t_max_err textfield_set_autoscroll (t_object ∗tf, char c)

Set the ’autoscroll’ attribute of a textfield.

• char textfield_get_wantsreturn (t_object ∗tf)
Return the value of the ’wantsreturn’ attribute of a textfield.

• t_max_err textfield_set_wantsreturn (t_object ∗tf, char c)

Set the ’wantsreturn’ attribute of a textfield.

• char textfield_get_wantstab (t_object ∗tf)
Return the value of the ’wantstab’ attribute of a textfield.

• t_max_err textfield_set_wantstab (t_object ∗tf, char c)

Set the ’wantstab’ attribute of a textfield.

• char textfield_get_underline (t_object ∗tf)
Return the value of the ’underline’ attribute of a textfield.

• t_max_err textfield_set_underline (t_object ∗tf, char c)

Set the ’underline’ attribute of a textfield.

• t_max_err textfield_set_emptytext (t_object ∗tf, t_symbol ∗txt)

Set the ’empty’ text of a textfield.

• t_symbol ∗ textfield_get_emptytext (t_object ∗tf)
Retrieve the ’empty’ text of a textfield.

34.62.1 Detailed Description

The textfield is a high-level text display object that may be used by a UI object to repre-
sent text in a patcher. It is built on the lower-level TextLayout

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

706 Module Documentation

34.62.2 Function Documentation

34.62.2.1 char textfield get autoscroll (t_object ∗ tf)

Return the value of the ’autoscroll’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.2 t_max_err textfield get bgcolor (t_object ∗ tf, t_jrgba ∗ prgba)

Retrieve the background color of a textfield.

Parameters
tf The textfield instance pointer.

prgba The address of a valid t_jrgba whose values will be filled-in upon return.

Returns

A Max error code.

34.62.2.3 char textfield get editonclick (t_object ∗ tf)

Return the value of the ’editonclick’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.4 t_symbol∗ textfield get emptytext (t_object ∗ tf)

Retrieve the ’empty’ text of a textfield.

The empty text is the text that is displayed in the textfield when no text is present. By
default this is gensym("").

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.62 TextField 707

Parameters
tf The textfield instance pointer.

Returns

The current text used as the empty text.

34.62.2.5 char textfield get noactivate (t_object ∗ tf)

Return the value of the ’noactivate’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.6 t_object∗ textfield get owner (t_object ∗ tf)

Return the object that owns a particular textfield.

Parameters
tf The textfield instance pointer.

Returns

A pointer to the owning object.

34.62.2.7 char textfield get readonly (t_object ∗ tf)

Return the value of the ’readonly’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

708 Module Documentation

34.62.2.8 char textfield get selectallonedit (t_object ∗ tf)

Return the value of the ’selectallonedit’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.9 t_max_err textfield get textcolor (t_object ∗ tf, t_jrgba ∗ prgba)

Retrieve the color of the text in a textfield.

Parameters
tf The textfield instance pointer.

prgba The address of a valid t_jrgba whose values will be filled-in upon return.

Returns

A Max error code.

34.62.2.10 t_max_err textfield get textmargins (t_object ∗ tf, double ∗ pleft, double ∗ ptop,
double ∗ pright, double ∗ pbottom)

Retrieve the margins from the edge of the textfield to the text itself in a textfield.

Parameters
tf The textfield instance pointer.

pleft The address of a variable to hold the value of the left margin upon re-
turn.

ptop The address of a variable to hold the value of the top margin upon
return.

pright The address of a variable to hold the value of the right margin upon
return.

pbottom The address of a variable to hold the value of the bottom margin upon
return.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.62 TextField 709

34.62.2.11 char textfield get underline (t_object ∗ tf)

Return the value of the ’underline’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.12 char textfield get useellipsis (t_object ∗ tf)

Return the value of the ’useellipsis’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.13 char textfield get wantsreturn (t_object ∗ tf)

Return the value of the ’wantsreturn’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.14 char textfield get wantstab (t_object ∗ tf)

Return the value of the ’wantstab’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

710 Module Documentation

Returns

A value of the attribute.

34.62.2.15 char textfield get wordwrap (t_object ∗ tf)

Return the value of the ’wordwrap’ attribute of a textfield.

Parameters
tf The textfield instance pointer.

Returns

A value of the attribute.

34.62.2.16 t_max_err textfield set autoscroll (t_object ∗ tf, char c)

Set the ’autoscroll’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.17 t_max_err textfield set bgcolor (t_object ∗ tf, t_jrgba ∗ prgba)

Set the background color of a textfield.

Parameters
tf The textfield instance pointer.

prgba The address of a t_jrgba containing the new color to use.

Returns

A Max error code.

34.62.2.18 t_max_err textfield set editonclick (t_object ∗ tf, char c)

Set the ’editonclick’ attribute of a textfield.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.62 TextField 711

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.19 t_max_err textfield set emptytext (t_object ∗ tf, t_symbol ∗ txt)

Set the ’empty’ text of a textfield.

The empty text is the text that is displayed in the textfield when no text is present. By
default this is gensym("").

Parameters
tf The textfield instance pointer.

txt A symbol containing the new text to display when the textfield has no
content.

Returns

A Max error code.

34.62.2.20 t_max_err textfield set noactivate (t_object ∗ tf, char c)

Set the ’noactivate’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.21 t_max_err textfield set readonly (t_object ∗ tf, char c)

Set the ’readonly’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

712 Module Documentation

Returns

A Max error code.

34.62.2.22 t_max_err textfield set selectallonedit (t_object ∗ tf, char c)

Set the ’selectallonedit’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.23 t_max_err textfield set textcolor (t_object ∗ tf, t_jrgba ∗ prgba)

Set the color of the text in a textfield.

Parameters
tf The textfield instance pointer.

prgba The address of a t_jrgba containing the new color to use.

Returns

A Max error code.

34.62.2.24 t_max_err textfield set textmargins (t_object ∗ tf, double left, double top,
double right, double bottom)

Set the margins from the edge of the textfield to the text itself in a textfield.

Parameters
tf The textfield instance pointer.

left The new value for the left margin.
top The new value for the top margin.

right The new value for the right margin.
bottom The new value for the bottom margin.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.62 TextField 713

34.62.2.25 t_max_err textfield set underline (t_object ∗ tf, char c)

Set the ’underline’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.26 t_max_err textfield set useellipsis (t_object ∗ tf, char c)

Set the ’useellipsis’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.27 t_max_err textfield set wantsreturn (t_object ∗ tf, char c)

Set the ’wantsreturn’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

34.62.2.28 t_max_err textfield set wantstab (t_object ∗ tf, char c)

Set the ’wantstab’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

714 Module Documentation

Returns

A Max error code.

34.62.2.29 t_max_err textfield set wordwrap (t_object ∗ tf, char c)

Set the ’wordwrap’ attribute of a textfield.

Parameters
tf The textfield instance pointer.
c The new value for the attribute.

Returns

A Max error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.63 TextLayout 715

34.63 TextLayout

A textlayout is lower-level text rendering object used by higher-level entities such as
TextField.

Collaboration diagram for TextLayout:

JGraphics TextLayout

Enumerations

• enum t_jgraphics_textlayout_flags { JGRAPHICS_TEXTLAYOUT_NOWRAP, J-
GRAPHICS_TEXTLAYOUT_USEELLIPSIS }

Flags for setting text layout options.

Functions

• t_jtextlayout ∗ jtextlayout_create ()

Create a new textlayout object.

• t_jtextlayout ∗ jtextlayout_withbgcolor (t_jgraphics ∗g, t_jrgba ∗bgcolor)

Create a new textlayout object.

• void jtextlayout_destroy (t_jtextlayout ∗textlayout)

Release/free a textlayout object.

• void jtextlayout_set (t_jtextlayout ∗textlayout, const char ∗utf8, t_jfont ∗jfont, dou-
ble x, double y, double width, double height, t_jgraphics_text_justification justifi-
cation, t_jgraphics_textlayout_flags flags)

Set the text and attributes of a textlayout object.

• void jtextlayout_settextcolor (t_jtextlayout ∗textlayout, t_jrgba ∗textcolor)

Set the color to render text in a textlayout object.

• void jtextlayout_measuretext (t_jtextlayout ∗textlayout, long startindex, long num-
chars, long includewhitespace, double ∗width, double ∗height, long ∗numlines)

Return a measurement of how much space will be required to draw the text of a text-
layout.

• void jtextlayout_draw (t_jtextlayout ∗tl, t_jgraphics ∗g)

Draw a textlayout in a given graphics context.

• long jtextlayout_getnumchars (t_jtextlayout ∗tl)
Retrieve a count of the number of characters in a textlayout object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

716 Module Documentation

• t_max_err jtextlayout_getcharbox (t_jtextlayout ∗tl, long index, t_rect ∗rect)

Retrieve the t_rect containing a character at a given index.

• t_max_err jtextlayout_getchar (t_jtextlayout ∗tl, long index, long ∗pch)

Retrieve the unicode character at a given index.

34.63.1 Detailed Description

A textlayout is lower-level text rendering object used by higher-level entities such as
TextField.

34.63.2 Enumeration Type Documentation

34.63.2.1 enum t_jgraphics_textlayout_flags

Flags for setting text layout options.

Enumerator:

JGRAPHICS_TEXTLAYOUT_NOWRAP disable word wrapping

JGRAPHICS_TEXTLAYOUT_USEELLIPSIS show ... if a line doesn’t fit (implies
NOWRAP too)

34.63.3 Function Documentation

34.63.3.1 t_jtextlayout∗ jtextlayout create ()

Create a new textlayout object.

Returns

The new textlayout object.

34.63.3.2 void jtextlayout destroy (t_jtextlayout ∗ textlayout)

Release/free a textlayout object.

Parameters
textlayout The textlayout object to release.

34.63.3.3 void jtextlayout draw (t_jtextlayout ∗ tl, t_jgraphics ∗ g)

Draw a textlayout in a given graphics context.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.63 TextLayout 717

Parameters
tl The textlayout object to query.
g The graphics context in which to draw the text.

34.63.3.4 t_max_err jtextlayout getchar (t_jtextlayout ∗ tl, long index, long ∗ pch)

Retrieve the unicode character at a given index.

Parameters
tl The textlayout object to query.

index The index from which to fetch the unicode character.
pch The address of a variable to hold the unicode character value upon

return.

Returns

A Max error code.

34.63.3.5 t_max_err jtextlayout getcharbox (t_jtextlayout ∗ tl, long index, t_rect ∗ rect)

Retrieve the t_rect containing a character at a given index.

Parameters
tl The textlayout object to query.

index The index from which to fetch the unicode character.
rect The address of a valid t_rect which will be filled in upon return.

Returns

A Max error code.

34.63.3.6 long jtextlayout getnumchars (t_jtextlayout ∗ tl)

Retrieve a count of the number of characters in a textlayout object.

Parameters
tl The textlayout object to query.

Returns

The number of characters.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

718 Module Documentation

34.63.3.7 void jtextlayout measuretext (t_jtextlayout ∗ textlayout, long startindex, long
numchars, long includewhitespace, double ∗ width, double ∗ height, long ∗
numlines)

Return a measurement of how much space will be required to draw the text of a textlay-
out.

Parameters
textlayout The textlayout object to query.
startindex You can measure a subset of the characters. This defines the character

from which to start.
numchars Pass -1 for all characters from startindex to end

include-
whitespace

Define whether to measure with or without whitespace truncated from
edges.

width Returns the width of text not including any margins.
height Returns the height of text not including any margins.

numlines Returns the number of lines of text.

34.63.3.8 void jtextlayout set (t_jtextlayout ∗ textlayout, const char ∗ utf8, t_jfont ∗ jfont,
double x, double y, double width, double height, t_jgraphics_text_justification
justification, t_jgraphics_textlayout_flags flags)

Set the text and attributes of a textlayout object.

Parameters
textlayout The textlayout object.

utf8 The text to render.
jfont The font with which to render the text.

x The text is placed within rect specified by x, y, width, height.
y The text is placed within rect specified by x, y, width, height.

width The text is placed within rect specified by x, y, width, height.
height The text is placed within rect specified by x, y, width, height.

justification How to justify the text within the rect.
flags Additional flags to control behaviour.

34.63.3.9 void jtextlayout settextcolor (t_jtextlayout ∗ textlayout, t_jrgba ∗ textcolor)

Set the color to render text in a textlayout object.

Parameters
textlayout The textlayout object for which to set the color.
textcolor The color for the text.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.63 TextLayout 719

34.63.3.10 t_jtextlayout∗ jtextlayout withbgcolor (t_jgraphics ∗ g, t_jrgba ∗ bgcolor)

Create a new textlayout object.

This gives a hint to the textlayout as to what the text bgcolor will be. It won’t actually
paint the bg for you. But, it does let it do a better job.

Parameters
g The graphics context for the textlayout.

bgcolor The background color for the textlayout.

Returns

The new textlayout object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

720 Module Documentation

34.64 Popup Menus

Popup menu API so externals can create popup menus that can also be drawn into.

Collaboration diagram for Popup Menus:

Popup MenusJGraphics

Functions

• t_jpopupmenu ∗ jpopupmenu_create ()

Create a pop-up menu.

• void jpopupmenu_destroy (t_jpopupmenu ∗menu)

Free a pop-up menu created with jpopupmenu_create().

• void jpopupmenu_clear (t_jpopupmenu ∗menu)

Clear the conents of a pop-up menu.

• void jpopupmenu_setcolors (t_jpopupmenu ∗menu, t_jrgba text, t_jrgba bg, t_-
jrgba highlightedtext, t_jrgba highlightedbg)

Set the colors used by a pop-up menu.

• void jpopupmenu_setfont (t_jpopupmenu ∗menu, t_jfont ∗font)

Set the font used by a pop-up menu.

• void jpopupmenu_additem (t_jpopupmenu ∗menu, int itemid, const char ∗utf8-
Text, t_jrgba ∗textColor, int checked, int disabled, t_jsurface ∗icon)

Add an item to a pop-up menu.

• void jpopupmenu_addsubmenu (t_jpopupmenu ∗menu, const char ∗utf8Name,
t_jpopupmenu ∗submenu, int disabled)

Add a pop-menu to another pop-menu as a submenu.

• void jpopupmenu_addseperator (t_jpopupmenu ∗menu)

Add a separator to a pop-menu.

• int jpopupmenu_popup (t_jpopupmenu ∗menu, t_pt screen, int defitemid)

Tell a menu to display at a specified location.

• int jpopupmenu_popup_abovebox (t_jpopupmenu ∗menu, t_object ∗box, t_object
∗view, int offset, int defitemid)

Tell a menu to display above a given box in a patcher.

• int jpopupmenu_popup_nearbox (t_jpopupmenu ∗menu, t_object ∗box, t_object
∗view, int defitemid)

Tell a menu to display near a given box in a patcher.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.64 Popup Menus 721

• int jpopupmenu_popup_belowrect (t_jpopupmenu ∗menu, t_rect rect, int de-
fitemid)

Tell a menu to display below a given rectangle in a patcher.

34.64.1 Detailed Description

Popup menu API so externals can create popup menus that can also be drawn into.

34.64.2 Function Documentation

34.64.2.1 void jpopupmenu additem (t_jpopupmenu ∗ menu, int itemid, const char ∗
utf8Text, t_jrgba ∗ textColor, int checked, int disabled, t_jsurface ∗ icon)

Add an item to a pop-up menu.

Parameters
menu The pop-up menu to which the item will be added.
itemid Each menu item should be assigned a unique integer id using this pa-

rameter.
utf8Text The text to display in for the menu item.

textColor The color to use for the menu item, or NULL to use the default color.
checked A non-zero value indicates that the item should have a check-mark next

to it.
disabled A non-zero value indicates that the item should be disabled.

icon A t_jsurface will be used as an icon for the menu item if provided here.
Pass NULL for no icon.

34.64.2.2 void jpopupmenu addseperator (t_jpopupmenu ∗ menu)

Add a separator to a pop-menu.

Parameters
menu The pop-up menu to which the separator will be added.

34.64.2.3 void jpopupmenu addsubmenu (t_jpopupmenu ∗ menu, const char ∗ utf8Name,
t_jpopupmenu ∗ submenu, int disabled)

Add a pop-menu to another pop-menu as a submenu.

Parameters
menu The pop-up menu to which a menu will be added as a submenu.

utf8Name The name of the menu item.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

722 Module Documentation

submenu The pop-up menu which will be used as the submenu.
disabled Pass a non-zero value to disable the menu item.

34.64.2.4 void jpopupmenu clear (t_jpopupmenu ∗ menu)

Clear the conents of a pop-up menu.

Parameters
menu The pop-up menu whose contents will be cleared.

34.64.2.5 t_jpopupmenu∗ jpopupmenu create ()

Create a pop-up menu.

Free this pop-up menu using jpopupmenu_destroy().

Returns

A pointer to the newly created jpopupmenu object.

34.64.2.6 void jpopupmenu destroy (t_jpopupmenu ∗ menu)

Free a pop-up menu created with jpopupmenu_create().

Parameters
menu The pop-up menu to be freed.

34.64.2.7 int jpopupmenu popup (t_jpopupmenu ∗ menu, t_pt screen, int defitemid)

Tell a menu to display at a specified location.

Parameters
menu The pop-up menu to display.

screen The point at which to display in screen coordinates.
defitemid The initially choosen item id.

Returns

The item id for the item in the menu choosen by the user.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.64 Popup Menus 723

34.64.2.8 int jpopupmenu popup abovebox (t_jpopupmenu ∗ menu, t_object ∗ box,
t_object ∗ view, int offset, int defitemid)

Tell a menu to display above a given box in a patcher.

Parameters
menu The pop-up menu to display.

box The box above which to display the menu.
view The patcherview for the box in which to display the menu.

offset An offset from the box position at which to display the menu.
defitemid The initially choosen item id.

Returns

The item id for the item in the menu choosen by the user.

34.64.2.9 int jpopupmenu popup belowrect (t_jpopupmenu ∗ menu, t_rect rect, int
defitemid)

Tell a menu to display below a given rectangle in a patcher.

Parameters
menu The pop-up menu to display.

rect The rectangle below which to display the menu.
defitemid The initially choosen item id.

Returns

The item id for the item in the menu choosen by the user.

34.64.2.10 int jpopupmenu popup nearbox (t_jpopupmenu ∗ menu, t_object ∗ box,
t_object ∗ view, int defitemid)

Tell a menu to display near a given box in a patcher.

Parameters
menu The pop-up menu to display.

box The box above which to display the menu.
view The patcherview for the box in which to display the menu.

defitemid The initially choosen item id.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

724 Module Documentation

Returns

The item id for the item in the menu choosen by the user.

34.64.2.11 void jpopupmenu setcolors (t_jpopupmenu ∗ menu, t_jrgba text, t_jrgba bg,
t_jrgba highlightedtext, t_jrgba highlightedbg)

Set the colors used by a pop-up menu.

Parameters
menu The pop-up menu to which the colors will be applied.

text The text color for menu items.
bg The background color for menu items.

highlighted-
text

The text color for the highlighted menu item.

highlight-
edbg

The background color the highlighted menu item.

34.64.2.12 void jpopupmenu setfont (t_jpopupmenu ∗ menu, t_jfont ∗ font)

Set the font used by a pop-up menu.

Parameters
menu The pop-up menu whose font will be set.

font A pointer to a font object, whose font info will be copied to the pop-up
menu.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.65 Box Layer 725

34.65 Box Layer

The boxlayer functions provide way to make it easier to use cached offscreen images
(layers) in your drawing.

Collaboration diagram for Box Layer:

JGraphics Box Layer

Functions

• t_max_err jbox_invalidate_layer (t_object ∗b, t_object ∗view, t_symbol ∗name)

Invalidate a layer, indicating that it needs to be re-drawn.

• t_jgraphics ∗ jbox_start_layer (t_object ∗b, t_object ∗view, t_symbol ∗name, dou-
ble width, double height)

Create a layer, and ready it for drawing commands.

• t_max_err jbox_end_layer (t_object ∗b, t_object ∗view, t_symbol ∗name)

Conclude a layer, indicating that it is complete and ready for painting.

• t_max_err jbox_paint_layer (t_object ∗b, t_object ∗view, t_symbol ∗name, double
x, double y)

Paint a layer at a given position.

34.65.1 Detailed Description

The boxlayer functions provide way to make it easier to use cached offscreen images
(layers) in your drawing. The general idea is to do something like this:

t_jgraphics *g;
g = jbox_start_layer(box, view, layername, width, height);
if (g) {

// draw to your new offscreen context here
// the second time you call jbox_start_layer() it will return NULL
// since you already drew it -- you don’t have to do drawing the second
time
jbox_end_layer(box, view, layername);

}
jbox_paint_layer(box, view, layername, xpos, ypos);

Then, if something changes where you would need to redraw the layer you invalidate it:

jbox_invalidate_layer(box, view, layername);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

726 Module Documentation

or

jbox_invalidate_layer(box, NULL, layername); // to invalidate for all views

Each view has its own layer stored since if a patcher has multiple views each could be
at a different zoom level.

34.65.2 Function Documentation

34.65.2.1 t_max_err jbox end layer (t_object ∗ b, t_object ∗ view, t_symbol ∗ name)

Conclude a layer, indicating that it is complete and ready for painting.

Parameters
b The object/box for the layer opened by jbox_start_layer().

view The patcherview for the object opened by jbox_start_layer().
name The name of the layer.

Returns

A Max error code.

34.65.2.2 t_max_err jbox invalidate layer (t_object ∗ b, t_object ∗ view, t_symbol ∗
name)

Invalidate a layer, indicating that it needs to be re-drawn.

Parameters
b The object/box to invalidate.

view The patcherview for the object which should be invalidated, or NULL for
all patcherviews.

name The name of the layer to invalidate.

Returns

A Max error code.

34.65.2.3 t_max_err jbox paint layer (t_object ∗ b, t_object ∗ view, t_symbol ∗ name,
double x, double y)

Paint a layer at a given position.

Note that the current color alpha value is used when painting layers to allow you to
blend layers. The same is also true for jgraphics_image_surface_draw() and jgraphics-
_image_surface_draw_fast().

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.65 Box Layer 727

Parameters
b The object/box to be painted.

view The patcherview for the object which should be painted, or NULL for all
patcherviews.

name The name of the layer to paint.
x The x-coordinate for the position at which to paint the layer.
y The y-coordinate for the position at which to paint the layer.

Returns

A Max error code.

34.65.2.4 t_jgraphics∗ jbox start layer (t_object ∗ b, t_object ∗ view, t_symbol ∗
name, double width, double height)

Create a layer, and ready it for drawing commands.

The layer drawing commands must be wrapped with a matching call to jbox_end_layer()
prior to calling jbox_paint_layer().

Parameters
b The object/box to which the layer is attached.

view The patcherview for the object to which the layer is attached.
name A name for this layer.
width The width of the layer.

height The height of the layer.

Returns

A t_jgraphics context for drawing into the layer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

728 Module Documentation

34.66 DataView

The jdataview object provides a mechanism to display data in a tabular format.

Collaboration diagram for DataView:

DataViewUser Interface

Data Structures

• struct t_celldesc

A dataview cell description.

• struct t_jcolumn

A dataview column.

• struct t_jdataview

The dataview object.

• struct t_privatesortrec

used to pass data to a client sort function

Functions

• void ∗ jdataview_new (void)

Create a dataview.

• void jdataview_setclient (t_object ∗dv, t_object ∗client)

Set a dataview’s client.

• t_object ∗ jdataview_getclient (t_object ∗dv)

Get a pointer to a dataview’s client.

34.66.1 Detailed Description

The jdataview object provides a mechanism to display data in a tabular format. In Max
this is used internally for the implementation of the inspectors, file browser, preferences,
and jit.cellblock object, among others.

A jdataview object does not contain the information that it presents. The object you
create will maintain the data and then make the data available to the dataview using the
provided api.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.66 DataView 729

34.66.2 Function Documentation

34.66.2.1 t_object∗ jdataview getclient (t_object ∗ dv)

Get a pointer to a dataview’s client.

The client is the object to which the dataview will send messages to get data, notify of
changes to cells, etc.

Parameters
dv The dataview instance.

Returns

A pointer to the dataview’s client object.

34.66.2.2 void∗ jdataview new (void)

Create a dataview.

You should free it with object_free().

Returns

A pointer to the new instance.

34.66.2.3 void jdataview setclient (t_object ∗ dv, t_object ∗ client)

Set a dataview’s client.

The client is the object to which the dataview will send messages to get data, notify of
changes to cells, etc. Typically this is the object in which you are creating the dataview.

Parameters
dv The dataview instance.

client The object to be assigned as the dataview’s client.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

730 Module Documentation

34.67 Unicode

Data Structures

• struct t_charset_converter

The charset_converter object.

Functions

• t_max_err charset_convert (t_symbol ∗src_encoding, const char ∗in, long in-
bytes, t_symbol ∗dest_encoding, char ∗∗out, long ∗outbytes)

A convenience function that simplifies usage by wrapping the other charset functions.

• unsigned short ∗ charset_utf8tounicode (char ∗s, long ∗outlen)

Convert a UTF8 C-String into a 16-bit-wide-character array.

• char ∗ charset_unicodetoutf8 (unsigned short ∗s, long len, long ∗outlen)

Convert a 16-bit-wide-character array into a UTF C-string.

• long charset_utf8_count (char ∗utf8, long ∗bytecount)

Returns utf8 character count, and optionally bytecount.

• char ∗ charset_utf8_offset (char ∗utf8, long charoffset, long ∗byteoffset)

Returns utf8 character offset (positive or negative), and optionally byte offset.

34.67.1 Detailed Description

34.67.2 Character Encodings

Currently supported character encodings

• _sym_utf_8; // utf-8, no bom

• _sym_utf_16; // utf-16, big-endian

• _sym_utf_16be; // utf-16, big-endian

• _sym_utf_16le; // utf-16, little-endian

• _sym_iso_8859_1; // iso-8859-1 (latin-1)

• _sym_us_ascii; // us-ascii 7-bit

• _sym_ms_ansi; // ms-ansi (microsoft code page 1252)

• _sym_macroman; // mac roman

•

• _sym_charset_converter;

• _sym_convert;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.67 Unicode 731

34.67.2.1 Example Usage

t_charset_converter *conv = object_new(CLASS_NOBOX, gensym("
charset_converter"), ps_macroman, ps_ms_ansi);

char *cstr = "Text to convert";
char *cvtbuffer = NULL; // to-be-allocated data buffer
long cvtbuflen = 0; // length of buffer on output

if (conv) {
// note that it isn’t necessary to send in a 0-terminated string,
although we do so here
if (object_method(conv, gensym("convert"), cstr, strlen(cstr) + 1, &

cvtbuffer, &cvtbuflen) == ERR_NONE) {
// do something with the converted buffer
sysmem_freeptr(cvtbuffer); // free newly allocated data buffer

}
object_free(conv); // free converter

}

34.67.3 Function Documentation

34.67.3.1 t_max_err charset convert (t_symbol ∗ src encoding, const char ∗ in, long
inbytes, t_symbol ∗ dest encoding, char ∗∗ out, long ∗ outbytes)

A convenience function that simplifies usage by wrapping the other charset functions.

Parameters
src_-

encoding
The name encoding of the input.

in The input string.
inbytes The number of bytes in the input string.
dest_-

encoding
The name of the encoding to use for the output.

out The address of a char∗, which will be allocated and filled with the string
in the new encoding.

outbytes The address of a value that will hold the number of bytes long the output
is upon return.

Returns

A Max error code.

Remarks

Remember to call sysmem_freeptr(∗out) to free any allocated memory.

34.67.3.2 char∗ charset unicodetoutf8 (unsigned short ∗ s, long len, long ∗ outlen)

Convert a 16-bit-wide-character array into a UTF C-string.

Accepts either null termination, or not (len is zero in the latter case).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

732 Module Documentation

Parameters
s An array of wide (16-bit) unicode characters.

len The length of s.
outlen The address of a variable to hold the size of the number of chars but

does not include the NULL terminator in the count.

Returns

A UTF8-encoded C-string.

34.67.3.3 long charset utf8 count (char ∗ utf8, long ∗ bytecount)

Returns utf8 character count, and optionally bytecount.

Parameters
utf8 The UTF-8 encoded string whose characters are to be counted.

bytecount The address of a variable to hold the byte count on return. Pass NULL
if you don’t require the byte count.

Returns

The number of characters in the UTF8 string.

34.67.3.4 char∗ charset utf8 offset (char ∗ utf8, long charoffset, long ∗ byteoffset)

Returns utf8 character offset (positive or negative), and optionally byte offset.

Parameters
utf8 A UTF-8 encoded string.

charoffset The char offset into the string at which to find the byte offset.
byteoffset The address of a variable to hold the byte offset on return. Pass NULL

if you don’t require the byte offset.

Returns

The character offset.

34.67.3.5 unsigned short∗ charset utf8tounicode (char ∗ s, long ∗ outlen)

Convert a UTF8 C-String into a 16-bit-wide-character array.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.67 Unicode 733

Parameters
s The string to be converted to unicode.

outlen The address of a variable to hold the size of the number of chars but
does not include the NULL terminator in the count.

Returns

A pointer to the buffer of unicode (wide) characters.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

734 Module Documentation

34.68 Atom Module

Collaboration diagram for Atom Module:

Atom ModuleJitter

Functions

• t_jit_err jit_atom_setlong (t_atom ∗a, long b)

Sets atom value to long integer.

• t_jit_err jit_atom_setfloat (t_atom ∗a, double b)

Sets atom value to floating point number.

• t_jit_err jit_atom_setsym (t_atom ∗a, t_symbol ∗b)

Sets atom value to symbol.

• t_jit_err jit_atom_setobj (t_atom ∗a, void ∗b)

Sets atom value to object pointer.

• long jit_atom_getlong (t_atom ∗a)

Retrieves atom value as long integer.

• double jit_atom_getfloat (t_atom ∗a)

Retrieves atom value as floating point number.

• t_symbol ∗ jit_atom_getsym (t_atom ∗a)

Retrieves atom value as symbol pointer.

• void ∗ jit_atom_getobj (t_atom ∗a)

Retrieves atom value as object pointer.

• long jit_atom_getcharfix (t_atom ∗a)

Retrieves atom value as an 8 bit fixed point number.

• long jit_atom_arg_getlong (long ∗c, long idx, long ac, t_atom ∗av)

Retrieves atom argument at index as long integer if present.

• long jit_atom_arg_getfloat (float ∗c, long idx, long ac, t_atom ∗av)

Retrieves atom argument at index as floating point number if present.

• long jit_atom_arg_getdouble (double ∗c, long idx, long ac, t_atom ∗av)

Retrieves atom argument at index as double precision floating point number if present.

• long jit_atom_arg_getsym (t_symbol ∗∗c, long idx, long ac, t_atom ∗av)

Retrieves atom argument at index as symbol pointer if present.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.68 Atom Module 735

34.68.1 Function Documentation

34.68.1.1 long jit atom arg getdouble (double ∗ c, long idx, long ac, t_atom ∗ av)

Retrieves atom argument at index as double precision floating point number if present.

This function is useful for setting the values only if there is an argument at the specified
index, otherwise, the input value is untouched.

Parameters
c pointer to double (should contain desired default)

idx atom argument index
ac atom argument count
av atom argument vector

Returns

t_jit_err error code. JIT_ERR_NONE if successful.

34.68.1.2 long jit atom arg getfloat (float ∗ c, long idx, long ac, t_atom ∗ av)

Retrieves atom argument at index as floating point number if present.

This function is useful for setting the values only if there is an argument at the specified
index, otherwise, the input value is untouched.

Parameters
c pointer to float (should contain desired default)

idx atom argument index
ac atom argument count
av atom argument vector

Returns

t_jit_err error code. JIT_ERR_NONE if successful.

34.68.1.3 long jit atom arg getlong (long ∗ c, long idx, long ac, t_atom ∗ av)

Retrieves atom argument at index as long integer if present.

This function is useful for setting the values only if there is an argument at the specified
index, otherwise, the input value is untouched.

Parameters
c pointer to long (should contain desired default)

idx atom argument index

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

736 Module Documentation

ac atom argument count
av atom argument vector

Returns

t_jit_err error code. JIT_ERR_NONE if successful.

34.68.1.4 long jit atom arg getsym (t_symbol ∗∗ c, long idx, long ac, t_atom ∗ av)

Retrieves atom argument at index as symbol pointer if present.

This function is useful for setting the values only if there is an argument at the specified
index, otherwise, the input value is untouched.

Parameters
c pointer to symbol pointer (should contain desired default)

idx atom argument index
ac atom argument count
av atom argument vector

Returns

t_jit_err error code. JIT_ERR_NONE if successful.

34.68.1.5 long jit atom getcharfix (t_atom ∗ a)

Retrieves atom value as an 8 bit fixed point number.

Parameters
a atom pointer

Returns

8 bit fixed point value in the range 0-255. 0 if atom has no numeric value.

34.68.1.6 double jit atom getfloat (t_atom ∗ a)

Retrieves atom value as floating point number.

Parameters
a atom pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.68 Atom Module 737

Returns

floating point value. 0 if atom has no numeric value.

34.68.1.7 long jit atom getlong (t_atom ∗ a)

Retrieves atom value as long integer.

Parameters
a atom pointer

Returns

long integer value. 0 if atom has no numeric value.

34.68.1.8 void∗ jit atom getobj (t_atom ∗ a)

Retrieves atom value as object pointer.

Parameters
a atom pointer

Returns

object pointer. NULL if atom has no object value.

34.68.1.9 t_symbol ∗ jit atom getsym (t_atom ∗ a)

Retrieves atom value as symbol pointer.

Parameters
a atom pointer

Returns

symbol pointer. _jit_sym_nothing if atom has no symbolic value.

34.68.1.10 t jit err jit atom setfloat (t_atom ∗ a, double b)

Sets atom value to floating point number.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

738 Module Documentation

Parameters
a atom pointer
b floating point value

Returns

t_jit_err error code.

34.68.1.11 t jit err jit atom setlong (t_atom ∗ a, long b)

Sets atom value to long integer.

Parameters
a atom pointer
b integer value

Returns

t_jit_err error code.

34.68.1.12 t jit err jit atom setobj (t_atom ∗ a, void ∗ b)

Sets atom value to object pointer.

Parameters
a atom pointer
b object pointer

Returns

t_jit_err error code.

34.68.1.13 t jit err jit atom setsym (t_atom ∗ a, t_symbol ∗ b)

Sets atom value to symbol.

Parameters
a atom pointer
b symbol value

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.68 Atom Module 739

Returns

t_jit_err error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

740 Module Documentation

34.69 Attribute Module

Collaboration diagram for Attribute Module:

Attribute ModuleJitter

Data Structures

• struct t_jit_attribute

t_jit_attribute object struct.

• struct t_jit_attr_offset

t_jit_attr_offset object struct.

• struct t_jit_attr_offset_array

t_jit_attr_offset_array object struct.

• struct t_jit_attr_filter_clip

t_jit_attr_filter_clip object struct.

• struct t_jit_attr_filter_proc

t_jit_attr_filter_proc object struct.

• struct t_jit_attr

Common attribute struct.

Functions

• t_symbol ∗ jit_attr_getname (t_jit_attr ∗x)

Retrieves attribute name.

• t_symbol ∗ jit_attr_gettype (t_jit_attr ∗x)

Retrieves attribute type.

• long jit_attr_canget (t_jit_attr ∗x)

Retrieves attribute gettable flag.

• long jit_attr_canset (t_jit_attr ∗x)

Retrieves attribute settable flag.

• long jit_attr_usercanget (t_jit_attr ∗x)

Retrieves attribute user gettable flag.

• long jit_attr_usercanset (t_jit_attr ∗x)

Retrieves attribute user settable flag.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 741

• method jit_attr_getmethod (t_jit_attr ∗x, t_symbol ∗methodname)

Retrieves attribute getter or setter method.

• t_jit_err jit_attr_filterget (t_jit_attr ∗x, void ∗y)

Sets attribute getter filter.

• t_jit_err jit_attr_filterset (t_jit_attr ∗x, void ∗y)

Sets attribute setter filter.

• t_jit_err jit_attr_get (t_jit_attr ∗x, void ∗parent, long ∗ac, t_atom ∗∗av)

Calls attribute getter to retrieve from parent object.

• t_jit_err jit_attr_set (t_jit_attr ∗x, void ∗parent, long ac, t_atom ∗av)

Calls attribute setter to set in parent object.

• t_jit_object ∗ jit_attribute_new (char ∗name, t_symbol ∗type, long flags, method
mget, method mset)

Constructs instance of t_jit_attribute.

• t_jit_object ∗ jit_attr_offset_new (char ∗name, t_symbol ∗type, long flags, method
mget, method mset, long offset)

Constructs instance of t_jit_attr_offset.

• t_jit_object ∗ jit_attr_offset_array_new (char ∗name, t_symbol ∗type, long size,
long flags, method mget, method mset, long offsetcount, long offset)

Constructs instance of t_jit_attr_offset_array.

• t_jit_object ∗ jit_attr_filter_clip_new (void)

Constructs instance of t_jit_attr_filter_clip.

• t_jit_object ∗ jit_attr_filter_proc_new (method proc)

Constructs instance of t_jit_attr_filter_proc.

• long jit_attr_getlong (void ∗x, t_symbol ∗s)

Retrieves attribute value as a long integer value.

• t_jit_err jit_attr_setlong (void ∗x, t_symbol ∗s, long c)

Sets attribute value as a long integer value.

• float jit_attr_getfloat (void ∗x, t_symbol ∗s)

Retrieves attribute value as a floating point value.

• t_jit_err jit_attr_setfloat (void ∗x, t_symbol ∗s, float c)

Sets attribute value as a floating point value.

• t_symbol ∗ jit_attr_getsym (void ∗x, t_symbol ∗s)

Retrieves attribute value as a symbol value.

• t_jit_err jit_attr_setsym (void ∗x, t_symbol ∗s, t_symbol ∗c)

Sets attribute value as a symbol value.

• long jit_attr_getlong_array (void ∗x, t_symbol ∗s, long max, long ∗vals)

Retrieves attribute value as an array of long integer values.

• t_jit_err jit_attr_setlong_array (void ∗x, t_symbol ∗s, long count, long ∗vals)

Sets attribute value as an array of long integer values.

• long jit_attr_getchar_array (void ∗x, t_symbol ∗s, long max, uchar ∗vals)

Retrieves attribute value as an array of char values.

• t_jit_err jit_attr_setchar_array (void ∗x, t_symbol ∗s, long count, uchar ∗vals)

Sets attribute value as an array of char values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

742 Module Documentation

• long jit_attr_getfloat_array (void ∗x, t_symbol ∗s, long max, float ∗vals)

Retrieves attribute value as an array of floating point values.

• t_jit_err jit_attr_setfloat_array (void ∗x, t_symbol ∗s, long count, float ∗vals)

Sets attribute value as an array of floating point values.

• long jit_attr_getdouble_array (void ∗x, t_symbol ∗s, long max, double ∗vals)

Retrieves attribute value as an array of double precision floating point values.

• t_jit_err jit_attr_setdouble_array (void ∗x, t_symbol ∗s, long count, double ∗vals)

Sets attribute value as an array of double precision floating point values.

• long jit_attr_getsym_array (void ∗x, t_symbol ∗s, long max, t_symbol ∗∗vals)

Retrieves attribute value as an array of symbol values.

• t_jit_err jit_attr_setsym_array (void ∗x, t_symbol ∗s, long count, t_symbol
∗∗vals)

Sets attribute value as an array of symbol values.

• long jit_attr_symcompare (void ∗x, t_symbol ∗name)

Compares symbol name with name provided.

34.69.1 Function Documentation

34.69.1.1 long jit attr canget (t_jit_attr ∗ x)

Retrieves attribute gettable flag.

Parameters
x attribute object pointer

Returns

gettable flag

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.2 long jit attr canset (t_jit_attr ∗ x)

Retrieves attribute settable flag.

Parameters
x attribute object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 743

Returns

settable flag

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.3 t_jit_object ∗ jit attr filter clip new (void)

Constructs instance of t_jit_attr_filter_clip.

Returns

t_jit_attr_filter_clip object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.69.1.4 t_jit_object ∗ jit attr filter proc new (method proc)

Constructs instance of t_jit_attr_filter_proc.

Parameters
proc filter procedure

Returns

t_jit_attr_filter_clip object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.69.1.5 t jit err jit attr filterget (t_jit_attr ∗ x, void ∗ y)

Sets attribute getter filter.

Parameters
x attribute object pointer
y getter filter object

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

744 Module Documentation

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.6 t jit err jit attr filterset (t_jit_attr ∗ x, void ∗ y)

Sets attribute setter filter.

Parameters
x attribute object pointer
y setter filter object

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.7 t jit err jit attr get (t_jit_attr ∗ x, void ∗ parent, long ∗ ac, t_atom ∗∗ av)

Calls attribute getter to retrieve from parent object.

Parameters
x attribute object pointer

parent target object pointer
ac pointer to argument count
av pointer to argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 745

34.69.1.8 long jit attr getchar array (void ∗ x, t_symbol ∗ s, long max, uchar ∗ vals)

Retrieves attribute value as an array of char values.

Parameters
x object pointer
s attribute name

max maximum number of values to copy
vals pointer to retrieved values

Returns

number of values retrieved.

34.69.1.9 long jit attr getdouble array (void ∗ x, t_symbol ∗ s, long max, double ∗ vals)

Retrieves attribute value as an array of double precision floating point values.

Parameters
x object pointer
s attribute name

max maximum number of values to copy
vals pointer to retrieved values

Returns

number of values retrieved.

34.69.1.10 float jit attr getfloat (void ∗ x, t_symbol ∗ s)

Retrieves attribute value as a floating point value.

Parameters
x object pointer
s attribute name

Returns

floating point value

34.69.1.11 long jit attr getfloat array (void ∗ x, t_symbol ∗ s, long max, float ∗ vals)

Retrieves attribute value as an array of floating point values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

746 Module Documentation

Parameters
x object pointer
s attribute name

max maximum number of values to copy
vals pointer to retrieved values

Returns

number of values retrieved.

34.69.1.12 long jit attr getlong (void ∗ x, t_symbol ∗ s)

Retrieves attribute value as a long integer value.

Parameters
x object pointer
s attribute name

Returns

long integer value

34.69.1.13 long jit attr getlong array (void ∗ x, t_symbol ∗ s, long max, long ∗ vals)

Retrieves attribute value as an array of long integer values.

Parameters
x object pointer
s attribute name

max maximum number of values to copy
vals pointer to retrieved values

Returns

number of values retrieved.

34.69.1.14 method jit attr getmethod (t_jit_attr ∗ x, t_symbol ∗ methodname)

Retrieves attribute getter or setter method.

Parameters
x attribute object pointer

method-
name

"get" or "set" symbol

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 747

Returns

getter or setter method

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.15 t_symbol ∗ jit attr getname (t_jit_attr ∗ x)

Retrieves attribute name.

Parameters
x attribute object pointer

Returns

attribute name

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.16 t_symbol∗ jit attr getsym (void ∗ x, t_symbol ∗ s)

Retrieves attribute value as a symbol value.

Parameters
x object pointer
s attribute name

Returns

symbol value

34.69.1.17 long jit attr getsym array (void ∗ x, t_symbol ∗ s, long max, t_symbol ∗∗ vals
)

Retrieves attribute value as an array of symbol values.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

748 Module Documentation

Parameters
x object pointer
s attribute name

max maximum number of values to copy
vals pointer to retrieved values

Returns

number of values retrieved.

34.69.1.18 t_symbol ∗ jit attr gettype (t_jit_attr ∗ x)

Retrieves attribute type.

Parameters
x attribute object pointer

Returns

attribute type

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.19 t_jit_object ∗ jit attr offset array new (char ∗ name, t_symbol ∗ type, long
size, long flags, method mget, method mset, long offsetcount, long offset)

Constructs instance of t_jit_attr_offset_array.

Parameters
name attribute name

type data type
size maximum size

flags privacy flags
mget getter method
mset setter method

offsetcount byte offset to count struct member (if zero, remain fixed size with max
size)

offset byte offset to array struct member

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 749

Returns

t_jit_attr_offset_array object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.69.1.20 t_jit_object ∗ jit attr offset new (char ∗ name, t_symbol ∗ type, long flags,
method mget, method mset, long offset)

Constructs instance of t_jit_attr_offset.

Parameters
name attribute name

type data type
flags privacy flags
mget getter method
mset setter method

offset byte offset to struct member

Returns

t_jit_attr_offset object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.69.1.21 t jit err jit attr set (t_jit_attr ∗ x, void ∗ parent, long ac, t_atom ∗ av)

Calls attribute setter to set in parent object.

Parameters
x attribute object pointer

parent target object pointer
ac argument count
av argument vector

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

750 Module Documentation

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.22 t jit err jit attr setchar array (void ∗ x, t_symbol ∗ s, long count, uchar ∗ vals)

Sets attribute value as an array of char values.

Parameters
x object pointer
s attribute name

count number of values
vals pointer to values

Returns

t_jit_err error code.

34.69.1.23 t jit err jit attr setdouble array (void ∗ x, t_symbol ∗ s, long count, double ∗ vals
)

Sets attribute value as an array of double precision floating point values.

Parameters
x object pointer
s attribute name

count number of values
vals pointer to values

Returns

t_jit_err error code.

34.69.1.24 t jit err jit attr setfloat (void ∗ x, t_symbol ∗ s, float c)

Sets attribute value as a floating point value.

Parameters
x object pointer
s attribute name
c value

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 751

Returns

t_jit_err error code.

34.69.1.25 t jit err jit attr setfloat array (void ∗ x, t_symbol ∗ s, long count, float ∗ vals)

Sets attribute value as an array of floating point values.

Parameters
x object pointer
s attribute name

count number of values
vals pointer to values

Returns

t_jit_err error code.

34.69.1.26 t jit err jit attr setlong (void ∗ x, t_symbol ∗ s, long c)

Sets attribute value as a long integer value.

Parameters
x object pointer
s attribute name
c value

Returns

t_jit_err error code.

34.69.1.27 t jit err jit attr setlong array (void ∗ x, t_symbol ∗ s, long count, long ∗ vals)

Sets attribute value as an array of long integer values.

Parameters
x object pointer
s attribute name

count number of values
vals pointer to values

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

752 Module Documentation

Returns

t_jit_err error code.

34.69.1.28 t jit err jit attr setsym (void ∗ x, t_symbol ∗ s, t_symbol ∗ c)

Sets attribute value as a symbol value.

Parameters
x object pointer
s attribute name
c value

Returns

t_jit_err error code.

34.69.1.29 t jit err jit attr setsym array (void ∗ x, t_symbol ∗ s, long count, t_symbol ∗∗
vals)

Sets attribute value as an array of symbol values.

Parameters
x object pointer
s attribute name

count number of values
vals pointer to values

Returns

t_jit_err error code.

34.69.1.30 long jit attr symcompare (void ∗ x, t_symbol ∗ name)

Compares symbol name with name provided.

Parameters
x attribute object pointer

name attribute name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.69 Attribute Module 753

Returns

1 if equal, 0 if not equal

34.69.1.31 long jit attr usercanget (t_jit_attr ∗ x)

Retrieves attribute user gettable flag.

Parameters
x attribute object pointer

Returns

user gettable flag

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.32 long jit attr usercanset (t_jit_attr ∗ x)

Retrieves attribute user settable flag.

Parameters
x attribute object pointer

Returns

user settable flag

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of any attribute obejct.

34.69.1.33 t_jit_object ∗ jit attribute new (char ∗ name, t_symbol ∗ type, long flags,
method mget, method mset)

Constructs instance of t_jit_attribute.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

754 Module Documentation

Parameters
name attribute name

type data type
flags privacy flags
mget getter method
mset setter method

Returns

t_jit_attribute object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.70 Binary Module 755

34.70 Binary Module

Collaboration diagram for Binary Module:

Jitter Binary Module

Functions

• t_jit_err jit_bin_read_header (t_filehandle fh, ulong ∗version, long ∗filesize)

Reads the header of a JXF binary file.

• t_jit_err jit_bin_read_chunk_info (t_filehandle fh, ulong ∗ckid, long ∗cksize)

Reads the the info of a chunk from a JXF binary file.

• t_jit_err jit_bin_write_header (t_filehandle fh, long filesize)

Writes the header of a JXF binary file.

• t_jit_err jit_bin_read_matrix (t_filehandle fh, void ∗matrix)

Reads matrix data from a JXF binary file.

• t_jit_err jit_bin_write_matrix (t_filehandle fh, void ∗matrix)

Writes a matrix to a JXF binary file.

34.70.1 Function Documentation

34.70.1.1 t jit err jit bin read chunk info (t_filehandle fh, ulong ∗ ckid, long ∗ cksize)

Reads the the info of a chunk from a JXF binary file.

Parameters
fh t_filehandle file handle

ckid chunk ID (ie JIT_BIN_CHUNK_CONTAINER, JIT_BIN_CHUNK_MAT-
RIX)

cksize the size of the chunk

Returns

t_jit_err error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

756 Module Documentation

34.70.1.2 t jit err jit bin read header (t_filehandle fh, ulong ∗ version, long ∗ filesize)

Reads the header of a JXF binary file.

Parameters
fh t_filehandle file handle

version version of the binary file format (ie JIT_BIN_VERSION_1)
filesize the size of the file

Returns

t_jit_err error code.

34.70.1.3 t jit err jit bin read matrix (t_filehandle fh, void ∗ matrix)

Reads matrix data from a JXF binary file.

Parameters
fh t_filehandle file handle

matrix the matrix data

Returns

t_jit_err error code.

34.70.1.4 t jit err jit bin write header (t_filehandle fh, long filesize)

Writes the header of a JXF binary file.

Parameters
fh t_filehandle file handle

filesize the size of the file

Returns

t_jit_err error code.

34.70.1.5 t jit err jit bin write matrix (t_filehandle fh, void ∗ matrix)

Writes a matrix to a JXF binary file.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.70 Binary Module 757

Parameters
fh t_filehandle file handle

matrix the matrix data

Returns

t_jit_err error code.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

758 Module Documentation

34.71 Class Module

Collaboration diagram for Class Module:

Jitter Class Module

Functions

• t_max_err class_copy (t_symbol ∗src_name_space, t_symbol ∗src_classname,
t_symbol ∗dst_name_space, t_symbol ∗dst_classname)

Duplicates a previously registered object class, and registers a copy of this class.

• void ∗ jit_class_new (char ∗name, method mnew, method mfree, long size,...)

Creates a new class with the name specified by the name argument.

• t_jit_err jit_class_addmethod (void ∗c, method m, char ∗name,...)

Adds a named method to a class.

• t_jit_err jit_class_addattr (void ∗c, t_jit_object ∗attr)

Adds an attribute to a class.

• t_jit_err jit_class_addadornment (void ∗c, t_jit_object ∗o)

Adds an adornment to a class.

• t_jit_err jit_class_addinterface (void ∗c, void ∗interfaceclass, long byteoffset, long
flags)

Adds an interface to a class.

• void ∗ jit_class_adornment_get (void ∗c, t_symbol ∗classname)

Retrieves an adornment from a class.

• t_jit_err jit_class_free (void ∗c)

Frees a class.

• t_symbol ∗ jit_class_nameget (void ∗c)

Retrieves the name of a class.

• long jit_class_symcompare (void ∗c, t_symbol ∗name)

Compares name of class with the name provided.

• t_jit_err jit_class_register (void ∗c)

Registers class in the class registry.

• method jit_class_method (void ∗c, t_symbol ∗methodname)

Retrieves method function pointer for named method.

• t_messlist ∗ jit_class_mess (t_jit_class ∗c, t_symbol ∗methodname)

Retrieves messlist entry for named method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.71 Class Module 759

• void ∗ jit_class_attr_get (void ∗c, t_symbol ∗attrname)

Retrieves attribute pointer associated with name provided.

• void ∗ jit_class_findbyname (t_symbol ∗classname)

Retrieves class pointer associated with name provided.

• t_jit_err jit_class_addtypedwrapper (void ∗c, method m, char ∗name,...)

Adds a typed wrapper method to a class.

• t_messlist ∗ jit_class_typedwrapper_get (void ∗c, t_symbol ∗s)

Retrieves typed wrapper messlist pointer associated with name provided.

• t_jit_err jit_class_method_addargsafe (void ∗c, char ∗argname, char ∗methodname)

Marks a method as safe to call as an attribute style argument.

• t_symbol ∗ jit_class_method_argsafe_get (void ∗c, t_symbol ∗s)

Checks to see if symbol is safe to call as an attribute style argument.

34.71.1 Function Documentation

34.71.1.1 t_max_err class copy (t_symbol ∗ src name space, t_symbol ∗
src classname, t_symbol ∗ dst name space, t_symbol ∗ dst classname)

Duplicates a previously registered object class, and registers a copy of this class.

Parameters
src_name_-

space
The source class’s name space.

src_-
classname

The source class’s class name.

dst_name_-
space

The copied class’s name space.

dst_-
classname

The copied class’s class name.

Returns

This function returns the error code MAX_ERR_NONE if successful, or one of the
other error codes defined in "ext_obex.h" if unsuccessful.

34.71.1.2 t jit err jit class addadornment (void ∗ c, t_jit_object ∗ o)

Adds an adornment to a class.

Adornments provide additional state and behavior to a class. This is most commonly
used for the jit_mop adornment.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

760 Module Documentation

Parameters
c class pointer
o object to use as adornment

Returns

t_jit_err error code

34.71.1.3 t jit err jit class addattr (void ∗ c, t_jit_object ∗ attr)

Adds an attribute to a class.

Parameters
c class pointer

attr attribute object

Returns

t_jit_err error code

34.71.1.4 t jit err jit class addinterface (void ∗ c, void ∗ interfaceclass, long byteoffset, long
flags)

Adds an interface to a class.

Automatically expose methods and attributes of an interface class to a classes. Can also
be used for class containers or subclassing behavior. If method or attribute is present in
interface class prior to this call, the inteface class’ method or attribute will not be added.
Use a nonzero byteoffset to contained class’ object pointer in struct for container class.
Use byte offset of zero for interface or subclassing behavior.

Parameters
c class pointer

interface-
class

interface class pointer

byteoffset byte offset (if for a contained object)
flags reserved for future use

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.71 Class Module 761

34.71.1.5 t jit err jit class addmethod (void ∗ c, method m, char ∗ name, ...)

Adds a named method to a class.

Parameters
c class pointer

m function called when method is invoked
name method name

... type signature for the method in the standard Max type list format (see
Chapter 3 of the Writing Externals in Max document for more informa-
tion)

Returns

t_jit_err error code

34.71.1.6 t jit err jit class addtypedwrapper (void ∗ c, method m, char ∗ name, ...)

Adds a typed wrapper method to a class.

Typed wrappers typically are used when there is an existing private, untyped method
defined for a Jitter class, but it is desirable to expose the method to language bindings
which require a typed interface--e.g. Java or JavaScript.

Parameters
c class pointer

m function called when method is invoked
name method name

... type signature for the method in the standard Max type list format (see
Chapter 3 of the Writing Externals in Max document for more informa-
tion)

Returns

t_jit_err error code

34.71.1.7 void∗ jit class adornment get (void ∗ c, t_symbol ∗ classname)

Retrieves an adornment from a class.

Adornments provide additional state and behavior to a class. This is most commonly
used for the jit_mop adornment.

Parameters
c class pointer

classname classname of adornment to retrieve

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

762 Module Documentation

Returns

t_jit_err error code

34.71.1.8 void∗ jit class attr get (void ∗ c, t_symbol ∗ attrname)

Retrieves attribute pointer associated with name provided.

Parameters
c class pointer

attrname attribute name

Returns

attribute object pointer

34.71.1.9 void∗ jit class findbyname (t_symbol ∗ classname)

Retrieves class pointer associated with name provided.

Parameters
classname class name

Returns

class pointer

34.71.1.10 t jit err jit class free (void ∗ c)

Frees a class.

Warning

This function is not typically used outside of jitlib.

Parameters
c class pointer

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.71 Class Module 763

34.71.1.11 t_messlist∗ jit class mess (t_jit_class ∗ c, t_symbol ∗ methodname)

Retrieves messlist entry for named method.

Parameters
c class pointer

method-
name

method name

Returns

t_messlist pointer.

34.71.1.12 method jit class method (void ∗ c, t_symbol ∗ methodname)

Retrieves method function pointer for named method.

Parameters
c class pointer

method-
name

method name

Returns

method function pointer.

34.71.1.13 t jit err jit class method addargsafe (void ∗ c, char ∗ argname, char ∗methodname
)

Marks a method as safe to call as an attribute style argument.

Warning

It is important that no argument settable method causes any output into the patcher,
or else it could lead to a crash, or other undesired behavior.

Parameters
c class pointer

argname name as used via argument
method-

name
name of method to map the argument name to

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

764 Module Documentation

Returns

t_jit_err error code

34.71.1.14 t_symbol∗ jit class method argsafe get (void ∗ c, t_symbol ∗ s)

Checks to see if symbol is safe to call as an attribute style argument.

Parameters
c class pointer
s name as used via argument

Returns

If successful, name of method to map the argument name to. Otherwise, NULL.

34.71.1.15 t_symbol∗ jit class nameget (void ∗ c)

Retrieves the name of a class.

Parameters
c class pointer

Returns

t_symbol pointer containing name of class

34.71.1.16 void∗ jit class new (char ∗ name, method mnew, method mfree, long size, ...)

Creates a new class with the name specified by the name argument.

Parameters
name class name
mnew class constructor
mfree class destructor

size object struct size in bytes
... type signature for the constructor in the standard Max type list format

(see Chapter 3 of the Writing Externals in Max document for more in-
formation)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.71 Class Module 765

Warning

In order for the Jitter class to be exposed to JavaScript and Java, it is important
that the constructor is typed, even if no arguments are provided--i.e. do not use the
older strategy of defining Jitter constructors as private and untyped with A_CANT.

Returns

class pointer to be used in other class functions

34.71.1.17 t jit err jit class register (void ∗ c)

Registers class in the class registry.

Parameters
c class pointer

Returns

t_jit_err error code

34.71.1.18 long jit class symcompare (void ∗ c, t_symbol ∗ name)

Compares name of class with the name provided.

Parameters
c class pointer

name name to compare with class name

Returns

1 if equal, 0 if not equal

34.71.1.19 t_messlist∗ jit class typedwrapper get (void ∗ c, t_symbol ∗ s)

Retrieves typed wrapper messlist pointer associated with name provided.

Parameters
c class pointer
s name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

766 Module Documentation

Returns

t_messlist pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.72 Object Module 767

34.72 Object Module

Collaboration diagram for Object Module:

Jitter Object Module

Functions

• long jit_object_classname_compare (void ∗x, t_symbol ∗name)

Compares object’s class name with the name provided.

• t_symbol ∗ jit_object_method_argsafe_get (void ∗x, t_symbol ∗s)

Checks to see if symbol is safe to call as an attribute style argument.

• void ∗ jit_object_new (t_symbol ∗classname,...)

Instantiates an object specified by class name.

• void ∗ jit_object_method (void ∗x, t_symbol ∗s,...)

Calls an object method specified by method name.

• void ∗ jit_object_method_typed (void ∗x, t_symbol ∗s, long ac, t_atom ∗av, t_atom
∗rv)

Calls a typed object method specified by method name.

• method jit_object_getmethod (void ∗x, t_symbol ∗s)

Retrieves an object method specified by method name.

• long jit_object_attr_usercanset (void ∗x, t_symbol ∗s)

Determines if an object attribute is user settable.

• long jit_object_attr_usercanget (void ∗x, t_symbol ∗s)

Determines if an object attribute is user gettable.

• void ∗ jit_object_attr_get (void ∗x, t_symbol ∗attrname)

Retrieves an object’s attribute pointer specified by attribute name.

• t_jit_err jit_object_free (void ∗x)

Frees an object.

• t_symbol ∗ jit_object_classname (void ∗x)

Retrieves an object’s class name.

• void ∗ jit_object_class (void ∗x)

Retrieves an object’s class pointer.

• void ∗ jit_object_register (void ∗x, t_symbol ∗s)

Registers an object in the named object registry.

• t_jit_err jit_object_unregister (void ∗x)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

768 Module Documentation

Unregisters an object from the named object registry.

• void ∗ jit_object_findregistered (t_symbol ∗s)

Retrieves a registered object associated with name.

• t_symbol ∗ jit_object_findregisteredbyptr (void ∗x)

Retrieves a registered object’s name.

• void ∗ jit_object_attach (t_symbol ∗s, void ∗x)

Attaches an object as a client of a named server object for notification.

• t_jit_err jit_object_detach (t_symbol ∗s, void ∗x)

Detaches a client object from a named server object.

• t_jit_err jit_object_notify (void ∗x, t_symbol ∗s, void ∗data)

Notifies all client objects for a named server object.

• t_jit_err jit_object_importattrs (void ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Imports object attributes from an XML file.

• t_jit_err jit_object_exportattrs (void ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Exports object attributes to an XML file.

• t_jit_err jit_object_exportsummary (void ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Exports object summary to an XML file.

34.72.1 Function Documentation

34.72.1.1 void∗ jit object attach (t_symbol ∗ s, void ∗ x)

Attaches an object as a client of a named server object for notification.

Parameters
s name of server object
x client object pointer

Returns

If successful, server object pointer. Otherwise NULL.

34.72.1.2 void∗ jit object attr get (void ∗ x, t_symbol ∗ attrname)

Retrieves an object’s attribute pointer specified by attribute name.

Parameters
x object pointer

attrname attribute name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.72 Object Module 769

Returns

attribute object pointer

34.72.1.3 long jit object attr usercanget (void ∗ x, t_symbol ∗ s)

Determines if an object attribute is user gettable.

Parameters
x object pointer
s attribute name

Returns

1 if gettable, 0 if not gettable

34.72.1.4 long jit object attr usercanset (void ∗ x, t_symbol ∗ s)

Determines if an object attribute is user settable.

Parameters
x object pointer
s attribute name

Returns

1 if settable, 0 if not settable

34.72.1.5 void∗ jit object class (void ∗ x)

Retrieves an object’s class pointer.

Parameters
x object pointer

Returns

class pointer

34.72.1.6 t_symbol∗ jit object classname (void ∗ x)

Retrieves an object’s class name.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

770 Module Documentation

Parameters
x object pointer

Returns

class name t_symbol pointer

34.72.1.7 long jit object classname compare (void ∗ x, t_symbol ∗ name)

Compares object’s class name with the name provided.

Parameters
x object pointer

name name to compare with class name

Returns

1 if equal, 0 if not equal

34.72.1.8 t jit err jit object detach (t_symbol ∗ s, void ∗ x)

Detaches a client object from a named server object.

Parameters
s name of server object
x client object pointer

Returns

t_jit_err error code

34.72.1.9 t jit err jit object exportattrs (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv)

Exports object attributes to an XML file.

Parameters
x object pointer
s ignored

argc argument count
argv argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.72 Object Module 771

Returns

t_jit_err error code

34.72.1.10 t jit err jit object exportsummary (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Exports object summary to an XML file.

Warning

Currently this function does nothing, but is reserved for future use.

Parameters
x object pointer
s ignored

argc argument count
argv argument vector

Returns

t_jit_err error code

34.72.1.11 void ∗ jit object findregistered (t_symbol ∗ s)

Retrieves a registered object associated with name.

Parameters
s registered name

Returns

If successful, object pointer. Otherwise NULL.

34.72.1.12 t_symbol∗ jit object findregisteredbyptr (void ∗ x)

Retrieves a registered object’s name.

Parameters
x object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

772 Module Documentation

Returns

If successful, t_symbol pointer name. Otherwise NULL.

34.72.1.13 t jit err jit object free (void ∗ x)

Frees an object.

Parameters
x object pointer

Returns

t_jit_err error code

34.72.1.14 method jit object getmethod (void ∗ x, t_symbol ∗ s)

Retrieves an object method specified by method name.

Parameters
x object pointer
s method name

Returns

method

34.72.1.15 t jit err jit object importattrs (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv)

Imports object attributes from an XML file.

Parameters
x object pointer
s ignored

argc argument count
argv argument vector

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.72 Object Module 773

34.72.1.16 void ∗ jit object method (void ∗ x, t_symbol ∗ s, ...)

Calls an object method specified by method name.

This operation is untyped, and the contents of the stack following the method name
argument are blindly passed to the method called.

Parameters
x object pointer
s method name

... untyped arguments passed on to the method

Warning

It is important to know any necessary arguments for untyped constructors such as
those used by jit_matrix or jit_attr_offset.

Returns

method dependent, but uses void ∗ as a super type.

34.72.1.17 t_symbol∗ jit object method argsafe get (void ∗ x, t_symbol ∗ s)

Checks to see if symbol is safe to call as an attribute style argument.

Parameters
x object pointer
s name as used via argument

Returns

If successful, name of method to map the argument name to. Otherwise, NULL.

34.72.1.18 void∗ jit object method typed (void ∗ x, t_symbol ∗ s, long ac, t_atom ∗ av,
t_atom ∗ rv)

Calls a typed object method specified by method name.

This operation only supports methods which are typed--i.e. it cannot be used to call
private, untyped A_CANT methods.

Parameters
x object pointer
s method name

ac argument count

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

774 Module Documentation

av argument vector
rv return value for A_GIMMEBACK methods

Returns

method dependent, but uses void ∗ as a super type.

34.72.1.19 void ∗ jit object new (t_symbol ∗ classname, ...)

Instantiates an object specified by class name.

This function may used to create instances of any Jitter object.

Parameters
classname class name

... untyped arguments passed on to the constructor

Warning

It is important to know any necessary arguments for untyped constructors such as
those used by jit_matrix or jit_attr_offset.

Returns

If successful, a valid object pointer. Otherwise, NULL.

34.72.1.20 t jit err jit object notify (void ∗ x, t_symbol ∗ s, void ∗ data)

Notifies all client objects for a named server object.

Parameters
x server object pointer
s notification message

data message specific data

Returns

t_jit_err error code

34.72.1.21 void∗ jit object register (void ∗ x, t_symbol ∗ s)

Registers an object in the named object registry.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.72 Object Module 775

Parameters
x object pointer
s object name

Returns

object pointer

Warning

It is important to use the object pointer returned by jit_object_register, since if there
is an existing object with the same name and class, it could free the input object
and pass back a reference to the previously defined object.

34.72.1.22 t jit err jit object unregister (void ∗ x)

Unregisters an object from the named object registry.

Parameters
x object pointer

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

776 Module Documentation

34.73 Miscellaneous Utility Module

Collaboration diagram for Miscellaneous Utility Module:

Jitter Miscellaneous Utility Module

Functions

• float swapf32 (float f)

Byte swaps 32 bit floating point number.

• double swapf64 (double f)

Byte swaps 64 bit floating point number.

• void jit_global_critical_enter (void)

Enters the global Jitter critical region.

• void jit_global_critical_exit (void)

Exits the global Jitter critical region.

• void jit_error_sym (void ∗x, t_symbol ∗s)

Sends symbol based error message to Max console (safe from all threads)

• void jit_error_code (void ∗x, t_jit_err v)

Sends error code based error message to Max console (safe from all threads)

• void jit_post_sym (void ∗x, t_symbol ∗s)

Sends symbol based message to Max console (safe from all threads)

• t_jit_err jit_err_from_max_err (t_max_err err)

Converts Max style error codes to Jitter style error codes.

• void jit_rand_setseed (long n)

Sets global random number generator seed.

• long jit_rand (void)

Generates a random value as a signed long integer.

34.73.1 Function Documentation

34.73.1.1 t jit err jit err from max err (t_max_err err)

Converts Max style error codes to Jitter style error codes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.73 Miscellaneous Utility Module 777

Parameters
err Max error code

Returns

t_jit_err error code

34.73.1.2 void jit error code (void ∗ x, t jit err v)

Sends error code based error message to Max console (safe from all threads)

Parameters
x object pointer
v error code

34.73.1.3 void jit error sym (void ∗ x, t_symbol ∗ s)

Sends symbol based error message to Max console (safe from all threads)

Parameters
x object pointer
s error message symbol

34.73.1.4 void jit global critical enter (void)

Enters the global Jitter critical region.

This function is useful for simple protection of thread sensitive operations. However, it
may be too broad a lock, as it prevents any other operations that use the global critical
region from working. For more localized control, I would suggest using either Max’s
systhread API or the platform specific locking mechanisms however, be sensitive to the
possibility deadlock when locking code which calls code which may require the locking
off unknown resources.

34.73.1.5 void jit global critical exit (void)

Exits the global Jitter critical region.

This function is useful for simple protection of thread sensitive operations. However, it
may be too broad a lock, as it prevents any other operations that use the global critical
region from working. For more localized control, I would suggest using either Max’s
systhread API or the platform specific locking mechanisms however, be sensitive to the
possibility deadlock when locking code which calls code which may require the locking
off unknown resources.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

778 Module Documentation

34.73.1.6 void jit post sym (void ∗ x, t_symbol ∗ s)

Sends symbol based message to Max console (safe from all threads)

Parameters
x object pointer
s message symbol

34.73.1.7 long jit rand (void)

Generates a random value as a signed long integer.

Returns

random value

34.73.1.8 void jit rand setseed (long n)

Sets global random number generator seed.

Parameters
n seed

34.73.1.9 float swapf32 (float f)

Byte swaps 32 bit floating point number.

Parameters
f input float

Returns

byte swapped float

34.73.1.10 double swapf64 (double f)

Byte swaps 64 bit floating point number.

Parameters
f input double

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.73 Miscellaneous Utility Module 779

Returns

byte swapped double

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

780 Module Documentation

34.74 Linked List Module

Collaboration diagram for Linked List Module:

Linked List ModuleJitter

Functions

• void ∗ jit_linklist_new (void)

Constructs instance of t_jit_linklist.

• long jit_linklist_getsize (t_jit_linklist ∗x)

Retrieves the linked list size.

• void ∗ jit_linklist_getindex (t_jit_linklist ∗x, long index)

Retrieves the object at the specified list index.

• long jit_linklist_objptr2index (t_jit_linklist ∗x, void ∗p)

Retrieves the list index for an object pointer.

• long jit_linklist_makearray (t_jit_linklist ∗x, void ∗∗a, long max)

Flatten the linked list into an array.

• long jit_linklist_insertindex (t_jit_linklist ∗x, void ∗o, long index)

Insert object at specified index.

• long jit_linklist_append (t_jit_linklist ∗x, void ∗o)

Append object to the end of the linked list.

• long jit_linklist_deleteindex (t_jit_linklist ∗x, long index)

Delete object at specified index, freeing the object.

• long jit_linklist_chuckindex (t_jit_linklist ∗x, long index)

Remove object at specified index, without freeing the object.

• void jit_linklist_clear (t_jit_linklist ∗x)

Clears the linked list, freeing all objects in list.

• void jit_linklist_chuck (t_jit_linklist ∗x)

Removes all objects from the linked list, without freeing any objects in list.

• void jit_linklist_reverse (t_jit_linklist ∗x)

Reverses the order of objects in the linked list.

• void jit_linklist_rotate (t_jit_linklist ∗x, long i)

Rotates the order of objects in the linked list, by the specified number of indeces.

• void jit_linklist_shuffle (t_jit_linklist ∗x)

Randomizes the order of objects in the linked list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.74 Linked List Module 781

• void jit_linklist_swap (t_jit_linklist ∗x, long a, long b)

Swap list location of the indeces specified.

• void jit_linklist_findfirst (t_jit_linklist ∗x, void ∗∗o, long cmpfn(void ∗, void ∗), void
∗cmpdata)

Retrieves the first object that satisfies the comparison function.

• void jit_linklist_findall (t_jit_linklist ∗x, t_jit_linklist ∗∗out, long cmpfn(void ∗, void
∗), void ∗cmpdata)

Retrieves a linked list of all objects that satisfy the comparison function.

• long jit_linklist_findcount (t_jit_linklist ∗x, long cmpfn(void ∗, void ∗), void
∗cmpdata)

Retrieves the number of objects that satisfy the comparison function.

• void jit_linklist_methodall (t_jit_linklist ∗x, t_symbol ∗s,...)

Calls a method on all objects in linked list.

• void ∗ jit_linklist_methodindex (t_jit_linklist ∗x, long i, t_symbol ∗s,...)

Calls a method on the object at the specified index.

• void jit_linklist_sort (t_jit_linklist ∗x, long cmpfn(void ∗, void ∗))
Sorts linked list based on the provided comparison function.

34.74.1 Function Documentation

34.74.1.1 long jit linklist append (t jit linklist ∗ x, void ∗ o)

Append object to the end of the linked list.

Parameters
x t_jit_linklist object pointer
o object pointer

Returns

new list length, or -1 if unsuccessful

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.2 void jit linklist chuck (t jit linklist ∗ x)

Removes all objects from the linked list, without freeing any objects in list.

To remove all objects from the linked list, reeing the objects, use the jit_linklist_clear
method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

782 Module Documentation

Parameters
x t_jit_linklist object pointer

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.3 long jit linklist chuckindex (t jit linklist ∗ x, long index)

Remove object at specified index, without freeing the object.

This method will not free the object. To remove from the linked list and free the object,
use the jit_linklist_deleteindex method.

Parameters
x t_jit_linklist object pointer

index index to remove (zero based)

Returns

index removed, or -1 if unsuccessful

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.4 void jit linklist clear (t jit linklist ∗ x)

Clears the linked list, freeing all objects in list.

To remove all elements from the linked list without freeing the objects, use the jit_linklist-
_chuck method.

Parameters
x t_jit_linklist object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.74 Linked List Module 783

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.5 long jit linklist deleteindex (t jit linklist ∗ x, long index)

Delete object at specified index, freeing the object.

To remove from the linked list without freeing the object, use the jit_linklist_chuckindex
method.

Parameters
x t_jit_linklist object pointer

index index to delete (zero based)

Returns

index deleted, or -1 if unsuccessful

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.6 void jit linklist findall (t jit linklist ∗ x, t jit linklist ∗∗ out, long cmpfnvoid ∗, void ∗,
void ∗ cmpdata)

Retrieves a linked list of all objects that satisfy the comparison function.

Parameters
x t_jit_linklist object pointer

out pointer to linked list containing all objects found found (set to NULL, if
not found)

cmpfn comparison function pointer (should returns 1 if object matches data,
otherwise 0)

cmpdata opaque data used in comparison function

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

784 Module Documentation

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.7 long jit linklist findcount (t jit linklist ∗ x, long cmpfnvoid ∗, void ∗, void ∗ cmpdata
)

Retrieves the number of objects that satisfy the comparison function.

Parameters
x t_jit_linklist object pointer

cmpfn comparison function pointer (should returns 1 if object matches data,
otherwise 0)

cmpdata opaque data used in comparison function

Returns

number object objects that satisfy the comparison function

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.8 void jit linklist findfirst (t jit linklist ∗ x, void ∗∗ o, long cmpfnvoid ∗, void ∗, void ∗
cmpdata)

Retrieves the first object that satisfies the comparison function.

Parameters
x t_jit_linklist object pointer
o pointer to object pointer found (set to NULL, if not found)

cmpfn comparison function pointer (should returns 1 if object matches data,
otherwise 0)

cmpdata opaque data used in comparison function

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.74 Linked List Module 785

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.9 void∗ jit linklist getindex (t jit linklist ∗ x, long index)

Retrieves the object at the specified list index.

Parameters
x t_jit_linklist object pointer

index list index ()

Returns

object pointer

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.10 long jit linklist getsize (t jit linklist ∗ x)

Retrieves the linked list size.

Parameters
x t_jit_linklist object pointer

Returns

linked list size

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

786 Module Documentation

34.74.1.11 long jit linklist insertindex (t jit linklist ∗ x, void ∗ o, long index)

Insert object at specified index.

Parameters
x t_jit_linklist object pointer
o object pointer

index index (zero based)

Returns

index inserted at, or -1 if unsuccessful

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.12 long jit linklist makearray (t jit linklist ∗ x, void ∗∗ a, long max)

Flatten the linked list into an array.

Parameters
x t_jit_linklist object pointer
a array pointer

max maximum array size

Returns

number of object pointers copied into array

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.13 void jit linklist methodall (t jit linklist ∗ x, t_symbol ∗ s, ...)

Calls a method on all objects in linked list.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.74 Linked List Module 787

Equivalent to calling jit_object_method on the object at each index.

Parameters
x t_jit_linklist object pointer
s method name

... untyped arguments

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.14 void∗ jit linklist methodindex (t jit linklist ∗ x, long i, t_symbol ∗ s, ...)

Calls a method on the object at the specified index.

Equivalent to calling jit_object_method on the object.

Parameters
x t_jit_linklist object pointer
i index
s method name

... untyped arguments

Returns

method return value

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.15 void∗ jit linklist new (void)

Constructs instance of t_jit_linklist.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

788 Module Documentation

Returns

t_jit_linklist object pointer

Warning

While exported, it is recommend to use jit_object_new to construct a t_jit_linklist
object.

34.74.1.16 long jit linklist objptr2index (t jit linklist ∗ x, void ∗ p)

Retrieves the list index for an object pointer.

Parameters
x t_jit_linklist object pointer
p object pointer

Returns

object’s list index (zero based), or -1 if not present

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.17 void jit linklist reverse (t jit linklist ∗ x)

Reverses the order of objects in the linked list.

Parameters
x t_jit_linklist object pointer

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.74 Linked List Module 789

34.74.1.18 void jit linklist rotate (t jit linklist ∗ x, long i)

Rotates the order of objects in the linked list, by the specified number of indeces.

Parameters
x t_jit_linklist object pointer
i rotation index count

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.19 void jit linklist shuffle (t jit linklist ∗ x)

Randomizes the order of objects in the linked list.

Parameters
x t_jit_linklist object pointer

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.20 void jit linklist sort (t jit linklist ∗ x, long cmpfnvoid ∗, void ∗)

Sorts linked list based on the provided comparison function.

Parameters
x t_jit_linklist object pointer

cmpfn comparison function pointer (returns 0 if a>b, otherwise 1)

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

790 Module Documentation

is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

34.74.1.21 void jit linklist swap (t jit linklist ∗ x, long a, long b)

Swap list location of the indeces specified.

Parameters
x t_jit_linklist object pointer
a index a
b index b

Warning

While exported, it is recommend to use jit_object_method to call methods on an
object when the object may not be an instance of t_jit_linklist, but instead an object
that supports some portion of the t_jit_linklist interface. One instance where this
is the case is inside of a MOP matrix_calc method, where the arguments can be
either an instance of t_jit_linklist, or t_jit_matrix which has a getindex method.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 791

34.75 Math Module

Collaboration diagram for Math Module:

Jitter Math Module

Functions

• double jit_math_cos (double x)

Calculates the cosine.

• double jit_math_sin (double x)

Calculates the sine.

• double jit_math_tan (double x)

Calculates the tangent.

• double jit_math_acos (double x)

Calculates the arccosine.

• double jit_math_asin (double x)

Calculates the arcsine.

• double jit_math_atan (double x)

Calculates the arctangent.

• double jit_math_atan2 (double y, double x)

Calculates the four quadrant arctangent.

• double jit_math_cosh (double x)

Calculates the hyperbolic cosine.

• double jit_math_sinh (double x)

Calculates the hyperbolic sine.

• double jit_math_tanh (double x)

Calculates the hyperbolic tangent.

• double jit_math_acosh (double x)

Calculates the hyperbolic arccosine.

• double jit_math_asinh (double x)

Calculates the hyperbolic arcsine.

• double jit_math_atanh (double x)

Calculates the hyperbolic arctangent.

• double jit_math_exp (double x)

Calculates the exponent.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

792 Module Documentation

• double jit_math_expm1 (double x)

Calculates the exponent minus 1.

• double jit_math_exp2 (double x)

Calculates the exponent base 2.

• double jit_math_log (double x)

Calculates the logarithm.

• double jit_math_log2 (double x)

Calculates the logarithm base 2.

• double jit_math_log10 (double x)

Calculates the logarithm base 10.

• double jit_math_hypot (double x, double y)

Calculates the hypotenuse.

• double jit_math_pow (double x, double y)

Calculates x raised to the y power.

• double jit_math_sqrt (double x)

Calculates the square root.

• double jit_math_ceil (double x)

Calculates the ceiling.

• double jit_math_floor (double x)

Calculates the floor.

• double jit_math_round (double x)

Rounds the input.

• double jit_math_trunc (double x)

Truncates the input.

• double jit_math_fmod (double x, double y)

Calculates the floating point x modulo y.

• double jit_math_fold (double x, double lo, double hi)

Calculates the fold of x between lo and hi.

• double jit_math_wrap (double x, double lo, double hi)

Calculates the wrap of x between lo and hi.

• double jit_math_j1_0 (double x)

Calcuates the j1_0 Bessel function.

• double jit_math_p1 (double x)

Calcuates the p1 Bessel function.

• double jit_math_q1 (double x)

Calcuates the q1 Bessel function.

• double jit_math_j1 (double x)

Calcuates the j1 Bessel function.

• unsigned long jit_math_roundup_poweroftwo (unsigned long x)

Rounds up to the nearest power of two.

• long jit_math_is_finite (float v)

Checks if input is finite.

• long jit_math_is_nan (float v)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 793

Checks if input is not a number (NaN).

• long jit_math_is_valid (float v)

Checks if input is both finite and a number.

• long jit_math_is_poweroftwo (long x)

Checks if input is a power of two.

• float jit_math_fast_sqrt (float n)

Calculates the square root by fast approximation.

• float jit_math_fast_invsqrt (float x)

Calculates the inverse square root by fast approximation.

• float jit_math_fast_sin (float x)

Calculates the sine by fast approximation.

• float jit_math_fast_cos (float x)

Calculates the cosine by fast approximation.

• float jit_math_fast_tan (float x)

Calculates the tangent by fast approximation.

• float jit_math_fast_asin (float x)

Calculates the arcsine by fast approximation.

• float jit_math_fast_acos (float x)

Calculates the arccosine by fast approximation.

• float jit_math_fast_atan (float x)

Calculates the arctangent by fast approximation.

34.75.1 Function Documentation

34.75.1.1 double jit math acos (double x)

Calculates the arccosine.

Parameters
x input

Returns

output

34.75.1.2 double jit math acosh (double x)

Calculates the hyperbolic arccosine.

Parameters
x input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

794 Module Documentation

Returns

output

34.75.1.3 double jit math asin (double x)

Calculates the arcsine.

Parameters
x input

Returns

output

34.75.1.4 double jit math asinh (double x)

Calculates the hyperbolic arcsine.

Parameters
x input

Returns

output

34.75.1.5 double jit math atan (double x)

Calculates the arctangent.

Parameters
x input

Returns

output

34.75.1.6 double jit math atan2 (double y, double x)

Calculates the four quadrant arctangent.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 795

Parameters
y input
x input

Returns

output

34.75.1.7 double jit math atanh (double x)

Calculates the hyperbolic arctangent.

Parameters
x input

Returns

output

34.75.1.8 double jit math ceil (double x)

Calculates the ceiling.

Parameters
x input

Returns

output

34.75.1.9 double jit math cos (double x)

Calculates the cosine.

Parameters
x input

Returns

output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

796 Module Documentation

34.75.1.10 double jit math cosh (double x)

Calculates the hyperbolic cosine.

Parameters
x input

Returns

output

34.75.1.11 double jit math exp (double x)

Calculates the exponent.

Parameters
x input

Returns

output

34.75.1.12 double jit math exp2 (double x)

Calculates the exponent base 2.

Parameters
x input

Returns

output

34.75.1.13 double jit math expm1 (double x)

Calculates the exponent minus 1.

Parameters
x input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 797

Returns

output

34.75.1.14 float jit math fast acos (float x)

Calculates the arccosine by fast approximation.

Absolute error of 6.8e-05 for [0, 1]

Parameters
x input

Returns

output

34.75.1.15 float jit math fast asin (float x)

Calculates the arcsine by fast approximation.

Absolute error of 6.8e-05 for [0, 1]

Parameters
x input

Returns

output

34.75.1.16 float jit math fast atan (float x)

Calculates the arctangent by fast approximation.

Absolute error of 1.43-08 for [-1, 1]

Parameters
x input

Returns

output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

798 Module Documentation

34.75.1.17 float jit math fast cos (float x)

Calculates the cosine by fast approximation.

Absolute error of 1.2e-03 for [0, PI/2]

Parameters
x input

Returns

output

34.75.1.18 float jit math fast invsqrt (float x)

Calculates the inverse square root by fast approximation.

Parameters
x input

Returns

output

34.75.1.19 float jit math fast sin (float x)

Calculates the sine by fast approximation.

Absolute error of 1.7e-04 for [0, PI/2]

Parameters
x input

Returns

output

34.75.1.20 float jit math fast sqrt (float n)

Calculates the square root by fast approximation.

Parameters
n input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 799

Returns

output

34.75.1.21 float jit math fast tan (float x)

Calculates the tangent by fast approximation.

Absolute error of 1.9e-00 for [0, PI/4]

Parameters
x input

Returns

output

34.75.1.22 double jit math floor (double x)

Calculates the floor.

Parameters
x input

Returns

output

34.75.1.23 double jit math fmod (double x, double y)

Calculates the floating point x modulo y.

Parameters
x input
y input

Returns

output

34.75.1.24 double jit math fold (double x, double lo, double hi)

Calculates the fold of x between lo and hi.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

800 Module Documentation

Parameters
x input

lo lower bound
hi upper bound

Returns

output

34.75.1.25 double jit math hypot (double x, double y)

Calculates the hypotenuse.

Parameters
x input
y input

Returns

output

34.75.1.26 long jit math is finite (float v)

Checks if input is finite.

Parameters
v input

Returns

1 if finite. Otherwise, 0.

34.75.1.27 long jit math is nan (float v)

Checks if input is not a number (NaN).

Parameters
v input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 801

Returns

1 if not a number. Otherwise, 0.

34.75.1.28 long jit math is poweroftwo (long x)

Checks if input is a power of two.

Parameters
x input

Returns

1 if finite. Otherwise, 0.

34.75.1.29 long jit math is valid (float v)

Checks if input is both finite and a number.

Parameters
v input

Returns

1 if vaild. Otherwise, 0.

34.75.1.30 double jit math j1 (double x)

Calcuates the j1 Bessel function.

Parameters
x input

Returns

output

34.75.1.31 double jit math j1 0 (double x)

Calcuates the j1_0 Bessel function.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

802 Module Documentation

Parameters
x input

Returns

output

34.75.1.32 double jit math log (double x)

Calculates the logarithm.

Parameters
x input

Returns

output

34.75.1.33 double jit math log10 (double x)

Calculates the logarithm base 10.

Parameters
x input

Returns

output

34.75.1.34 double jit math log2 (double x)

Calculates the logarithm base 2.

Parameters
x input

Returns

output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 803

34.75.1.35 double jit math p1 (double x)

Calcuates the p1 Bessel function.

Parameters
x input

Returns

output

34.75.1.36 double jit math pow (double x, double y)

Calculates x raised to the y power.

Parameters
x input
y input

Returns

output

34.75.1.37 double jit math q1 (double x)

Calcuates the q1 Bessel function.

Parameters
x input

Returns

output

34.75.1.38 double jit math round (double x)

Rounds the input.

Parameters
x input

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

804 Module Documentation

Returns

output

34.75.1.39 unsigned long jit math roundup poweroftwo (unsigned long x)

Rounds up to the nearest power of two.

Parameters
x input

Returns

output

34.75.1.40 double jit math sin (double x)

Calculates the sine.

Parameters
x input

Returns

output

34.75.1.41 double jit math sinh (double x)

Calculates the hyperbolic sine.

Parameters
x input

Returns

output

34.75.1.42 double jit math sqrt (double x)

Calculates the square root.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.75 Math Module 805

Parameters
x input

Returns

output

34.75.1.43 double jit math tan (double x)

Calculates the tangent.

Parameters
x input

Returns

output

34.75.1.44 double jit math tanh (double x)

Calculates the hyperbolic tangent.

Parameters
x input

Returns

output

34.75.1.45 double jit math trunc (double x)

Truncates the input.

Parameters
x input

Returns

output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

806 Module Documentation

34.75.1.46 double jit math wrap (double x, double lo, double hi)

Calculates the wrap of x between lo and hi.

Parameters
x input

lo lower bound
hi upper bound

Returns

output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 807

34.76 Matrix Module

Collaboration diagram for Matrix Module:

Matrix ModuleJitter

Functions

• void jit_linklist_free (t_jit_linklist ∗x)

Frees instance of t_jit_linklist.

• void ∗ jit_matrix_new (t_jit_matrix_info ∗info)

Constructs instance of t_jit_matrix.

• void ∗ jit_matrix_newcopy (t_jit_matrix ∗copyme)

Constructs instance of t_jit_matrix, copying from input.

• t_jit_err jit_matrix_free (t_jit_matrix ∗x)

Frees instance of t_jit_matrix.

• t_jit_err jit_matrix_setinfo (t_jit_matrix ∗x, t_jit_matrix_info ∗info)

Sets all attributes according to the t_jit_matrix_info struct provided.

• t_jit_err jit_matrix_setinfo_ex (t_jit_matrix ∗x, t_jit_matrix_info ∗info)

Sets all attributes according to the t_jit_matrix_info struct provided (including data
flags).

• t_jit_err jit_matrix_getinfo (t_jit_matrix ∗x, t_jit_matrix_info ∗info)

Retrieves all attributes, copying into the t_jit_matrix_info struct provided.

• t_jit_err jit_matrix_getdata (t_jit_matrix ∗x, void ∗∗data)

Retrieves matrix data pointer.

• t_jit_err jit_matrix_data (t_jit_matrix ∗x, void ∗data)

Sets matrix data pointer.

• t_jit_err jit_matrix_freedata (t_jit_matrix ∗x)

Frees matrix’s internal data pointer if an internal reference and sets to NULL.

• t_jit_err jit_matrix_info_default (t_jit_matrix_info ∗info)

Initializes matrix info struct to default values.

• t_jit_err jit_matrix_clear (t_jit_matrix ∗x)

Sets all cells in matrix to the zero.

• t_jit_err jit_matrix_setcell1d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets cell at index to the value provided.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

808 Module Documentation

• t_jit_err jit_matrix_setcell2d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets cell at index to the value provided.

• t_jit_err jit_matrix_setcell3d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets cell at index to the value provided.

• t_jit_err jit_matrix_setplane1d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets plane of cell at index to the value provided.

• t_jit_err jit_matrix_setplane2d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets plane of cell at index to the value provided.

• t_jit_err jit_matrix_setplane3d (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets plane of cell at index to the value provided.

• t_jit_err jit_matrix_setcell (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Sets cell at index to the value provided.

• t_jit_err jit_matrix_getcell (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom ∗argv,
long ∗rac, t_atom ∗∗rav)

Gets cell at index to the value provided.

• t_jit_err jit_matrix_setall (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Sets all cells to the value provided.

• t_jit_err jit_matrix_fillplane (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Sets the plane specified in all cells to the value provided.

• t_jit_err jit_matrix_togworld (t_jit_matrix ∗x, GWorldPtr gp, t_gworld_conv_info
∗gcinfo)

Copies Jitter matrix data to GWorld data.

• t_jit_err jit_matrix_fromgworld (t_jit_matrix ∗x, GWorldPtr gp, t_gworld_conv_info
∗gcinfo)

Copies Jitter matrix data from GWorld data.

• t_jit_err jit_matrix_frommatrix (t_jit_matrix ∗dst_matrix, t_jit_matrix ∗src_matrix,
t_matrix_conv_info ∗mcinfo)

Copies Jitter matrix data from another matrix.

• t_jit_err jit_matrix_op (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Applies unary or binary operator to matrix See Jitter user documentation for more
information.

• t_jit_err jit_matrix_exprfill (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Fills cells according to the jit.expr expression provided.

• t_jit_err jit_matrix_jit_gl_texture (t_jit_matrix ∗x, t_symbol ∗s, long argc, t_atom
∗argv)

Copies texture information to matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 809

34.76.1 Function Documentation

34.76.1.1 void jit linklist free (t jit linklist ∗ x)

Frees instance of t_jit_linklist.

Parameters
x t_jit_linklist object pointer

Returns

t_jit_err error code

Warning

Use jit_object_free instead.

34.76.1.2 t jit err jit matrix clear (t jit matrix ∗ x)

Sets all cells in matrix to the zero.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.3 t jit err jit matrix data (t jit matrix ∗ x, void ∗ data)

Sets matrix data pointer.

Parameters
x t_jit_matrix object pointer

data data pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

810 Module Documentation

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.4 t jit err jit matrix exprfill (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv
)

Fills cells according to the jit.expr expression provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.5 t jit err jit matrix fillplane (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets the plane specified in all cells to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 811

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.6 t jit err jit matrix free (t jit matrix ∗ x)

Frees instance of t_jit_matrix.

Parameters
x t_jit_matrix object pointer

Returns

t_jit_err error code

Warning

Use jit_object_free instead.

34.76.1.7 t jit err jit matrix freedata (t jit matrix ∗ x)

Frees matrix’s internal data pointer if an internal reference and sets to NULL.

Parameters
x t_jit_matrix object pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.8 t jit err jit matrix fromgworld (t jit matrix ∗ x, GWorldPtr gp, t gworld conv info ∗
gcinfo)

Copies Jitter matrix data from GWorld data.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

812 Module Documentation

Parameters
x t_jit_matrix object pointer

gp gworld pointer
gcinfo conversion information pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.9 t jit err jit matrix frommatrix (t jit matrix ∗ dst matrix, t jit matrix ∗ src matrix,
t_matrix_conv_info ∗ mcinfo)

Copies Jitter matrix data from another matrix.

Parameters
dst_matrix destination t_jit_matrix object pointer
src_matrix destination t_jit_matrix object pointer

mcinfo conversion information pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.10 t jit err jit matrix getcell (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv, long ∗ rac, t_atom ∗∗ rav)

Gets cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 813

argv argument vector
rac return value atom count
rav return value atom vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.11 t jit err jit matrix getdata (t jit matrix ∗ x, void ∗∗ data)

Retrieves matrix data pointer.

Parameters
x t_jit_matrix object pointer

data pointer to data pointer (set to NULL if matrix is not available)

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.12 t jit err jit matrix getinfo (t jit matrix ∗ x, t_jit_matrix_info ∗ info)

Retrieves all attributes, copying into the t_jit_matrix_info struct provided.

Parameters
x t_jit_matrix object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

814 Module Documentation

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.13 t jit err jit matrix info default (t_jit_matrix_info ∗ info)

Initializes matrix info struct to default values.

Parameters
info t_jit_matrix_info struct pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.14 t jit err jit matrix jit gl texture (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom
∗ argv)

Copies texture information to matrix.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 815

34.76.1.15 void ∗ jit matrix new (t_jit_matrix_info ∗ info)

Constructs instance of t_jit_matrix.

Parameters
info t_jit_matrix_info struct pointer

Returns

t_jit_matrix object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.76.1.16 void ∗ jit matrix newcopy (t jit matrix ∗ copyme)

Constructs instance of t_jit_matrix, copying from input.

Parameters
copyme t_jit_matrix object pointer

Returns

t_jit_matrix object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.17 t jit err jit matrix op (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv)

Applies unary or binary operator to matrix See Jitter user documentation for more infor-
mation.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

816 Module Documentation

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.18 t jit err jit matrix setall (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv
)

Sets all cells to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.19 t jit err jit matrix setcell (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 817

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.20 t jit err jit matrix setcell1d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.21 t jit err jit matrix setcell2d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

818 Module Documentation

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.22 t jit err jit matrix setcell3d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.23 t jit err jit matrix setinfo (t jit matrix ∗ x, t_jit_matrix_info ∗ info)

Sets all attributes according to the t_jit_matrix_info struct provided.

Parameters
x t_jit_matrix object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 819

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.24 t jit err jit matrix setinfo ex (t jit matrix ∗ x, t_jit_matrix_info ∗ info)

Sets all attributes according to the t_jit_matrix_info struct provided (including data flags).

Parameters
x t_jit_matrix object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.25 t jit err jit matrix setplane1d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets plane of cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

820 Module Documentation

34.76.1.26 t jit err jit matrix setplane2d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets plane of cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

34.76.1.27 t jit err jit matrix setplane3d (t jit matrix ∗ x, t_symbol ∗ s, long argc, t_atom ∗
argv)

Sets plane of cell at index to the value provided.

See Jitter user documentation for more information.

Parameters
x t_jit_matrix object pointer
s message symbol pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.76 Matrix Module 821

34.76.1.28 t jit err jit matrix togworld (t jit matrix ∗ x, GWorldPtr gp, t gworld conv info ∗
gcinfo)

Copies Jitter matrix data to GWorld data.

Parameters
x t_jit_matrix object pointer

gp gworld pointer
gcinfo conversion information pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

822 Module Documentation

34.77 Max Wrapper Module

Collaboration diagram for Max Wrapper Module:

Max Wrapper ModuleJitter

Functions

• void max_jit_attr_set (void ∗x, t_symbol ∗s, short ac, t_atom ∗av)

Sets attribute value.

• t_jit_err max_jit_attr_get (void ∗x, t_symbol ∗s, long ∗ac, t_atom ∗∗av)

Retrieves attribute value.

• void max_jit_attr_getdump (void ∗x, t_symbol ∗s, short argc, t_atom ∗argv)

Retrieves attribute value and sends out dump outlet.

• long max_jit_attr_args_offset (short ac, t_atom ∗av)

Determines argument offset to first attribute argument.

• void max_jit_attr_args (void ∗x, short ac, t_atom ∗av)

Processes attribute arguments.

• void max_jit_classex_standard_wrap (void ∗mclass, void ∗jclass, long flags)

Adds standard Jitter methods, as well as public methods and attributes of the specified
Jitter class.

• void max_addmethod_defer (method m, char ∗s)

Adds method to Max class that calls defer rather than the method directly.

• void max_addmethod_defer_low (method m, char ∗s)

Adds method to Max class that calls defer_low rather than the method directly.

• void max_addmethod_usurp (method m, char ∗s)

Adds method to Max class that uses the usurp mechanism to execute method at low
priority without backlog.

• void max_addmethod_usurp_low (method m, char ∗s)

Adds method to Max class that uses the usurp mechanism to execute method at low
priority without backlog.

• void ∗ max_jit_classex_setup (long oboffset)

Allocates and initializes special t_max_jit_classex data, used by the Max wrapper
class.

• t_jit_err max_jit_classex_addattr (void ∗x, void ∗attr)

Adds an attribute to the Max wrapper class.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.77 Max Wrapper Module 823

• void ∗ max_jit_obex_new (void ∗mc, t_symbol ∗classname)

Allocates an initializes a new Max wrapper object instance.

• void max_jit_obex_free (void ∗x)

Frees additional resources for the Max wrapper object instance.

• t_jit_err max_jit_obex_attr_set (void ∗x, t_symbol ∗s, long ac, t_atom ∗av)

Sets an attribute of the Max wrapper or the wrapped Jitter object.

• t_jit_err max_jit_obex_attr_get (void ∗x, t_symbol ∗s, long ∗ac, t_atom ∗∗av)

Retrienves an attribute of the Max wrapper or the wrapped Jitter object.

• void ∗ max_jit_obex_jitob_get (void ∗x)

Retrieves the wrapped Jitter object from a Max wrapper object.

• void max_jit_obex_jitob_set (void ∗x, void ∗jitob)

Sets the wrapped Jitter object for a Max wrapper object.

• long max_jit_obex_inletnumber_get (void ∗x)

Retrieves the current inlet number used by inlet proxies.

• void max_jit_obex_inletnumber_set (void ∗x, long inletnumber)

Sets the current inlet number used by inlet proxies.

• t_jit_err max_jit_obex_proxy_new (void ∗x, long c)

Creates a new proxy inlet.

• void max_jit_obex_dumpout_set (void ∗x, void ∗outlet)

Sets the Max wrapper object’s dump outlet’s outlet pointer.

• void ∗ max_jit_obex_dumpout_get (void ∗x)

Retrieves the Max wrapper object’s dump outlet’s outlet pointer.

• void max_jit_obex_dumpout (void ∗x, t_symbol ∗s, short argc, t_atom ∗argv)

Sends a message and arguments out the dump outlet.

• void ∗ max_jit_obex_adornment_get (void ∗x, t_symbol ∗classname)

Retrieves Max wrapper object adornment specified by class name.

• void max_jit_obex_gimmeback (void ∗x, t_symbol ∗s, long ac, t_atom ∗av)

Calls gimmeback methods and frees any return value.

• void max_jit_obex_gimmeback_dumpout (void ∗x, t_symbol ∗s, long ac, t_atom
∗av)

Calls gimmeback methods and outputs any return value through the Max wrapper
class’ dump outlet.

34.77.1 Function Documentation

34.77.1.1 void max addmethod defer (method m, char ∗ s)

Adds method to Max class that calls defer rather than the method directly.

To prevent sequencing problems which arize through the use of defer, rather than defer-
_low, you should instead use the max_addmethod_defer_low function.

Parameters
m method (function pointer)
s method name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

824 Module Documentation

34.77.1.2 void max addmethod defer low (method m, char ∗ s)

Adds method to Max class that calls defer_low rather than the method directly.

Parameters
m method (function pointer)
s method name

34.77.1.3 void max addmethod usurp (method m, char ∗ s)

Adds method to Max class that uses the usurp mechanism to execute method at low
priority without backlog.

Equivalent to max_addmethod_usurp_low function.

Parameters
m method (function pointer)
s method name

34.77.1.4 void max addmethod usurp low (method m, char ∗ s)

Adds method to Max class that uses the usurp mechanism to execute method at low
priority without backlog.

Parameters
m method (function pointer)
s method name

34.77.1.5 void max jit attr args (void ∗ x, short ac, t_atom ∗ av)

Processes attribute arguments.

Parameters
x Max wrapper object pointer

ac argument count
av argument vector

34.77.1.6 long max jit attr args offset (short ac, t_atom ∗ av)

Determines argument offset to first attribute argument.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.77 Max Wrapper Module 825

Parameters
ac argument count
av argument vector

Returns

argument offset

34.77.1.7 t jit err max jit attr get (void ∗ x, t_symbol ∗ s, long ∗ ac, t_atom ∗∗ av)

Retrieves attribute value.

Parameters
x Max wrapper object pointer
s attribute name

ac pointer atom count
av pointer atom vector

Returns

t_jit_err error code

34.77.1.8 void max jit attr getdump (void ∗ x, t_symbol ∗ s, short argc, t_atom ∗ argv)

Retrieves attribute value and sends out dump outlet.

Parameters
x Max wrapper object pointer
s attribute name

argc argument count (ignored)
argv argument vector (ignored)

34.77.1.9 void max jit attr set (void ∗ x, t_symbol ∗ s, short ac, t_atom ∗ av)

Sets attribute value.

Parameters
x Max wrapper object pointer
s attribute name

ac atom count
av atom vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

826 Module Documentation

34.77.1.10 long max jit classex addattr (void ∗ x, void ∗ attr)

Adds an attribute to the Max wrapper class.

Parameters
x pointer to t_max_jit_classex data (opaque)

attr attribute object pointer

Returns

t_jit_err error code

34.77.1.11 void ∗ max jit classex setup (long oboffset)

Allocates and initializes special t_max_jit_classex data, used by the Max wrapper class.

Parameters
oboffset object struct byte offset to obex pointer

Returns

pointer to t_max_jit_classex data (opaque)

34.77.1.12 void max jit classex standard wrap (void ∗ mclass, void ∗ jclass, long flags)

Adds standard Jitter methods, as well as public methods and attributes of the specified
Jitter class.

This includes the following public methods: getattributes, getstate, summary, importat-
trs, exportattrs; and the following private methods: dumpout, quickref, attr_getnames,
attr_get, attr_gettarget, and attrindex.

Parameters
mclass Max wrapper class pointer

jclass jitter class pointer
flags reserved for future use (currently ignored)

34.77.1.13 void∗ max jit obex adornment get (void ∗ x, t_symbol ∗ classname)

Retrieves Max wrapper object adornment specified by class name.

Typcially used for accessing the jit_mop adornment for MOP Max wrapper objects.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.77 Max Wrapper Module 827

Parameters
x Max wrapper object pointer

classname adornment classname

Returns

adornment pointer

34.77.1.14 t jit err max jit obex attr get (void ∗ x, t_symbol ∗ s, long ∗ ac, t_atom ∗∗ av)

Retrienves an attribute of the Max wrapper or the wrapped Jitter object.

Parameters
x Max wrapper object pointer
s attribute name

ac pointer to atom count
av pointer to atom vector

Returns

t_jit_error error code

34.77.1.15 t jit err max jit obex attr set (void ∗ x, t_symbol ∗ s, long ac, t_atom ∗ av)

Sets an attribute of the Max wrapper or the wrapped Jitter object.

Parameters
x Max wrapper object pointer
s attribute name

ac atom count
av atom vector

Returns

t_jit_error error code

34.77.1.16 void max jit obex dumpout (void ∗ x, t_symbol ∗ s, short argc, t_atom ∗ argv)

Sends a message and arguments out the dump outlet.

This message is equivalent to calling outlet_anything with the outlet returned by max_-
jit_obex_dumpout_get.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

828 Module Documentation

Parameters
x Max wrapper object pointer
s message symbol

argc argument count
argv argument vector

34.77.1.17 void∗ max jit obex dumpout get (void ∗ x)

Retrieves the Max wrapper object’s dump outlet’s outlet pointer.

Parameters
x Max wrapper object pointer

Returns

dump outlet pointer

34.77.1.18 void max jit obex dumpout set (void ∗ x, void ∗ outlet)

Sets the Max wrapper object’s dump outlet’s outlet pointer.

Parameters
x Max wrapper object pointer

outlet dump outlet pointer

34.77.1.19 void max jit obex free (void ∗ x)

Frees additional resources for the Max wrapper object instance.

Parameters
x Max wrapper object pointer

34.77.1.20 void max jit obex gimmeback (void ∗ x, t_symbol ∗ s, long ac, t_atom ∗ av)

Calls gimmeback methods and frees any return value.

Parameters
x Max wrapper object pointer
s method name

ac argument count
av argument vector

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.77 Max Wrapper Module 829

34.77.1.21 void max jit obex gimmeback dumpout (void ∗ x, t_symbol ∗ s, long ac,
t_atom ∗ av)

Calls gimmeback methods and outputs any return value through the Max wrapper class’
dump outlet.

Parameters
x Max wrapper object pointer
s method name

ac argument count
av argument vector

34.77.1.22 long max jit obex inletnumber get (void ∗ x)

Retrieves the current inlet number used by inlet proxies.

Parameters
x Max wrapper object pointer

Returns

current inlet index

34.77.1.23 void max jit obex inletnumber set (void ∗ x, long inletnumber)

Sets the current inlet number used by inlet proxies.

Warning

Typically not used outside jitlib.

Parameters
x Max wrapper object pointer

inletnumber inlet index

34.77.1.24 void∗ max jit obex jitob get (void ∗ x)

Retrieves the wrapped Jitter object from a Max wrapper object.

Parameters
x Max wrapper object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

830 Module Documentation

Returns

Jitter object pointer

34.77.1.25 void max jit obex jitob set (void ∗ x, void ∗ jitob)

Sets the wrapped Jitter object for a Max wrapper object.

Parameters
x Max wrapper object pointer

jitob Jitter object pointer

34.77.1.26 void ∗ max jit obex new (void ∗ mc, t_symbol ∗ classname)

Allocates an initializes a new Max wrapper object instance.

This is used in place of the newobject function.

Parameters
mc Max class pointer

classname Jitter class name to wrap

Returns

pointer to new Max wrapper object instance

34.77.1.27 t jit err max jit obex proxy new (void ∗ x, long c)

Creates a new proxy inlet.

Parameters
x Max wrapper object pointer
c inlet index

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.78 Memory Module 831

34.78 Memory Module

Collaboration diagram for Memory Module:

Memory ModuleJitter

Functions

• void ∗ jit_getbytes (long size)

Allocates a pointer to memory.

• void jit_freebytes (void ∗ptr, long size)

Frees a pointer to memory.

• void ∗∗ jit_handle_new (long size)

Allocates a memory handle.

• void jit_handle_free (void ∗∗handle)

Frees a memory handle.

• long jit_handle_size_get (void ∗∗handle)

Retrieves a memory handle’s size in bytes.

• t_jit_err jit_handle_size_set (void ∗∗handle, long size)

Sets a memory handle’s size in bytes.

• long jit_handle_lock (void ∗∗handle, long lock)

Sets a memory handle’s lock state.

• void jit_copy_bytes (void ∗dest, const void ∗src, long bytes)

Copy bytes from source to destination pointer.

• long jit_freemem (void)

Reports free memory.

• char ∗ jit_newptr (long size)

Allocates a pointer to memory.

• void jit_disposeptr (char ∗ptr)

Frees a pointer to memory.

34.78.1 Function Documentation

34.78.1.1 void jit copy bytes (void ∗ dest, const void ∗ src, long bytes)

Copy bytes from source to destination pointer.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

832 Module Documentation

Parameters
dest destination pointer

src source pointer
bytes byte count to copy

34.78.1.2 void jit disposeptr (char ∗ ptr)

Frees a pointer to memory.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
newptr and jit_disposeptr.

Parameters
ptr pointer to memory

34.78.1.3 void jit freebytes (void ∗ ptr, long size)

Frees a pointer to memory.

Depending on the size of the pointer, jit_freebytes will free from either the faster memory
pool or the system memory pool.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
getbytes and jit_freebytes.

Parameters
ptr pointer to memory

size size in bytes allocated

34.78.1.4 long jit freemem (void)

Reports free memory.

Warning

Obsolete. OS 9 only.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.78 Memory Module 833

Returns

free bytes

34.78.1.5 void∗ jit getbytes (long size)

Allocates a pointer to memory.

Depending on the size requested, jit_getbytes will allocate from either the faster memory
pool or the system memory pool.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
getbytes and jit_freebytes.

Parameters
size size in bytes to allocate

Returns

pointer to memory

34.78.1.6 void jit handle free (void ∗∗ handle)

Frees a memory handle.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
handle_new and jit_handle_free.

Parameters
handle memory handle

34.78.1.7 long jit handle lock (void ∗∗ handle, long lock)

Sets a memory handle’s lock state.

Parameters
handle memory handle

lock state (1=locked, 0=unlocked)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

834 Module Documentation

Returns

lock state.

34.78.1.8 void∗∗ jit handle new (long size)

Allocates a memory handle.

Handles are relocatable sections of memory which should be locked before dereferenc-
ing, and unlocked when not in use so that they may be relocated as necessary.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
handle_new and jit_handle_free.

Parameters
size size in bytes to allocate

Returns

memory handle

34.78.1.9 long jit handle size get (void ∗∗ handle)

Retrieves a memory handle’s size in bytes.

Parameters
handle memory handle

Returns

size in bytes

34.78.1.10 t jit err jit handle size set (void ∗∗ handle, long size)

Sets a memory handle’s size in bytes.

Parameters
handle memory handle

size new size in bytes

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.78 Memory Module 835

Returns

t_jit_err error code.

34.78.1.11 char∗ jit newptr (long size)

Allocates a pointer to memory.

Always allocates from the the system memory pool.

Warning

It is important to avoid mixing memory pools, and therefore to match calls to jit_-
newptr and jit_disposeptr.

Parameters
size size in bytes to allocate

Returns

pointer to memory

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

836 Module Documentation

34.79 MOP Module

Collaboration diagram for MOP Module:

MOP ModuleJitter

Data Structures

• struct t_jit_mop_io

t_jit_mop_io object struct.

• struct t_jit_mop

t_jit_mop object struct.

Functions

• t_jit_object ∗ jit_mop_io_new (void)

Constructs instance of t_jit_mop_io.

• t_jit_object ∗ jit_mop_io_newcopy (t_jit_mop_io ∗x)

Constructs instance of t_jit_mop_io, copying settings of input.

• t_jit_err jit_mop_io_free (t_jit_mop ∗x)

Frees instance of t_jit_mop_io.

• t_jit_err jit_mop_io_restrict_type (t_jit_mop_io ∗x, t_jit_matrix_info ∗info)

Restricts the type specified in t_jit_matrix_info struct to those permitted by t_jit_mop_io
instance, overwriting value in t_jit_matrix_info struct.

• t_jit_err jit_mop_io_restrict_planecount (t_jit_mop_io ∗x, t_jit_matrix_info ∗info)

Restricts the planecount specified in t_jit_matrix_info struct to those permitted by t_jit-
_mop_io instance, overwriting value in t_jit_matrix_info struct.

• t_jit_err jit_mop_io_restrict_dim (t_jit_mop_io ∗x, t_jit_matrix_info ∗info)

Restricts the dimension sizes specified in t_jit_matrix_info struct to those permitted by
t_jit_mop_io instance, overwriting value in t_jit_matrix_info struct.

• t_jit_err jit_mop_io_matrix (t_jit_mop_io ∗x, void ∗m)

Sets the internal matrix reference.

• void ∗ jit_mop_io_getmatrix (t_jit_mop_io ∗x)

Retrieves the internal matrix reference.

• t_jit_err jit_mop_io_ioproc (t_jit_mop_io ∗x, method ioproc)

Sets the I/O procedure used when handling incoming matrices.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 837

• method jit_mop_io_getioproc (t_jit_mop_io ∗x)

Retrieves the I/O procedure used when handling incoming matrices.

• t_jit_object ∗ jit_mop_new (long inputcount, long outputcount)

Constructs instance of t_jit_mop.

• t_jit_object ∗ jit_mop_newcopy (t_jit_mop ∗x)

Constructs instance of t_jit_mop, copying settings of input.

• void ∗ jit_mop_getinput (t_jit_mop ∗x, long i)

Retrieves input at input list index specified.

• void ∗ jit_mop_getoutput (t_jit_mop ∗x, long i)

Retrieves output at output list index specified.

• void ∗ jit_mop_getinputlist (t_jit_mop ∗x)

Retrieves input list.

• void ∗ jit_mop_getoutputlist (t_jit_mop ∗x)

Retrieves output list.

• t_jit_err jit_mop_free (t_jit_mop ∗x)

Frees instance of t_jit_mop.

• t_jit_err jit_mop_single_type (void ∗mop, t_symbol ∗s)

Utility function to set the type attribute for all MOP inputs and outputs.

• t_jit_err jit_mop_single_planecount (void ∗mop, long c)

Utility function to set the planecount attribute for all MOP inputs and outputs.

• t_jit_err jit_mop_methodall (void ∗mop, t_symbol ∗s,...)

Utility function to send the same method to all MOP inputs and outputs.

• t_jit_err jit_mop_input_nolink (void ∗mop, long c)

Utility function to disable all linking attributes for a MOP input.

• t_jit_err jit_mop_output_nolink (void ∗mop, long c)

Utility function to disable all linking attributes for a MOP output.

• t_jit_err jit_mop_ioproc_copy_adapt (void ∗mop, void ∗mop_io, void ∗matrix)

MOP I/O procedure to copy and adapt to input.

• t_jit_err jit_mop_ioproc_copy_trunc (void ∗mop, void ∗mop_io, void ∗matrix)

MOP I/O procedure to copy, but truncate input.

• t_jit_err jit_mop_ioproc_copy_trunc_zero (void ∗mop, void ∗mop_io, void
∗matrix)

MOP I/O procedure to copy, but truncate input.

• t_symbol ∗ jit_mop_ioproc_tosym (void ∗ioproc)

Utility to convert MOP I/O procedure function to a human-readable type name.

34.79.1 Function Documentation

34.79.1.1 t jit err jit mop free (t_jit_mop ∗ x)

Frees instance of t_jit_mop.

Parameters

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

838 Module Documentation

x t_jit_mop object pointer

Returns

t_jit_err error code

Warning

Use jit_object_free instead.

34.79.1.2 void ∗ jit mop getinput (t_jit_mop ∗ x, long i)

Retrieves input at input list index specified.

Parameters
x t_jit_mop object pointer
i index

Returns

t_jit_mop_io object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop.

34.79.1.3 void ∗ jit mop getinputlist (t_jit_mop ∗ x)

Retrieves input list.

Parameters
x t_jit_mop object pointer

Returns

t_jit_linklist object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 839

34.79.1.4 void ∗ jit mop getoutput (t_jit_mop ∗ x, long i)

Retrieves output at output list index specified.

Parameters
x t_jit_mop object pointer
i index

Returns

t_jit_mop_io object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop.

34.79.1.5 void ∗ jit mop getoutputlist (t_jit_mop ∗ x)

Retrieves output list.

Parameters
x t_jit_mop object pointer

Returns

t_jit_linklist object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop.

34.79.1.6 t jit err jit mop input nolink (void ∗ mop, long c)

Utility function to disable all linking attributes for a MOP input.

Parameters
mop t_jit_mop object pointer

c input index

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

840 Module Documentation

Returns

t_jit_err error code

34.79.1.7 t jit err jit mop io free (t_jit_mop ∗ x)

Frees instance of t_jit_mop_io.

Parameters
x t_jit_mop_io object pointer

Returns

t_jit_err error code

Warning

Use jit_object_free instead.

34.79.1.8 method jit mop io getioproc (t_jit_mop_io ∗ x)

Retrieves the I/O procedure used when handling incoming matrices.

Parameters
x t_jit_mop_io object pointer

Returns

I/O procedure

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.9 void ∗ jit mop io getmatrix (t_jit_mop_io ∗ x)

Retrieves the internal matrix reference.

Parameters
x t_jit_mop_io object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 841

Returns

t_jit_matrix object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.10 t jit err jit mop io ioproc (t_jit_mop_io ∗ x, method ioproc)

Sets the I/O procedure used when handling incoming matrices.

Parameters
x t_jit_mop_io object pointer

ioproc I/O procedure

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.11 t jit err jit mop io matrix (t_jit_mop_io ∗ x, void ∗ m)

Sets the internal matrix reference.

Parameters
x t_jit_mop_io object pointer

m t_jit_matrix object pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

842 Module Documentation

34.79.1.12 t_jit_object ∗ jit mop io new (void)

Constructs instance of t_jit_mop_io.

Returns

t_jit_mop_io object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.79.1.13 t_jit_object ∗ jit mop io newcopy (t_jit_mop_io ∗ x)

Constructs instance of t_jit_mop_io, copying settings of input.

Parameters
x t_jit_mop_io object pointer

Returns

t_jit_mop_io object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.14 t jit err jit mop io restrict dim (t_jit_mop_io ∗ x, t_jit_matrix_info ∗ info)

Restricts the dimension sizes specified in t_jit_matrix_info struct to those permitted by
t_jit_mop_io instance, overwriting value in t_jit_matrix_info struct.

Parameters
x t_jit_mop_io object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 843

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.15 t jit err jit mop io restrict planecount (t_jit_mop_io ∗ x, t_jit_matrix_info ∗
info)

Restricts the planecount specified in t_jit_matrix_info struct to those permitted by t_jit_-
mop_io instance, overwriting value in t_jit_matrix_info struct.

Parameters
x t_jit_mop_io object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

34.79.1.16 t jit err jit mop io restrict type (t_jit_mop_io ∗ x, t_jit_matrix_info ∗ info)

Restricts the type specified in t_jit_matrix_info struct to those permitted by t_jit_mop_io
instance, overwriting value in t_jit_matrix_info struct.

Parameters
x t_jit_mop_io object pointer

info t_jit_matrix_info pointer

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop_io.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

844 Module Documentation

34.79.1.17 t jit err jit mop ioproc copy adapt (void ∗ mop, void ∗ mop io, void ∗ matrix)

MOP I/O procedure to copy and adapt to input.

Parameters
mop t_jit_mop object pointer

mop_io t_jit_mop_io object pointer
matrix t_jit_matrix object pointer

Returns

t_jit_err error code

void *m;
t_jit_matrix_info info;

if (matrix&&(m=jit_object_method(mop_io,_jit_sym_getmatrix))) {
jit_object_method(matrix,_jit_sym_getinfo,&info);
jit_object_method(mop_io,_jit_sym_restrict_type,&info);
jit_object_method(mop_io,_jit_sym_restrict_dim,&info);
jit_object_method(mop_io,_jit_sym_restrict_planecount,&info);
jit_object_method(m,_jit_sym_setinfo,&info);
jit_object_method(m,_jit_sym_frommatrix,matrix,NULL);

}

return JIT_ERR_NONE;

34.79.1.18 t jit err jit mop ioproc copy trunc (void ∗ mop, void ∗ mop io, void ∗ matrix)

MOP I/O procedure to copy, but truncate input.

Parameters
mop t_jit_mop object pointer

mop_io t_jit_mop_io object pointer
matrix t_jit_matrix object pointer

Returns

t_jit_err error code

void *m;
t_jit_matrix_info info;

if (matrix&&(m=jit_object_method(mop_io,_jit_sym_getmatrix))) {
jit_object_method(m,_jit_sym_frommatrix_trunc,matrix);

}

return JIT_ERR_NONE;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 845

34.79.1.19 t jit err jit mop ioproc copy trunc zero (void ∗ mop, void ∗ mop io, void ∗ matrix)

MOP I/O procedure to copy, but truncate input.

Zero elsewhere.

Parameters
mop t_jit_mop object pointer

mop_io t_jit_mop_io object pointer
matrix t_jit_matrix object pointer

Returns

t_jit_err error code

void *m;
t_jit_matrix_info info;

if (matrix&&(m=jit_object_method(mop_io,_jit_sym_getmatrix))) {
jit_object_method(m,_jit_sym_clear);
jit_object_method(m,_jit_sym_frommatrix_trunc,matrix);

}

return JIT_ERR_NONE;

34.79.1.20 t_symbol∗ jit mop ioproc tosym (void ∗ ioproc)

Utility to convert MOP I/O procedure function to a human-readable type name.

Parameters
ioproc t_jit_mop_io procedure pointer

Returns

t_symbol pointer

if (ioproc==NULL) {
return ps_resamp;
} else if (ioproc==jit_mop_ioproc_copy_adapt) {
return ps_adapt;
} else if (ioproc==jit_mop_ioproc_copy_trunc) {
return ps_trunc;
} else if (ioproc==jit_mop_ioproc_copy_trunc_zero) {
return ps_trunc_zero;
} else {
return ps_custom;
}
return ps_resamp;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

846 Module Documentation

34.79.1.21 t jit err jit mop methodall (void ∗ mop, t_symbol ∗ s, ...)

Utility function to send the same method to all MOP inputs and outputs.

Parameters
mop t_jit_mop object pointer

s method symbol
... untyped arguments

Returns

t_jit_err error code

34.79.1.22 t_jit_object ∗ jit mop new (long inputcount, long outputcount)

Constructs instance of t_jit_mop.

Returns

t_jit_mop object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.79.1.23 t_jit_object ∗ jit mop newcopy (t_jit_mop ∗ x)

Constructs instance of t_jit_mop, copying settings of input.

Parameters
x t_jit_mop object pointer

Returns

t_jit_mop object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an intance of t_jit_mop.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.79 MOP Module 847

34.79.1.24 t jit err jit mop output nolink (void ∗ mop, long c)

Utility function to disable all linking attributes for a MOP output.

Parameters
mop t_jit_mop object pointer

c output index

Returns

t_jit_err error code

34.79.1.25 t jit err jit mop single planecount (void ∗ mop, long c)

Utility function to set the planecount attribute for all MOP inputs and outputs.

Parameters
mop t_jit_mop object pointer

c planecount

Returns

t_jit_err error code

34.79.1.26 t jit err jit mop single type (void ∗ mop, t_symbol ∗ s)

Utility function to set the type attribute for all MOP inputs and outputs.

Parameters
mop t_jit_mop object pointer

s type symbol

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

848 Module Documentation

34.80 Parallel Utility Module

Collaboration diagram for Parallel Utility Module:

Parallel Utility ModuleJitter

Functions

• void jit_parallel_ndim_calc (t_jit_parallel_ndim ∗p)

Tasks N-dimensional matrix calcuations to multiple threads if appropriate.

• void jit_parallel_ndim_simplecalc1 (method fn, void ∗data, long dimcount, long
∗dim, long planecount, t_jit_matrix_info ∗minfo1, char ∗bp1, long flags1)

Tasks one input/output N-dimensional matrix calcuations to multiple threads if appro-
priate.

• void jit_parallel_ndim_simplecalc2 (method fn, void ∗data, long dimcount, long
∗dim, long planecount, t_jit_matrix_info ∗minfo1, char ∗bp1, t_jit_matrix_info
∗minfo2, char ∗bp2, long flags1, long flags2)

Tasks two input/output N-dimensional matrix calcuations to multiple threads if appro-
priate.

• void jit_parallel_ndim_simplecalc3 (method fn, void ∗data, long dimcount, long
∗dim, long planecount, t_jit_matrix_info ∗minfo1, char ∗bp1, t_jit_matrix_info
∗minfo2, char ∗bp2, t_jit_matrix_info ∗minfo3, char ∗bp3, long flags1, long flags2,
long flags3)

Tasks three input/output N-dimensional matrix calcuations to multiple threads if appro-
priate.

• void jit_parallel_ndim_simplecalc4 (method fn, void ∗data, long dimcount, long
∗dim, long planecount, t_jit_matrix_info ∗minfo1, char ∗bp1, t_jit_matrix_info
∗minfo2, char ∗bp2, t_jit_matrix_info ∗minfo3, char ∗bp3, t_jit_matrix_info
∗minfo4, char ∗bp4, long flags1, long flags2, long flags3, long flags4)

Tasks four input/output N-dimensional matrix calcuations to multiple threads if appro-
priate.

34.80.1 Function Documentation

34.80.1.1 void jit parallel ndim calc (t jit parallel ndim ∗ p)

Tasks N-dimensional matrix calcuations to multiple threads if appropriate.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.80 Parallel Utility Module 849

This function is ultimately what the other parallel utility functions call after having set
up the t_jit_parallel_ndim struct. The operation is tasked to multiple threads if all of the
following conditions are met:

• multiple processors or cores are present

• parallel processing is enabled

• the size of the matrix data is larger then the parallel threshold

Parameters
p parallel ndim calc data

34.80.1.2 void jit parallel ndim simplecalc1 (method fn, void ∗ data, long dimcount, long ∗
dim, long planecount, t_jit_matrix_info ∗ minfo1, char ∗ bp1, long flags1)

Tasks one input/output N-dimensional matrix calcuations to multiple threads if appropri-
ate.

This function fills out the t_jit_parallel_ndim struct for a one input/output N-dimensional
matrix calc method, and calls jit_parallel_ndim_calc. This function does not distinguish
between what is an input or output.

Parameters
fn N-dimensional matrix calc method

data user defined pointer (typically object)
dimcount master number of dimensions to iterate

dim master pointer to dimension sizes
planecount master number of planes

minfo1 matrix info for first input/output
bp1 matrix data pointer for first input/output

flags1 parallel flags for first input/output

34.80.1.3 void jit parallel ndim simplecalc2 (method fn, void ∗ data, long dimcount, long ∗
dim, long planecount, t_jit_matrix_info ∗ minfo1, char ∗ bp1, t_jit_matrix_info
∗ minfo2, char ∗ bp2, long flags1, long flags2)

Tasks two input/output N-dimensional matrix calcuations to multiple threads if appropri-
ate.

This function fills out the t_jit_parallel_ndim struct for a two input/output N-dimensional
matrix calc method, and calls jit_parallel_ndim_calc. This function does not distinguish
between what is an input or output.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

850 Module Documentation

Parameters
fn N-dimensional matrix calc method

data user defined pointer (typically object)
dimcount master number of dimensions to iterate

dim master pointer to dimension sizes
planecount master number of planes

minfo1 matrix info for first input/output
bp1 matrix data pointer for first input/output

flags1 parallel flags for first input/output
minfo2 matrix info for second input/output

bp2 matrix data pointer for second input/output
flags2 parallel flags for second input/output

34.80.1.4 void jit parallel ndim simplecalc3 (method fn, void ∗ data, long dimcount, long ∗
dim, long planecount, t_jit_matrix_info ∗ minfo1, char ∗ bp1, t_jit_matrix_info
∗ minfo2, char ∗ bp2, t_jit_matrix_info ∗ minfo3, char ∗ bp3, long flags1, long
flags2, long flags3)

Tasks three input/output N-dimensional matrix calcuations to multiple threads if appro-
priate.

This function fills out the t_jit_parallel_ndim struct for a three input/output N-dimensional
matrix calc method, and calls jit_parallel_ndim_calc. This function does not distinguish
between what is an input or output.

Parameters
fn N-dimensional matrix calc method

data user defined pointer (typically object)
dimcount master number of dimensions to iterate

dim master pointer to dimension sizes
planecount master number of planes

minfo1 matrix info for first input/output
bp1 matrix data pointer for first input/output

flags1 parallel flags for first input/output
minfo2 matrix info for second input/output

bp2 matrix data pointer for second input/output
flags2 parallel flags for second input/output

minfo3 matrix info for third input/output
bp3 matrix data pointer for third input/output

flags3 parallel flags for third input/output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.80 Parallel Utility Module 851

34.80.1.5 void jit parallel ndim simplecalc4 (method fn, void ∗ data, long dimcount, long ∗
dim, long planecount, t_jit_matrix_info ∗ minfo1, char ∗ bp1, t_jit_matrix_info
∗ minfo2, char ∗ bp2, t_jit_matrix_info ∗ minfo3, char ∗ bp3, t_jit_matrix_info
∗ minfo4, char ∗ bp4, long flags1, long flags2, long flags3, long flags4)

Tasks four input/output N-dimensional matrix calcuations to multiple threads if appropri-
ate.

This function fills out the t_jit_parallel_ndim struct for a three input/output N-dimensional
matrix calc method, and calls jit_parallel_ndim_calc. This function does not distinguish
between what is an input or output.

Parameters
fn N-dimensional matrix calc method

data user defined pointer (typically object)
dimcount master number of dimensions to iterate

dim master pointer to dimension sizes
planecount master number of planes

minfo1 matrix info for first input/output
bp1 matrix data pointer for first input/output

flags1 parallel flags for first input/output
minfo2 matrix info for second input/output

bp2 matrix data pointer for second input/output
flags2 parallel flags for second input/output

minfo3 matrix info for third input/output
bp3 matrix data pointer for third input/output

flags3 parallel flags for third input/output
minfo4 matrix info for fourth input/output

bp4 matrix data pointer for fourth input/output
flags4 parallel flags for fourth input/output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

852 Module Documentation

34.81 MOP Max Wrapper Module

Collaboration diagram for MOP Max Wrapper Module:

Jitter MOP Max Wrapper Module

Functions

• t_jit_err max_jit_classex_mop_wrap (void ∗mclass, void ∗jclass, long flags)

Adds default methods and attributes to the MOP Max wrapper class.

• t_jit_err max_jit_classex_mop_mproc (void ∗mclass, void ∗jclass, void ∗mproc)

Sets a custom matrix procedure for the MOP Max wrapper class.

• t_jit_err max_jit_mop_setup (void ∗x)

Sets up necessary resources for MOP Max wrapper object.

• t_jit_err max_jit_mop_variable_addinputs (void ∗x, long c)

Sets the number of inputs for a variable input MOP Max wrapper object.

• t_jit_err max_jit_mop_variable_addoutputs (void ∗x, long c)

Sets the number of outputs for a variable input MOP Max wrapper object.

• t_jit_err max_jit_mop_inputs (void ∗x)

Creates input resources for a MOP Max wrapper object.

• t_jit_err max_jit_mop_outputs (void ∗x)

Creates output resources for a MOP Max wrapper object.

• t_jit_err max_jit_mop_matrixout_new (void ∗x, long c)

Creates matrix outlet for a MOP Max wrapper object.

• t_jit_err max_jit_mop_matrix_args (void ∗x, long argc, t_atom ∗argv)

Process matrix arguments for a MOP Max wrapper object.

• t_jit_err max_jit_mop_jit_matrix (void ∗x, t_symbol ∗s, long argc, t_atom ∗argv)

Default jit_matrix method for a MOP Max wrapper object.

• t_jit_err max_jit_mop_assist (void ∗x, void ∗b, long m, long a, char ∗s)

Default assist method for a MOP Max wrapper object.

• t_jit_err max_jit_mop_bang (void ∗x)

Default bang method for a MOP Max wrapper object.

• t_jit_err max_jit_mop_outputmatrix (void ∗x)

Default outputmatrix method for a MOP Max wrapper object.

• void max_jit_mop_clear (void ∗x)

Default clear method for a MOP Max wrapper object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.81 MOP Max Wrapper Module 853

• t_jit_err max_jit_mop_notify (void ∗x, t_symbol ∗s, t_symbol ∗msg)

Default notify method for a MOP Max wrapper object.

• void max_jit_mop_free (void ∗x)

Frees additional resources used by a MOP Max wrapper object.

• t_jit_err max_jit_mop_adapt_matrix_all (void ∗x, void ∗y)

Adapts all input and output matrices to matrix specified.

• void ∗ max_jit_mop_get_io_by_name (void ∗x, t_symbol ∗s)

Retrieves t_jit_mop_io object pointer by name.

• void ∗ max_jit_mop_getinput (void ∗x, long c)

Retrieves input t_jit_mop_io object pointer index.

• void ∗ max_jit_mop_getoutput (void ∗x, long c)

Retrieves output t_jit_mop_io object pointer index.

• long max_jit_mop_getoutputmode (void ∗x)

Retrieves current MOP Max wrapper class output mode.

• t_jit_err max_jit_mop_setup_simple (void ∗x, void ∗o, long argc, t_atom ∗argv)

Initializes default state and resources for MOP Max wrapper class.

34.81.1 Function Documentation

34.81.1.1 t jit err max jit classex mop mproc (void ∗ mclass, void ∗ jclass, void ∗ mproc)

Sets a custom matrix procedure for the MOP Max wrapper class.

Parameters
mclass max jit classex pointer returned from max_jit_classex_setup

jclass t_jit_class pointer, typcially returned from jit_class_findbyname
mproc matrix procedure

Returns

t_jit_err error code

34.81.1.2 t jit err max jit classex mop wrap (void ∗ mclass, void ∗ jclass, long flags)

Adds default methods and attributes to the MOP Max wrapper class.

Parameters
mclass max jit classex pointer returned from max_jit_classex_setup

jclass t_jit_class pointer, typcially returned from jit_class_findbyname
flags flags to override default MOP Max wrapper behavior

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

854 Module Documentation

Returns

t_jit_err error code

34.81.1.3 t jit err max jit mop adapt matrix all (void ∗ x, void ∗ y)

Adapts all input and output matrices to matrix specified.

Typically used within the MOP Max Wrapper jit_matrix method for left most input.

Parameters
x Max object pointer
y matrix to adapt to

Returns

t_jit_err error code

34.81.1.4 t jit err max jit mop assist (void ∗ x, void ∗ b, long m, long a, char ∗ s)

Default assist method for a MOP Max wrapper object.

Parameters
x Max object pointer
b ignored
m inlet or outlet type
a index
s output string

Returns

t_jit_err error code

34.81.1.5 t jit err max jit mop bang (void ∗ x)

Default bang method for a MOP Max wrapper object.

Simply calls the default outputmatrix method.

Parameters
x Max object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.81 MOP Max Wrapper Module 855

Returns

t_jit_err error code

34.81.1.6 void max jit mop clear (void ∗ x)

Default clear method for a MOP Max wrapper object.

Calls the clear method on all input and output matrices.

Parameters
x Max object pointer

Returns

t_jit_err error code

34.81.1.7 void max jit mop free (void ∗ x)

Frees additional resources used by a MOP Max wrapper object.

Parameters
x Max object pointer

34.81.1.8 void∗ max jit mop get io by name (void ∗ x, t_symbol ∗ s)

Retrieves t_jit_mop_io object pointer by name.

Parameters
x Max object pointer
s input/output name (e.g. in, in2 , out, out2, etc.)

Returns

t_jit_err error code

34.81.1.9 void∗ max jit mop getinput (void ∗ x, long c)

Retrieves input t_jit_mop_io object pointer index.

Parameters
x Max object pointer
c input index

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

856 Module Documentation

Returns

t_jit_err error code

34.81.1.10 void∗ max jit mop getoutput (void ∗ x, long c)

Retrieves output t_jit_mop_io object pointer index.

Parameters
x Max object pointer
c output index

Returns

t_jit_err error code

34.81.1.11 long max jit mop getoutputmode (void ∗ x)

Retrieves current MOP Max wrapper class output mode.

Parameters
x Max object pointer

Returns

t_jit_err error code

34.81.1.12 t jit err max jit mop inputs (void ∗ x)

Creates input resources for a MOP Max wrapper object.

Parameters
x Max object pointer

Returns

t_jit_err error code

34.81.1.13 t jit err max jit mop jit matrix (void ∗ x, t_symbol ∗ s, long argc, t_atom ∗ argv
)

Default jit_matrix method for a MOP Max wrapper object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.81 MOP Max Wrapper Module 857

Parameters
x Max object pointer
s message symbol ("jit_matrix")

argc argument count
argv argument vector

Returns

t_jit_err error code

34.81.1.14 t jit err max jit mop matrix args (void ∗ x, long argc, t_atom ∗ argv)

Process matrix arguments for a MOP Max wrapper object.

Parameters
x Max object pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

34.81.1.15 t jit err max jit mop matrixout new (void ∗ x, long c)

Creates matrix outlet for a MOP Max wrapper object.

Parameters
x Max object pointer
c output index (zero based)

Returns

t_jit_err error code

34.81.1.16 t jit err max jit mop notify (void ∗ x, t_symbol ∗ s, t_symbol ∗ msg)

Default notify method for a MOP Max wrapper object.

Handles any notification methods from any input and output matrix.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

858 Module Documentation

Parameters
x Max object pointer
s notifier name

msg notification message

Returns

t_jit_err error code

34.81.1.17 t jit err max jit mop outputmatrix (void ∗ x)

Default outputmatrix method for a MOP Max wrapper object.

Calculates and outputs according to the MOP outputmode attribute.

Parameters
x Max object pointer

Returns

t_jit_err error code

34.81.1.18 t jit err max jit mop outputs (void ∗ x)

Creates output resources for a MOP Max wrapper object.

Parameters
x Max object pointer

Returns

t_jit_err error code

34.81.1.19 t jit err max jit mop setup (void ∗ x)

Sets up necessary resources for MOP Max wrapper object.

Parameters
x Max object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.81 MOP Max Wrapper Module 859

Returns

t_jit_err error code

34.81.1.20 t jit err max jit mop setup simple (void ∗ x, void ∗ o, long argc, t_atom ∗ argv)

Initializes default state and resources for MOP Max wrapper class.

Parameters
x Max object pointer
o Jitter object pointer

argc argument count
argv argument vector

Returns

t_jit_err error code

max_jit_obex_jitob_set(x,o);
max_jit_obex_dumpout_set(x,outlet_new(x,NULL));
max_jit_mop_setup(x);
max_jit_mop_inputs(x);
max_jit_mop_outputs(x);
max_jit_mop_matrix_args(x,argc,argv);

return JIT_ERR_NONE;

34.81.1.21 t jit err max jit mop variable addinputs (void ∗ x, long c)

Sets the number of inputs for a variable input MOP Max wrapper object.

Parameters
x Max object pointer
c inlet count

Returns

t_jit_err error code

34.81.1.22 t jit err max jit mop variable addoutputs (void ∗ x, long c)

Sets the number of outputs for a variable input MOP Max wrapper object.

Parameters
x Max object pointer
c inlet count

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

860 Module Documentation

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 861

34.82 OB3D Module

Collaboration diagram for OB3D Module:

OB3D ModuleJitter

Functions

• long jit_gl_report_error (char ∗prefix)

Tests for OpenGL error and reports to Max window.

• const char ∗ jit_gl_get_vendor ()

Retrieves OpenGL vendor string.

• const char ∗ jit_gl_get_renderer ()

Retrieves OpenGL renderer string.

• const char ∗ jit_gl_get_version ()

Retrieves OpenGL version string.

• const char ∗ jit_gl_get_glu_version ()

Retrieves OpenGL GL Utilities version string.

• const char ∗ jit_gl_get_extensions ()

Retrieves OpenGL extensions string.

• const char ∗ jit_gl_get_glsl_version ()

Retrieves OpenGL GLSL version string.

• char jit_gl_is_min_version (int major, int minor, int release)

Tests current OpenGL version to be greater than or equal to the version provided.

• char jit_gl_is_extension_supported (t_jit_gl_context ctx, const char ∗ext)

Given a t_jit_gl_context pointer, checks to see if it suppports the provided extension.

• t_jit_glchunk ∗ jit_glchunk_new (t_symbol ∗prim, int planes, int vertices, int in-
dices)

Allocates and initializes a t_jit_glchunk struct.

• t_jit_glchunk ∗ jit_glchunk_grid_new (t_symbol ∗prim, int planes, int width, int
height)

Allocates and initializes a t_jit_glchunk struct with 2D grid matrix.

• void jit_glchunk_delete (t_jit_glchunk ∗x)

Disposes t_jit_glchunk struct.

• t_jit_err jit_glchunk_copy (t_jit_glchunk ∗∗new, t_jit_glchunk ∗orig)

Allocates t_jit_glchunk struct, and copies from t_jit_gl_struct provided.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

862 Module Documentation

• t_jit_err jit_gl_drawinfo_setup (void ∗x, t_jit_gl_drawinfo ∗drawinfo)

Initializes t_jit_gl_drawinfo struct with the current context and ob3d.

• long jit_gl_drawinfo_active_textures (t_jit_gl_drawinfo ∗drawinfo)

Determine the number of active texture units to use.

• void jit_gl_texcoord1f (t_jit_gl_drawinfo ∗drawinfo, float s)

Set texture coordinate for all active texture units.

• void jit_gl_texcoord2f (t_jit_gl_drawinfo ∗drawinfo, float s, float t)

Set texture coordinate for all active texture units.

• void jit_gl_texcoord3f (t_jit_gl_drawinfo ∗drawinfo, float s, float t, float r)

Set texture coordinate for all active texture units.

• void jit_gl_texcoord1fv (t_jit_gl_drawinfo ∗drawinfo, float ∗v)

Set texture coordinate for all active texture units.

• void jit_gl_texcoord2fv (t_jit_gl_drawinfo ∗drawinfo, float ∗v)

Set texture coordinate for all active texture units.

• void jit_gl_texcoord3fv (t_jit_gl_drawinfo ∗drawinfo, float ∗v)

Set texture coordinate for all active texture units.

• void jit_gl_bindtexture (t_jit_gl_drawinfo ∗drawinfo, t_symbol ∗s, long i)

Bind texture for specified texture unit.

• void jit_gl_unbindtexture (t_jit_gl_drawinfo ∗drawinfo, t_symbol ∗s, long i)

Unbind texture for specified texture unit.

• void jit_gl_begincapture (t_jit_gl_drawinfo ∗drawinfo, t_symbol ∗s, long i)

Begin texture capture.

• void jit_gl_endcapture (t_jit_gl_drawinfo ∗drawinfo, t_symbol ∗s, long i)

End texture capture.

• void ∗ jit_ob3d_setup (void ∗jit_class, long oboffset, long flags)

Adds default methods and attributes to the OB3D class.

• void ∗ jit_ob3d_new (void ∗x, t_symbol ∗dest_name)

Allocates and initializes OB3D resources.

• void jit_ob3d_free (void ∗jit_ob)

Disposes OB3D resources.

• t_jit_err jit_ob3d_set_context (void ∗jit_ob)

Sets the current Open GL context to the context referenced by the OB3D drawto at-
tribute.

• void ∗ ob3d_jitob_get (void ∗v)

Retrieves parent Jitter object from opaque t_jit_ob3d struct.

• void ∗ ob3d_patcher_get (void ∗v)

Retrieves containing patcher object from opaque t_jit_ob3d struct.

• long ob3d_auto_get (void ∗v)

Retrieves automatic flag from opaque t_jit_ob3d struct.

• long ob3d_enable_get (void ∗v)

Retrieves enable flag from opaque t_jit_ob3d struct.

• long ob3d_ui_get (void ∗v)

Retrieves UI flag from opaque t_jit_ob3d struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 863

• void ∗ ob3d_outlet_get (void ∗v)

Retrieves matrix outlet from opaque t_jit_ob3d struct.

• long ob3d_dirty_get (void ∗v)

Retrieves dirty flag from opaque t_jit_ob3d struct.

• void ob3d_dirty_set (void ∗v, long c)

Sets dirty flag from opaque t_jit_ob3d struct.

• void ob3d_dest_dim_set (void ∗v, long width, long height)

Sets destination dimensions in opaque t_jit_ob3d struct.

• void ob3d_dest_dim_get (void ∗v, long ∗width, long ∗height)

Gets destination dimensions from opaque t_jit_ob3d struct.

• void ob3d_render_ptr_set (void ∗v, void ∗render_ptr)

Sets renderer pointer in opaque t_jit_ob3d struct.

• void ∗ ob3d_render_ptr_get (void ∗v)

Gets renderer pointer from opaque t_jit_ob3d struct.

• void max_ob3d_setup (void)

Adds default methods and OB3D Max wrapper class.

• void max_jit_ob3d_attach (void ∗x, t_jit_object ∗jit_ob, void ∗outlet)

Allocates and initializes OB3D Max wrapper related resources.

• void max_jit_ob3d_detach (void ∗x)

Disposes OB3D Max wrapper related resources.

• t_jit_err max_jit_ob3d_assist (void ∗x, void ∗b, long m, long a, char ∗s)

Default OB3D Max wrapper assistance method.

• void max_ob3d_bang (t_max_object ∗x)

Default OB3D Max wrapper bang method.

• void max_ob3d_notify (t_max_object ∗x, t_symbol ∗sender_name, t_symbol
∗msg, void ∗p_sender)

Default OB3D Max wrapper notification method.

• t_jit_err jit_ob3d_draw_chunk (void ∗v, t_jit_glchunk ∗chunk)

Draws one t_jit_glchunk If the OB3D is not in matrixoutput mode, the drawing call is
made directly to the renderer.

34.82.1 Function Documentation

34.82.1.1 void jit gl begincapture (t_jit_gl_drawinfo ∗ drawinfo, t_symbol ∗ s, long i)

Begin texture capture.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s texture name
i ignored

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

864 Module Documentation

34.82.1.2 void jit gl bindtexture (t_jit_gl_drawinfo ∗ drawinfo, t_symbol ∗ s, long i)

Bind texture for specified texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s texture name
i texture unit

34.82.1.3 long jit gl drawinfo active textures (t_jit_gl_drawinfo ∗ drawinfo)

Determine the number of active texture units to use.

Parameters
drawinfo t_jit_gl_drawinfo pointer

Returns

number of active texture units

34.82.1.4 t jit err jit gl drawinfo setup (void ∗ x, t_jit_gl_drawinfo ∗ drawinfo)

Initializes t_jit_gl_drawinfo struct with the current context and ob3d.

Parameters
x Jitter object pointer

drawinfo t_jit_gl_drawinfo pointer

Returns

t_jit_err error code

34.82.1.5 void jit gl endcapture (t_jit_gl_drawinfo ∗ drawinfo, t_symbol ∗ s, long i)

End texture capture.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s texture name
i ignored

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 865

34.82.1.6 const char∗ jit gl get extensions ()

Retrieves OpenGL extensions string.

Equivalent to glGetString(GL_EXTENSIONS). Assumes a valid context has been set.

Returns

OpenGL GL extensions string

34.82.1.7 const char∗ jit gl get glsl version ()

Retrieves OpenGL GLSL version string.

Equivalent to glGetString(GL_SHADING_LANGUAGE_VERSION). Assumes a valid
context has been set and the OpenGL renderer supports GLSL.

Returns

OpenGL GL GLSL version string

34.82.1.8 const char∗ jit gl get glu version ()

Retrieves OpenGL GL Utilities version string.

Equivalent to glGetString(GL_GLU_VERSION). Assumes a valid context has been set.

Returns

OpenGL GL Utilities version string

34.82.1.9 const char∗ jit gl get renderer ()

Retrieves OpenGL renderer string.

Equivalent to glGetString(GL_RENDERER). Assumes a valid context has been set.

Returns

OpenGL renderer string

34.82.1.10 const char∗ jit gl get vendor ()

Retrieves OpenGL vendor string.

Equivalent to glGetString(GL_VENDOR). Assumes a valid context has been set.

Returns

OpenGL vendor string

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

866 Module Documentation

34.82.1.11 const char∗ jit gl get version ()

Retrieves OpenGL version string.

Equivalent to glGetString(GL_VERSION). Assumes a valid context has been set.

Returns

OpenGL version string

34.82.1.12 char jit gl is extension supported (t jit gl context ctx, const char ∗ ext)

Given a t_jit_gl_context pointer, checks to see if it suppports the provided extension.

Equivalent to testing for the substring within the string returned by glGetString(GL_EX-
TENSIONS).

Parameters
ctx t_jit_gl_context pointer
ext extension string

Returns

1 if true, 0 if false.

34.82.1.13 char jit gl is min version (int major, int minor, int release)

Tests current OpenGL version to be greater than or equal to the version provided.

Assumes a valid context has been set.

Parameters
major major version number
minor minor version number

release release version number

Returns

1 if true, 0 if false.

34.82.1.14 long jit gl report error (char ∗ prefix)

Tests for OpenGL error and reports to Max window.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 867

Parameters
prefix prefix string

Returns

OpenGL error code

34.82.1.15 void jit gl texcoord1f (t_jit_gl_drawinfo ∗ drawinfo, float s)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord1fARB for each active texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s s texture coordinate

34.82.1.16 void jit gl texcoord1fv (t_jit_gl_drawinfo ∗ drawinfo, float ∗ v)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord1fvARB for each active texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

v texture coordinate vector

34.82.1.17 void jit gl texcoord2f (t_jit_gl_drawinfo ∗ drawinfo, float s, float t)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord2fARB for each active texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s s texture coordinate
t t texture coordinate

34.82.1.18 void jit gl texcoord2fv (t_jit_gl_drawinfo ∗ drawinfo, float ∗ v)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord2fvARB for each active texture unit.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

868 Module Documentation

Parameters
drawinfo t_jit_gl_drawinfo pointer

v texture coordinate vector

34.82.1.19 void jit gl texcoord3f (t_jit_gl_drawinfo ∗ drawinfo, float s, float t, float r)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord3fARB for each active texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s s texture coordinate
t t texture coordinate
r r texture coordinate

34.82.1.20 void jit gl texcoord3fv (t_jit_gl_drawinfo ∗ drawinfo, float ∗ v)

Set texture coordinate for all active texture units.

Equivalent to glMultiTexCoord3fvARB for each active texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

v texture coordinate vector

34.82.1.21 void jit gl unbindtexture (t_jit_gl_drawinfo ∗ drawinfo, t_symbol ∗ s, long i)

Unbind texture for specified texture unit.

Parameters
drawinfo t_jit_gl_drawinfo pointer

s texture name
i texture unit

34.82.1.22 t jit err jit glchunk copy (t_jit_glchunk ∗∗ new, t_jit_glchunk ∗ orig)

Allocates t_jit_glchunk struct, and copies from t_jit_gl_struct provided.

Parameters
new pointer to new t_jit_glchunk pointer
orig priginal t_jit_glchunk pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 869

Returns

t_jit_err error code

34.82.1.23 void jit glchunk delete (t_jit_glchunk ∗ x)

Disposes t_jit_glchunk struct.

Parameters
x t_jit_glchunk pointer

34.82.1.24 t_jit_glchunk∗ jit glchunk grid new (t_symbol ∗ prim, int planes, int width, int
height)

Allocates and initializes a t_jit_glchunk struct with 2D grid matrix.

Parameters
prim drawing primitive name

planes number of planes to allocate in vertex matrix
width width of vertex matrix to allocate

height height of vertex matrix to allocate

Returns

t_jit_glchunk pointer

34.82.1.25 t_jit_glchunk∗ jit glchunk new (t_symbol ∗ prim, int planes, int vertices, int
indices)

Allocates and initializes a t_jit_glchunk struct.

Parameters
prim drawing primitive name

planes number of planes to allocate in vertex matrix
vertices number of vertices to allocate in vertex matrix
indices number of indices to allocate in index matrix, if used

Returns

t_jit_glchunk pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

870 Module Documentation

34.82.1.26 t jit err jit ob3d draw chunk (void ∗ v, t_jit_glchunk ∗ chunk)

Draws one t_jit_glchunk If the OB3D is not in matrixoutput mode, the drawing call is
made directly to the renderer.

Otherwise, the chunk is sent out the OB3D’s outlet as a message compatible with jit.gl.-
render.

Parameters
v t_jit_ob3d pointer

chunk t_jit_glchunk pointer

Returns

t_jit_err error code

34.82.1.27 void jit ob3d free (void ∗ jit ob)

Disposes OB3D resources.

Parameters
jit_ob Jitter object pointer

34.82.1.28 void∗ jit ob3d new (void ∗ x, t_symbol ∗ dest name)

Allocates and initializes OB3D resources.

Parameters
x Jitter object pointer

dest_name drawing destination name

Returns

t_jit_ob3d pointer (opaque)

34.82.1.29 t jit err jit ob3d set context (void ∗ jit ob)

Sets the current Open GL context to the context referenced by the OB3D drawto at-
tribute.

Warning

Not recommended for use within the draw method, as it can have adverse effects
when rendering to alternate contexts as is the case when capturing to a texture.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 871

Parameters
jit_ob Jitter object pointer

Returns

t_jit_err error code

34.82.1.30 void∗ jit ob3d setup (void ∗ jit class, long oboffset, long flags)

Adds default methods and attributes to the OB3D class.

Parameters
jit_class Jitter class pointer
oboffset object struct byte offset for t_jit_ob3d pointer

flags flags to override default OB3D behavior

Returns

t_jit_class3d pointer (opaque)

34.82.1.31 t jit err max jit ob3d assist (void ∗ x, void ∗ b, long m, long a, char ∗ s)

Default OB3D Max wrapper assistance method.

Parameters
x Max object pointer
b ignored
m inlet or outlet type
a index
s output string

Returns

t_jit_err error code

34.82.1.32 void max jit ob3d attach (void ∗ x, t_jit_object ∗ jit ob, void ∗ outlet)

Allocates and initializes OB3D Max wrapper related resources.

Parameters
x Max wrapper object pointer

jit_ob Jitter object pointer
outlet matrix outlet pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

872 Module Documentation

34.82.1.33 void max jit ob3d detach (void ∗ x)

Disposes OB3D Max wrapper related resources.

Parameters
x Max wrapper object pointer

34.82.1.34 void max ob3d bang (t_max_object ∗ x)

Default OB3D Max wrapper bang method.

Parameters
x Max object pointer

34.82.1.35 void max ob3d notify (t_max_object ∗ x, t_symbol ∗ sender name, t_symbol
∗ msg, void ∗ p sender)

Default OB3D Max wrapper notification method.

Parameters
x Max object pointer

sender_-
name

sender’s object name

msg notification message
p_sender sender’s object pointer

34.82.1.36 long ob3d auto get (void ∗ v)

Retrieves automatic flag from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

automatic flag

34.82.1.37 void ob3d dest dim get (void ∗ v, long ∗ width, long ∗ height)

Gets destination dimensions from opaque t_jit_ob3d struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 873

Parameters
v t_jit_ob3d pointer

width destination dimensions width pointer
height destination dimensions height pointer

34.82.1.38 void ob3d dest dim set (void ∗ v, long width, long height)

Sets destination dimensions in opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

width destination dimensions width
height destination dimensions height

34.82.1.39 long ob3d dirty get (void ∗ v)

Retrieves dirty flag from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

dirty flag

34.82.1.40 void ob3d dirty set (void ∗ v, long c)

Sets dirty flag from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer
c dirty flag state

34.82.1.41 long ob3d enable get (void ∗ v)

Retrieves enable flag from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

874 Module Documentation

Returns

enable flag

34.82.1.42 void∗ ob3d jitob get (void ∗ v)

Retrieves parent Jitter object from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

parent Jitter object pointer

34.82.1.43 void∗ ob3d outlet get (void ∗ v)

Retrieves matrix outlet from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

matrix outlet

34.82.1.44 void∗ ob3d patcher get (void ∗ v)

Retrieves containing patcher object from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

containing patcher object

34.82.1.45 void∗ ob3d render ptr get (void ∗ v)

Gets renderer pointer from opaque t_jit_ob3d struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.82 OB3D Module 875

Parameters
v t_jit_ob3d pointer

Returns

renderer pointer

34.82.1.46 void ob3d render ptr set (void ∗ v, void ∗ render ptr)

Sets renderer pointer in opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

render_ptr renderer pointer

34.82.1.47 long ob3d ui get (void ∗ v)

Retrieves UI flag from opaque t_jit_ob3d struct.

Parameters
v t_jit_ob3d pointer

Returns

UI flag

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

876 Module Documentation

34.83 Operator Vector Module

Collaboration diagram for Operator Vector Module:

Operator Vector ModuleJitter

Functions

• void jit_op_vector_pass_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Unary operator: pass (char)

• void jit_op_vector_mult_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: multiplication (char)

• void jit_op_vector_div_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: division (char)

• void jit_op_vector_mod_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: modulo (char)

• void jit_op_vector_add_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: addition (char)

• void jit_op_vector_adds_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: saturated addition (char)

• void jit_op_vector_sub_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: subtraction (char)

• void jit_op_vector_subs_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: saturated subtraction (char)

• void jit_op_vector_min_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: minimum (char)

• void jit_op_vector_max_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 877

Binary operator: maximum (char)

• void jit_op_vector_avg_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: average (char)

• void jit_op_vector_absdiff_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: absolute difference (char)

• void jit_op_vector_pass_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: pass (float32)

• void jit_op_vector_mult_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: multiplication (float32)

• void jit_op_vector_div_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: division (float32)

• void jit_op_vector_add_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: addition (float32)

• void jit_op_vector_sub_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: subtraction (float32)

• void jit_op_vector_min_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: minimum (float32)

• void jit_op_vector_max_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: maximum (float32)

• void jit_op_vector_abs_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: absolute value (float32)

• void jit_op_vector_avg_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: average (float32)

• void jit_op_vector_absdiff_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit-
_op_info ∗in1, t_jit_op_info ∗out)

Binary operator: absolute difference (float32)

• void jit_op_vector_mod_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: modulo (float32)

• void jit_op_vector_fold_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: fold (float32)

• void jit_op_vector_wrap_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

878 Module Documentation

Binary operator: wrap (float32)

• void jit_op_vector_pass_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: pass (float64)

• void jit_op_vector_mult_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: multiplication (float64)

• void jit_op_vector_div_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: division (float64)

• void jit_op_vector_add_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: addition (float64)

• void jit_op_vector_sub_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: subtraction (float64)

• void jit_op_vector_min_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: minimum (float64)

• void jit_op_vector_max_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: maximum (float64)

• void jit_op_vector_abs_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: absolute value (float64)

• void jit_op_vector_avg_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: average (float64)

• void jit_op_vector_absdiff_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit-
_op_info ∗in1, t_jit_op_info ∗out)

Binary operator: absolute difference (float64)

• void jit_op_vector_mod_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: modulo (float64)

• void jit_op_vector_fold_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: fold (float64)

• void jit_op_vector_wrap_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: wrap (float64)

• void jit_op_vector_pass_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Unary operator: pass (long)

• void jit_op_vector_mult_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 879

Binary operator: multiplication (long)

• void jit_op_vector_div_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: division (long)

• void jit_op_vector_mod_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: modulo (long)

• void jit_op_vector_add_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: addition (long)

• void jit_op_vector_sub_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: subtraction (long)

• void jit_op_vector_min_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: minimum (long)

• void jit_op_vector_max_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: maximum (long)

• void jit_op_vector_abs_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Unary operator: absolute value (long)

• void jit_op_vector_avg_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: average (long)

• void jit_op_vector_absdiff_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: absolute difference (long)

• void jit_op_vector_bitand_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise and (char)

• void jit_op_vector_bitor_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise or (char)

• void jit_op_vector_bitxor_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise exclusive or (char)

• void jit_op_vector_bitnot_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: bitwise not (char)

• void jit_op_vector_rshift_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise right shift (char)

• void jit_op_vector_lshift_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

880 Module Documentation

Binary operator: bitwise left shift (char)

• void jit_op_vector_bitand_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise and (long)

• void jit_op_vector_bitor_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise or (long)

• void jit_op_vector_bitxor_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise exclusive or (long)

• void jit_op_vector_bitnot_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: bitwise not (long)

• void jit_op_vector_rshift_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise right shift (long)

• void jit_op_vector_lshift_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: bitwise left shift (long)

• void jit_op_vector_flippass_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: flipped pass (char)

• void jit_op_vector_flipdiv_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped division (char)

• void jit_op_vector_flipmod_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped modulo (char)

• void jit_op_vector_flipsub_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped subtraction (char)

• void jit_op_vector_flippass_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_-
jit_op_info ∗in1, t_jit_op_info ∗out)

Unary operator: flipped pass (float32)

• void jit_op_vector_flipdiv_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped division (float32)

• void jit_op_vector_flipmod_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit-
_op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped modulo (float32)

• void jit_op_vector_flipsub_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit-
_op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped subtraction (float32)

• void jit_op_vector_flippass_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_-
jit_op_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 881

Unary operator: flipped pass (float64)

• void jit_op_vector_flipdiv_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped division (float64)

• void jit_op_vector_flipmod_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit-
_op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped modulo (float64)

• void jit_op_vector_flippass_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: flipped pass (long)

• void jit_op_vector_flipdiv_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped division (long)

• void jit_op_vector_flipmod_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped modulo (long)

• void jit_op_vector_flipsub_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: flipped subtraction (long)

• void jit_op_vector_and_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: logical and (char)

• void jit_op_vector_or_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: logical or (char)

• void jit_op_vector_not_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Unary operator: logical not (char)

• void jit_op_vector_gt_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: greater than (char)

• void jit_op_vector_gte_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals (char)

• void jit_op_vector_lt_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: less than (char)

• void jit_op_vector_lte_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals (char)

• void jit_op_vector_eq_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: equals (char)

• void jit_op_vector_neq_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

882 Module Documentation

Binary operator: not equals (char)

• void jit_op_vector_and_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: logical and (float32)

• void jit_op_vector_or_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: logical or (float32)

• void jit_op_vector_not_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: logical not (float32)

• void jit_op_vector_gt_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than (float32)

• void jit_op_vector_gte_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals (float32)

• void jit_op_vector_lt_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than (float32)

• void jit_op_vector_lte_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals (float32)

• void jit_op_vector_eq_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: equals (float32)

• void jit_op_vector_neq_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals (float32)

• void jit_op_vector_and_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: logical and (float64)

• void jit_op_vector_or_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: logical or (float64)

• void jit_op_vector_not_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: logical not (float64)

• void jit_op_vector_gt_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than (float64)

• void jit_op_vector_gte_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals (float64)

• void jit_op_vector_lt_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 883

Binary operator: less than (float64)

• void jit_op_vector_lte_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals (float64)

• void jit_op_vector_eq_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: equals (float64)

• void jit_op_vector_neq_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals (float64)

• void jit_op_vector_and_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: logical and (long)

• void jit_op_vector_or_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: logical or (long)

• void jit_op_vector_not_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Unary operator: logical not (long)

• void jit_op_vector_gt_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: greater than (long)

• void jit_op_vector_gte_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals (long)

• void jit_op_vector_lt_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: less than (long)

• void jit_op_vector_lte_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals (long)

• void jit_op_vector_eq_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: equals (long)

• void jit_op_vector_neq_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals (long)

• void jit_op_vector_gtp_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than pass (char)

• void jit_op_vector_gtep_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals pass (char)

• void jit_op_vector_ltp_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

884 Module Documentation

Binary operator: less than pass (char)

• void jit_op_vector_ltep_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals pass (char)

• void jit_op_vector_eqp_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: equals pass (char)

• void jit_op_vector_neqp_char (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals pass (char)

• void jit_op_vector_gtp_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than pass (float32)

• void jit_op_vector_gtep_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals pass (float32)

• void jit_op_vector_ltp_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than pass (float32)

• void jit_op_vector_ltep_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals pass (float32)

• void jit_op_vector_eqp_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: equals pass (float32)

• void jit_op_vector_neqp_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals pass (float32)

• void jit_op_vector_gtp_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than pass (float64)

• void jit_op_vector_gtep_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals pass (float64)

• void jit_op_vector_ltp_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than pass (float64)

• void jit_op_vector_ltep_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals pass (float64)

• void jit_op_vector_eqp_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: equals pass (float64)

• void jit_op_vector_neqp_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 885

Binary operator: not equals pass (float64)

• void jit_op_vector_gtp_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than pass (long)

• void jit_op_vector_gtep_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: greater than or equals pass (long)

• void jit_op_vector_ltp_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_info
∗in1, t_jit_op_info ∗out)

Binary operator: less than pass (long)

• void jit_op_vector_ltep_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: less than or equals pass (long)

• void jit_op_vector_eqp_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op_-
info ∗in1, t_jit_op_info ∗out)

Binary operator: equals pass (long)

• void jit_op_vector_neqp_long (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Binary operator: not equals pass (long)

• void jit_op_vector_sin_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: sine (float32)

• void jit_op_vector_cos_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: cosine (float32)

• void jit_op_vector_tan_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: tangent (float32)

• void jit_op_vector_asin_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arcsine (float32)

• void jit_op_vector_acos_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arccosine (float32)

• void jit_op_vector_atan_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arctangent (float32)

• void jit_op_vector_atan2_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: arctangent (float32)

• void jit_op_vector_sinh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic sine (float32)

• void jit_op_vector_cosh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

886 Module Documentation

Unary operator: hyperbolic cosine (float32)

• void jit_op_vector_tanh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic tangent (float32)

• void jit_op_vector_asinh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arcsine (float32)

• void jit_op_vector_acosh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arccosine (float32)

• void jit_op_vector_atanh_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arctangent (float32)

• void jit_op_vector_exp_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: exponent (float32)

• void jit_op_vector_exp2_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: exponent base 10 (float32)

• void jit_op_vector_log_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm (float32)

• void jit_op_vector_log2_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm base 2(float32)

• void jit_op_vector_log10_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm base 10 (float32)

• void jit_op_vector_hypot_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: hypotenuse (float32)

• void jit_op_vector_pow_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: power (float32)

• void jit_op_vector_sqrt_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: square root (float32)

• void jit_op_vector_ceil_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: ceiling (float32)

• void jit_op_vector_floor_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: floor (float32)

• void jit_op_vector_round_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 887

Unary operator: round (float32)

• void jit_op_vector_trunc_float32 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: truncate (float32)

• void jit_op_vector_sin_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: sine (float64)

• void jit_op_vector_cos_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: cosine (float64)

• void jit_op_vector_tan_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: tangent (float64)

• void jit_op_vector_asin_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arcsine (float64)

• void jit_op_vector_acos_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arccosine (float64)

• void jit_op_vector_atan_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: arctangetn (float64)

• void jit_op_vector_atan2_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: arctangent (float64)

• void jit_op_vector_sinh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic sine (float64)

• void jit_op_vector_cosh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic cosine (float64)

• void jit_op_vector_tanh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic tangent (float64)

• void jit_op_vector_asinh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arcsine (float64)

• void jit_op_vector_acosh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arccosine (float64)

• void jit_op_vector_atanh_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: hyperbolic arctangent (float64)

• void jit_op_vector_exp_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

888 Module Documentation

Unary operator: exponent (float64)

• void jit_op_vector_exp2_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: exponent base 2(float64)

• void jit_op_vector_log_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm (float64)

• void jit_op_vector_log2_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm base 2 (float64)

• void jit_op_vector_log10_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: logarithm base 10 (float64)

• void jit_op_vector_hypot_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: hypotenuse (float64)

• void jit_op_vector_pow_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Binary operator: power (float64)

• void jit_op_vector_sqrt_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: square root (float64)

• void jit_op_vector_ceil_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_op-
_info ∗in1, t_jit_op_info ∗out)

Unary operator: ceiling (float64)

• void jit_op_vector_floor_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: floor (float64)

• void jit_op_vector_round_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: round (float64)

• void jit_op_vector_trunc_float64 (long n, void ∗vecdata, t_jit_op_info ∗in0, t_jit_-
op_info ∗in1, t_jit_op_info ∗out)

Unary operator: truncate (float64)

34.83.1 Function Documentation

34.83.1.1 void jit op vector abs float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: absolute value (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 889

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.2 void jit op vector abs float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: absolute value (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.3 void jit op vector abs long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: absolute value (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.4 void jit op vector absdiff char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: absolute difference (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

890 Module Documentation

34.83.1.5 void jit op vector absdiff float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: absolute difference (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.6 void jit op vector absdiff float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: absolute difference (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.7 void jit op vector absdiff long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: absolute difference (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.8 void jit op vector acos float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arccosine (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 891

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.9 void jit op vector acos float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arccosine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.10 void jit op vector acosh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arccosine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.11 void jit op vector acosh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arccosine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

892 Module Documentation

34.83.1.12 void jit op vector add char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: addition (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.13 void jit op vector add float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: addition (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.14 void jit op vector add float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: addition (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.15 void jit op vector add long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: addition (long)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 893

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.16 void jit op vector adds char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: saturated addition (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.17 void jit op vector and char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical and (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.18 void jit op vector and float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical and (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

894 Module Documentation

34.83.1.19 void jit op vector and float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical and (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.20 void jit op vector and long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical and (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.21 void jit op vector asin float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arcsine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.22 void jit op vector asin float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arcsine (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 895

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.23 void jit op vector asinh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arcsine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.24 void jit op vector asinh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arcsine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.25 void jit op vector atan2 float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: arctangent (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

896 Module Documentation

34.83.1.26 void jit op vector atan2 float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: arctangent (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.27 void jit op vector atan float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arctangent (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.28 void jit op vector atan float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: arctangetn (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.29 void jit op vector atanh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arctangent (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 897

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.30 void jit op vector atanh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic arctangent (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.31 void jit op vector avg char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: average (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.32 void jit op vector avg float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: average (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

898 Module Documentation

34.83.1.33 void jit op vector avg float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: average (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.34 void jit op vector avg long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: average (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.35 void jit op vector bitand char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise and (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.36 void jit op vector bitand long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise and (long)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 899

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.37 void jit op vector bitnot char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: bitwise not (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.38 void jit op vector bitnot long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: bitwise not (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.39 void jit op vector bitor char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise or (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

900 Module Documentation

34.83.1.40 void jit op vector bitor long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise or (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.41 void jit op vector bitxor char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise exclusive or (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.42 void jit op vector bitxor long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise exclusive or (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.43 void jit op vector ceil float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: ceiling (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 901

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.44 void jit op vector ceil float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: ceiling (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.45 void jit op vector cos float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: cosine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.46 void jit op vector cos float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: cosine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

902 Module Documentation

34.83.1.47 void jit op vector cosh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic cosine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.48 void jit op vector cosh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic cosine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.49 void jit op vector div char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: division (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.50 void jit op vector div float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: division (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 903

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.51 void jit op vector div float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: division (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.52 void jit op vector div long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: division (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.53 void jit op vector eq char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

904 Module Documentation

34.83.1.54 void jit op vector eq float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.55 void jit op vector eq float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.56 void jit op vector eq long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.57 void jit op vector eqp char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals pass (char)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 905

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.58 void jit op vector eqp float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.59 void jit op vector eqp float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.60 void jit op vector eqp long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: equals pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

906 Module Documentation

34.83.1.61 void jit op vector exp2 float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: exponent base 10 (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.62 void jit op vector exp2 float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: exponent base 2(float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.63 void jit op vector exp float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: exponent (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.64 void jit op vector exp float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: exponent (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 907

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.65 void jit op vector flipdiv char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped division (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.66 void jit op vector flipdiv float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped division (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.67 void jit op vector flipdiv float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped division (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

908 Module Documentation

34.83.1.68 void jit op vector flipdiv long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped division (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.69 void jit op vector flipmod char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped modulo (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.70 void jit op vector flipmod float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped modulo (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.71 void jit op vector flipmod float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped modulo (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 909

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.72 void jit op vector flipmod long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped modulo (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.73 void jit op vector flippass char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: flipped pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.74 void jit op vector flippass float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: flipped pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

910 Module Documentation

34.83.1.75 void jit op vector flippass float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: flipped pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.76 void jit op vector flippass long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: flipped pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.77 void jit op vector flipsub char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped subtraction (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.78 void jit op vector flipsub float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped subtraction (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 911

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.79 void jit op vector flipsub long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: flipped subtraction (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.80 void jit op vector floor float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: floor (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.81 void jit op vector floor float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: floor (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

912 Module Documentation

34.83.1.82 void jit op vector fold float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: fold (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.83 void jit op vector fold float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: fold (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.84 void jit op vector gt char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.85 void jit op vector gt float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 913

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.86 void jit op vector gt float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.87 void jit op vector gt long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.88 void jit op vector gte char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

914 Module Documentation

34.83.1.89 void jit op vector gte float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.90 void jit op vector gte float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.91 void jit op vector gte long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.92 void jit op vector gtep char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals pass (char)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 915

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.93 void jit op vector gtep float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.94 void jit op vector gtep float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.95 void jit op vector gtep long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than or equals pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

916 Module Documentation

34.83.1.96 void jit op vector gtp char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.97 void jit op vector gtp float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.98 void jit op vector gtp float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.99 void jit op vector gtp long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: greater than pass (long)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 917

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.100 void jit op vector hypot float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: hypotenuse (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.101 void jit op vector hypot float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: hypotenuse (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.102 void jit op vector log10 float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm base 10 (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

918 Module Documentation

34.83.1.103 void jit op vector log10 float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm base 10 (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.104 void jit op vector log2 float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm base 2(float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.105 void jit op vector log2 float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm base 2 (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.106 void jit op vector log float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 919

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.107 void jit op vector log float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logarithm (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.108 void jit op vector lshift char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise left shift (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.109 void jit op vector lshift long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise left shift (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

920 Module Documentation

34.83.1.110 void jit op vector lt char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.111 void jit op vector lt float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.112 void jit op vector lt float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.113 void jit op vector lt long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than (long)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 921

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.114 void jit op vector lte char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.115 void jit op vector lte float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.116 void jit op vector lte float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

922 Module Documentation

34.83.1.117 void jit op vector lte long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.118 void jit op vector ltep char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.119 void jit op vector ltep float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.120 void jit op vector ltep float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals pass (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 923

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.121 void jit op vector ltep long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than or equals pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.122 void jit op vector ltp char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.123 void jit op vector ltp float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

924 Module Documentation

34.83.1.124 void jit op vector ltp float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.125 void jit op vector ltp long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: less than pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.126 void jit op vector max char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: maximum (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.127 void jit op vector max float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: maximum (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 925

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.128 void jit op vector max float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: maximum (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.129 void jit op vector max long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: maximum (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.130 void jit op vector min char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: minimum (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

926 Module Documentation

34.83.1.131 void jit op vector min float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: minimum (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.132 void jit op vector min float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: minimum (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.133 void jit op vector min long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: minimum (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.134 void jit op vector mod char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: modulo (char)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 927

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.135 void jit op vector mod float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: modulo (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.136 void jit op vector mod float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: modulo (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.137 void jit op vector mod long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: modulo (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

928 Module Documentation

34.83.1.138 void jit op vector mult char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: multiplication (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.139 void jit op vector mult float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: multiplication (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.140 void jit op vector mult float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: multiplication (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.141 void jit op vector mult long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: multiplication (long)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 929

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.142 void jit op vector neq char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.143 void jit op vector neq float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.144 void jit op vector neq float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

930 Module Documentation

34.83.1.145 void jit op vector neq long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.146 void jit op vector neqp char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.147 void jit op vector neqp float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.148 void jit op vector neqp float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals pass (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 931

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.149 void jit op vector neqp long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: not equals pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.150 void jit op vector not char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logical not (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.151 void jit op vector not float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logical not (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

932 Module Documentation

34.83.1.152 void jit op vector not float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logical not (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.153 void jit op vector not long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: logical not (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.154 void jit op vector or char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical or (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.155 void jit op vector or float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical or (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 933

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.156 void jit op vector or float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical or (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.157 void jit op vector or long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: logical or (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.158 void jit op vector pass char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: pass (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

934 Module Documentation

34.83.1.159 void jit op vector pass float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: pass (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.160 void jit op vector pass float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: pass (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.161 void jit op vector pass long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: pass (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.162 void jit op vector pow float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: power (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 935

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.163 void jit op vector pow float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: power (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.164 void jit op vector round float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: round (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.165 void jit op vector round float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: round (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

936 Module Documentation

34.83.1.166 void jit op vector rshift char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise right shift (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.167 void jit op vector rshift long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: bitwise right shift (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.168 void jit op vector sin float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: sine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.169 void jit op vector sin float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: sine (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 937

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.170 void jit op vector sinh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic sine (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.171 void jit op vector sinh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic sine (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.172 void jit op vector sqrt float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: square root (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

938 Module Documentation

34.83.1.173 void jit op vector sqrt float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: square root (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.174 void jit op vector sub char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: subtraction (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.175 void jit op vector sub float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: subtraction (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.176 void jit op vector sub float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: subtraction (float64)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 939

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.177 void jit op vector sub long (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: subtraction (long)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.178 void jit op vector subs char (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: saturated subtraction (char)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.179 void jit op vector tan float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: tangent (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

940 Module Documentation

34.83.1.180 void jit op vector tan float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: tangent (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.181 void jit op vector tanh float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic tangent (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.182 void jit op vector tanh float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: hyperbolic tangent (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.183 void jit op vector trunc float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: truncate (float32)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.83 Operator Vector Module 941

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.184 void jit op vector trunc float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Unary operator: truncate (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.185 void jit op vector wrap float32 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: wrap (float32)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

34.83.1.186 void jit op vector wrap float64 (long n, void ∗ vecdata, t_jit_op_info ∗ in0,
t_jit_op_info ∗ in1, t_jit_op_info ∗ out)

Binary operator: wrap (float64)

Parameters
n length of vectors

vecdata ignored
in0 left input pointer and stride
in1 right input pointer and stride
out output pointer and stride

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

942 Module Documentation

34.84 QuickTime Codec Module

Collaboration diagram for QuickTime Codec Module:

QuickTime Codec ModuleJitter

Functions

• t_jit_err jit_qt_codec_getcodeclist_video (void ∗x, void ∗attr, long ∗ac, t_atom
∗∗av)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid video
codecs installed on the system.

• t_jit_err jit_qt_codec_getcodeclist_audio (void ∗x, void ∗attr, long ∗ac, t_atom
∗∗av)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid sound com-
pressor codecs installed on the system.

• t_jit_err jit_qt_codec_getcodeclist_gfx (void ∗x, void ∗attr, long ∗ac, t_atom
∗∗av)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid graphic
exporter codecs installed on the system.

• void jit_qt_codec_getcodeclist_video_raw (long ∗count, t_symbol ∗∗∗names)

Returns the list of valid video codecs installed on the system.

• void jit_qt_codec_getcodeclist_audio_raw (long ∗count, t_symbol ∗∗∗names)

Returns the list of valid sound compressor codecs installed on the system.

• void jit_qt_codec_getcodeclist_gfx_raw (long ∗count, t_symbol ∗∗∗names)

Returns the list of valid graphic exporter codecs installed on the system.

• t_symbol ∗ jit_qt_codec_qual2sym (long qual)

Convert a QuickTime Codec Quality value to a human-readable symbol.

• long jit_qt_codec_sym2qual (t_symbol ∗s)

Convert a codec quality symbol to a valid QuickTime Codec Quality value.

• t_symbol ∗ jit_qt_codec_type2sym_valid (long type)

Given the four-char type code of a QuickTime video codec, returns a human-readable
name, assuming that the codec is installed _and_ is supported by Jitter.

• t_symbol ∗ jit_qt_codec_type2sym (long type)

Given the four-char type code of a QuickTime video codec, returns a human-readable
name, assuming that the codec is installed.

• long jit_qt_codec_sym2type_valid (t_symbol ∗s)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.84 QuickTime Codec Module 943

Given the human-readable name of a QuickTime video codec, returns a four-char
code, assuming that the codec is installed _and_ is supported by Jitter.

• long jit_qt_codec_sym2type (t_symbol ∗s)

Given the human-readable name of a QuickTime video codec, returns a four-char
code, assuming that the codec is installed.

• t_symbol ∗ jit_qt_codec_acodec2sym (long type)

Given the four-char type code of a QuickTime audio codec, returns a human-readable
name, assuming that the codec is installed.

• long jit_qt_codec_sym2acodec (t_symbol ∗s)

Given the human-readable name of a QuickTime audio codec, returns a four-char
code, assuming that the codec is installed.

34.84.1 Function Documentation

34.84.1.1 t_symbol∗ jit qt codec acodec2sym (long type)

Given the four-char type code of a QuickTime audio codec, returns a human-readable
name, assuming that the codec is installed.

Parameters
type four-char type code of a QuickTime Codec

Returns

t_symbol pointer containing a human-readable codec name

34.84.1.2 t jit err jit qt codec getcodeclist audio (void ∗ x, void ∗ attr, long ∗ ac, t_atom ∗∗
av)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid sound com-
pressor codecs installed on the system.

Parameters
x undocumented

attr undocumented
ac undocumented
av undocumented

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

944 Module Documentation

34.84.1.3 void jit qt codec getcodeclist audio raw (long ∗ count, t_symbol ∗∗∗ names)

Returns the list of valid sound compressor codecs installed on the system.

Parameters
count (on output) number of codec names returned

names (on output) t_symbol pointer array of (count) length, containing the
names of valid installed codecs

34.84.1.4 t jit err jit qt codec getcodeclist gfx (void ∗ x, void ∗ attr, long ∗ ac, t_atom ∗∗ av
)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid graphic ex-
porter codecs installed on the system.

Parameters
x undocumented

attr undocumented
ac undocumented
av undocumented

Returns

t_jit_err error code

34.84.1.5 void jit qt codec getcodeclist gfx raw (long ∗ count, t_symbol ∗∗∗ names)

Returns the list of valid graphic exporter codecs installed on the system.

Parameters
count (on output) number of codec names returned

names (on output) t_symbol pointer array of (count) length, containing the
names of valid installed codecs

34.84.1.6 t jit err jit qt codec getcodeclist video (void ∗ x, void ∗ attr, long ∗ ac, t_atom ∗∗
av)

Drop-in getter function for "codeclist"-type attribute, returns the list of valid video codecs
installed on the system.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.84 QuickTime Codec Module 945

Parameters
x undocumented

attr undocumented
ac undocumented
av undocumented

Returns

t_jit_err error code

34.84.1.7 void jit qt codec getcodeclist video raw (long ∗ count, t_symbol ∗∗∗ names)

Returns the list of valid video codecs installed on the system.

Parameters
count (on output) number of codec names returned

names (on output) t_symbol pointer array of (count) length, containing the
names of valid installed codecs

34.84.1.8 t_symbol∗ jit qt codec qual2sym (long qual)

Convert a QuickTime Codec Quality value to a human-readable symbol.

Parameters
qual QuickTime Codec Quality

Returns

t_symbol pointer containing a human-readable quality name (lossless, min, low,
normal, high, max)

34.84.1.9 long jit qt codec sym2acodec (t_symbol ∗ s)

Given the human-readable name of a QuickTime audio codec, returns a four-char code,
assuming that the codec is installed.

Parameters
s human-readable name of a QuickTime Codec (as returned by "jit_qt_-

codec_getcodeclist_video_raw" or similar)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

946 Module Documentation

Returns

long four-char code

34.84.1.10 long jit qt codec sym2qual (t_symbol ∗ s)

Convert a codec quality symbol to a valid QuickTime Codec Quality value.

Parameters
s codec quality name (lossless, min, low, normal, high, max)

Returns

QuickTime Codec Quality

34.84.1.11 long jit qt codec sym2type (t_symbol ∗ s)

Given the human-readable name of a QuickTime video codec, returns a four-char code,
assuming that the codec is installed.

Parameters
s human-readable name of a QuickTime Codec (as returned by "jit_qt_-

codec_getcodeclist_video_raw" or similar)

Returns

long four-char code

34.84.1.12 long jit qt codec sym2type valid (t_symbol ∗ s)

Given the human-readable name of a QuickTime video codec, returns a four-char code,
assuming that the codec is installed _and_ is supported by Jitter.

Parameters
s human-readable name of a QuickTime Codec (as returned by "jit_qt_-

codec_getcodeclist_video_raw" or similar)

Returns

long four-char code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.84 QuickTime Codec Module 947

34.84.1.13 t_symbol∗ jit qt codec type2sym (long type)

Given the four-char type code of a QuickTime video codec, returns a human-readable
name, assuming that the codec is installed.

Parameters
type four-char type code of a QuickTime Codec

Returns

t_symbol pointer containing a human-readable codec name

34.84.1.14 t_symbol∗ jit qt codec type2sym valid (long type)

Given the four-char type code of a QuickTime video codec, returns a human-readable
name, assuming that the codec is installed _and_ is supported by Jitter.

Parameters
type four-char type code of a QuickTime Codec

Returns

t_symbol pointer containing a human-readable codec name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

948 Module Documentation

34.85 jit.qt.movie Module

Collaboration diagram for jit.qt.movie Module:

jit.qt.movie ModuleJitter

Functions

• t_jit_qt_movie ∗ jit_qt_movie_new (long width, long height)

Constructs instance of t_jit_qt_movie.

• long jit_qt_movie_matrix_calc (t_jit_qt_movie ∗x, void ∗inputs, void ∗outputs)

matrix_calc method for the jit.qt.movie object

• t_jit_err jit_qt_movie_matrix_to_image (t_jit_qt_movie ∗x, void ∗o, short ac, t_-
atom ∗av, t_graphic_exportsettings ∗gs)

Export a Jitter matrix to a QuickTime-compatible image file.

• t_jit_err jit_qt_movie_read_typed (t_jit_qt_movie ∗x, t_symbol ∗s, long ac, t_atom
∗av, t_atom ∗rv)

Read a QuickTime Movie.

34.85.1 Function Documentation

34.85.1.1 long jit qt movie matrix calc (t jit qt movie ∗ x, void ∗ inputs, void ∗ outputs)

matrix_calc method for the jit.qt.movie object

Parameters
x t_jit_qt_movie object pointer

inputs input list (unused)
outputs output list (should be or contain 1 t_jit_matrix object)

Returns

t_jit_err error code

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.85 jit.qt.movie Module 949

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an instance of a t_jit_qt_movie object.

34.85.1.2 t jit err jit qt movie matrix to image (t jit qt movie ∗ x, void ∗ o, short ac, t_atom
∗ av, t graphic exportsettings ∗ gs)

Export a Jitter matrix to a QuickTime-compatible image file.

Parameters
x t_jit_qt_movie object pointer
o t_jit_matrix pointer

ac argument count
av argument vector
gs undocumented

Returns

t_jit_err error code

Optional arguments are file type, desired file name/file path for exported image file, and
a show settings dialog flag (0/1). Format is essentially the same as that of "exportimage"
method to jit.qt.movie, as documented in the Jitter Reference.

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an instance of a t_jit_qt_movie object.

34.85.1.3 t jit qt movie∗ jit qt movie new (long width, long height)

Constructs instance of t_jit_qt_movie.

Parameters
width output matrix width

height output matrix height

Returns

t_jit_qt_movie object pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

950 Module Documentation

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

34.85.1.4 t jit err jit qt movie read typed (t jit qt movie ∗ x, t_symbol ∗ s, long ac, t_atom
∗ av, t_atom ∗ rv)

Read a QuickTime Movie.

Parameters
x t_jit_qt_movie object pointer
s t_symbol pointer containing method name ("read" or "asyncread", "im-

port", "importfile" or "asyncimport")
ac argument count
av argument vector
rv (optional) t_atom pointer, on output, will be of type A_OBJ and contain

a t_atomarray object with any return values

Returns

t_jit_err error code

Optional argument is the file name/file path/URL or "scrap" to load.

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method_typed on an instance of a t_jit_qt_movie object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.86 jit.qt.record Module 951

34.86 jit.qt.record Module

Collaboration diagram for jit.qt.record Module:

jit.qt.record ModuleJitter

Functions

• t_jit_err jit_qt_record_matrix_calc (t_jit_qt_record ∗x, void ∗inputs, void
∗outputs)

matrix_calc method for the jit.qt.record object

• t_jit_qt_record ∗ jit_qt_record_new (long width, long height)

Constructs instance of t_jit_qt_record.

34.86.1 Function Documentation

34.86.1.1 t jit err jit qt record matrix calc (t jit qt record ∗ x, void ∗ inputs, void ∗ outputs)

matrix_calc method for the jit.qt.record object

Parameters
x t_jit_qt_record object pointer

inputs input list (should be or contain 1 t_jit_matrix object)
outputs output list (unused)

Returns

t_jit_err error code

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_method on an instance of a t_jit_qt_movie object.

34.86.1.2 t jit qt record ∗ jit qt record new (long width, long height)

Constructs instance of t_jit_qt_record.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

952 Module Documentation

Parameters
width output matrix width

height output matrix height

Returns

t_jit_qt_record object pointer

Warning

This function is not exported, but is provided for reference when calling via jit_-
object_new.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.87 QuickTime Utilties Module 953

34.87 QuickTime Utilties Module

Collaboration diagram for QuickTime Utilties Module:

Jitter QuickTime Utilties Module

Functions

• void jit_gworld_clear (GWorldPtr gp, long c)

Set all pixels in a QuickDraw GWorld to a specified 32-bit value.

• long jit_gworld_can_coerce_matrix (t_gworld_conv_info ∗gc, void ∗m)

Determine whether a Jitter matrix can be wrapped in a QuickDraw GWorld (without a
copy)

• long jit_gworld_matrix_equal_dim (GWorldPtr gp, void ∗m)

Test for equality of dimensions between a QuickDraw GWorld and a Jitter matrix Note:
supports UYVY matrices.

• t_jit_err jit_coerce_matrix_pixmap (void ∗m, PixMap ∗pm)

Generate a QuickDraw PixMap for a given Jitter matrix.

• t_jit_err jit_qt_utils_moviedataref_create (t_symbol ∗∗sname, short ∗path, -
Handle ∗dataRef, OSType ∗dataRefType)

Creates a new Data Reference from a file path, returning it and the filename/path pair.

• Movie jit_qt_utils_moviefile_create (t_symbol ∗∗sname, short ∗path, long flags,
DataHandler ∗dhandler)

Creates a new QuickTime Movie from a file path, optionally returning the Data Handler
and/or filename/path pair.

• Boolean jit_qt_utils_tempfile (char ∗name, Handle ∗dataRef, OSType ∗dataRef-
Type)

Returns a QuickTime-compatible Data Reference for a named file in the system’s tem-
porary files directory.

• Movie jit_qt_utils_tempmoviefile_create (t_symbol ∗∗sname, short ∗path, long
flags, DataHandler ∗dhandler)

Creates a new QuickTime Movie in the system’s temporary file directory, optionally
returning the movie’s data handler.

• long jit_qt_utils_moviefile_close (Movie movie, DataHandler dhandler)

Closes a QuickTime Movie previously created with jit_qt_utils_moviefile_create or jit_-
qt_utils_tempmoviefile_create, adding the necessary movie resources.

• Track jit_qt_utils_trackmedia_add (Movie movie, long type, Rect ∗trackframe,
long vol, long timescale)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

954 Module Documentation

Adds a new Track, with associated Media, to a QuickTime Movie.

• Media jit_qt_utils_trackmedia_get (Track track)

Returns the Media for a specified Track.

• long jit_qt_utils_trackmedia_dispose (Track track)

Removes a Track, with associated Media, from a QuickTime Movie.

• void jit_qt_utils_type2str (OSType type, char ∗typestr)

Given a four-char type code, return a 0-terminated C string.

• OSType jit_qt_utils_str2type (char ∗typestr)

Given a C string, return a four-char code.

• void jit_qt_utils_trackname_set (Track track, t_symbol ∗s)

Set the name of a QuickTime Track.

• t_symbol ∗ jit_qt_utils_trackname_get (Track track)

Get the name of a QuickTime Track.

• t_symbol ∗ jit_qt_utils_tracktype_get (Track track)

Get the Media Type name from a QuickTime Track.

• t_symbol ∗ jit_qt_utils_tracktypecode_get (Track track)

Get the four-char code for a Track’s Media Type, formatted as a symbol.

34.87.1 Function Documentation

34.87.1.1 t jit err jit coerce matrix pixmap (void ∗ m, PixMap ∗ pm)

Generate a QuickDraw PixMap for a given Jitter matrix.

Parameters
m input t_jit_matrix pointer

pm on output, a pointer to the generated PixMap

Returns

t_jit_err error code

Warning

The matrix should be locked previous to this call, and unlocked afterward.

34.87.1.2 long jit gworld can coerce matrix (t gworld conv info ∗ gc, void ∗ m)

Determine whether a Jitter matrix can be wrapped in a QuickDraw GWorld (without a
copy)

Parameters
gc optional pointer to a t_gworld_conv_info struct
m input t_jit_matrix pointer

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.87 QuickTime Utilties Module 955

Returns

long success code (1 = can coerce, 0 = cannot coerce)

34.87.1.3 void jit gworld clear (GWorldPtr gp, long c)

Set all pixels in a QuickDraw GWorld to a specified 32-bit value.

Parameters
gp QuickDraw GWorldPtr

c clear color

34.87.1.4 long jit gworld matrix equal dim (GWorldPtr gp, void ∗ m)

Test for equality of dimensions between a QuickDraw GWorld and a Jitter matrix Note:
supports UYVY matrices.

Parameters
gp input GWorldPtr
m input t_jit_matrix pointer

Returns

long success code (1 = dims are equal, 0 = dims are not equal)

34.87.1.5 t jit err jit qt utils moviedataref create (t_symbol ∗∗ sname, short ∗ path, Handle
∗ dataRef, OSType ∗ dataRefType)

Creates a new Data Reference from a file path, returning it and the filename/path pair.

Parameters
sname (in/out) in: file name or fully qualified path in; out: file name of opened

movie file
path (in/out) in: only necessary if sname is unqualified; out: path of opened

movie file
dataRef (on output) QuickTime-compatible Data Reference for the specified file

name, must be disposed by the caller
dataRefType (on output) Data Reference type

Returns

t_jit_err error

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

956 Module Documentation

34.87.1.6 long jit qt utils moviefile close (Movie movie, DataHandler dhandler)

Closes a QuickTime Movie previously created with jit_qt_utils_moviefile_create or jit_-
qt_utils_tempmoviefile_create, adding the necessary movie resources.

Parameters
movie QuickTime Movie, as returned from one of the above-named functions

dhandler data handler for the Movie, as returned from one of the above-named
functions

Returns

long QuickTime error code

34.87.1.7 Movie jit qt utils moviefile create (t_symbol ∗∗ sname, short ∗ path, long flags,
DataHandler ∗ dhandler)

Creates a new QuickTime Movie from a file path, optionally returning the Data Handler
and/or filename/path pair.

Parameters
sname (in/out) in: file name or fully qualified path in; out: file name of opened

movie file
path (in/out, optional) in: only necessary if sname is unqualified; out: path of

opened movie file
flags movie file creation flags (see QuickTime Documentation for more infor-

mation) if no flags are specified, the following flags are used: create-
MovieFileDeleteCurFile | createMovieFileDontCreateResFile

dhandler (on output, optional) data handler for the opened movie file

Returns

Movie QuickTime Movie

34.87.1.8 OSType jit qt utils str2type (char ∗ typestr)

Given a C string, return a four-char code.

Parameters
typestr C string

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.87 QuickTime Utilties Module 957

Returns

OSType four-char code

34.87.1.9 Boolean jit qt utils tempfile (char ∗ name, Handle ∗ dataRef, OSType ∗ dataRefType
)

Returns a QuickTime-compatible Data Reference for a named file in the system’s tem-
porary files directory.

Parameters
name file name

dataRef (on output) QuickTime-compatible Data Reference for the specified file
name, must be disposed by the caller

dataRefType (on output) Data Reference type

Returns

Boolean success (true) or failure (false)

34.87.1.10 Movie jit qt utils tempmoviefile create (t_symbol ∗∗ sname, short ∗ path, long
flags, DataHandler ∗ dhandler)

Creates a new QuickTime Movie in the system’s temporary file directory, optionally re-
turning the movie’s data handler.

Parameters
sname (in/out) in: file name or fully qualified path in; out: file name of opened

movie file
path (in/out, optional) in: only necessary if sname is unqualified; out: path of

opened movie file
flags movie file creation flags (see QuickTime Documentation for more infor-

mation) if no flags are specified, the following flags are used: create-
MovieFileDeleteCurFile | createMovieFileDontCreateResFile

dhandler (on output, optional) data handler for the opened movie file

Returns

Movie QuickTime Movie

34.87.1.11 Track jit qt utils trackmedia add (Movie movie, long type, Rect ∗ trackframe, long
vol, long timescale)

Adds a new Track, with associated Media, to a QuickTime Movie.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

958 Module Documentation

Parameters
movie QuickTime Movie

type four-char code specifying the track/media type to be added (see Quick-
Time Documentation)

trackframe the new Track’s Rect, relative to the Movie’s Rect
vol initial value for the sound volume in the new Track

timescale the new Track’s timescale

Returns

Track QuickTime Track

34.87.1.12 long jit qt utils trackmedia dispose (Track track)

Removes a Track, with associated Media, from a QuickTime Movie.

Parameters
track QuickTime Track

Returns

long QuickTime error code

34.87.1.13 Media jit qt utils trackmedia get (Track track)

Returns the Media for a specified Track.

Parameters
track QuickTime Track

Returns

Media QuickTime Media

34.87.1.14 t_symbol∗ jit qt utils trackname get (Track track)

Get the name of a QuickTime Track.

Parameters
track QuickTime Track

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

34.87 QuickTime Utilties Module 959

Returns

t_symbol pointer containing Track’s name

34.87.1.15 void jit qt utils trackname set (Track track, t_symbol ∗ s)

Set the name of a QuickTime Track.

Parameters
track QuickTime Track

s track name

34.87.1.16 t_symbol∗ jit qt utils tracktype get (Track track)

Get the Media Type name from a QuickTime Track.

Parameters
track QuickTime Track

Returns

t_symbol pointer containing the name of the Track’s Media Type

34.87.1.17 t_symbol∗ jit qt utils tracktypecode get (Track track)

Get the four-char code for a Track’s Media Type, formatted as a symbol.

Parameters
track QuickTime Track

Returns

t_symbol pointer containing C string representation of the Media Type

34.87.1.18 void jit qt utils type2str (OSType type, char ∗ typestr)

Given a four-char type code, return a 0-terminated C string.

Parameters
type four-char code

typestr (on output) 0-terminated C string

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

960 Module Documentation

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 35

Data Structure Documentation

35.1 Ex ex Struct Reference

ex_ex.

#include <ext_expr.h>

Data Fields

• union {
} ex_cont

content

• long ex_type

type of the node

35.1.1 Detailed Description

ex_ex.

35.2 t atom Struct Reference

An atom is a typed datum.

#include <ext_mess.h>

962 Data Structure Documentation

Collaboration diagram for t_atom:

t_atom

word

 a_w

Data Fields

• short a_type

a value as defined in e_max_atomtypes

• union word a_w

the actual data

35.2.1 Detailed Description

An atom is a typed datum.

35.3 t atomarray Struct Reference

The atomarray object.

#include <ext_atomarray.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.4 t_atombuf Struct Reference 963

Collaboration diagram for t_atomarray:

t_atomarray

t_object

 ob

t_atom

 av

word

 a_w

35.3.1 Detailed Description

The atomarray object.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.4 t atombuf Struct Reference

The atombuf struct provides a way to pass a collection of atoms.

#include <ext_maxtypes.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

964 Data Structure Documentation

Collaboration diagram for t_atombuf:

t_atombuf

t_atom

 a_argv

word

 a_w

Data Fields

• long a_argc

the number of atoms

• t_atom a_argv [1]

the first of the array of atoms

35.4.1 Detailed Description

The atombuf struct provides a way to pass a collection of atoms.

35.5 t attr Struct Reference

Common attr struct.

#include <ext_obex.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.6 t_buffer Struct Reference 965

Collaboration diagram for t_attr:

t_attr

t_symbol

 type
name

t_object

 ob

 s_thing

35.5.1 Detailed Description

Common attr struct.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.6 t buffer Struct Reference

Data structure for the buffer∼ object.

#include <buffer.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

966 Data Structure Documentation

Collaboration diagram for t_buffer:

t_buffer

t_symbol

 b_name
b_filename

t_object

 b_obj
b_jsoundfile

 s_thing

Data Fields

• t_object b_obj

doesn’t have any signals so it doesn’t need to be pxobject

• long b_valid

flag is off during read replacement or editing operation

• float ∗ b_samples

stored with interleaved channels if multi-channel

• long b_frames

number of sample frames (each one is sizeof(float) ∗ b_nchans bytes)

• long b_nchans

number of channels

• long b_size

size of buffer in floats

• float b_sr

sampling rate of the buffer

• float b_1oversr

1 / sr

• float b_msr

sr ∗ .001

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.6 t_buffer Struct Reference 967

• float ∗ b_memory

pointer to where memory starts (initial padding for interp)

• t_symbol ∗ b_name

name of the buffer

• long b_susloopstart

looping info (from AIFF file) in samples

• long b_susloopend

looping info (from AIFF file) in samples

• long b_relloopstart

looping info (from AIFF file) in samples

• long b_relloopend

looping info (from AIFF file) in samples

• long b_format

’AIFF’ or ’Sd2f’

• t_symbol ∗ b_filename

last file read (not written) for readagain message

• long b_oldnchans

used for resizing window in case of # of channels change

• long b_outputbytes

number of bytes used for output sample (1-4)

• long b_modtime

last modified time ("dirty" method)

• struct _buffer ∗ b_peer

objects that share this symbol (used as a link in the peers)

• Boolean b_owner

b_memory/b_samples "owned" by this object

• long b_outputfmt

sample type (A_LONG, A_FLOAT, etc.)

• t_int32_atomic b_inuse

objects that use buffer should ATOMIC_INCREMENT / ATOMIC_DECREMENT this
in their perform

• void ∗ b_dspchain

dspchain used for this instance

• long b_padding

amount of padding (number of samples) in b_memory before b_samples starts

• long b_paddingchanged

flag indicating that b_padding has changed and needs to be allocated

• t_object ∗ b_jsoundfile

internal instance for reading/writing FLAC format

• t_systhread_mutex b_mutex

mutex to use when locking and performing operations anywhere except perform
method

• long b_wasvalid

internal flag used by replacement or editing operation

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

968 Data Structure Documentation

35.6.1 Detailed Description

Data structure for the buffer∼ object.

35.7 t celldesc Struct Reference

A dataview cell description.

#include <jdataview.h>

35.7.1 Detailed Description

A dataview cell description.

35.8 t charset converter Struct Reference

The charset_converter object.

#include <ext_charset.h>

Collaboration diagram for t_charset_converter:

t_charset_converter

t_object

 ob

35.8.1 Detailed Description

The charset_converter object.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.9 t_class Struct Reference 969

35.9 t class Struct Reference

The data structure for a Max class.

#include <ext_mess.h>

Collaboration diagram for t_class:

t_class

t_messlist

 c_messlist
c_newmess

Data Fields

• struct symbol ∗ c_sym

symbol giving name of class

• struct symbol ∗ c_filename

name of file associated with this class

35.9.1 Detailed Description

The data structure for a Max class.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.10 t datetime Struct Reference

The Systime data structure.

#include <ext_systime.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

970 Data Structure Documentation

Data Fields

• unsigned long year

year

• unsigned long month

month

• unsigned long day

day

• unsigned long hour

hour

• unsigned long minute

minute

• unsigned long second

second

• unsigned long millisecond

(reserved for future use)

35.10.1 Detailed Description

The Systime data structure.

35.11 t dictionary Struct Reference

The dictionary object.

#include <ext_dictionary.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.11 t_dictionary Struct Reference 971

Collaboration diagram for t_dictionary:

t_dictionary

t_hashtab

 d_hashtab

t_object

 d_obj

 ob

t_linklist

 ob t_llelem

 thing

 d_linklist

 slots

 head
tail

cache

35.11.1 Detailed Description

The dictionary object.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

972 Data Structure Documentation

See also

t_dictionary

35.12 t dictionary entry Struct Reference

A dictionary entry.

#include <ext_dictionary.h>

Collaboration diagram for t_dictionary_entry:

t_dictionary_entry

t_symbol

 e_key

t_object

 e_obj

 s_thing

t_atom

 e_value

word

 a_w

35.12.1 Detailed Description

A dictionary entry.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_dictionary

35.13 t expr Struct Reference

Struct for an instance of expr.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.14 t_fileinfo Struct Reference 973

#include <ext_expr.h>

Data Fields

• struct ex_ex exp_res

the result of last evaluation

35.13.1 Detailed Description

Struct for an instance of expr.

35.14 t fileinfo Struct Reference

Information about a file.

#include <ext_path.h>

Data Fields

• long type

type (four-char-code)

• long creator

Mac-only creator (four-char-code)

• long date

date

• long flags

One of the values defined in e_max_fileinfo_flags.

35.14.1 Detailed Description

Information about a file.

35.15 t funbuff Struct Reference

The structure of a funbuff object.

#include <ext_maxtypes.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

974 Data Structure Documentation

Collaboration diagram for t_funbuff:

t_funbuff

t_symbol

 f_sym

t_object

 f_obj

 s_thing

t_zll

 f_foot
f_head

Data Fields

• t_zll f_head

head of double linked list of function elements

• t_zll ∗ f_foot

foot in the door pointer for list

• long f_gotoDelta

used by goto and next

• long f_selectX

selected region start

• long f_selectW

selected region width

• t_symbol ∗ f_sym

filename

• long f_y

y-value from inlet

• char f_yvalid

flag that y has been set since x has

• char f_embed

flag for embedding funbuff values in patcher

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.16 t_hashtab Struct Reference 975

35.15.1 Detailed Description

The structure of a funbuff object.

35.16 t hashtab Struct Reference

The hashtab object.

#include <ext_hashtab.h>

Collaboration diagram for t_hashtab:

t_hashtab

t_object

 ob

t_linklist

 ob t_llelem

 thing

 slots

 head
tail

cache

35.16.1 Detailed Description

The hashtab object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

976 Data Structure Documentation

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_hashtab

35.17 t hashtab entry Struct Reference

A hashtab entry.

#include <ext_hashtab.h>

Collaboration diagram for t_hashtab_entry:

t_hashtab_entry

t_symbol

 key

t_object

 ob
value

 s_thing

35.17.1 Detailed Description

A hashtab entry.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_hashtab

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.18 t_indexmap Struct Reference 977

35.18 t indexmap Struct Reference

An indexmap object.

#include <indexmap.h>

Collaboration diagram for t_indexmap:

t_indexmap

t_hashtab

 m_data2index

t_object

 m_ob

 ob

t_linklist

 ob t_llelem

 thing

 slots

 head
tail

cache

t_indexmap_entry

 m_index2data

35.18.1 Detailed Description

An indexmap object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

978 Data Structure Documentation

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_indexmap_entry

35.19 t indexmap entry Struct Reference

An indexmap element.

#include <indexmap.h>

35.19.1 Detailed Description

An indexmap element.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_indexmap

35.20 t jbox Struct Reference

The t_jbox struct provides the header for a Max user-interface object.

#include <jpatcher_api.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.21 t_jboxdrawparams Struct Reference 979

Collaboration diagram for t_jbox:

t_jbox

t_rect

 b_patching_rect
b_presentation_rect

t_symbol

 b_id
b_name

b_fontname
b_prototypename

t_object

 b_ob
b_textfield
b_patcher
b_firstin

 s_thing

t_jrgba

 b_color

35.20.1 Detailed Description

The t_jbox struct provides the header for a Max user-interface object.

This struct should be considered opaque and is subject to change without notice. Do
not access it’s members directly any code.

35.21 t jboxdrawparams Struct Reference

The t_jboxdrawparams structure.

#include <jpatcher_api.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

980 Data Structure Documentation

Collaboration diagram for t_jboxdrawparams:

t_jboxdrawparams

t_jrgba

 d_bordercolor
d_boxfillcolor

35.21.1 Detailed Description

The t_jboxdrawparams structure.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.22 t jcolumn Struct Reference

A dataview column.

#include <jdataview.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.22 t_jcolumn Struct Reference 981

Collaboration diagram for t_jcolumn:

t_jcolumn

t_symbol

 c_custommenuresult
c_beginmsg
c_valuemsg

c_buttonlabel
c_insertbefore

c_label
c_celltextcolormsg

c_cellcluemsg
c_celltextstylemsg

c_customsort
...

t_object

 c_obj
c_dv

 s_thing

Data Fields

• t_symbol ∗ c_name

column name (hash)

• t_object ∗ c_dv

parent dataview

• int c_id

id in DataViewComponent

• long c_width

column width in pixels

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

982 Data Structure Documentation

• long c_maxwidth

max column width

• long c_minwidth

min column width

• char c_autosize

determine width of text column automatically (true/false)

• char c_alignment

display of text, left, right, center

• t_symbol ∗ c_font

name of font

• long c_fontsize

font size (points?)

• t_symbol ∗ c_label

heading of column

• char c_separator

separator mode

• char c_button

column has a button (true/false)

• t_symbol ∗ c_buttonlabel

text in a button

• t_symbol ∗ c_customsort

message sent to sort this column -- if none, default sorting is used based on value
c_numeric

• char c_overridesort

if true only the sortdata method is called, not the sort method (true/false)

• t_symbol ∗ c_custompaint

send this msg name to client to paint this column

• t_symbol ∗ c_valuemsg

message sent when a component mode cell’s value changes

• t_symbol ∗ c_beginmsg

message sent when a component mode cell’s value is about to start changing

• t_symbol ∗ c_endmsg

message sent when a component mode cell’s value is finished changing

• t_symbol ∗ c_rowcomponentmsg

message sent to determine what kind of component should be created for each cell in
a column

• t_symbol ∗ c_custommenuset

message to set a menu (for a readonly or custompaint column)

• t_symbol ∗ c_custommenuresult

message sent when an item is chosen from a custom menu

• char c_editable

can you edit the data in a cell in this column

• char c_selectable

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.22 t_jcolumn Struct Reference 983

can select the data in a cell in this column (possibly without being able to edit)

• char c_multiselectable

can you select more than one cell in this column

• char c_sortable

can you click on a column heading to sort the data

• long c_initiallysorted

if this is set to JCOLUMN_INITIALLYSORTED_FORWARDS the column is displayed
with the sort triangle

• long c_maxtextlen

maximum text length: this is used to allocate a buffer to pass to gettext (but there is
also a constant)

• long c_sortdirection

0 for ascending, 1 for descending

• long c_component

enum of components (check box etc.)

• char c_canselect

can select entire column

• char c_cancut

can cut/clear entire column

• char c_cancopy

can copy entire column

• char c_cancutcells

can cut a single cell (assumes "editable" or "selectable") (probably won’t be imple-
mented)

• char c_cancopycells

can copy a single cell

• char c_canpastecells

can paste into a single cell

• char c_hideable

can the column be hidden

• char c_hidden

is the column hidden (set/get)

• char c_numeric

is the data numeric (i.e., is getcellvalue implemented)

• char c_draggable

can drag the column to rearrange it

• char c_casesensitive

use case sensitive sorting (applies only to default text sorting)

• void ∗ c_reference

reference for the use of the client

• double c_indentspacing

amount of space (in pixels) for one indent level

• t_symbol ∗ c_insertbefore

name of column before which this one should have been inserted (used only once)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

984 Data Structure Documentation

• t_symbol ∗ c_cellcluemsg

message to send requesting clue text for a cell

• t_symbol ∗ c_celltextcolormsg

message to get the cell’s text color

• t_symbol ∗ c_celltextstylemsg

message to get the cell’s style and alignment

35.22.1 Detailed Description

A dataview column.

Columns for a given dataview are stored in a t_hashtab and accessed by name.

35.23 t jdataview Struct Reference

The dataview object.

#include <jdataview.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.23 t_jdataview Struct Reference 985

Collaboration diagram for t_jdataview:

t_jdataview

t_symbol

 d_fontname
d_colheadercluemsg

t_object

 d_client
d_returnkeycolumn

d_obj
d_sortset

d_searchcolumn

 s_thing

t_hashtab

 ob

t_linklist

 ob t_llelem

 thing

 d_columns
d_id2columns

 d_sections
d_components

d_colorder

 slots

 head
tail

cache

t_jrgba

 d_rowcolor1
d_selectcolor
d_rowcolor2

d_bordercolor

Data Fields

• t_linklist ∗ d_components

list of DataViewComponents showing this dataview

• t_object ∗ d_client

object that will be sent messages to get data to display

• t_hashtab ∗ d_columns

columns -- point to t_jcolumn objects

• t_hashtab ∗ d_id2columns

columns from column IDs

• t_linklist ∗ d_colorder

current order of columns

• void ∗ d_rowmap_obsolete

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

986 Data Structure Documentation

no longer used

• long d_numcols

number of columns

• double d_rowheight

fixed height of a row in pixels

• char d_autoheight

height determined by font

• char d_hierarchical

does it allow hierarchical disclosure (true / false) -- not implemented yet

• t_jrgba d_rowcolor1

odd row color (striped)

• t_jrgba d_rowcolor2

even row color

• t_jrgba d_selectcolor

color when rows are selected

• t_jrgba d_bordercolor

border color

• char d_bordercolorset

was border color set? if not, use JUCE default

• char d_canselectmultiple

multiple rows are selectable

• char d_cancopy

copy enabled

• char d_cancut

cut / clear enabled

• char d_canpaste

paste enabled

• char d_canrearrangerows

rows can be dragged to rearrange -- may not be implemented yet

• char d_canrearrangecolumns

columns can be dragged to rearrange

• long d_viscount

number of visible views of this dataview

• long d_inset

inset for table inside containing component in pixels

• char d_autosizeright

right side autosizes when top-level component changes

• char d_autosizebottom

bottom autosizes when top-level component changes

• char d_dragenabled

enabled for dragging (as in drag and drop)

• t_symbol ∗ d_fontname

font name

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.23 t_jdataview Struct Reference 987

• double d_fontsize

font size

• t_symbol ∗ d_colheadercluemsg

message to send requesting clue text for the column headers

• char d_autosizerightcolumn

right column should stretch to remaining width of the dataview, regardless of column
width

• char d_customselectcolor

send getcellcolor message to draw selected cell, don’t use select color

• void ∗ d_qelem

defer updating

• long d_top_inset

vertical inset for row background (default 0)

• long d_bottom_inset

vertical inset for row background (default 0)

• long d_borderthickness

border line thickness default 0 for no border

• char d_keyfocusable

notify component to grab some keys

• char d_enabledeletekey

delete key will delete selected rows

• char d_usegradient

color rows with gradient between rowcolor1 (top) and rowcolor2 (bottom)

• char d_inchange

in change flag for inspector end-change protection system

• char d_horizscrollvisible

is horizontal scroll bar visible

• char d_vertscrollvisible

is vertical scroll bar visible

• char d_scrollvisset

has the scroll visibility ever been changed since the dv was created?

• char d_overridefocus

override default focus behavior where ListBox is focused when assigning focus to the
dataview

• char d_usesystemfont

use system font (true by default)

• t_object ∗ d_searchcolumn

column we ask for celltext in order to navigate the selection via the keyboard

• t_object ∗ d_returnkeycolumn

column that is sent the return key when a given row is selected

• void ∗ d_navcache

sorted list of column strings for key navigation

• char d_usecharheight

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

988 Data Structure Documentation

use font specified in points rather than pixels (default is pixels)

• t_linklist ∗ d_sections

list of sections

• char d_paintcellseparator

should paint a line below a cell (grayish)

• t_object ∗ d_sortset

sort col saved when dv is invisible

35.23.1 Detailed Description

The dataview object.

35.24 t jgraphics font extents Struct Reference

A structure for holding information related to how much space the rendering of a given
font will use.

#include <jgraphics.h>

Data Fields

• double ascent

The ascent.

• double descent

The descent.

• double height

The hieght.

• double max_x_advance

Unused / Not valid.

• double max_y_advance

Unused / Not valid.

35.24.1 Detailed Description

A structure for holding information related to how much space the rendering of a given
font will use.

The units for these measurements is in pixels.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.25 t_jit_attr Struct Reference 989

35.25 t jit attr Struct Reference

Common attribute struct.

#include <jit.common.h>

Collaboration diagram for t_jit_attr:

t_jit_attr

t_symbol

 type
name

t_object

 ob

 s_thing

Data Fields

• t_jit_object ob

common object header

• t_symbol ∗ name

attribute name

• t_symbol ∗ type

attribute type (char, long, float32, float64, symbol, atom, or obj)

• long flags

flags for public/private get/set methods

• method get

override default get method

• method set

override default set method

• void ∗ filterget

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

990 Data Structure Documentation

filterobject for get method

• void ∗ filterset

filterobject for set method

• void ∗ reserved

for future use

35.25.1 Detailed Description

Common attribute struct.

Shared by all built in attribute classes.

35.26 t jit attr filter clip Struct Reference

t_jit_attr_filter_clip object struct.

Collaboration diagram for t_jit_attr_filter_clip:

t_jit_attr_filter_clip

t_symbol

 type

t_object

 ob

 s_thing

Data Fields

• t_jit_object ob

common object header

• t_symbol ∗ type

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.27 t_jit_attr_filter_proc Struct Reference 991

"type" attribute

• double scale

scaling factor; "scale" attribute

• double min

minimum vlaue; "min" attribute

• double max

maximum value; "max" attribute

• char usescale

use scaling flag; "usescale" attribute

• char usemin

clip to minimum flag; "usemin" attribute

• char usemax

clip to maximum flag; "usemax" attribute

35.26.1 Detailed Description

t_jit_attr_filter_clip object struct.

Warning

This struct should not be accessed directly, but is provided for reference when call-
ing Jitter attribute functions.

35.27 t jit attr filter proc Struct Reference

t_jit_attr_filter_proc object struct.

Collaboration diagram for t_jit_attr_filter_proc:

t_jit_attr_filter_proc

t_object

 ob

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

992 Data Structure Documentation

Data Fields

• t_jit_object ob

common object header

• method proc

filter procedure

35.27.1 Detailed Description

t_jit_attr_filter_proc object struct.

Warning

This struct should not be accessed directly, but is provided for reference when call-
ing Jitter attribute functions.

35.28 t jit attr offset Struct Reference

t_jit_attr_offset object struct.

Collaboration diagram for t_jit_attr_offset:

t_jit_attr_offset

t_symbol

 type
name

t_object

 ob

 s_thing

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.29 t_jit_attr_offset_array Struct Reference 993

Data Fields

• t_jit_object ob

common object header

• t_symbol ∗ name

attribute name

• t_symbol ∗ type

attribute type (char, long, float32, float64, symbol, atom, or obj)

• long flags

flags for public/private get/set methods

• method get

override default get method

• method set

override default set method

• void ∗ filterget

filterobject for get method

• void ∗ filterset

filterobject for set method

• void ∗ reserved

for future use

• long offset

byte offset to the attribute data

35.28.1 Detailed Description

t_jit_attr_offset object struct.

Warning

This struct should not be accessed directly, but is provided for reference. Attribute
objects do not typically use attributes themselves to access members, but rather
accessor methods--i.e. use jit_object_method in place of the jit_attr_∗ functions to
access attribute state.

35.29 t jit attr offset array Struct Reference

t_jit_attr_offset_array object struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

994 Data Structure Documentation

Collaboration diagram for t_jit_attr_offset_array:

t_jit_attr_offset_array

t_symbol

 type
name

t_object

 ob

 s_thing

Data Fields

• t_jit_object ob

common object header

• t_symbol ∗ name

attribute name

• t_symbol ∗ type

attribute type (char, long, float32, float64, symbol, atom, or obj)

• long flags

flags for public/private get/set methods

• method get

override default get method

• method set

override default set method

• void ∗ filterget

filterobject for get method

• void ∗ filterset

filterobject for set method

• void ∗ reserved

for future use

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.30 t_jit_attribute Struct Reference 995

• long offset

byte offset to the attribute data

• long size

maximum size

• long offsetcount

byte offset to the attribute count

35.29.1 Detailed Description

t_jit_attr_offset_array object struct.

Warning

This struct should not be accessed directly, but is provided for reference. Attribute
objects do not typically use attributes themselves to access members, but rather
accessor methods--i.e. use jit_object_method in place of the jit_attr_∗ functions to
access attribute state.

35.30 t jit attribute Struct Reference

t_jit_attribute object struct.

Collaboration diagram for t_jit_attribute:

t_jit_attribute

t_symbol

 type
name

t_object

 ob

 s_thing

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

996 Data Structure Documentation

Data Fields

• t_jit_object ob

common object header

• t_symbol ∗ name

attribute name

• t_symbol ∗ type

attribute type (char, long, float32, float64, symbol, atom, or obj)

• long flags

flags for public/private get/set methods

• method get

override default get method

• method set

override default set method

• void ∗ filterget

filterobject for get method

• void ∗ filterset

filterobject for set method

• void ∗ reserved

for future use

• void ∗ data

interally stored data

• long size

data size

35.30.1 Detailed Description

t_jit_attribute object struct.

Warning

This struct should not be accessed directly, but is provided for reference. Attribute
objects do not typically use attributes themselves to access members, but rather
accessor methods--i.e. use jit_object_method in place of the jit_attr_∗ functions to
access attribute state.

35.31 t jit gl context view Struct Reference

t_jit_gl_context_view object struct.

#include <jit.gl.context.view.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.31 t_jit_gl_context_view Struct Reference 997

Collaboration diagram for t_jit_gl_context_view:

t_jit_gl_context_view

t_symbol

 shared_context
name t_wind_mouse_info

 mousesymbol

t_object

 patcher
ob

 s_thing

 mouse_info

Data Fields

• t_object ob

jitter object

• long rebuild

rebuild flag

• t_jit_gl_context context

OpenGL context.

• t_symbol ∗ shared_context

shared context name

• t_wind_mouse_info mouse_info

data for mouse events

• t_wind_key_info key_info

data for key events

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

998 Data Structure Documentation

• long canrebuild

flag for whether the context can rebuild or not

• long doublebuffer

double buffer flag

• long depthbuffer

depth buffer flag

• long stereo

active stereo flag

• t_jit_rect frame

frame of context

• long fsaa

FSAA flag.

• long sync

V-sync flag.

• long idlemouse

Idlemouse flag (events on mouse move)

• void ∗ target

target object we’re controlled by

• long targettype

target type we’re controlled by

• t_symbol ∗ name

name of the view

• long reshaping

flag for breaking cycles on reshape notification

• long ownerreshape

flag for if the owner handles reshaping the context

• t_object ∗ patcher

patcher the context view is in (if there is one)

• long freeing

in the process of freeing flag

35.31.1 Detailed Description

t_jit_gl_context_view object struct.

Manages an OpenGL context within a rectangle. Objects that use a t_jit_gl_context-
_view to manage an OpenGL context should attach themselves to the object for its
lifetime and implement an "update" method in order to handle modifications to the t_jit-
_gl_context_view that may require a rebuild or further response within the embedding
object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.32 t_jit_gl_drawinfo Struct Reference 999

35.32 t jit gl drawinfo Struct Reference

t_jit_gl_drawinfo struct used for tasks such as multi texture unit binding.

#include <jit.gl.drawinfo.h>

Data Fields

• t_jit_gl_context ctx

current t_jit_gl_context

• void ∗ ob3d

object’s t_jit_ob3d pointer

• void ∗ rfu [6]

reserved for future use

35.32.1 Detailed Description

t_jit_gl_drawinfo struct used for tasks such as multi texture unit binding.

35.33 t jit glchunk Struct Reference

t_jit_glchunk is a public structure to store one gl-command’s-worth of data, in a format
which can be passed easily to glDrawRangeElements, and matrixoutput.

#include <jit.gl.chunk.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1000 Data Structure Documentation

Collaboration diagram for t_jit_glchunk:

t_jit_glchunk

t_symbol

 prim
m_vertex_name
m_index_name

t_object

 m_index
m_vertex

 s_thing

Data Fields

• t_symbol ∗ prim

drawing primitive. "tri_strip", "tri", "quads", "quad_grid", etc.

• t_jit_object ∗ m_vertex

vertex matrix containing xyzst... data

• t_symbol ∗ m_vertex_name

vertex matrix name

• t_jit_object ∗ m_index

optional 1d matrix of vertex indices to use with drawing primitive

• t_symbol ∗ m_index_name

index matrix name

• unsigned long m_flags

chunk flags to ignore texture, normal, color, or edge planes when drawing

• void ∗ next_chunk

pointer to next chunk for drawing a list of chunks together

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.34 t_jit_matrix_info Struct Reference 1001

35.33.1 Detailed Description

t_jit_glchunk is a public structure to store one gl-command’s-worth of data, in a format
which can be passed easily to glDrawRangeElements, and matrixoutput.

35.34 t jit matrix info Struct Reference

Matrix information struct.

#include <jit.common.h>

Collaboration diagram for t_jit_matrix_info:

t_jit_matrix_info

t_symbol

 type

t_object

 s_thing

Data Fields

• long size

in bytes (0xFFFFFFFF=UNKNOWN)

• t_symbol ∗ type

primitifve type (char, long, float32, or float64)

• long flags

flags to specify data reference, handle, or tightly packed

• long dimcount

number of dimensions

• long dim [JIT_MATRIX_MAX_DIMCOUNT]

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1002 Data Structure Documentation

dimension sizes

• long dimstride [JIT_MATRIX_MAX_DIMCOUNT]

stride across dimensions in bytes

• long planecount

number of planes

35.34.1 Detailed Description

Matrix information struct.

Used to get/set multiple matrix attributes at once.

35.35 t jit mop Struct Reference

t_jit_mop object struct.

Collaboration diagram for t_jit_mop:

t_jit_mop

t_object

 ob

Data Fields

• t_jit_object ob

standard object header

• void ∗ special

special data pointer for use by wrappers of various kinds (e.g. max wrapper)

• long inputcount

"inputcount" attribute

• long outputcount

"inputcount" attribute

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.36 t_jit_mop_io Struct Reference 1003

• t_jit_linklist ∗ inputlist

linked list of inputs, accessed via methods

• t_jit_linklist ∗ outputlist

linked list of inputs, accessed via methods

• char caninplace

deprecated

• char adapt

"adapt" attribute

• char outputmode

"outputmode" attribute

35.35.1 Detailed Description

t_jit_mop object struct.

Warning

This struct should not be accessed directly, but is provided for reference when call-
ing Jitter attribute functions.

35.36 t jit mop io Struct Reference

t_jit_mop_io object struct.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1004 Data Structure Documentation

Collaboration diagram for t_jit_mop_io:

t_jit_mop_io

t_symbol

 types
ioname

matrixname

t_object

 ob

 s_thing

Data Fields

• t_jit_object ob

standard object header

• void ∗ special

special data pointer for use by wrappers of various kinds (e.g. max wrapper)

• t_symbol ∗ ioname

"ioname" attribute

• t_symbol ∗ matrixname

"matrixname" attribute

• void ∗ matrix

internal matrix, accessed via methods (unused in class template MOP)

• t_symbol ∗ types [JIT_MATRIX_MAX_TYPES]

"types" attribute

• long mindim [JIT_MATRIX_MAX_DIMCOUNT]

"mindim" attribute

• long maxdim [JIT_MATRIX_MAX_DIMCOUNT]

"maxdim" attribute

• long typescount

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.37 t_jit_op_info Struct Reference 1005

relevant to "types" attribute

• long mindimcount

"mindimcount" attribute

• long maxdimcount

"maxdimcount" attribute

• long minplanecount

"minplanecount" attribute

• long maxplanecount

"maxplanecount" attribute

• char typelink

"typelink" attribute

• char dimlink

"dimlink" attribute

• char planelink

"planelink" attribute

• method ioproc

I/O procedure, accessed via methods.

35.36.1 Detailed Description

t_jit_mop_io object struct.

Warning

This struct should not be accessed directly, but is provided for reference when call-
ing Jitter attribute functions.

35.37 t jit op info Struct Reference

Provides base pointer and stride for vector operator functions.

#include <jit.op.h>

Data Fields

• void ∗ p

base pointer (coerced to appropriate type)

• long stride

stride between elements (in type, not bytes)

35.37.1 Detailed Description

Provides base pointer and stride for vector operator functions.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1006 Data Structure Documentation

35.38 t jmatrix Struct Reference

An affine transformation (such as scale, shear, etc).

#include <jgraphics.h>

Data Fields

• double xx

xx component

• double yx

yx component

• double xy

xy component

• double yy

yy component

• double x0

x translation

• double y0

y translation

35.38.1 Detailed Description

An affine transformation (such as scale, shear, etc).

35.39 t jrgb Struct Reference

A color composed of red, green, and blue components.

#include <jpatcher_api.h>

Data Fields

• double red

Red component in the range [0.0, 1.0].

• double green

Green component in the range [0.0, 1.0].

• double blue

Blue component in the range [0.0, 1.0].

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.40 t_jrgba Struct Reference 1007

35.39.1 Detailed Description

A color composed of red, green, and blue components.

Typically such a color is assumed to be completely opaque (with no transparency).

See also

t_jrgba

35.40 t jrgba Struct Reference

A color composed of red, green, blue, and alpha components.

#include <jpatcher_api.h>

Data Fields

• double red

Red component in the range [0.0, 1.0].

• double green

Green component in the range [0.0, 1.0].

• double alpha

Alpha (transparency) component in the range [0.0, 1.0].

35.40.1 Detailed Description

A color composed of red, green, blue, and alpha components.

35.41 t line 3d Struct Reference

Line or line segment in 3D space (GLfloat)

#include <jit.gl.h>

Data Fields

• GLfloat u [3]

starting point

• GLfloat v [3]

ending point

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1008 Data Structure Documentation

35.41.1 Detailed Description

Line or line segment in 3D space (GLfloat)

35.42 t linklist Struct Reference

The linklist object.

#include <ext_linklist.h>

Collaboration diagram for t_linklist:

t_linklist

t_object

 ob t_llelem

 thing

 head
tail

cache

35.42.1 Detailed Description

The linklist object.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_llelem

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.43 t_llelem Struct Reference 1009

35.43 t llelem Struct Reference

A linklist element.

#include <ext_linklist.h>

Collaboration diagram for t_llelem:

t_llelem

t_object

 thing

35.43.1 Detailed Description

A linklist element.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

See also

t_linklist

35.44 t matrix conv info Struct Reference

Matrix conversion struct.

#include <jit.common.h>

Data Fields

• long flags

flags for whether or not to use interpolation, or source/destination dimensions

• long planemap [JIT_MATRIX_MAX_PLANECOUNT]

plane mapping

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1010 Data Structure Documentation

• long srcdimstart [JIT_MATRIX_MAX_DIMCOUNT]

source dimension start

• long srcdimend [JIT_MATRIX_MAX_DIMCOUNT]

source dimension end

• long dstdimstart [JIT_MATRIX_MAX_DIMCOUNT]

destination dimension start

• long dstdimend [JIT_MATRIX_MAX_DIMCOUNT]

destination dimension end

35.44.1 Detailed Description

Matrix conversion struct.

Used to copy data from one matrix to another with special characteristics.

35.45 t messlist Struct Reference

A list of symbols and their corresponding methods, complete with typechecking infor-
mation.

#include <ext_mess.h>

Data Fields

• struct symbol ∗ m_sym

Name of the message.

• method m_fun

Method associated with the message.

• char m_type [MAXARG+1]

Argument type information.

35.45.1 Detailed Description

A list of symbols and their corresponding methods, complete with typechecking infor-
mation.

35.46 t object Struct Reference

The structure for the head of any object which wants to have inlets or outlets, or support
attributes.

#include <ext_mess.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.47 t_path Struct Reference 1011

Data Fields

• struct messlist ∗ o_messlist

list of messages and methods. The -1 entry of the message list of an object contains
a pointer to its t_class entry.

• long o_magic

magic number

• struct inlet ∗ o_inlet

list of inlets

• struct outlet ∗ o_outlet

list of outlets

35.46.1 Detailed Description

The structure for the head of any object which wants to have inlets or outlets, or support
attributes.

35.47 t path Struct Reference

The path data structure.

#include <ext_path.h>

35.47.1 Detailed Description

The path data structure.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.48 t pathlink Struct Reference

The pathlink data structure.

#include <ext_path.h>

35.48.1 Detailed Description

The pathlink data structure.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1012 Data Structure Documentation

35.49 t pfftpub Struct Reference

Public FFT Patcher struct.

#include <r_pfft.h>

Collaboration diagram for t_pfftpub:

t_pfftpub

t_pxobject

 x_obj

t_object

 x_patcher
x_parent

Data Fields

• t_object ∗ x_parent

parent patcher

• t_object ∗ x_patcher

patcher loaded

• struct _dspchain ∗ x_chain

dsp chain within pfft

• long x_fftsize

fft frame size

• long x_ffthop

hop between fft frames

• long x_fftoffset

n samples offset before fft is started

• long x_fftindex

current index into fft frame

• short x_fullspect

process half-spectrum (0) or full mirrored spectrum (1)?

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.50 t_privatesortrec Struct Reference 1013

35.49.1 Detailed Description

Public FFT Patcher struct.

35.50 t privatesortrec Struct Reference

used to pass data to a client sort function

#include <jdataview.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1014 Data Structure Documentation

Collaboration diagram for t_privatesortrec:

t_privatesortrec

t_jdataview

 p_dv

t_symbol

 d_fontname
d_colheadercluemsg

t_jcolumn

 c_custommenuresult
c_beginmsg
c_valuemsg

c_buttonlabel
c_insertbefore

c_label
c_celltextcolormsg

c_cellcluemsg
c_celltextstylemsg

c_customsort
...

t_object

 p_client

 d_client
d_returnkeycolumn

d_obj
d_sortset

d_searchcolumn

 s_thing

t_hashtab

 ob

t_linklist

 obt_llelem

 thing

 c_obj
c_dv

 d_columns
d_id2columns

 d_sections
d_components

d_colorder

 slots

 head
tail

cache

t_jrgba

 d_rowcolor1
d_selectcolor
d_rowcolor2

d_bordercolor

 p_col

Data Fields

• t_jcolumn ∗ p_col

column object to sort

• char p_fwd

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.51 t_pt Struct Reference 1015

1 if sorting "forwards"

• t_object ∗ p_client

pointer to the client object

• t_jdataview ∗ p_dv

pointer to the dataview

35.50.1 Detailed Description

used to pass data to a client sort function

35.51 t pt Struct Reference

Coordinates for specifying a point.

#include <jpatcher_api.h>

Data Fields

• double x

The horizontal coordinate.

• double y

The vertical coordinate.

35.51.1 Detailed Description

Coordinates for specifying a point.

See also

t_rect
t_size

35.52 t pxdata Struct Reference

Common struct for MSP objects.

#include <z_dsp.h>

Data Fields

• long z_disabled

set to non-zero if this object is muted (using the pcontrol or mute∼ objects)

• short z_count

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1016 Data Structure Documentation

an array that indicates what inlets/outlets are connected with signals

• short z_misc

flags (bitmask) determining object behaviour, such as Z_NO_INPLACE, Z_PUT_FIR-
ST, or Z_PUT_LAST

35.52.1 Detailed Description

Common struct for MSP objects.

35.53 t pxjbox Struct Reference

Header for any ui signal processing object.

#include <z_dsp.h>

Collaboration diagram for t_pxjbox:

t_pxjbox

t_jbox

 z_box

t_rect

 b_patching_rect
b_presentation_rect

t_symbol

 b_id
b_name

b_fontname
b_prototypename

t_object

 b_ob
b_textfield
b_patcher
b_firstin

 s_thing

t_jrgba

 b_color

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.54 t_pxobject Struct Reference 1017

Data Fields

• t_jbox z_box

The box struct used by all ui objects.

• long z_disabled

set to non-zero if this object is muted (using the pcontrol or mute∼ objects)

• short z_count

an array that indicates what inlets/outlets are connected with signals

• short z_misc

flags (bitmask) determining object behaviour, such as Z_NO_INPLACE, Z_PUT_FIR-
ST, or Z_PUT_LAST

35.53.1 Detailed Description

Header for any ui signal processing object.

For non-ui objects use t_pxobject.

35.54 t pxobject Struct Reference

Header for any non-ui signal processing object.

#include <z_dsp.h>

Data Fields

• struct object z_ob

The standard t_object struct.

• long z_disabled

set to non-zero if this object is muted (using the pcontrol or mute∼ objects)

• short z_count

an array that indicates what inlets/outlets are connected with signals

• short z_misc

flags (bitmask) determining object behaviour, such as Z_NO_INPLACE, Z_PUT_FIR-
ST, or Z_PUT_LAST

35.54.1 Detailed Description

Header for any non-ui signal processing object.

For ui objects use t_pxjbox.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1018 Data Structure Documentation

35.55 t quickmap Struct Reference

The quickmap object.

#include <ext_quickmap.h>

Collaboration diagram for t_quickmap:

t_quickmap

t_hashtab

 m_p2key
m_p1key

t_object

 m_obj

 ob

t_linklist

 ob t_llelem

 thing

 slots

 head
tail

cache

35.55.1 Detailed Description

The quickmap object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.56 t_rect Struct Reference 1019

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.56 t rect Struct Reference

Coordinates for specifying a rectangular region.

#include <jpatcher_api.h>

Data Fields

• double x

The horizontal origin.

• double y

The vertical origin.

• double width

The width.

• double height

The height.

35.56.1 Detailed Description

Coordinates for specifying a rectangular region.

See also

t_pt
t_size

35.57 t signal Struct Reference

The signal data structure.

#include <z_dsp.h>

Data Fields

• long s_n

The vector size of the signal.

• t_sample ∗ s_vec

An array of buffers holding the vectors of audio.

• float s_sr

The sample rate of the signal.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1020 Data Structure Documentation

35.57.1 Detailed Description

The signal data structure.

35.58 t size Struct Reference

Coordinates for specifying the size of a region.

#include <jpatcher_api.h>

Data Fields

• double width

The width.

• double height

The height.

35.58.1 Detailed Description

Coordinates for specifying the size of a region.

See also

t_rect
t_pt

35.59 t stack splat Struct Reference

for passing on the stack in method calls (no need for struct packing here, since flat array)

#include <jit.common.h>

Data Fields

• char b [64]

byte array to push onto stack

35.59.1 Detailed Description

for passing on the stack in method calls (no need for struct packing here, since flat array)

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.60 t_string Struct Reference 1021

35.60 t string Struct Reference

The string object.

#include <ext_obstring.h>

Collaboration diagram for t_string:

t_string

t_object

 s_obj

35.60.1 Detailed Description

The string object.

This struct is provided for debugging convenience, but should be considered opaque
and is subject to change without notice.

35.61 t symbol Struct Reference

The symbol.

#include <ext_mess.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1022 Data Structure Documentation

Collaboration diagram for t_symbol:

t_symbol

t_object

 s_thing

Data Fields

• char ∗ s_name

name: a c-string

• struct object ∗ s_thing

possible binding to a t_object

35.61.1 Detailed Description

The symbol.

Note: You should never manipulate the s_name field of the t_symbol directly! Doing so
will corrupt Max’s symbol table. Instead, always use gensym() to get a symbol with the
desired string contents for the s_name field.

35.62 t symobject Struct Reference

The symobject data structure.

#include <ext_symobject.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.63 t_tinyobject Struct Reference 1023

Collaboration diagram for t_symobject:

t_symobject

t_symbol

 sym

t_object

 obj

 s_thing

Data Fields

• t_object obj

Max object header.

• t_symbol ∗ sym

The symbol contained by the object.

• long flags

Any user-flags you wish to set or get.

• void ∗ thing

A generic pointer for attaching additional data to the symobject.

35.62.1 Detailed Description

The symobject data structure.

35.63 t tinyobject Struct Reference

The tiny object structure sits at the head of any object to which you may pass messages
(and which you may feed to freeobject()).

#include <ext_mess.h>

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1024 Data Structure Documentation

Data Fields

• struct messlist ∗ t_messlist

list of messages and methods
• long t_magic

magic number

35.63.1 Detailed Description

The tiny object structure sits at the head of any object to which you may pass messages
(and which you may feed to freeobject()).

In general, you should use t_object instead.

35.64 t wind mouse info Struct Reference

t_wind_mouse_info_struct provided by jit.window and jit.pwindow mouse events

#include <jit.gl.h>

Collaboration diagram for t_wind_mouse_info:

t_wind_mouse_info

t_symbol

 mousesymbol

t_object

 s_thing

Data Fields

• Atom mouseatoms [8]

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

35.65 t_zll Struct Reference 1025

h, v, (up/down), cmdKey, shiftKey, alphaLock, option, control.

• int argc

argument count

• t_symbol ∗ mousesymbol

mouse event type

35.64.1 Detailed Description

t_wind_mouse_info_struct provided by jit.window and jit.pwindow mouse events

35.65 t zll Struct Reference

A simple doubly-linked list used by the t_funbuff object.

#include <ext_maxtypes.h>

35.65.1 Detailed Description

A simple doubly-linked list used by the t_funbuff object.

35.66 word Union Reference

Union for packing any of the datum defined in e_max_atomtypes.

#include <ext_mess.h>

Data Fields

• long w_long

long integer

• t_atom_float w_float

32-bit float

• struct symbol ∗ w_sym

pointer to a symbol in the Max symbol table

• struct object ∗ w_obj

pointer to a t_object or other generic pointer

35.66.1 Detailed Description

Union for packing any of the datum defined in e_max_atomtypes.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Index

ATTR_FLAGS_NONE
Attributes, 224

ATTR_GET_OPAQUE
Attributes, 224

ATTR_GET_OPAQUE_USER
Attributes, 224

ATTR_SET_OPAQUE
Attributes, 224

ATTR_SET_OPAQUE_USER
Attributes, 224

A_CANT
Atoms, 383

A_COMMA
Atoms, 383

A_DEFER
Atoms, 383

A_DEFER_LOW
Atoms, 383

A_DEFFLOAT
Atoms, 383

A_DEFLONG
Atoms, 383

A_DEFSYM
Atoms, 383

A_DOLLAR
Atoms, 383

A_DOLLSYM
Atoms, 383

A_FLOAT
Atoms, 383

A_GIMME
Atoms, 383

A_GIMMEBACK
Atoms, 383

A_LONG
Atoms, 383

A_NOTHING
Atoms, 383

A_OBJ
Atoms, 383

A_SEMI

Atoms, 383
A_SYM

Atoms, 383
A_USURP

Atoms, 383
A_USURP_LOW

Atoms, 383
Atoms

A_CANT, 383
A_COMMA, 383
A_DEFER, 383
A_DEFER_LOW, 383
A_DEFFLOAT, 383
A_DEFLONG, 383
A_DEFSYM, 383
A_DOLLAR, 383
A_DOLLSYM, 383
A_FLOAT, 383
A_GIMME, 383
A_GIMMEBACK, 383
A_LONG, 383
A_NOTHING, 383
A_OBJ, 383
A_SEMI, 383
A_SYM, 383
A_USURP, 383
A_USURP_LOW, 383
OBEX_UTIL_ATOM_GETTEXT_C-

OMMA_DELIM, 382
OBEX_UTIL_ATOM_GETTEXT_D-

EFAULT, 382
OBEX_UTIL_ATOM_GETTEXT_F-

ORCE_ZEROS, 382
OBEX_UTIL_ATOM_GETTEXT_N-

UM_HI_RES, 382
OBEX_UTIL_ATOM_GETTEXT_SY-

M_FORCE_QUOTE, 382
OBEX_UTIL_ATOM_GETTEXT_SY-

M_NO_QUOTE, 382
OBEX_UTIL_ATOM_GETTEXT_TR-

UNCATE_ZEROS, 382

INDEX 1027

Attributes
ATTR_FLAGS_NONE, 224
ATTR_GET_OPAQUE, 224
ATTR_GET_OPAQUE_USER, 224
ATTR_SET_OPAQUE, 224
ATTR_SET_OPAQUE_USER, 224

CLASS_FLAG_ALIAS
Classes, 251

CLASS_FLAG_BOX
Classes, 251

CLASS_FLAG_DO_NOT_PARSE_ATT-
R_ARGS

Classes, 251
CLASS_FLAG_NEWDICTIONARY

Classes, 251
CLASS_FLAG_NOATTRIBUTES

Classes, 251
CLASS_FLAG_OWNATTRIBUTES

Classes, 252
CLASS_FLAG_POLYGLOT

Classes, 251
CLASS_FLAG_REGISTERED

Classes, 251
CLASS_FLAG_SCHED_PURGE

Classes, 251
CLASS_FLAG_UIOBJECT

Classes, 251
Classes

CLASS_FLAG_ALIAS, 251
CLASS_FLAG_BOX, 251
CLASS_FLAG_DO_NOT_PARSE_-

ATTR_ARGS, 251
CLASS_FLAG_NEWDICTIONARY,

251
CLASS_FLAG_NOATTRIBUTES,

251
CLASS_FLAG_OWNATTRIBUTES,

252
CLASS_FLAG_POLYGLOT, 251
CLASS_FLAG_REGISTERED, 251
CLASS_FLAG_SCHED_PURGE,

251
CLASS_FLAG_UIOBJECT, 251

Data Storage
OBJ_FLAG_DATA, 276
OBJ_FLAG_INHERITABLE, 276
OBJ_FLAG_MEMORY, 276
OBJ_FLAG_OBJ, 276
OBJ_FLAG_REF, 276
OBJ_FLAG_SILENT, 276

ET_FI
Extending expr, 485

ET_FLT
Extending expr, 485

ET_FUNC
Extending expr, 485

ET_II
Extending expr, 485

ET_INT
Extending expr, 485

ET_LB
Extending expr, 485

ET_LP
Extending expr, 485

ET_OP
Extending expr, 485

ET_SI
Extending expr, 485

ET_STR
Extending expr, 485

ET_SYM
Extending expr, 485

ET_TBL
Extending expr, 485

ET_VSYM
Extending expr, 485

Extending expr
ET_FI, 485
ET_FLT, 485
ET_FUNC, 485
ET_II, 485
ET_INT, 485
ET_LB, 485
ET_LP, 485
ET_OP, 485
ET_SI, 485
ET_STR, 485
ET_SYM, 485
ET_TBL, 485
ET_VSYM, 485

Files and Folders
PATH_FILEINFO_ALIAS, 417
PATH_FILEINFO_FOLDER, 417
PATH_FILEINFO_PACKAGE, 417
PATH_FOLDER_SNIFF, 417
PATH_READ_PERM, 417
PATH_REPORTPACKAGEASFOL-

DER, 417
PATH_RW_PERM, 417
PATH_STYLE_COLON, 418

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1028 INDEX

PATH_STYLE_MAX, 418
PATH_STYLE_NATIVE, 418
PATH_STYLE_NATIVE_WIN, 418
PATH_STYLE_SLASH, 418
PATH_TYPE_ABSOLUTE, 418
PATH_TYPE_BOOT, 418
PATH_TYPE_C74, 418
PATH_TYPE_IGNORE, 418
PATH_TYPE_PATH, 418
PATH_TYPE_RELATIVE, 418
PATH_WRITE_PERM, 417
SYSFILE_ATMARK, 418
SYSFILE_FROMLEOF, 418
SYSFILE_FROMMARK, 418
SYSFILE_FROMSTART, 418
TEXT_ENCODING_USE_FILE, 419
TEXT_LB_MAC, 419
TEXT_LB_NATIVE, 419
TEXT_LB_PC, 419
TEXT_LB_UNIX, 419
TEXT_NULL_TERMINATE, 419

HitBox
jbox, 573

HitGrowBox
jbox, 573

HitInlet
jbox, 573

HitLine
jbox, 573

HitLineLocked
jbox, 573

HitNothing
jbox, 573

HitOutlet
jbox, 573

ITM Time Objects
TIME_FLAGS_BBUSOURCE, 626
TIME_FLAGS_CHECKSCHEDULE,

626
TIME_FLAGS_EVENTLIST, 626
TIME_FLAGS_FIXED, 626
TIME_FLAGS_FIXEDONLY, 626
TIME_FLAGS_LISTENTICKS, 626
TIME_FLAGS_LOCATION, 626
TIME_FLAGS_LOOKAHEAD, 626
TIME_FLAGS_NOUNITS, 626
TIME_FLAGS_PERMANENT, 626
TIME_FLAGS_POSITIVE, 626
TIME_FLAGS_TICKSONLY, 626
TIME_FLAGS_TRANSPORT, 626

TIME_FLAGS_USECLOCK, 626
TIME_FLAGS_USEQELEM, 626

JBOX_FONTFACE_BOLD
jbox, 573

JBOX_FONTFACE_BOLDITALIC
jbox, 573

JBOX_FONTFACE_ITALIC
jbox, 573

JBOX_FONTFACE_REGULAR
jbox, 573

JFont
JGRAPHICS_FONT_SLANT_ITALI-

C, 690
JGRAPHICS_FONT_SLANT_NOR-

MAL, 690
JGRAPHICS_FONT_WEIGHT_BO-

LD, 690
JGRAPHICS_FONT_WEIGHT_NO-

RMAL, 690
JGRAPHICS_FILEFORMAT_JPEG

JGraphics, 661
JGRAPHICS_FILEFORMAT_PNG

JGraphics, 661
JGRAPHICS_FONT_SLANT_ITALIC

JFont, 690
JGRAPHICS_FONT_SLANT_NORMAL

JFont, 690
JGRAPHICS_FONT_WEIGHT_BOLD

JFont, 690
JGRAPHICS_FONT_WEIGHT_NORMAL

JFont, 690
JGRAPHICS_FORMAT_A8

JGraphics, 662
JGRAPHICS_FORMAT_ARGB32

JGraphics, 662
JGRAPHICS_FORMAT_RGB24

JGraphics, 662
JGRAPHICS_TEXTLAYOUT_NOWRAP

TextLayout, 716
JGRAPHICS_TEXTLAYOUT_USEELLIP-

SIS
TextLayout, 716

JGRAPHICS_TEXT_JUSTIFICATION_B-
OTTOM

JGraphics, 662
JGRAPHICS_TEXT_JUSTIFICATION_C-

ENTERED
JGraphics, 662

JGRAPHICS_TEXT_JUSTIFICATION_H-
CENTERED

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1029

JGraphics, 662
JGRAPHICS_TEXT_JUSTIFICATION_H-

JUSTIFIED
JGraphics, 662

JGRAPHICS_TEXT_JUSTIFICATION_L-
EFT

JGraphics, 662
JGRAPHICS_TEXT_JUSTIFICATION_R-

IGHT
JGraphics, 662

JGRAPHICS_TEXT_JUSTIFICATION_T-
OP

JGraphics, 662
JGRAPHICS_TEXT_JUSTIFICATION_V-

CENTERED
JGraphics, 662

JGraphics
JGRAPHICS_FILEFORMAT_JPEG,

661
JGRAPHICS_FILEFORMAT_PNG,

661
JGRAPHICS_FORMAT_A8, 662
JGRAPHICS_FORMAT_ARGB32,

662
JGRAPHICS_FORMAT_RGB24,

662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_BOTTOM, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_CENTERED, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_HCENTERED, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_HJUSTIFIED, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_LEFT, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_RIGHT, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_TOP, 662
JGRAPHICS_TEXT_JUSTIFICATI-

ON_VCENTERED, 662
JMOUSE_CURSOR_ARROW

Mouse and Keyboard, 504
JMOUSE_CURSOR_COPYING

Mouse and Keyboard, 504
JMOUSE_CURSOR_CROSSHAIR

Mouse and Keyboard, 504
JMOUSE_CURSOR_DRAGGINGHAND

Mouse and Keyboard, 504

JMOUSE_CURSOR_IBEAM
Mouse and Keyboard, 504

JMOUSE_CURSOR_NONE
Mouse and Keyboard, 504

JMOUSE_CURSOR_POINTINGHAND
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_BOTTOM-
EDGE

Mouse and Keyboard, 504
JMOUSE_CURSOR_RESIZE_BOTTOM-

LEFTCORNER
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_BOTTOM-
RIGHTCORNER

Mouse and Keyboard, 504
JMOUSE_CURSOR_RESIZE_FOURWA-

Y
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_LEFTED-
GE

Mouse and Keyboard, 504
JMOUSE_CURSOR_RESIZE_LEFTRIG-

HT
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_RIGHTE-
DGE

Mouse and Keyboard, 504
JMOUSE_CURSOR_RESIZE_TOPEDG-

E
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_TOPLEF-
TCORNER

Mouse and Keyboard, 504
JMOUSE_CURSOR_RESIZE_TOPRIG-

HTCORNER
Mouse and Keyboard, 504

JMOUSE_CURSOR_RESIZE_UPDOWN
Mouse and Keyboard, 504

JMOUSE_CURSOR_WAIT
Mouse and Keyboard, 504

MAX_ERR_DUPLICATE
Miscellaneous, 468

MAX_ERR_GENERIC
Miscellaneous, 468

MAX_ERR_INVALID_PTR
Miscellaneous, 468

MAX_ERR_NONE
Miscellaneous, 468

MAX_ERR_OUT_OF_MEM
Miscellaneous, 468

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1030 INDEX

MSP
SYS_MAXBLKSIZE, 510
SYS_MAXSIGS, 510

Miscellaneous
MAX_ERR_DUPLICATE, 468
MAX_ERR_GENERIC, 468
MAX_ERR_INVALID_PTR, 468
MAX_ERR_NONE, 468
MAX_ERR_OUT_OF_MEM, 468
aaCancel, 468
aaNo, 468
aaYes, 468

Mouse and Keyboard
JMOUSE_CURSOR_ARROW, 504
JMOUSE_CURSOR_COPYING, 504
JMOUSE_CURSOR_CROSSHAIR,

504
JMOUSE_CURSOR_DRAGGINGH-

AND, 504
JMOUSE_CURSOR_IBEAM, 504
JMOUSE_CURSOR_NONE, 504
JMOUSE_CURSOR_POINTINGHA-

ND, 504
JMOUSE_CURSOR_RESIZE_BOT-

TOMEDGE, 504
JMOUSE_CURSOR_RESIZE_BOT-

TOMLEFTCORNER, 504
JMOUSE_CURSOR_RESIZE_BOT-

TOMRIGHTCORNER, 504
JMOUSE_CURSOR_RESIZE_FOU-

RWAY, 504
JMOUSE_CURSOR_RESIZE_LEF-

TEDGE, 504
JMOUSE_CURSOR_RESIZE_LEF-

TRIGHT, 504
JMOUSE_CURSOR_RESIZE_RIG-

HTEDGE, 504
JMOUSE_CURSOR_RESIZE_TOP-

EDGE, 504
JMOUSE_CURSOR_RESIZE_TOP-

LEFTCORNER, 504
JMOUSE_CURSOR_RESIZE_TOP-

RIGHTCORNER, 504
JMOUSE_CURSOR_RESIZE_UPD-

OWN, 504
JMOUSE_CURSOR_WAIT, 504
eAltKey, 505
eAutoRepeat, 505
eCapsLock, 505
eCommandKey, 504

eControlKey, 505
eLeftButton, 505
eMiddleButton, 505
ePopupMenu, 505
eRightButton, 505
eShiftKey, 504

OBEX_UTIL_ATOM_GETTEXT_COMM-
A_DELIM

Atoms, 382
OBEX_UTIL_ATOM_GETTEXT_DEFAU-

LT
Atoms, 382

OBEX_UTIL_ATOM_GETTEXT_FORCE-
_ZEROS

Atoms, 382
OBEX_UTIL_ATOM_GETTEXT_NUM_H-

I_RES
Atoms, 382

OBEX_UTIL_ATOM_GETTEXT_SYM_F-
ORCE_QUOTE

Atoms, 382
OBEX_UTIL_ATOM_GETTEXT_SYM_N-

O_QUOTE
Atoms, 382

OBEX_UTIL_ATOM_GETTEXT_TRUNC-
ATE_ZEROS

Atoms, 382
OBJ_FLAG_DATA

Data Storage, 276
OBJ_FLAG_INHERITABLE

Data Storage, 276
OBJ_FLAG_MEMORY

Data Storage, 276
OBJ_FLAG_OBJ

Data Storage, 276
OBJ_FLAG_REF

Data Storage, 276
OBJ_FLAG_SILENT

Data Storage, 276
PATH_FILEINFO_ALIAS

Files and Folders, 417
PATH_FILEINFO_FOLDER

Files and Folders, 417
PATH_FILEINFO_PACKAGE

Files and Folders, 417
PATH_FOLDER_SNIFF

Files and Folders, 417
PATH_READ_PERM

Files and Folders, 417
PATH_REPORTPACKAGEASFOLDER

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1031

Files and Folders, 417
PATH_RW_PERM

Files and Folders, 417
PATH_STYLE_COLON

Files and Folders, 418
PATH_STYLE_MAX

Files and Folders, 418
PATH_STYLE_NATIVE

Files and Folders, 418
PATH_STYLE_NATIVE_WIN

Files and Folders, 418
PATH_STYLE_SLASH

Files and Folders, 418
PATH_TYPE_ABSOLUTE

Files and Folders, 418
PATH_TYPE_BOOT

Files and Folders, 418
PATH_TYPE_C74

Files and Folders, 418
PATH_TYPE_IGNORE

Files and Folders, 418
PATH_TYPE_PATH

Files and Folders, 418
PATH_TYPE_RELATIVE

Files and Folders, 418
PATH_WRITE_PERM

Files and Folders, 417
PI_DEEP

Patcher, 551
PI_REQUIREFIRSTIN

Patcher, 551
PI_WANTBOX

Patcher, 552
Patcher

PI_DEEP, 551
PI_REQUIREFIRSTIN, 551
PI_WANTBOX, 552

SYSDATEFORMAT_FLAGS_LONG
Systime API, 620

SYSDATEFORMAT_FLAGS_MEDIUM
Systime API, 620

SYSDATEFORMAT_FLAGS_SHORT
Systime API, 620

SYSFILE_ATMARK
Files and Folders, 418

SYSFILE_FROMLEOF
Files and Folders, 418

SYSFILE_FROMMARK
Files and Folders, 418

SYSFILE_FROMSTART

Files and Folders, 418
SYSTHREAD_MUTEX_ERRORCHECK

Threads, 641
SYSTHREAD_MUTEX_NORMAL

Threads, 641
SYSTHREAD_MUTEX_RECURSIVE

Threads, 641
SYS_MAXBLKSIZE

MSP, 510
SYS_MAXSIGS

MSP, 510
Systime API

SYSDATEFORMAT_FLAGS_LON-
G, 620

SYSDATEFORMAT_FLAGS_MEDI-
UM, 620

SYSDATEFORMAT_FLAGS_SHO-
RT, 620

TEXT_ENCODING_USE_FILE
Files and Folders, 419

TEXT_LB_MAC
Files and Folders, 419

TEXT_LB_NATIVE
Files and Folders, 419

TEXT_LB_PC
Files and Folders, 419

TEXT_LB_UNIX
Files and Folders, 419

TEXT_NULL_TERMINATE
Files and Folders, 419

TIME_FLAGS_BBUSOURCE
ITM Time Objects, 626

TIME_FLAGS_CHECKSCHEDULE
ITM Time Objects, 626

TIME_FLAGS_EVENTLIST
ITM Time Objects, 626

TIME_FLAGS_FIXED
ITM Time Objects, 626

TIME_FLAGS_FIXEDONLY
ITM Time Objects, 626

TIME_FLAGS_LISTENTICKS
ITM Time Objects, 626

TIME_FLAGS_LOCATION
ITM Time Objects, 626

TIME_FLAGS_LOOKAHEAD
ITM Time Objects, 626

TIME_FLAGS_NOUNITS
ITM Time Objects, 626

TIME_FLAGS_PERMANENT
ITM Time Objects, 626

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1032 INDEX

TIME_FLAGS_POSITIVE
ITM Time Objects, 626

TIME_FLAGS_TICKSONLY
ITM Time Objects, 626

TIME_FLAGS_TRANSPORT
ITM Time Objects, 626

TIME_FLAGS_USECLOCK
ITM Time Objects, 626

TIME_FLAGS_USEQELEM
ITM Time Objects, 626

TextLayout
JGRAPHICS_TEXTLAYOUT_NOW-

RAP, 716
JGRAPHICS_TEXTLAYOUT_USE-

ELLIPSIS, 716
Threads

SYSTHREAD_MUTEX_ERRORCH-
ECK, 641

SYSTHREAD_MUTEX_NORMAL,
641

SYSTHREAD_MUTEX_RECURSIV-
E, 641

ATOMIC_COMPARE_SWAP32
Threads, 640

ATOMIC_DECREMENT
Threads, 640

ATOMIC_INCREMENT
Threads, 641

Atom Array, 277
atomarray_appendatom, 278
atomarray_appendatoms, 279
atomarray_chuckindex, 279
atomarray_clear, 279
atomarray_copyatoms, 279
atomarray_duplicate, 280
atomarray_flags, 280
atomarray_funall, 281
atomarray_getatoms, 281
atomarray_getflags, 282
atomarray_getindex, 282
atomarray_getsize, 282
atomarray_new, 283
atomarray_setatoms, 283

Atom Module, 734
jit_atom_arg_getdouble, 735
jit_atom_arg_getfloat, 735
jit_atom_arg_getlong, 735
jit_atom_arg_getsym, 736
jit_atom_getcharfix, 736
jit_atom_getfloat, 736

jit_atom_getlong, 737
jit_atom_getobj, 737
jit_atom_getsym, 737
jit_atom_setfloat, 737
jit_atom_setlong, 738
jit_atom_setobj, 738
jit_atom_setsym, 738

Atombufs, 400
atombuf_free, 400
atombuf_new, 401
atombuf_text, 401

Atoms, 379
atom_alloc, 383
atom_alloc_array, 384
atom_arg_getdouble, 384
atom_arg_getfloat, 385
atom_arg_getlong, 385
atom_arg_getobjclass, 386
atom_arg_getsym, 386
atom_copy, 387
atom_getatom_array, 387
atom_getchar_array, 388
atom_getcharfix, 388
atom_getdouble_array, 388
atom_getfloat, 389
atom_getfloat_array, 389
atom_getformat, 389
atom_getlong, 390
atom_getlong_array, 390
atom_getobj, 391
atom_getobj_array, 391
atom_getobjclass, 391
atom_getsym, 392
atom_getsym_array, 392
atom_gettext, 393
atom_gettype, 393
atom_setatom_array, 393
atom_setchar_array, 394
atom_setdouble_array, 394
atom_setfloat, 394
atom_setfloat_array, 395
atom_setformat, 395
atom_setlong, 396
atom_setlong_array, 396
atom_setobj, 396
atom_setobj_array, 397
atom_setparse, 397
atom_setsym, 398
atom_setsym_array, 398
atomisatomarray, 398

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1033

atomisdictionary, 399
atomisstring, 399
e_max_atom_gettext_flags, 382
e_max_atomtypes, 382
postargs, 399

Attribute Module, 740
jit_attr_canget, 742
jit_attr_canset, 742
jit_attr_filter_clip_new, 743
jit_attr_filter_proc_new, 743
jit_attr_filterget, 743
jit_attr_filterset, 744
jit_attr_get, 744
jit_attr_getchar_array, 744
jit_attr_getdouble_array, 745
jit_attr_getfloat, 745
jit_attr_getfloat_array, 745
jit_attr_getlong, 746
jit_attr_getlong_array, 746
jit_attr_getmethod, 746
jit_attr_getname, 747
jit_attr_getsym, 747
jit_attr_getsym_array, 747
jit_attr_gettype, 748
jit_attr_offset_array_new, 748
jit_attr_offset_new, 749
jit_attr_set, 749
jit_attr_setchar_array, 750
jit_attr_setdouble_array, 750
jit_attr_setfloat, 750
jit_attr_setfloat_array, 751
jit_attr_setlong, 751
jit_attr_setlong_array, 751
jit_attr_setsym, 752
jit_attr_setsym_array, 752
jit_attr_symcompare, 752
jit_attr_usercanget, 753
jit_attr_usercanset, 753
jit_attribute_new, 753

Attributes, 175
CLASS_ATTR_ALIAS, 187
CLASS_ATTR_ATOM, 187
CLASS_ATTR_BASIC, 188
CLASS_ATTR_CHAR, 189
CLASS_ATTR_DEFAULT, 190
CLASS_ATTR_DOUBLE, 193
CLASS_ATTR_ENUM, 194
CLASS_ATTR_FLOAT, 196
CLASS_ATTR_LABEL, 197
CLASS_ATTR_LONG, 198

CLASS_ATTR_MAX, 199
CLASS_ATTR_MIN, 199
CLASS_ATTR_OBJ, 200
CLASS_ATTR_ORDER, 201
CLASS_ATTR_PAINT, 201
CLASS_ATTR_RGBA, 202
CLASS_ATTR_SAVE, 202
CLASS_ATTR_STYLE, 202
CLASS_ATTR_SYM, 204
CLASS_STICKY_ATTR, 205
OBJ_ATTR_ATOM, 207
OBJ_ATTR_CHAR, 208
OBJ_ATTR_DEFAULT, 208
OBJ_ATTR_DOUBLE, 209
OBJ_ATTR_FLOAT, 209
OBJ_ATTR_LONG, 210
OBJ_ATTR_OBJ, 211
OBJ_ATTR_SAVE, 211
OBJ_ATTR_SYM, 212
STATIC_ATTR_ATOM, 212
STATIC_ATTR_CHAR, 213
STATIC_ATTR_DOUBLE, 213
STATIC_ATTR_FLOAT, 214
STATIC_ATTR_LONG, 215
STATIC_ATTR_OBJ, 215
STATIC_ATTR_SYM, 216
STRUCT_ATTR_ATOM, 216
STRUCT_ATTR_CHAR, 217
STRUCT_ATTR_DOUBLE, 218
STRUCT_ATTR_FLOAT, 219
STRUCT_ATTR_LONG, 221
STRUCT_ATTR_OBJ, 222
STRUCT_ATTR_SYM, 223
attr_addfilter_clip, 225
attr_addfilter_clip_scale, 225
attr_addfilterget_clip, 226
attr_addfilterget_clip_scale, 226
attr_addfilterget_proc, 227
attr_addfilterset_clip, 227
attr_addfilterset_clip_scale, 227
attr_addfilterset_proc, 228
attr_args_dictionary, 229
attr_args_offset, 229
attr_args_process, 230
attr_dictionary_process, 230
attr_offset_array_new, 231
attr_offset_new, 232
attribute_new, 233
e_max_attrflags, 224
object_addattr, 234

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1034 INDEX

object_attr_get, 234
object_attr_get_rect, 235
object_attr_getchar_array, 235
object_attr_getcolor, 235
object_attr_getdouble_array, 236
object_attr_getdump, 236
object_attr_getfloat, 237
object_attr_getfloat_array, 237
object_attr_getjrgba, 238
object_attr_getlong, 238
object_attr_getlong_array, 238
object_attr_getpt, 239
object_attr_getsize, 239
object_attr_getsym, 240
object_attr_getsym_array, 240
object_attr_method, 240
object_attr_set_rect, 241
object_attr_setchar_array, 241
object_attr_setcolor, 242
object_attr_setdouble_array, 242
object_attr_setfloat, 242
object_attr_setfloat_array, 243
object_attr_setjrgba, 243
object_attr_setlong, 243
object_attr_setlong_array, 244
object_attr_setparse, 244
object_attr_setpt, 245
object_attr_setsize, 245
object_attr_setsym, 245
object_attr_setsym_array, 246
object_attr_setvalueof, 246
object_attr_usercanget, 246
object_attr_usercanset, 247
object_chuckattr, 247
object_deleteattr, 247
object_new_parse, 248

BYTEORDER_SWAPF32
Byte Ordering, 482

BYTEORDER_SWAPF64
Byte Ordering, 482

BYTEORDER_SWAPW16
Byte Ordering, 482

BYTEORDER_SWAPW32
Byte Ordering, 482

Binary Module, 755
jit_bin_read_chunk_info, 755
jit_bin_read_header, 755
jit_bin_read_matrix, 756
jit_bin_write_header, 756
jit_bin_write_matrix, 756

Binbufs, 402
binbuf_append, 403
binbuf_eval, 403
binbuf_getatom, 403
binbuf_insert, 404
binbuf_new, 404
binbuf_set, 404
binbuf_text, 405
binbuf_totext, 405
binbuf_vinsert, 406
readatom, 407

Box Layer, 725
jbox_end_layer, 726
jbox_invalidate_layer, 726
jbox_paint_layer, 726
jbox_start_layer, 727

Buffers, 515
Byte Ordering, 481

BYTEORDER_SWAPF32, 482
BYTEORDER_SWAPF64, 482
BYTEORDER_SWAPW16, 482
BYTEORDER_SWAPW32, 482
C74_BIG_ENDIAN, 483
C74_LITTLE_ENDIAN, 483

C74_BIG_ENDIAN
Byte Ordering, 483

C74_LITTLE_ENDIAN
Byte Ordering, 483

CLASS_ATTR_ALIAS
Attributes, 187

CLASS_ATTR_ATOM
Attributes, 187

CLASS_ATTR_BASIC
Attributes, 188

CLASS_ATTR_CHAR
Attributes, 189

CLASS_ATTR_DEFAULT
Attributes, 190

CLASS_ATTR_DOUBLE
Attributes, 193

CLASS_ATTR_ENUM
Attributes, 194

CLASS_ATTR_FLOAT
Attributes, 196

CLASS_ATTR_LABEL
Attributes, 197

CLASS_ATTR_LONG
Attributes, 198

CLASS_ATTR_MAX
Attributes, 199

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1035

CLASS_ATTR_MIN
Attributes, 199

CLASS_ATTR_OBJ
Attributes, 200

CLASS_ATTR_ORDER
Attributes, 201

CLASS_ATTR_PAINT
Attributes, 201

CLASS_ATTR_RGBA
Attributes, 202

CLASS_ATTR_SAVE
Attributes, 202

CLASS_ATTR_STYLE
Attributes, 202

CLASS_ATTR_SYM
Attributes, 204

CLASS_BOX
Classes, 251

CLASS_STICKY_ATTR
Attributes, 205

CLIP
Miscellaneous, 466

Class Module, 758
class_copy, 759
jit_class_addadornment, 759
jit_class_addattr, 760
jit_class_addinterface, 760
jit_class_addmethod, 760
jit_class_addtypedwrapper, 761
jit_class_adornment_get, 761
jit_class_attr_get, 762
jit_class_findbyname, 762
jit_class_free, 762
jit_class_mess, 762
jit_class_method, 763
jit_class_method_addargsafe, 763
jit_class_method_argsafe_get, 764
jit_class_nameget, 764
jit_class_new, 764
jit_class_register, 765
jit_class_symcompare, 765
jit_class_typedwrapper_get, 765

Classes, 249
CLASS_BOX, 251
class_addattr, 252
class_addmethod, 252
class_alias, 252
class_dumpout_wrap, 253
class_findbyname, 253
class_findbyname_casefree, 253

class_free, 254
class_is_ui, 254
class_nameget, 254
class_new, 255
class_obexoffset_get, 255
class_obexoffset_set, 256
class_register, 256
class_subclass, 256
class_super_construct, 257
e_max_class_flags, 251

Clocks, 604
clock_delay, 608
clock_fdelay, 609
clock_getftime, 609
clock_new, 609
clock_unset, 610
gettime, 610
scheduler_fromobject, 610
scheduler_get, 611
scheduler_gettime, 611
scheduler_new, 611
scheduler_run, 611
scheduler_set, 612
scheduler_settime, 612
scheduler_shift, 612
setclock_delay, 613
setclock_fdelay, 613
setclock_getftime, 613
setclock_gettime, 614
setclock_unset, 614
systimer_gettime, 615

Colors, 700
atoms_to_jrgba, 700
jrgba_attr_get, 701
jrgba_attr_set, 701
jrgba_compare, 702
jrgba_copy, 702
jrgba_set, 702
jrgba_to_atoms, 702

Console, 475
cpost, 475
error, 476
object_error, 476
object_error_obtrusive, 477
object_post, 477
object_warn, 478
ouchstring, 478
post, 479
postatom, 480

Critical Regions, 648

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1036 INDEX

critical_enter, 650
critical_exit, 650
critical_free, 650
critical_new, 651
critical_tryenter, 651

Data Storage, 274
e_max_datastore_flags, 276
t_cmpfn, 276

Data Types, 377
t_max_err, 378

DataView, 728
jdataview_getclient, 729
jdataview_new, 729
jdataview_setclient, 729

Database, 285
db_close, 287
db_open, 288
db_query, 288
db_query_getlastinsertid, 288
db_query_silent, 289
db_query_table_addcolumn, 289
db_query_table_new, 290
db_result_clear, 290
db_result_datetimeinseconds, 290
db_result_fieldname, 291
db_result_float, 291
db_result_long, 291
db_result_nextrecord, 291
db_result_numfields, 292
db_result_numrecords, 292
db_result_reset, 292
db_result_string, 293
db_transaction_end, 293
db_transaction_flush, 293
db_transaction_start, 293
db_util_datetostring, 294
db_util_stringtodate, 294
db_view_create, 294
db_view_getresult, 295
db_view_remove, 295
db_view_setquery, 295
t_database, 287
t_db_result, 287
t_db_view, 287

Dictionary, 297
dictionary_appendatom, 303
dictionary_appendatomarray, 303
dictionary_appendatoms, 303
dictionary_appenddictionary, 304
dictionary_appendfloat, 304

dictionary_appendlong, 305
dictionary_appendobject, 305
dictionary_appendstring, 305
dictionary_appendsym, 306
dictionary_chuckentry, 306
dictionary_clear, 307
dictionary_copyatoms, 307
dictionary_copydefatoms, 308
dictionary_copyentries, 308
dictionary_copyunique, 309
dictionary_deleteentry, 309
dictionary_dump, 309
dictionary_entry_getkey, 310
dictionary_entry_getvalue, 310
dictionary_entry_getvalues, 311
dictionary_entryisatomarray, 311
dictionary_entryisdictionary, 311
dictionary_entryisstring, 312
dictionary_freekeys, 312
dictionary_funall, 312
dictionary_getatom, 313
dictionary_getatomarray, 313
dictionary_getatoms, 314
dictionary_getdefatom, 314
dictionary_getdefatoms, 315
dictionary_getdeffloat, 315
dictionary_getdeflong, 316
dictionary_getdefstring, 316
dictionary_getdefsym, 317
dictionary_getdictionary, 317
dictionary_getentrycount, 317
dictionary_getfloat, 318
dictionary_getkeys, 318
dictionary_getlong, 319
dictionary_getobject, 319
dictionary_getstring, 319
dictionary_getsym, 320
dictionary_hasentry, 320
dictionary_new, 320
dictionary_read, 321
dictionary_sprintf, 321
dictionary_write, 322
postdictionary, 322

Dictionary Passing API, 367
dictobj_atom_safety, 370
dictobj_dictionaryfromatoms, 370
dictobj_dictionaryfromstring, 371
dictobj_dictionarytoatoms, 371
dictobj_findregistered_clone, 372
dictobj_findregistered_retain, 372

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1037

dictobj_jsonfromstring, 373
dictobj_namefromptr, 373
dictobj_outlet_atoms, 373
dictobj_register, 374
dictobj_release, 374
dictobj_unregister, 375
dictobj_validate, 375

Event and File Serial Numbers, 494
evnum_get, 495
serialno, 495

Ex_ex, 961
Extending expr, 484

e_max_expr_types, 485
expr_eval, 485
expr_new, 486

Files and Folders, 411
MAX_FILENAME_CHARS, 416
e_max_fileinfo_flags, 417
e_max_openfile_permissions, 417
e_max_path_folder_flags, 417
e_max_path_styles, 417
e_max_path_types, 418
e_max_sysfile_posmodes, 418
e_max_sysfile_textflags, 418
fileusage_addfile, 419
filewatcher_new, 419
locatefile, 420
locatefile_extended, 420
locatefiletype, 421
open_dialog, 422
open_promptset, 422
path_closefolder, 423
path_createsysfile, 423
path_fileinfo, 423
path_foldernextfile, 424
path_frompathname, 424
path_getapppath, 425
path_getdefault, 425
path_getfilemoddate, 425
path_getmoddate, 425
path_nameconform, 426
path_openfolder, 426
path_opensysfile, 426
path_resolvefile, 427
path_setdefault, 427
path_topathname, 428
path_topotentialname, 428
saveas_dialog, 428
saveas_promptset, 429
saveasdialog_extended, 429

sysfile_close, 431
sysfile_geteof, 431
sysfile_getpos, 431
sysfile_openhandle, 432
sysfile_openptrsize, 432
sysfile_read, 432
sysfile_readtextfile, 433
sysfile_readtohandle, 433
sysfile_readtoptr, 433
sysfile_seteof, 434
sysfile_setpos, 434
sysfile_spoolcopy, 435
sysfile_write, 435
sysfile_writetextfile, 435
t_filehandle, 417

HASH_DEFSLOTS
Hash Table, 326

Hash Table, 324
HASH_DEFSLOTS, 326
hashtab_chuck, 326
hashtab_chuckkey, 327
hashtab_clear, 327
hashtab_delete, 327
hashtab_findfirst, 328
hashtab_flags, 329
hashtab_funall, 329
hashtab_getflags, 329
hashtab_getkeyflags, 330
hashtab_getkeys, 330
hashtab_getsize, 331
hashtab_keyflags, 331
hashtab_lookup, 331
hashtab_lookupflags, 332
hashtab_methodall, 332
hashtab_new, 333
hashtab_print, 333
hashtab_readonly, 333
hashtab_store, 334
hashtab_store_safe, 334
hashtab_storeflags, 335

HitTestResult
jbox, 573

ITM Time Objects, 623
class_time_addattr, 626
itm_barbeatunitstoticks, 626
itm_dereference, 627
itm_dump, 627
itm_getglobal, 627
itm_getname, 627
itm_getnamed, 628

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1038 INDEX

itm_getresolution, 628
itm_getstate, 628
itm_getticks, 629
itm_gettime, 629
itm_gettimesignature, 629
itm_isunitfixed, 630
itm_mstosamps, 630
itm_mstoticks, 630
itm_pause, 630
itm_reference, 631
itm_resume, 631
itm_sampstoms, 631
itm_setresolution, 631
itm_settimesignature, 632
itm_tickstobarbeatunits, 632
itm_tickstoms, 632
t_itm, 637
t_timeobject, 637
time_calcquantize, 633
time_getitm, 633
time_getms, 633
time_getnamed, 634
time_getphase, 634
time_getticks, 634
time_isfixedunit, 634
time_listen, 635
time_new, 635
time_now, 635
time_schedule, 636
time_schedule_limit, 636
time_setclock, 636
time_setvalue, 636
time_stop, 637
time_tick, 637

InRange
Miscellaneous, 467

Index Map, 336
indexmap_append, 337
indexmap_clear, 337
indexmap_datafromindex, 337
indexmap_delete, 338
indexmap_delete_index, 338
indexmap_delete_index_multi, 338
indexmap_delete_multi, 338
indexmap_getsize, 339
indexmap_indexfromdata, 339
indexmap_move, 339
indexmap_new, 340
indexmap_sort, 340

Inlets and Outlets, 266

bangout, 267
floatin, 267
floatout, 267
inlet_new, 268
intin, 268
intout, 269
listout, 269
outlet_anything, 270
outlet_bang, 270
outlet_float, 271
outlet_int, 271
outlet_list, 271
outlet_new, 272
proxy_getinlet, 273
proxy_new, 273

JFont, 689
jbox_get_font_slant, 690
jbox_get_font_weight, 691
jfont_create, 691
jfont_destroy, 691
jfont_extents, 691
jfont_get_em_dimensions, 692
jfont_getfontlist, 692
jfont_isequalto, 692
jfont_reference, 693
jfont_set_font_size, 693
jfont_set_underline, 693
jfont_text_measure, 693
jfont_text_measuretext_wrapped,

693
t_jgraphics_font_slant, 690
t_jgraphics_font_weight, 690

JGRAPHICS_2PI
JGraphics, 661

JGRAPHICS_3PIOVER2
JGraphics, 661

JGRAPHICS_PI
JGraphics, 661

JGRAPHICS_PIOVER2
JGraphics, 661

JGraphics, 656
JGRAPHICS_2PI, 661
JGRAPHICS_3PIOVER2, 661
JGRAPHICS_PI, 661
JGRAPHICS_PIOVER2, 661
jgraphics_append_path, 662
jgraphics_arc, 662
jgraphics_arc_negative, 663
jgraphics_bubble, 663
jgraphics_close_path, 664

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1039

jgraphics_copy_path, 664
jgraphics_curve_to, 664
jgraphics_destroy, 664
jgraphics_device_to_user, 665
jgraphics_ellipse, 665
jgraphics_font_extents, 665
jgraphics_get_current_point, 665
jgraphics_getfiletypes, 666
jgraphics_line_to, 666
jgraphics_move_to, 667
jgraphics_new_path, 667
jgraphics_oval, 667
jgraphics_ovalarc, 667
jgraphics_path_contains, 668
jgraphics_path_createstroked, 668
jgraphics_path_destroy, 668
jgraphics_path_getlength, 668
jgraphics_path_getnearestpoint, 669
jgraphics_path_getpointalongpath,

669
jgraphics_path_intersectsline, 669
jgraphics_path_roundcorners, 670
jgraphics_rectangle, 670
jgraphics_rectangle_rounded, 671
jgraphics_rectcontainsrect, 671
jgraphics_rectintersectsrect, 671
jgraphics_reference, 672
jgraphics_rel_curve_to, 672
jgraphics_rel_line_to, 672
jgraphics_rel_move_to, 672
jgraphics_round, 673
jgraphics_select_font_face, 673
jgraphics_select_jfont, 673
jgraphics_set_font_size, 673
jgraphics_set_underline, 674
jgraphics_show_text, 674
jgraphics_system_canantialiastexttotransparentbg,

674
jgraphics_text_measure, 674
jgraphics_text_measuretext_wrapped,

675
jgraphics_text_path, 675
jgraphics_user_to_device, 675
t_jgraphics_fileformat, 661
t_jgraphics_format, 662
t_jgraphics_text_justification, 662

JGraphics Matrix Transformations, 695
jgraphics_matrix_init, 696
jgraphics_matrix_init_identity, 696
jgraphics_matrix_init_rotate, 696

jgraphics_matrix_init_scale, 697
jgraphics_matrix_init_translate, 697
jgraphics_matrix_invert, 697
jgraphics_matrix_multiply, 697
jgraphics_matrix_rotate, 698
jgraphics_matrix_scale, 698
jgraphics_matrix_transform_point,

698
jgraphics_matrix_translate, 698

JPattern, 699
JSurface, 676

jgraphics_create, 677
jgraphics_get_resource_data, 678
jgraphics_image_surface_clear, 678
jgraphics_image_surface_create,

678
jgraphics_image_surface_create_-

for_data, 679
jgraphics_image_surface_create_-

from_file, 679
jgraphics_image_surface_create_-

from_filedata, 680
jgraphics_image_surface_create_-

from_resource, 680
jgraphics_image_surface_create_-

referenced, 681
jgraphics_image_surface_draw, 681
jgraphics_image_surface_draw_fast,

681
jgraphics_image_surface_get_-

height, 682
jgraphics_image_surface_get_pixel,

682
jgraphics_image_surface_get_width,

682
jgraphics_image_surface_scroll, 683
jgraphics_image_surface_set_pixel,

683
jgraphics_image_surface_writepng,

683
jgraphics_surface_destroy, 683
jgraphics_surface_reference, 684
jgraphics_write_image_surface_to_-

filedata, 684
Jitter, 438
Linked List, 341

linklist_append, 344
linklist_chuck, 345
linklist_chuckindex, 345
linklist_chuckobject, 346

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1040 INDEX

linklist_clear, 346
linklist_deleteindex, 346
linklist_deleteobject, 347
linklist_findall, 347
linklist_findfirst, 348
linklist_flags, 349
linklist_funall, 349
linklist_funall_break, 349
linklist_funindex, 350
linklist_getflags, 350
linklist_getindex, 351
linklist_getsize, 351
linklist_insert_sorted, 351
linklist_insertafterobjptr, 352
linklist_insertbeforeobjptr, 352
linklist_insertindex, 352
linklist_last, 352
linklist_makearray, 353
linklist_match, 353
linklist_methodall, 353
linklist_methodindex, 354
linklist_moveafterobjptr, 354
linklist_movebeforeobjptr, 355
linklist_new, 355
linklist_next, 355
linklist_objptr2index, 355
linklist_prev, 356
linklist_readonly, 356
linklist_reverse, 356
linklist_rotate, 356
linklist_shuffle, 357
linklist_sort, 357
linklist_substitute, 357
linklist_swap, 358

Linked List Module, 780
jit_linklist_append, 781
jit_linklist_chuck, 781
jit_linklist_chuckindex, 782
jit_linklist_clear, 782
jit_linklist_deleteindex, 783
jit_linklist_findall, 783
jit_linklist_findcount, 784
jit_linklist_findfirst, 784
jit_linklist_getindex, 785
jit_linklist_getsize, 785
jit_linklist_insertindex, 786
jit_linklist_makearray, 786
jit_linklist_methodall, 786
jit_linklist_methodindex, 787
jit_linklist_new, 787

jit_linklist_objptr2index, 788
jit_linklist_reverse, 788
jit_linklist_rotate, 788
jit_linklist_shuffle, 789
jit_linklist_sort, 789
jit_linklist_swap, 790

Loading Max Files, 496
fileload, 496
intload, 497
readtohandle, 497
stringload, 498

MAX
Miscellaneous, 467

MAXARG
Objects, 523

MAX_FILENAME_CHARS
Files and Folders, 416

MIN
Miscellaneous, 467

MM_UNIFIED
Memory Management, 455

MOP Max Wrapper Module, 852
max_jit_classex_mop_mproc, 853
max_jit_classex_mop_wrap, 853
max_jit_mop_adapt_matrix_all, 854
max_jit_mop_assist, 854
max_jit_mop_bang, 854
max_jit_mop_clear, 855
max_jit_mop_free, 855
max_jit_mop_get_io_by_name, 855
max_jit_mop_getinput, 855
max_jit_mop_getoutput, 856
max_jit_mop_getoutputmode, 856
max_jit_mop_inputs, 856
max_jit_mop_jit_matrix, 856
max_jit_mop_matrix_args, 857
max_jit_mop_matrixout_new, 857
max_jit_mop_notify, 857
max_jit_mop_outputmatrix, 858
max_jit_mop_outputs, 858
max_jit_mop_setup, 858
max_jit_mop_setup_simple, 859
max_jit_mop_variable_addinputs,

859
max_jit_mop_variable_addoutputs,

859
MOP Module, 836

jit_mop_free, 837
jit_mop_getinput, 838
jit_mop_getinputlist, 838

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1041

jit_mop_getoutput, 838
jit_mop_getoutputlist, 839
jit_mop_input_nolink, 839
jit_mop_io_free, 840
jit_mop_io_getioproc, 840
jit_mop_io_getmatrix, 840
jit_mop_io_ioproc, 841
jit_mop_io_matrix, 841
jit_mop_io_new, 841
jit_mop_io_newcopy, 842
jit_mop_io_restrict_dim, 842
jit_mop_io_restrict_planecount, 843
jit_mop_io_restrict_type, 843
jit_mop_ioproc_copy_adapt, 843
jit_mop_ioproc_copy_trunc, 844
jit_mop_ioproc_copy_trunc_zero,

844
jit_mop_ioproc_tosym, 845
jit_mop_methodall, 845
jit_mop_new, 846
jit_mop_newcopy, 846
jit_mop_output_nolink, 846
jit_mop_single_planecount, 847
jit_mop_single_type, 847

MSP, 507
PI, 509
PIOVERTWO, 509
TWOPI, 509
class_dspinit, 511
class_dspinitjbox, 511
dsp_add, 511
dsp_addv, 512
sys_getblksize, 512
sys_getdspobjdspstate, 512
sys_getdspstate, 512
sys_getmaxblksize, 513
sys_getsr, 513
t_double, 510
t_float, 510
t_int, 510
t_perfroutine, 514
t_sample, 510
t_vptr, 510
vptr, 510
z_dsp_free, 513
z_dsp_setup, 513

Math Module, 791
jit_math_acos, 793
jit_math_acosh, 793
jit_math_asin, 794

jit_math_asinh, 794
jit_math_atan, 794
jit_math_atan2, 794
jit_math_atanh, 795
jit_math_ceil, 795
jit_math_cos, 795
jit_math_cosh, 795
jit_math_exp, 796
jit_math_exp2, 796
jit_math_expm1, 796
jit_math_fast_acos, 797
jit_math_fast_asin, 797
jit_math_fast_atan, 797
jit_math_fast_cos, 797
jit_math_fast_invsqrt, 798
jit_math_fast_sin, 798
jit_math_fast_sqrt, 798
jit_math_fast_tan, 799
jit_math_floor, 799
jit_math_fmod, 799
jit_math_fold, 799
jit_math_hypot, 800
jit_math_is_finite, 800
jit_math_is_nan, 800
jit_math_is_poweroftwo, 801
jit_math_is_valid, 801
jit_math_j1, 801
jit_math_j1_0, 801
jit_math_log, 802
jit_math_log10, 802
jit_math_log2, 802
jit_math_p1, 802
jit_math_pow, 803
jit_math_q1, 803
jit_math_round, 803
jit_math_roundup_poweroftwo, 804
jit_math_sin, 804
jit_math_sinh, 804
jit_math_sqrt, 804
jit_math_tan, 805
jit_math_tanh, 805
jit_math_trunc, 805
jit_math_wrap, 805

Matrix Module, 807
jit_linklist_free, 809
jit_matrix_clear, 809
jit_matrix_data, 809
jit_matrix_exprfill, 810
jit_matrix_fillplane, 810
jit_matrix_free, 811

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1042 INDEX

jit_matrix_freedata, 811
jit_matrix_fromgworld, 811
jit_matrix_frommatrix, 812
jit_matrix_getcell, 812
jit_matrix_getdata, 813
jit_matrix_getinfo, 813
jit_matrix_info_default, 814
jit_matrix_jit_gl_texture, 814
jit_matrix_new, 814
jit_matrix_newcopy, 815
jit_matrix_op, 815
jit_matrix_setall, 816
jit_matrix_setcell, 816
jit_matrix_setcell1d, 817
jit_matrix_setcell2d, 817
jit_matrix_setcell3d, 818
jit_matrix_setinfo, 818
jit_matrix_setinfo_ex, 819
jit_matrix_setplane1d, 819
jit_matrix_setplane2d, 819
jit_matrix_setplane3d, 820
jit_matrix_togworld, 820

Max Wrapper Module, 822
max_addmethod_defer, 823
max_addmethod_defer_low, 824
max_addmethod_usurp, 824
max_addmethod_usurp_low, 824
max_jit_attr_args, 824
max_jit_attr_args_offset, 824
max_jit_attr_get, 825
max_jit_attr_getdump, 825
max_jit_attr_set, 825
max_jit_classex_addattr, 825
max_jit_classex_setup, 826
max_jit_classex_standard_wrap, 826
max_jit_obex_adornment_get, 826
max_jit_obex_attr_get, 827
max_jit_obex_attr_set, 827
max_jit_obex_dumpout, 827
max_jit_obex_dumpout_get, 828
max_jit_obex_dumpout_set, 828
max_jit_obex_free, 828
max_jit_obex_gimmeback, 828
max_jit_obex_gimmeback_dumpout,

829
max_jit_obex_inletnumber_get, 829
max_jit_obex_inletnumber_set, 829
max_jit_obex_jitob_get, 829
max_jit_obex_jitob_set, 830
max_jit_obex_new, 830

max_jit_obex_proxy_new, 830
Memory Management, 453

MM_UNIFIED, 455
disposhandle, 455
freebytes, 455
freebytes16, 455
getbytes, 456
getbytes16, 456
growhandle, 456
newhandle, 457
sysmem_copyptr, 457
sysmem_freehandle, 457
sysmem_freeptr, 457
sysmem_handlesize, 458
sysmem_lockhandle, 458
sysmem_newhandle, 458
sysmem_newhandleclear, 459
sysmem_newptr, 459
sysmem_newptrclear, 459
sysmem_nullterminatehandle, 460
sysmem_ptrandhand, 460
sysmem_ptrbeforehand, 460
sysmem_ptrsize, 461
sysmem_resizehandle, 461
sysmem_resizeptr, 461
sysmem_resizeptrclear, 462

Memory Module, 831
jit_copy_bytes, 831
jit_disposeptr, 832
jit_freebytes, 832
jit_freemem, 832
jit_getbytes, 833
jit_handle_free, 833
jit_handle_lock, 833
jit_handle_new, 834
jit_handle_size_get, 834
jit_handle_size_set, 834
jit_newptr, 835

Miscellaneous, 463
CLIP, 466
InRange, 467
MAX, 467
MIN, 467
calcoffset, 466
e_max_errorcodes, 468
e_max_wind_advise_result, 468
error_subscribe, 468
error_sym, 469
error_unsubscribe, 469
globalsymbol_bind, 469

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1043

globalsymbol_dereference, 469
globalsymbol_reference, 470
globalsymbol_unbind, 470
maxversion, 471
object_obex_quickref, 471
post_sym, 471
quittask_install, 471
quittask_remove, 472
snprintf_zero, 472
strncat_zero, 472
strncpy_zero, 473
symbol_unique, 473
symbolarray_sort, 473
wind_advise, 473
wind_setcursor, 474

Miscellaneous Utility Module, 776
jit_err_from_max_err, 776
jit_error_code, 777
jit_error_sym, 777
jit_global_critical_enter, 777
jit_global_critical_exit, 777
jit_post_sym, 777
jit_rand, 778
jit_rand_setseed, 778
swapf32, 778
swapf64, 778

Monitors and Displays, 499
jmonitor_getdisplayrect, 499
jmonitor_getdisplayrect_foralldisplays,

499
jmonitor_getdisplayrect_forpoint, 500
jmonitor_getnumdisplays, 500

Mouse and Keyboard, 503
jkeyboard_getcurrentmodifiers, 505
jkeyboard_getcurrentmodifiers_-

realtime, 505
jmouse_getposition_global, 505
jmouse_setcursor, 505
jmouse_setposition_box, 506
jmouse_setposition_global, 506
jmouse_setposition_view, 506
t_jmouse_cursortype, 504
t_modifiers, 504

Mutexes, 652
systhread_mutex_free, 652
systhread_mutex_lock, 653
systhread_mutex_new, 653
systhread_mutex_newlock, 653
systhread_mutex_trylock, 654
systhread_mutex_unlock, 654

OB3D Module, 861
jit_gl_begincapture, 863
jit_gl_bindtexture, 863
jit_gl_drawinfo_active_textures, 864
jit_gl_drawinfo_setup, 864
jit_gl_endcapture, 864
jit_gl_get_extensions, 864
jit_gl_get_glsl_version, 865
jit_gl_get_glu_version, 865
jit_gl_get_renderer, 865
jit_gl_get_vendor, 865
jit_gl_get_version, 865
jit_gl_is_extension_supported, 866
jit_gl_is_min_version, 866
jit_gl_report_error, 866
jit_gl_texcoord1f, 867
jit_gl_texcoord1fv, 867
jit_gl_texcoord2f, 867
jit_gl_texcoord2fv, 867
jit_gl_texcoord3f, 868
jit_gl_texcoord3fv, 868
jit_gl_unbindtexture, 868
jit_glchunk_copy, 868
jit_glchunk_delete, 869
jit_glchunk_grid_new, 869
jit_glchunk_new, 869
jit_ob3d_draw_chunk, 869
jit_ob3d_free, 870
jit_ob3d_new, 870
jit_ob3d_set_context, 870
jit_ob3d_setup, 871
max_jit_ob3d_assist, 871
max_jit_ob3d_attach, 871
max_jit_ob3d_detach, 872
max_ob3d_bang, 872
max_ob3d_notify, 872
ob3d_auto_get, 872
ob3d_dest_dim_get, 872
ob3d_dest_dim_set, 873
ob3d_dirty_get, 873
ob3d_dirty_set, 873
ob3d_enable_get, 873
ob3d_jitob_get, 874
ob3d_outlet_get, 874
ob3d_patcher_get, 874
ob3d_render_ptr_get, 874
ob3d_render_ptr_set, 875
ob3d_ui_get, 875

OBJ_ATTR_ATOM
Attributes, 207

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1044 INDEX

OBJ_ATTR_CHAR
Attributes, 208

OBJ_ATTR_DEFAULT
Attributes, 208

OBJ_ATTR_DOUBLE
Attributes, 209

OBJ_ATTR_FLOAT
Attributes, 209

OBJ_ATTR_LONG
Attributes, 210

OBJ_ATTR_OBJ
Attributes, 211

OBJ_ATTR_SAVE
Attributes, 211

OBJ_ATTR_SYM
Attributes, 212

Object Module, 767
jit_object_attach, 768
jit_object_attr_get, 768
jit_object_attr_usercanget, 769
jit_object_attr_usercanset, 769
jit_object_class, 769
jit_object_classname, 769
jit_object_classname_compare, 770
jit_object_detach, 770
jit_object_exportattrs, 770
jit_object_exportsummary, 771
jit_object_findregistered, 771
jit_object_findregisteredbyptr, 771
jit_object_free, 772
jit_object_getmethod, 772
jit_object_importattrs, 772
jit_object_method, 772
jit_object_method_argsafe_get, 773
jit_object_method_typed, 773
jit_object_new, 774
jit_object_notify, 774
jit_object_register, 774
jit_object_unregister, 775

Objects, 519
MAXARG, 523
classname_openhelp, 523
classname_openquery, 523
classname_openrefpage, 523
newobject_fromdictionary, 524
newobject_sprintf, 524
object_alloc, 525
object_attach, 526
object_attach_byptr, 526
object_attach_byptr_register, 527

object_attr_touch, 528
object_attr_touch_parse, 528
object_class, 528
object_classname, 529
object_classname_compare, 529
object_detach, 529
object_detach_byptr, 530
object_dictionaryarg, 530
object_findregistered, 531
object_findregisteredbyptr, 531
object_free, 531
object_getmethod, 532
object_getvalueof, 532
object_method, 533
object_method_char, 533
object_method_char_array, 534
object_method_double, 534
object_method_double_array, 535
object_method_float, 535
object_method_float_array, 536
object_method_format, 536
object_method_long, 537
object_method_long_array, 537
object_method_obj, 538
object_method_obj_array, 538
object_method_parse, 539
object_method_sym, 539
object_method_sym_array, 539
object_method_typed, 540
object_method_typedfun, 540
object_new, 541
object_new_typed, 541
object_notify, 542
object_obex_dumpout, 543
object_obex_lookup, 543
object_obex_store, 544
object_openhelp, 544
object_openquery, 545
object_openrefpage, 545
object_register, 545
object_register_getnames, 545
object_setvalueof, 546
object_subscribe, 546
object_super_method, 547
object_this_method, 547
object_unregister, 548
object_unsubscribe, 548

Old-Style Classes, 258
addbang, 259
addfloat, 259

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1045

addftx, 259
addint, 260
addinx, 260
addmess, 260
alias, 261
class_setname, 261
egetfn, 261
freeobject, 261
getfn, 262
newinstance, 262
newobject, 263
setup, 263
typedmess, 264
zgetfn, 264

Operator Vector Module, 876
jit_op_vector_abs_float32, 888
jit_op_vector_abs_float64, 889
jit_op_vector_abs_long, 889
jit_op_vector_absdiff_char, 889
jit_op_vector_absdiff_float32, 889
jit_op_vector_absdiff_float64, 890
jit_op_vector_absdiff_long, 890
jit_op_vector_acos_float32, 890
jit_op_vector_acos_float64, 891
jit_op_vector_acosh_float32, 891
jit_op_vector_acosh_float64, 891
jit_op_vector_add_char, 891
jit_op_vector_add_float32, 892
jit_op_vector_add_float64, 892
jit_op_vector_add_long, 892
jit_op_vector_adds_char, 893
jit_op_vector_and_char, 893
jit_op_vector_and_float32, 893
jit_op_vector_and_float64, 893
jit_op_vector_and_long, 894
jit_op_vector_asin_float32, 894
jit_op_vector_asin_float64, 894
jit_op_vector_asinh_float32, 895
jit_op_vector_asinh_float64, 895
jit_op_vector_atan2_float32, 895
jit_op_vector_atan2_float64, 895
jit_op_vector_atan_float32, 896
jit_op_vector_atan_float64, 896
jit_op_vector_atanh_float32, 896
jit_op_vector_atanh_float64, 897
jit_op_vector_avg_char, 897
jit_op_vector_avg_float32, 897
jit_op_vector_avg_float64, 897
jit_op_vector_avg_long, 898
jit_op_vector_bitand_char, 898

jit_op_vector_bitand_long, 898
jit_op_vector_bitnot_char, 899
jit_op_vector_bitnot_long, 899
jit_op_vector_bitor_char, 899
jit_op_vector_bitor_long, 899
jit_op_vector_bitxor_char, 900
jit_op_vector_bitxor_long, 900
jit_op_vector_ceil_float32, 900
jit_op_vector_ceil_float64, 901
jit_op_vector_cos_float32, 901
jit_op_vector_cos_float64, 901
jit_op_vector_cosh_float32, 901
jit_op_vector_cosh_float64, 902
jit_op_vector_div_char, 902
jit_op_vector_div_float32, 902
jit_op_vector_div_float64, 903
jit_op_vector_div_long, 903
jit_op_vector_eq_char, 903
jit_op_vector_eq_float32, 903
jit_op_vector_eq_float64, 904
jit_op_vector_eq_long, 904
jit_op_vector_eqp_char, 904
jit_op_vector_eqp_float32, 905
jit_op_vector_eqp_float64, 905
jit_op_vector_eqp_long, 905
jit_op_vector_exp2_float32, 905
jit_op_vector_exp2_float64, 906
jit_op_vector_exp_float32, 906
jit_op_vector_exp_float64, 906
jit_op_vector_flipdiv_char, 907
jit_op_vector_flipdiv_float32, 907
jit_op_vector_flipdiv_float64, 907
jit_op_vector_flipdiv_long, 907
jit_op_vector_flipmod_char, 908
jit_op_vector_flipmod_float32, 908
jit_op_vector_flipmod_float64, 908
jit_op_vector_flipmod_long, 909
jit_op_vector_flippass_char, 909
jit_op_vector_flippass_float32, 909
jit_op_vector_flippass_float64, 909
jit_op_vector_flippass_long, 910
jit_op_vector_flipsub_char, 910
jit_op_vector_flipsub_float32, 910
jit_op_vector_flipsub_long, 911
jit_op_vector_floor_float32, 911
jit_op_vector_floor_float64, 911
jit_op_vector_fold_float32, 911
jit_op_vector_fold_float64, 912
jit_op_vector_gt_char, 912
jit_op_vector_gt_float32, 912

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1046 INDEX

jit_op_vector_gt_float64, 913
jit_op_vector_gt_long, 913
jit_op_vector_gte_char, 913
jit_op_vector_gte_float32, 913
jit_op_vector_gte_float64, 914
jit_op_vector_gte_long, 914
jit_op_vector_gtep_char, 914
jit_op_vector_gtep_float32, 915
jit_op_vector_gtep_float64, 915
jit_op_vector_gtep_long, 915
jit_op_vector_gtp_char, 915
jit_op_vector_gtp_float32, 916
jit_op_vector_gtp_float64, 916
jit_op_vector_gtp_long, 916
jit_op_vector_hypot_float32, 917
jit_op_vector_hypot_float64, 917
jit_op_vector_log10_float32, 917
jit_op_vector_log10_float64, 917
jit_op_vector_log2_float32, 918
jit_op_vector_log2_float64, 918
jit_op_vector_log_float32, 918
jit_op_vector_log_float64, 919
jit_op_vector_lshift_char, 919
jit_op_vector_lshift_long, 919
jit_op_vector_lt_char, 919
jit_op_vector_lt_float32, 920
jit_op_vector_lt_float64, 920
jit_op_vector_lt_long, 920
jit_op_vector_lte_char, 921
jit_op_vector_lte_float32, 921
jit_op_vector_lte_float64, 921
jit_op_vector_lte_long, 921
jit_op_vector_ltep_char, 922
jit_op_vector_ltep_float32, 922
jit_op_vector_ltep_float64, 922
jit_op_vector_ltep_long, 923
jit_op_vector_ltp_char, 923
jit_op_vector_ltp_float32, 923
jit_op_vector_ltp_float64, 923
jit_op_vector_ltp_long, 924
jit_op_vector_max_char, 924
jit_op_vector_max_float32, 924
jit_op_vector_max_float64, 925
jit_op_vector_max_long, 925
jit_op_vector_min_char, 925
jit_op_vector_min_float32, 925
jit_op_vector_min_float64, 926
jit_op_vector_min_long, 926
jit_op_vector_mod_char, 926
jit_op_vector_mod_float32, 927

jit_op_vector_mod_float64, 927
jit_op_vector_mod_long, 927
jit_op_vector_mult_char, 927
jit_op_vector_mult_float32, 928
jit_op_vector_mult_float64, 928
jit_op_vector_mult_long, 928
jit_op_vector_neq_char, 929
jit_op_vector_neq_float32, 929
jit_op_vector_neq_float64, 929
jit_op_vector_neq_long, 929
jit_op_vector_neqp_char, 930
jit_op_vector_neqp_float32, 930
jit_op_vector_neqp_float64, 930
jit_op_vector_neqp_long, 931
jit_op_vector_not_char, 931
jit_op_vector_not_float32, 931
jit_op_vector_not_float64, 931
jit_op_vector_not_long, 932
jit_op_vector_or_char, 932
jit_op_vector_or_float32, 932
jit_op_vector_or_float64, 933
jit_op_vector_or_long, 933
jit_op_vector_pass_char, 933
jit_op_vector_pass_float32, 933
jit_op_vector_pass_float64, 934
jit_op_vector_pass_long, 934
jit_op_vector_pow_float32, 934
jit_op_vector_pow_float64, 935
jit_op_vector_round_float32, 935
jit_op_vector_round_float64, 935
jit_op_vector_rshift_char, 935
jit_op_vector_rshift_long, 936
jit_op_vector_sin_float32, 936
jit_op_vector_sin_float64, 936
jit_op_vector_sinh_float32, 937
jit_op_vector_sinh_float64, 937
jit_op_vector_sqrt_float32, 937
jit_op_vector_sqrt_float64, 937
jit_op_vector_sub_char, 938
jit_op_vector_sub_float32, 938
jit_op_vector_sub_float64, 938
jit_op_vector_sub_long, 939
jit_op_vector_subs_char, 939
jit_op_vector_tan_float32, 939
jit_op_vector_tan_float64, 939
jit_op_vector_tanh_float32, 940
jit_op_vector_tanh_float64, 940
jit_op_vector_trunc_float32, 940
jit_op_vector_trunc_float64, 941
jit_op_vector_wrap_float32, 941

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1047

jit_op_vector_wrap_float64, 941
PFFT, 517
PI

MSP, 509
PIOVERTWO

MSP, 509
Parallel Utility Module, 848

jit_parallel_ndim_calc, 848
jit_parallel_ndim_simplecalc1, 849
jit_parallel_ndim_simplecalc2, 849
jit_parallel_ndim_simplecalc3, 850
jit_parallel_ndim_simplecalc4, 850

Patcher, 550
t_box, 551
t_patcher, 551

Poly, 518
Popup Menus, 720

jpopupmenu_additem, 721
jpopupmenu_addseperator, 721
jpopupmenu_addsubmenu, 721
jpopupmenu_clear, 722
jpopupmenu_create, 722
jpopupmenu_destroy, 722
jpopupmenu_popup, 722
jpopupmenu_popup_abovebox, 722
jpopupmenu_popup_belowrect, 723
jpopupmenu_popup_nearbox, 723
jpopupmenu_setcolors, 724
jpopupmenu_setfont, 724

Presets, 491
preset_int, 492
preset_set, 493
preset_store, 493

Qelems, 616
qelem_free, 617
qelem_front, 617
qelem_new, 617
qelem_set, 618
qelem_unset, 618

Quick Map, 359
quickmap_add, 360
quickmap_drop, 360
quickmap_lookup_key1, 360
quickmap_lookup_key2, 361
quickmap_new, 361
quickmap_readonly, 361

QuickTime Codec Module, 942
jit_qt_codec_acodec2sym, 943
jit_qt_codec_getcodeclist_audio, 943

jit_qt_codec_getcodeclist_audio_-
raw, 943

jit_qt_codec_getcodeclist_gfx, 944
jit_qt_codec_getcodeclist_gfx_raw,

944
jit_qt_codec_getcodeclist_video, 944
jit_qt_codec_getcodeclist_video_-

raw, 945
jit_qt_codec_qual2sym, 945
jit_qt_codec_sym2acodec, 945
jit_qt_codec_sym2qual, 946
jit_qt_codec_sym2type, 946
jit_qt_codec_sym2type_valid, 946
jit_qt_codec_type2sym, 946
jit_qt_codec_type2sym_valid, 947

QuickTime Utilties Module, 953
jit_coerce_matrix_pixmap, 954
jit_gworld_can_coerce_matrix, 954
jit_gworld_clear, 955
jit_gworld_matrix_equal_dim, 955
jit_qt_utils_moviedataref_create, 955
jit_qt_utils_moviefile_close, 955
jit_qt_utils_moviefile_create, 956
jit_qt_utils_str2type, 956
jit_qt_utils_tempfile, 957
jit_qt_utils_tempmoviefile_create,

957
jit_qt_utils_trackmedia_add, 957
jit_qt_utils_trackmedia_dispose, 958
jit_qt_utils_trackmedia_get, 958
jit_qt_utils_trackname_get, 958
jit_qt_utils_trackname_set, 959
jit_qt_utils_tracktype_get, 959
jit_qt_utils_tracktypecode_get, 959
jit_qt_utils_type2str, 959

STATIC_ATTR_ATOM
Attributes, 212

STATIC_ATTR_CHAR
Attributes, 213

STATIC_ATTR_DOUBLE
Attributes, 213

STATIC_ATTR_FLOAT
Attributes, 214

STATIC_ATTR_LONG
Attributes, 215

STATIC_ATTR_OBJ
Attributes, 215

STATIC_ATTR_SYM
Attributes, 216

STRUCT_ATTR_ATOM

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1048 INDEX

Attributes, 216
STRUCT_ATTR_CHAR

Attributes, 217
STRUCT_ATTR_DOUBLE

Attributes, 218
STRUCT_ATTR_FLOAT

Attributes, 219
STRUCT_ATTR_LONG

Attributes, 221
STRUCT_ATTR_OBJ

Attributes, 222
STRUCT_ATTR_SYM

Attributes, 223
Scalable Vector Graphics, 686

jsvg_create_from_file, 686
jsvg_create_from_resource, 686
jsvg_create_from_xmlstring, 687
jsvg_destroy, 687
jsvg_get_size, 687
jsvg_render, 688

String Object, 362
string_append, 363
string_chop, 363
string_getptr, 363
string_new, 363
string_reserve, 363

Symbol Object, 365
symobject_linklist_match, 365
symobject_new, 366

Symbols, 409
gensym, 410
gensym_tr, 410

Systime API, 619
e_max_dateflags, 620
sysdateformat_formatdatetime, 620
sysdateformat_strftimetodatetime,

620
systime_datetime, 621
systime_datetoseconds, 621
systime_ms, 621
systime_seconds, 621
systime_secondstodate, 621
systime_ticks, 622

TWOPI
MSP, 509

Table Access, 488
table_dirty, 488
table_get, 488

Text Editor Windows, 490
TextField, 704

textfield_get_autoscroll, 706
textfield_get_bgcolor, 706
textfield_get_editonclick, 706
textfield_get_emptytext, 706
textfield_get_noactivate, 707
textfield_get_owner, 707
textfield_get_readonly, 707
textfield_get_selectallonedit, 707
textfield_get_textcolor, 708
textfield_get_textmargins, 708
textfield_get_underline, 708
textfield_get_useellipsis, 709
textfield_get_wantsreturn, 709
textfield_get_wantstab, 709
textfield_get_wordwrap, 710
textfield_set_autoscroll, 710
textfield_set_bgcolor, 710
textfield_set_editonclick, 710
textfield_set_emptytext, 711
textfield_set_noactivate, 711
textfield_set_readonly, 711
textfield_set_selectallonedit, 712
textfield_set_textcolor, 712
textfield_set_textmargins, 712
textfield_set_underline, 712
textfield_set_useellipsis, 713
textfield_set_wantsreturn, 713
textfield_set_wantstab, 713
textfield_set_wordwrap, 714

TextLayout, 715
jtextlayout_create, 716
jtextlayout_destroy, 716
jtextlayout_draw, 716
jtextlayout_getchar, 717
jtextlayout_getcharbox, 717
jtextlayout_getnumchars, 717
jtextlayout_measuretext, 717
jtextlayout_set, 718
jtextlayout_settextcolor, 718
jtextlayout_withbgcolor, 718
t_jgraphics_textlayout_flags, 716

Threads, 638
ATOMIC_DECREMENT, 640
ATOMIC_INCREMENT, 641
defer, 641
defer_low, 642
e_max_systhread_mutex_flags, 641
isr, 643
schedule, 643
schedule_delay, 644

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1049

systhread_create, 644
systhread_exit, 645
systhread_getpriority, 645
systhread_ismainthread, 645
systhread_istimerthread, 645
systhread_join, 646
systhread_self, 646
systhread_setpriority, 646
systhread_sleep, 646
systhread_terminate, 647

Timing, 603
Unicode, 730

charset_convert, 731
charset_unicodetoutf8, 731
charset_utf8_count, 732
charset_utf8_offset, 732
charset_utf8tounicode, 732

User Interface, 655
Windows, 501

jwind_getactive, 501
jwind_getat, 501
jwind_getcount, 501

aaCancel
Miscellaneous, 468

aaNo
Miscellaneous, 468

aaYes
Miscellaneous, 468

addbang
Old-Style Classes, 259

addfloat
Old-Style Classes, 259

addftx
Old-Style Classes, 259

addint
Old-Style Classes, 260

addinx
Old-Style Classes, 260

addmess
Old-Style Classes, 260

alias
Old-Style Classes, 261

atom_alloc
Atoms, 383

atom_alloc_array
Atoms, 384

atom_arg_getdouble
Atoms, 384

atom_arg_getfloat

Atoms, 385
atom_arg_getlong

Atoms, 385
atom_arg_getobjclass

Atoms, 386
atom_arg_getsym

Atoms, 386
atom_copy

Atoms, 387
atom_getatom_array

Atoms, 387
atom_getchar_array

Atoms, 388
atom_getcharfix

Atoms, 388
atom_getdouble_array

Atoms, 388
atom_getfloat

Atoms, 389
atom_getfloat_array

Atoms, 389
atom_getformat

Atoms, 389
atom_getlong

Atoms, 390
atom_getlong_array

Atoms, 390
atom_getobj

Atoms, 391
atom_getobj_array

Atoms, 391
atom_getobjclass

Atoms, 391
atom_getsym

Atoms, 392
atom_getsym_array

Atoms, 392
atom_gettext

Atoms, 393
atom_gettype

Atoms, 393
atom_setatom_array

Atoms, 393
atom_setchar_array

Atoms, 394
atom_setdouble_array

Atoms, 394
atom_setfloat

Atoms, 394
atom_setfloat_array

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1050 INDEX

Atoms, 395
atom_setformat

Atoms, 395
atom_setlong

Atoms, 396
atom_setlong_array

Atoms, 396
atom_setobj

Atoms, 396
atom_setobj_array

Atoms, 397
atom_setparse

Atoms, 397
atom_setsym

Atoms, 398
atom_setsym_array

Atoms, 398
atomarray_appendatom

Atom Array, 278
atomarray_appendatoms

Atom Array, 279
atomarray_chuckindex

Atom Array, 279
atomarray_clear

Atom Array, 279
atomarray_copyatoms

Atom Array, 279
atomarray_duplicate

Atom Array, 280
atomarray_flags

Atom Array, 280
atomarray_funall

Atom Array, 281
atomarray_getatoms

Atom Array, 281
atomarray_getflags

Atom Array, 282
atomarray_getindex

Atom Array, 282
atomarray_getsize

Atom Array, 282
atomarray_new

Atom Array, 283
atomarray_setatoms

Atom Array, 283
atombuf_free

Atombufs, 400
atombuf_new

Atombufs, 401
atombuf_text

Atombufs, 401
atomisatomarray

Atoms, 398
atomisdictionary

Atoms, 399
atomisstring

Atoms, 399
atoms_to_jrgba

Colors, 700
attr_addfilter_clip

Attributes, 225
attr_addfilter_clip_scale

Attributes, 225
attr_addfilterget_clip

Attributes, 226
attr_addfilterget_clip_scale

Attributes, 226
attr_addfilterget_proc

Attributes, 227
attr_addfilterset_clip

Attributes, 227
attr_addfilterset_clip_scale

Attributes, 227
attr_addfilterset_proc

Attributes, 228
attr_args_dictionary

Attributes, 229
attr_args_offset

Attributes, 229
attr_args_process

Attributes, 230
attr_dictionary_process

Attributes, 230
attr_offset_array_new

Attributes, 231
attr_offset_new

Attributes, 232
attribute_new

Attributes, 233

bangout
Inlets and Outlets, 267

binbuf_append
Binbufs, 403

binbuf_eval
Binbufs, 403

binbuf_getatom
Binbufs, 403

binbuf_insert
Binbufs, 404

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1051

binbuf_new
Binbufs, 404

binbuf_set
Binbufs, 404

binbuf_text
Binbufs, 405

binbuf_totext
Binbufs, 405

binbuf_vinsert
Binbufs, 406

calcoffset
Miscellaneous, 466

charset_convert
Unicode, 731

charset_unicodetoutf8
Unicode, 731

charset_utf8_count
Unicode, 732

charset_utf8_offset
Unicode, 732

charset_utf8tounicode
Unicode, 732

class_addattr
Classes, 252

class_addmethod
Classes, 252

class_alias
Classes, 252

class_copy
Class Module, 759

class_dspinit
MSP, 511

class_dspinitjbox
MSP, 511

class_dumpout_wrap
Classes, 253

class_findbyname
Classes, 253

class_findbyname_casefree
Classes, 253

class_free
Classes, 254

class_is_ui
Classes, 254

class_nameget
Classes, 254

class_new
Classes, 255

class_obexoffset_get

Classes, 255
class_obexoffset_set

Classes, 256
class_register

Classes, 256
class_setname

Old-Style Classes, 261
class_subclass

Classes, 256
class_super_construct

Classes, 257
class_time_addattr

ITM Time Objects, 626
classname_openhelp

Objects, 523
classname_openquery

Objects, 523
classname_openrefpage

Objects, 523
clock_delay

Clocks, 608
clock_fdelay

Clocks, 609
clock_getftime

Clocks, 609
clock_new

Clocks, 609
clock_unset

Clocks, 610
cpost

Console, 475
critical_enter

Critical Regions, 650
critical_exit

Critical Regions, 650
critical_free

Critical Regions, 650
critical_new

Critical Regions, 651
critical_tryenter

Critical Regions, 651

db_close
Database, 287

db_open
Database, 288

db_query
Database, 288

db_query_getlastinsertid
Database, 288

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1052 INDEX

db_query_silent
Database, 289

db_query_table_addcolumn
Database, 289

db_query_table_new
Database, 290

db_result_clear
Database, 290

db_result_datetimeinseconds
Database, 290

db_result_fieldname
Database, 291

db_result_float
Database, 291

db_result_long
Database, 291

db_result_nextrecord
Database, 291

db_result_numfields
Database, 292

db_result_numrecords
Database, 292

db_result_reset
Database, 292

db_result_string
Database, 293

db_transaction_end
Database, 293

db_transaction_flush
Database, 293

db_transaction_start
Database, 293

db_util_datetostring
Database, 294

db_util_stringtodate
Database, 294

db_view_create
Database, 294

db_view_getresult
Database, 295

db_view_remove
Database, 295

db_view_setquery
Database, 295

defer
Threads, 641

defer_low
Threads, 642

dictionary_appendatom
Dictionary, 303

dictionary_appendatomarray
Dictionary, 303

dictionary_appendatoms
Dictionary, 303

dictionary_appenddictionary
Dictionary, 304

dictionary_appendfloat
Dictionary, 304

dictionary_appendlong
Dictionary, 305

dictionary_appendobject
Dictionary, 305

dictionary_appendstring
Dictionary, 305

dictionary_appendsym
Dictionary, 306

dictionary_chuckentry
Dictionary, 306

dictionary_clear
Dictionary, 307

dictionary_copyatoms
Dictionary, 307

dictionary_copydefatoms
Dictionary, 308

dictionary_copyentries
Dictionary, 308

dictionary_copyunique
Dictionary, 309

dictionary_deleteentry
Dictionary, 309

dictionary_dump
Dictionary, 309

dictionary_entry_getkey
Dictionary, 310

dictionary_entry_getvalue
Dictionary, 310

dictionary_entry_getvalues
Dictionary, 311

dictionary_entryisatomarray
Dictionary, 311

dictionary_entryisdictionary
Dictionary, 311

dictionary_entryisstring
Dictionary, 312

dictionary_freekeys
Dictionary, 312

dictionary_funall
Dictionary, 312

dictionary_getatom
Dictionary, 313

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1053

dictionary_getatomarray
Dictionary, 313

dictionary_getatoms
Dictionary, 314

dictionary_getdefatom
Dictionary, 314

dictionary_getdefatoms
Dictionary, 315

dictionary_getdeffloat
Dictionary, 315

dictionary_getdeflong
Dictionary, 316

dictionary_getdefstring
Dictionary, 316

dictionary_getdefsym
Dictionary, 317

dictionary_getdictionary
Dictionary, 317

dictionary_getentrycount
Dictionary, 317

dictionary_getfloat
Dictionary, 318

dictionary_getkeys
Dictionary, 318

dictionary_getlong
Dictionary, 319

dictionary_getobject
Dictionary, 319

dictionary_getstring
Dictionary, 319

dictionary_getsym
Dictionary, 320

dictionary_hasentry
Dictionary, 320

dictionary_new
Dictionary, 320

dictionary_read
Dictionary, 321

dictionary_sprintf
Dictionary, 321

dictionary_write
Dictionary, 322

dictobj_atom_safety
Dictionary Passing API, 370

dictobj_dictionaryfromatoms
Dictionary Passing API, 370

dictobj_dictionaryfromstring
Dictionary Passing API, 371

dictobj_dictionarytoatoms
Dictionary Passing API, 371

dictobj_findregistered_clone
Dictionary Passing API, 372

dictobj_findregistered_retain
Dictionary Passing API, 372

dictobj_jsonfromstring
Dictionary Passing API, 373

dictobj_namefromptr
Dictionary Passing API, 373

dictobj_outlet_atoms
Dictionary Passing API, 373

dictobj_register
Dictionary Passing API, 374

dictobj_release
Dictionary Passing API, 374

dictobj_unregister
Dictionary Passing API, 375

dictobj_validate
Dictionary Passing API, 375

disposhandle
Memory Management, 455

dsp_add
MSP, 511

dsp_addv
MSP, 512

eAltKey
Mouse and Keyboard, 505

eAutoRepeat
Mouse and Keyboard, 505

eCapsLock
Mouse and Keyboard, 505

eCommandKey
Mouse and Keyboard, 504

eControlKey
Mouse and Keyboard, 505

eLeftButton
Mouse and Keyboard, 505

eMiddleButton
Mouse and Keyboard, 505

ePopupMenu
Mouse and Keyboard, 505

eRightButton
Mouse and Keyboard, 505

eShiftKey
Mouse and Keyboard, 504

e_max_atom_gettext_flags
Atoms, 382

e_max_atomtypes
Atoms, 382

e_max_attrflags

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1054 INDEX

Attributes, 224
e_max_class_flags

Classes, 251
e_max_datastore_flags

Data Storage, 276
e_max_dateflags

Systime API, 620
e_max_errorcodes

Miscellaneous, 468
e_max_expr_types

Extending expr, 485
e_max_fileinfo_flags

Files and Folders, 417
e_max_openfile_permissions

Files and Folders, 417
e_max_path_folder_flags

Files and Folders, 417
e_max_path_styles

Files and Folders, 417
e_max_path_types

Files and Folders, 418
e_max_sysfile_posmodes

Files and Folders, 418
e_max_sysfile_textflags

Files and Folders, 418
e_max_systhread_mutex_flags

Threads, 641
e_max_wind_advise_result

Miscellaneous, 468
egetfn

Old-Style Classes, 261
error

Console, 476
error_subscribe

Miscellaneous, 468
error_sym

Miscellaneous, 469
error_unsubscribe

Miscellaneous, 469
evnum_get

Event and File Serial Numbers, 495
expr_eval

Extending expr, 485
expr_new

Extending expr, 486

fileload
Loading Max Files, 496

fileusage_addfile
Files and Folders, 419

filewatcher_new
Files and Folders, 419

floatin
Inlets and Outlets, 267

floatout
Inlets and Outlets, 267

freebytes
Memory Management, 455

freebytes16
Memory Management, 455

freeobject
Old-Style Classes, 261

gensym
Symbols, 410

gensym_tr
Symbols, 410

getbytes
Memory Management, 456

getbytes16
Memory Management, 456

getfn
Old-Style Classes, 262

gettime
Clocks, 610

globalsymbol_bind
Miscellaneous, 469

globalsymbol_dereference
Miscellaneous, 469

globalsymbol_reference
Miscellaneous, 470

globalsymbol_unbind
Miscellaneous, 470

growhandle
Memory Management, 456

hashtab_chuck
Hash Table, 326

hashtab_chuckkey
Hash Table, 327

hashtab_clear
Hash Table, 327

hashtab_delete
Hash Table, 327

hashtab_findfirst
Hash Table, 328

hashtab_flags
Hash Table, 329

hashtab_funall
Hash Table, 329

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1055

hashtab_getflags
Hash Table, 329

hashtab_getkeyflags
Hash Table, 330

hashtab_getkeys
Hash Table, 330

hashtab_getsize
Hash Table, 331

hashtab_keyflags
Hash Table, 331

hashtab_lookup
Hash Table, 331

hashtab_lookupflags
Hash Table, 332

hashtab_methodall
Hash Table, 332

hashtab_new
Hash Table, 333

hashtab_print
Hash Table, 333

hashtab_readonly
Hash Table, 333

hashtab_store
Hash Table, 334

hashtab_store_safe
Hash Table, 334

hashtab_storeflags
Hash Table, 335

indexmap_append
Index Map, 337

indexmap_clear
Index Map, 337

indexmap_datafromindex
Index Map, 337

indexmap_delete
Index Map, 338

indexmap_delete_index
Index Map, 338

indexmap_delete_index_multi
Index Map, 338

indexmap_delete_multi
Index Map, 338

indexmap_getsize
Index Map, 339

indexmap_indexfromdata
Index Map, 339

indexmap_move
Index Map, 339

indexmap_new

Index Map, 340
indexmap_sort

Index Map, 340
inlet_new

Inlets and Outlets, 268
intin

Inlets and Outlets, 268
intload

Loading Max Files, 497
intout

Inlets and Outlets, 269
isr

Threads, 643
itm_barbeatunitstoticks

ITM Time Objects, 626
itm_dereference

ITM Time Objects, 627
itm_dump

ITM Time Objects, 627
itm_getglobal

ITM Time Objects, 627
itm_getname

ITM Time Objects, 627
itm_getnamed

ITM Time Objects, 628
itm_getresolution

ITM Time Objects, 628
itm_getstate

ITM Time Objects, 628
itm_getticks

ITM Time Objects, 629
itm_gettime

ITM Time Objects, 629
itm_gettimesignature

ITM Time Objects, 629
itm_isunitfixed

ITM Time Objects, 630
itm_mstosamps

ITM Time Objects, 630
itm_mstoticks

ITM Time Objects, 630
itm_pause

ITM Time Objects, 630
itm_reference

ITM Time Objects, 631
itm_resume

ITM Time Objects, 631
itm_sampstoms

ITM Time Objects, 631
itm_setresolution

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1056 INDEX

ITM Time Objects, 631
itm_settimesignature

ITM Time Objects, 632
itm_tickstobarbeatunits

ITM Time Objects, 632
itm_tickstoms

ITM Time Objects, 632

jbox, 568
HitBox, 573
HitGrowBox, 573
HitInlet, 573
HitLine, 573
HitLineLocked, 573
HitNothing, 573
HitOutlet, 573
JBOX_FONTFACE_BOLD, 573
JBOX_FONTFACE_BOLDITALIC,

573
JBOX_FONTFACE_ITALIC, 573
JBOX_FONTFACE_REGULAR, 573
HitTestResult, 573
jbox_free, 573
jbox_get_annotation, 574
jbox_get_background, 574
jbox_get_canhilite, 574
jbox_get_color, 574
jbox_get_drawfirstin, 575
jbox_get_drawinlast, 575
jbox_get_fontname, 575
jbox_get_fontsize, 575
jbox_get_growboth, 576
jbox_get_growy, 576
jbox_get_hidden, 576
jbox_get_hint, 576
jbox_get_hintstring, 577
jbox_get_id, 577
jbox_get_ignoreclick, 577
jbox_get_maxclass, 578
jbox_get_nextobject, 578
jbox_get_nogrow, 578
jbox_get_object, 578
jbox_get_outline, 579
jbox_get_patcher, 579
jbox_get_patching_position, 579
jbox_get_patching_rect, 579
jbox_get_patching_size, 580
jbox_get_presentation, 580
jbox_get_presentation_position, 580
jbox_get_presentation_rect, 581

jbox_get_presentation_size, 581
jbox_get_prevobject, 581
jbox_get_rect_for_sym, 582
jbox_get_rect_for_view, 582
jbox_get_textfield, 582
jbox_get_varname, 583
jbox_new, 583
jbox_notify, 583
jbox_ready, 584
jbox_redraw, 584
jbox_set_annotation, 584
jbox_set_background, 584
jbox_set_color, 585
jbox_set_fontname, 585
jbox_set_fontsize, 585
jbox_set_hidden, 586
jbox_set_hint, 586
jbox_set_hintstring, 586
jbox_set_ignoreclick, 586
jbox_set_outline, 587
jbox_set_patching_position, 587
jbox_set_patching_rect, 587
jbox_set_patching_size, 588
jbox_set_position, 588
jbox_set_presentation, 588
jbox_set_presentation_position, 588
jbox_set_presentation_rect, 589
jbox_set_presentation_size, 589
jbox_set_rect, 589
jbox_set_rect_for_sym, 590
jbox_set_rect_for_view, 590
jbox_set_size, 590
jbox_set_varname, 591

jbox_end_layer
Box Layer, 726

jbox_free
jbox, 573

jbox_get_annotation
jbox, 574

jbox_get_background
jbox, 574

jbox_get_canhilite
jbox, 574

jbox_get_color
jbox, 574

jbox_get_drawfirstin
jbox, 575

jbox_get_drawinlast
jbox, 575

jbox_get_font_slant

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1057

JFont, 690
jbox_get_font_weight

JFont, 691
jbox_get_fontname

jbox, 575
jbox_get_fontsize

jbox, 575
jbox_get_growboth

jbox, 576
jbox_get_growy

jbox, 576
jbox_get_hidden

jbox, 576
jbox_get_hint

jbox, 576
jbox_get_hintstring

jbox, 577
jbox_get_id

jbox, 577
jbox_get_ignoreclick

jbox, 577
jbox_get_maxclass

jbox, 578
jbox_get_nextobject

jbox, 578
jbox_get_nogrow

jbox, 578
jbox_get_object

jbox, 578
jbox_get_outline

jbox, 579
jbox_get_patcher

jbox, 579
jbox_get_patching_position

jbox, 579
jbox_get_patching_rect

jbox, 579
jbox_get_patching_size

jbox, 580
jbox_get_presentation

jbox, 580
jbox_get_presentation_position

jbox, 580
jbox_get_presentation_rect

jbox, 581
jbox_get_presentation_size

jbox, 581
jbox_get_prevobject

jbox, 581
jbox_get_rect_for_sym

jbox, 582
jbox_get_rect_for_view

jbox, 582
jbox_get_textfield

jbox, 582
jbox_get_varname

jbox, 583
jbox_invalidate_layer

Box Layer, 726
jbox_new

jbox, 583
jbox_notify

jbox, 583
jbox_paint_layer

Box Layer, 726
jbox_ready

jbox, 584
jbox_redraw

jbox, 584
jbox_set_annotation

jbox, 584
jbox_set_background

jbox, 584
jbox_set_color

jbox, 585
jbox_set_fontname

jbox, 585
jbox_set_fontsize

jbox, 585
jbox_set_hidden

jbox, 586
jbox_set_hint

jbox, 586
jbox_set_hintstring

jbox, 586
jbox_set_ignoreclick

jbox, 586
jbox_set_outline

jbox, 587
jbox_set_patching_position

jbox, 587
jbox_set_patching_rect

jbox, 587
jbox_set_patching_size

jbox, 588
jbox_set_position

jbox, 588
jbox_set_presentation

jbox, 588
jbox_set_presentation_position

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1058 INDEX

jbox, 588
jbox_set_presentation_rect

jbox, 589
jbox_set_presentation_size

jbox, 589
jbox_set_rect

jbox, 589
jbox_set_rect_for_sym

jbox, 590
jbox_set_rect_for_view

jbox, 590
jbox_set_size

jbox, 590
jbox_set_varname

jbox, 591
jbox_start_layer

Box Layer, 727
jdataview_getclient

DataView, 729
jdataview_new

DataView, 729
jdataview_setclient

DataView, 729
jfont_create

JFont, 691
jfont_destroy

JFont, 691
jfont_extents

JFont, 691
jfont_get_em_dimensions

JFont, 692
jfont_getfontlist

JFont, 692
jfont_isequalto

JFont, 692
jfont_reference

JFont, 693
jfont_set_font_size

JFont, 693
jfont_set_underline

JFont, 693
jfont_text_measure

JFont, 693
jfont_text_measuretext_wrapped

JFont, 693
jgraphics_append_path

JGraphics, 662
jgraphics_arc

JGraphics, 662
jgraphics_arc_negative

JGraphics, 663
jgraphics_bubble

JGraphics, 663
jgraphics_close_path

JGraphics, 664
jgraphics_copy_path

JGraphics, 664
jgraphics_create

JSurface, 677
jgraphics_curve_to

JGraphics, 664
jgraphics_destroy

JGraphics, 664
jgraphics_device_to_user

JGraphics, 665
jgraphics_ellipse

JGraphics, 665
jgraphics_font_extents

JGraphics, 665
jgraphics_get_current_point

JGraphics, 665
jgraphics_get_resource_data

JSurface, 678
jgraphics_getfiletypes

JGraphics, 666
jgraphics_image_surface_clear

JSurface, 678
jgraphics_image_surface_create

JSurface, 678
jgraphics_image_surface_create_for_data

JSurface, 679
jgraphics_image_surface_create_from_-

file
JSurface, 679

jgraphics_image_surface_create_from_-
filedata

JSurface, 680
jgraphics_image_surface_create_from_-

resource
JSurface, 680

jgraphics_image_surface_create_referenced
JSurface, 681

jgraphics_image_surface_draw
JSurface, 681

jgraphics_image_surface_draw_fast
JSurface, 681

jgraphics_image_surface_get_height
JSurface, 682

jgraphics_image_surface_get_pixel
JSurface, 682

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1059

jgraphics_image_surface_get_width
JSurface, 682

jgraphics_image_surface_scroll
JSurface, 683

jgraphics_image_surface_set_pixel
JSurface, 683

jgraphics_image_surface_writepng
JSurface, 683

jgraphics_line_to
JGraphics, 666

jgraphics_matrix_init
JGraphics Matrix Transformations,

696
jgraphics_matrix_init_identity

JGraphics Matrix Transformations,
696

jgraphics_matrix_init_rotate
JGraphics Matrix Transformations,

696
jgraphics_matrix_init_scale

JGraphics Matrix Transformations,
697

jgraphics_matrix_init_translate
JGraphics Matrix Transformations,

697
jgraphics_matrix_invert

JGraphics Matrix Transformations,
697

jgraphics_matrix_multiply
JGraphics Matrix Transformations,

697
jgraphics_matrix_rotate

JGraphics Matrix Transformations,
698

jgraphics_matrix_scale
JGraphics Matrix Transformations,

698
jgraphics_matrix_transform_point

JGraphics Matrix Transformations,
698

jgraphics_matrix_translate
JGraphics Matrix Transformations,

698
jgraphics_move_to

JGraphics, 667
jgraphics_new_path

JGraphics, 667
jgraphics_oval

JGraphics, 667
jgraphics_ovalarc

JGraphics, 667
jgraphics_path_contains

JGraphics, 668
jgraphics_path_createstroked

JGraphics, 668
jgraphics_path_destroy

JGraphics, 668
jgraphics_path_getlength

JGraphics, 668
jgraphics_path_getnearestpoint

JGraphics, 669
jgraphics_path_getpointalongpath

JGraphics, 669
jgraphics_path_intersectsline

JGraphics, 669
jgraphics_path_roundcorners

JGraphics, 670
jgraphics_rectangle

JGraphics, 670
jgraphics_rectangle_rounded

JGraphics, 671
jgraphics_rectcontainsrect

JGraphics, 671
jgraphics_rectintersectsrect

JGraphics, 671
jgraphics_reference

JGraphics, 672
jgraphics_rel_curve_to

JGraphics, 672
jgraphics_rel_line_to

JGraphics, 672
jgraphics_rel_move_to

JGraphics, 672
jgraphics_round

JGraphics, 673
jgraphics_select_font_face

JGraphics, 673
jgraphics_select_jfont

JGraphics, 673
jgraphics_set_font_size

JGraphics, 673
jgraphics_set_underline

JGraphics, 674
jgraphics_show_text

JGraphics, 674
jgraphics_surface_destroy

JSurface, 683
jgraphics_surface_reference

JSurface, 684
jgraphics_system_canantialiastexttotransparentbg

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1060 INDEX

JGraphics, 674
jgraphics_text_measure

JGraphics, 674
jgraphics_text_measuretext_wrapped

JGraphics, 675
jgraphics_text_path

JGraphics, 675
jgraphics_user_to_device

JGraphics, 675
jgraphics_write_image_surface_to_-

filedata
JSurface, 684

jit.qt.movie Module, 948
jit_qt_movie_matrix_calc, 948
jit_qt_movie_matrix_to_image, 949
jit_qt_movie_new, 949
jit_qt_movie_read_typed, 950

jit.qt.record Module, 951
jit_qt_record_matrix_calc, 951
jit_qt_record_new, 951

jit_atom_arg_getdouble
Atom Module, 735

jit_atom_arg_getfloat
Atom Module, 735

jit_atom_arg_getlong
Atom Module, 735

jit_atom_arg_getsym
Atom Module, 736

jit_atom_getcharfix
Atom Module, 736

jit_atom_getfloat
Atom Module, 736

jit_atom_getlong
Atom Module, 737

jit_atom_getobj
Atom Module, 737

jit_atom_getsym
Atom Module, 737

jit_atom_setfloat
Atom Module, 737

jit_atom_setlong
Atom Module, 738

jit_atom_setobj
Atom Module, 738

jit_atom_setsym
Atom Module, 738

jit_attr_canget
Attribute Module, 742

jit_attr_canset
Attribute Module, 742

jit_attr_filter_clip_new
Attribute Module, 743

jit_attr_filter_proc_new
Attribute Module, 743

jit_attr_filterget
Attribute Module, 743

jit_attr_filterset
Attribute Module, 744

jit_attr_get
Attribute Module, 744

jit_attr_getchar_array
Attribute Module, 744

jit_attr_getdouble_array
Attribute Module, 745

jit_attr_getfloat
Attribute Module, 745

jit_attr_getfloat_array
Attribute Module, 745

jit_attr_getlong
Attribute Module, 746

jit_attr_getlong_array
Attribute Module, 746

jit_attr_getmethod
Attribute Module, 746

jit_attr_getname
Attribute Module, 747

jit_attr_getsym
Attribute Module, 747

jit_attr_getsym_array
Attribute Module, 747

jit_attr_gettype
Attribute Module, 748

jit_attr_offset_array_new
Attribute Module, 748

jit_attr_offset_new
Attribute Module, 749

jit_attr_set
Attribute Module, 749

jit_attr_setchar_array
Attribute Module, 750

jit_attr_setdouble_array
Attribute Module, 750

jit_attr_setfloat
Attribute Module, 750

jit_attr_setfloat_array
Attribute Module, 751

jit_attr_setlong
Attribute Module, 751

jit_attr_setlong_array
Attribute Module, 751

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1061

jit_attr_setsym
Attribute Module, 752

jit_attr_setsym_array
Attribute Module, 752

jit_attr_symcompare
Attribute Module, 752

jit_attr_usercanget
Attribute Module, 753

jit_attr_usercanset
Attribute Module, 753

jit_attribute_new
Attribute Module, 753

jit_bin_read_chunk_info
Binary Module, 755

jit_bin_read_header
Binary Module, 755

jit_bin_read_matrix
Binary Module, 756

jit_bin_write_header
Binary Module, 756

jit_bin_write_matrix
Binary Module, 756

jit_class_addadornment
Class Module, 759

jit_class_addattr
Class Module, 760

jit_class_addinterface
Class Module, 760

jit_class_addmethod
Class Module, 760

jit_class_addtypedwrapper
Class Module, 761

jit_class_adornment_get
Class Module, 761

jit_class_attr_get
Class Module, 762

jit_class_findbyname
Class Module, 762

jit_class_free
Class Module, 762

jit_class_mess
Class Module, 762

jit_class_method
Class Module, 763

jit_class_method_addargsafe
Class Module, 763

jit_class_method_argsafe_get
Class Module, 764

jit_class_nameget
Class Module, 764

jit_class_new
Class Module, 764

jit_class_register
Class Module, 765

jit_class_symcompare
Class Module, 765

jit_class_typedwrapper_get
Class Module, 765

jit_coerce_matrix_pixmap
QuickTime Utilties Module, 954

jit_copy_bytes
Memory Module, 831

jit_disposeptr
Memory Module, 832

jit_err_from_max_err
Miscellaneous Utility Module, 776

jit_error_code
Miscellaneous Utility Module, 777

jit_error_sym
Miscellaneous Utility Module, 777

jit_freebytes
Memory Module, 832

jit_freemem
Memory Module, 832

jit_getbytes
Memory Module, 833

jit_gl_begincapture
OB3D Module, 863

jit_gl_bindtexture
OB3D Module, 863

jit_gl_drawinfo_active_textures
OB3D Module, 864

jit_gl_drawinfo_setup
OB3D Module, 864

jit_gl_endcapture
OB3D Module, 864

jit_gl_get_extensions
OB3D Module, 864

jit_gl_get_glsl_version
OB3D Module, 865

jit_gl_get_glu_version
OB3D Module, 865

jit_gl_get_renderer
OB3D Module, 865

jit_gl_get_vendor
OB3D Module, 865

jit_gl_get_version
OB3D Module, 865

jit_gl_is_extension_supported
OB3D Module, 866

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1062 INDEX

jit_gl_is_min_version
OB3D Module, 866

jit_gl_report_error
OB3D Module, 866

jit_gl_texcoord1f
OB3D Module, 867

jit_gl_texcoord1fv
OB3D Module, 867

jit_gl_texcoord2f
OB3D Module, 867

jit_gl_texcoord2fv
OB3D Module, 867

jit_gl_texcoord3f
OB3D Module, 868

jit_gl_texcoord3fv
OB3D Module, 868

jit_gl_unbindtexture
OB3D Module, 868

jit_glchunk_copy
OB3D Module, 868

jit_glchunk_delete
OB3D Module, 869

jit_glchunk_grid_new
OB3D Module, 869

jit_glchunk_new
OB3D Module, 869

jit_global_critical_enter
Miscellaneous Utility Module, 777

jit_global_critical_exit
Miscellaneous Utility Module, 777

jit_gworld_can_coerce_matrix
QuickTime Utilties Module, 954

jit_gworld_clear
QuickTime Utilties Module, 955

jit_gworld_matrix_equal_dim
QuickTime Utilties Module, 955

jit_handle_free
Memory Module, 833

jit_handle_lock
Memory Module, 833

jit_handle_new
Memory Module, 834

jit_handle_size_get
Memory Module, 834

jit_handle_size_set
Memory Module, 834

jit_linklist_append
Linked List Module, 781

jit_linklist_chuck
Linked List Module, 781

jit_linklist_chuckindex
Linked List Module, 782

jit_linklist_clear
Linked List Module, 782

jit_linklist_deleteindex
Linked List Module, 783

jit_linklist_findall
Linked List Module, 783

jit_linklist_findcount
Linked List Module, 784

jit_linklist_findfirst
Linked List Module, 784

jit_linklist_free
Matrix Module, 809

jit_linklist_getindex
Linked List Module, 785

jit_linklist_getsize
Linked List Module, 785

jit_linklist_insertindex
Linked List Module, 786

jit_linklist_makearray
Linked List Module, 786

jit_linklist_methodall
Linked List Module, 786

jit_linklist_methodindex
Linked List Module, 787

jit_linklist_new
Linked List Module, 787

jit_linklist_objptr2index
Linked List Module, 788

jit_linklist_reverse
Linked List Module, 788

jit_linklist_rotate
Linked List Module, 788

jit_linklist_shuffle
Linked List Module, 789

jit_linklist_sort
Linked List Module, 789

jit_linklist_swap
Linked List Module, 790

jit_math_acos
Math Module, 793

jit_math_acosh
Math Module, 793

jit_math_asin
Math Module, 794

jit_math_asinh
Math Module, 794

jit_math_atan
Math Module, 794

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1063

jit_math_atan2
Math Module, 794

jit_math_atanh
Math Module, 795

jit_math_ceil
Math Module, 795

jit_math_cos
Math Module, 795

jit_math_cosh
Math Module, 795

jit_math_exp
Math Module, 796

jit_math_exp2
Math Module, 796

jit_math_expm1
Math Module, 796

jit_math_fast_acos
Math Module, 797

jit_math_fast_asin
Math Module, 797

jit_math_fast_atan
Math Module, 797

jit_math_fast_cos
Math Module, 797

jit_math_fast_invsqrt
Math Module, 798

jit_math_fast_sin
Math Module, 798

jit_math_fast_sqrt
Math Module, 798

jit_math_fast_tan
Math Module, 799

jit_math_floor
Math Module, 799

jit_math_fmod
Math Module, 799

jit_math_fold
Math Module, 799

jit_math_hypot
Math Module, 800

jit_math_is_finite
Math Module, 800

jit_math_is_nan
Math Module, 800

jit_math_is_poweroftwo
Math Module, 801

jit_math_is_valid
Math Module, 801

jit_math_j1
Math Module, 801

jit_math_j1_0
Math Module, 801

jit_math_log
Math Module, 802

jit_math_log10
Math Module, 802

jit_math_log2
Math Module, 802

jit_math_p1
Math Module, 802

jit_math_pow
Math Module, 803

jit_math_q1
Math Module, 803

jit_math_round
Math Module, 803

jit_math_roundup_poweroftwo
Math Module, 804

jit_math_sin
Math Module, 804

jit_math_sinh
Math Module, 804

jit_math_sqrt
Math Module, 804

jit_math_tan
Math Module, 805

jit_math_tanh
Math Module, 805

jit_math_trunc
Math Module, 805

jit_math_wrap
Math Module, 805

jit_matrix_clear
Matrix Module, 809

jit_matrix_data
Matrix Module, 809

jit_matrix_exprfill
Matrix Module, 810

jit_matrix_fillplane
Matrix Module, 810

jit_matrix_free
Matrix Module, 811

jit_matrix_freedata
Matrix Module, 811

jit_matrix_fromgworld
Matrix Module, 811

jit_matrix_frommatrix
Matrix Module, 812

jit_matrix_getcell
Matrix Module, 812

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1064 INDEX

jit_matrix_getdata
Matrix Module, 813

jit_matrix_getinfo
Matrix Module, 813

jit_matrix_info_default
Matrix Module, 814

jit_matrix_jit_gl_texture
Matrix Module, 814

jit_matrix_new
Matrix Module, 814

jit_matrix_newcopy
Matrix Module, 815

jit_matrix_op
Matrix Module, 815

jit_matrix_setall
Matrix Module, 816

jit_matrix_setcell
Matrix Module, 816

jit_matrix_setcell1d
Matrix Module, 817

jit_matrix_setcell2d
Matrix Module, 817

jit_matrix_setcell3d
Matrix Module, 818

jit_matrix_setinfo
Matrix Module, 818

jit_matrix_setinfo_ex
Matrix Module, 819

jit_matrix_setplane1d
Matrix Module, 819

jit_matrix_setplane2d
Matrix Module, 819

jit_matrix_setplane3d
Matrix Module, 820

jit_matrix_togworld
Matrix Module, 820

jit_mop_free
MOP Module, 837

jit_mop_getinput
MOP Module, 838

jit_mop_getinputlist
MOP Module, 838

jit_mop_getoutput
MOP Module, 838

jit_mop_getoutputlist
MOP Module, 839

jit_mop_input_nolink
MOP Module, 839

jit_mop_io_free
MOP Module, 840

jit_mop_io_getioproc
MOP Module, 840

jit_mop_io_getmatrix
MOP Module, 840

jit_mop_io_ioproc
MOP Module, 841

jit_mop_io_matrix
MOP Module, 841

jit_mop_io_new
MOP Module, 841

jit_mop_io_newcopy
MOP Module, 842

jit_mop_io_restrict_dim
MOP Module, 842

jit_mop_io_restrict_planecount
MOP Module, 843

jit_mop_io_restrict_type
MOP Module, 843

jit_mop_ioproc_copy_adapt
MOP Module, 843

jit_mop_ioproc_copy_trunc
MOP Module, 844

jit_mop_ioproc_copy_trunc_zero
MOP Module, 844

jit_mop_ioproc_tosym
MOP Module, 845

jit_mop_methodall
MOP Module, 845

jit_mop_new
MOP Module, 846

jit_mop_newcopy
MOP Module, 846

jit_mop_output_nolink
MOP Module, 846

jit_mop_single_planecount
MOP Module, 847

jit_mop_single_type
MOP Module, 847

jit_newptr
Memory Module, 835

jit_ob3d_draw_chunk
OB3D Module, 869

jit_ob3d_free
OB3D Module, 870

jit_ob3d_new
OB3D Module, 870

jit_ob3d_set_context
OB3D Module, 870

jit_ob3d_setup
OB3D Module, 871

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1065

jit_object_attach
Object Module, 768

jit_object_attr_get
Object Module, 768

jit_object_attr_usercanget
Object Module, 769

jit_object_attr_usercanset
Object Module, 769

jit_object_class
Object Module, 769

jit_object_classname
Object Module, 769

jit_object_classname_compare
Object Module, 770

jit_object_detach
Object Module, 770

jit_object_exportattrs
Object Module, 770

jit_object_exportsummary
Object Module, 771

jit_object_findregistered
Object Module, 771

jit_object_findregisteredbyptr
Object Module, 771

jit_object_free
Object Module, 772

jit_object_getmethod
Object Module, 772

jit_object_importattrs
Object Module, 772

jit_object_method
Object Module, 772

jit_object_method_argsafe_get
Object Module, 773

jit_object_method_typed
Object Module, 773

jit_object_new
Object Module, 774

jit_object_notify
Object Module, 774

jit_object_register
Object Module, 774

jit_object_unregister
Object Module, 775

jit_op_vector_abs_float32
Operator Vector Module, 888

jit_op_vector_abs_float64
Operator Vector Module, 889

jit_op_vector_abs_long
Operator Vector Module, 889

jit_op_vector_absdiff_char
Operator Vector Module, 889

jit_op_vector_absdiff_float32
Operator Vector Module, 889

jit_op_vector_absdiff_float64
Operator Vector Module, 890

jit_op_vector_absdiff_long
Operator Vector Module, 890

jit_op_vector_acos_float32
Operator Vector Module, 890

jit_op_vector_acos_float64
Operator Vector Module, 891

jit_op_vector_acosh_float32
Operator Vector Module, 891

jit_op_vector_acosh_float64
Operator Vector Module, 891

jit_op_vector_add_char
Operator Vector Module, 891

jit_op_vector_add_float32
Operator Vector Module, 892

jit_op_vector_add_float64
Operator Vector Module, 892

jit_op_vector_add_long
Operator Vector Module, 892

jit_op_vector_adds_char
Operator Vector Module, 893

jit_op_vector_and_char
Operator Vector Module, 893

jit_op_vector_and_float32
Operator Vector Module, 893

jit_op_vector_and_float64
Operator Vector Module, 893

jit_op_vector_and_long
Operator Vector Module, 894

jit_op_vector_asin_float32
Operator Vector Module, 894

jit_op_vector_asin_float64
Operator Vector Module, 894

jit_op_vector_asinh_float32
Operator Vector Module, 895

jit_op_vector_asinh_float64
Operator Vector Module, 895

jit_op_vector_atan2_float32
Operator Vector Module, 895

jit_op_vector_atan2_float64
Operator Vector Module, 895

jit_op_vector_atan_float32
Operator Vector Module, 896

jit_op_vector_atan_float64
Operator Vector Module, 896

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1066 INDEX

jit_op_vector_atanh_float32
Operator Vector Module, 896

jit_op_vector_atanh_float64
Operator Vector Module, 897

jit_op_vector_avg_char
Operator Vector Module, 897

jit_op_vector_avg_float32
Operator Vector Module, 897

jit_op_vector_avg_float64
Operator Vector Module, 897

jit_op_vector_avg_long
Operator Vector Module, 898

jit_op_vector_bitand_char
Operator Vector Module, 898

jit_op_vector_bitand_long
Operator Vector Module, 898

jit_op_vector_bitnot_char
Operator Vector Module, 899

jit_op_vector_bitnot_long
Operator Vector Module, 899

jit_op_vector_bitor_char
Operator Vector Module, 899

jit_op_vector_bitor_long
Operator Vector Module, 899

jit_op_vector_bitxor_char
Operator Vector Module, 900

jit_op_vector_bitxor_long
Operator Vector Module, 900

jit_op_vector_ceil_float32
Operator Vector Module, 900

jit_op_vector_ceil_float64
Operator Vector Module, 901

jit_op_vector_cos_float32
Operator Vector Module, 901

jit_op_vector_cos_float64
Operator Vector Module, 901

jit_op_vector_cosh_float32
Operator Vector Module, 901

jit_op_vector_cosh_float64
Operator Vector Module, 902

jit_op_vector_div_char
Operator Vector Module, 902

jit_op_vector_div_float32
Operator Vector Module, 902

jit_op_vector_div_float64
Operator Vector Module, 903

jit_op_vector_div_long
Operator Vector Module, 903

jit_op_vector_eq_char
Operator Vector Module, 903

jit_op_vector_eq_float32
Operator Vector Module, 903

jit_op_vector_eq_float64
Operator Vector Module, 904

jit_op_vector_eq_long
Operator Vector Module, 904

jit_op_vector_eqp_char
Operator Vector Module, 904

jit_op_vector_eqp_float32
Operator Vector Module, 905

jit_op_vector_eqp_float64
Operator Vector Module, 905

jit_op_vector_eqp_long
Operator Vector Module, 905

jit_op_vector_exp2_float32
Operator Vector Module, 905

jit_op_vector_exp2_float64
Operator Vector Module, 906

jit_op_vector_exp_float32
Operator Vector Module, 906

jit_op_vector_exp_float64
Operator Vector Module, 906

jit_op_vector_flipdiv_char
Operator Vector Module, 907

jit_op_vector_flipdiv_float32
Operator Vector Module, 907

jit_op_vector_flipdiv_float64
Operator Vector Module, 907

jit_op_vector_flipdiv_long
Operator Vector Module, 907

jit_op_vector_flipmod_char
Operator Vector Module, 908

jit_op_vector_flipmod_float32
Operator Vector Module, 908

jit_op_vector_flipmod_float64
Operator Vector Module, 908

jit_op_vector_flipmod_long
Operator Vector Module, 909

jit_op_vector_flippass_char
Operator Vector Module, 909

jit_op_vector_flippass_float32
Operator Vector Module, 909

jit_op_vector_flippass_float64
Operator Vector Module, 909

jit_op_vector_flippass_long
Operator Vector Module, 910

jit_op_vector_flipsub_char
Operator Vector Module, 910

jit_op_vector_flipsub_float32
Operator Vector Module, 910

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1067

jit_op_vector_flipsub_long
Operator Vector Module, 911

jit_op_vector_floor_float32
Operator Vector Module, 911

jit_op_vector_floor_float64
Operator Vector Module, 911

jit_op_vector_fold_float32
Operator Vector Module, 911

jit_op_vector_fold_float64
Operator Vector Module, 912

jit_op_vector_gt_char
Operator Vector Module, 912

jit_op_vector_gt_float32
Operator Vector Module, 912

jit_op_vector_gt_float64
Operator Vector Module, 913

jit_op_vector_gt_long
Operator Vector Module, 913

jit_op_vector_gte_char
Operator Vector Module, 913

jit_op_vector_gte_float32
Operator Vector Module, 913

jit_op_vector_gte_float64
Operator Vector Module, 914

jit_op_vector_gte_long
Operator Vector Module, 914

jit_op_vector_gtep_char
Operator Vector Module, 914

jit_op_vector_gtep_float32
Operator Vector Module, 915

jit_op_vector_gtep_float64
Operator Vector Module, 915

jit_op_vector_gtep_long
Operator Vector Module, 915

jit_op_vector_gtp_char
Operator Vector Module, 915

jit_op_vector_gtp_float32
Operator Vector Module, 916

jit_op_vector_gtp_float64
Operator Vector Module, 916

jit_op_vector_gtp_long
Operator Vector Module, 916

jit_op_vector_hypot_float32
Operator Vector Module, 917

jit_op_vector_hypot_float64
Operator Vector Module, 917

jit_op_vector_log10_float32
Operator Vector Module, 917

jit_op_vector_log10_float64
Operator Vector Module, 917

jit_op_vector_log2_float32
Operator Vector Module, 918

jit_op_vector_log2_float64
Operator Vector Module, 918

jit_op_vector_log_float32
Operator Vector Module, 918

jit_op_vector_log_float64
Operator Vector Module, 919

jit_op_vector_lshift_char
Operator Vector Module, 919

jit_op_vector_lshift_long
Operator Vector Module, 919

jit_op_vector_lt_char
Operator Vector Module, 919

jit_op_vector_lt_float32
Operator Vector Module, 920

jit_op_vector_lt_float64
Operator Vector Module, 920

jit_op_vector_lt_long
Operator Vector Module, 920

jit_op_vector_lte_char
Operator Vector Module, 921

jit_op_vector_lte_float32
Operator Vector Module, 921

jit_op_vector_lte_float64
Operator Vector Module, 921

jit_op_vector_lte_long
Operator Vector Module, 921

jit_op_vector_ltep_char
Operator Vector Module, 922

jit_op_vector_ltep_float32
Operator Vector Module, 922

jit_op_vector_ltep_float64
Operator Vector Module, 922

jit_op_vector_ltep_long
Operator Vector Module, 923

jit_op_vector_ltp_char
Operator Vector Module, 923

jit_op_vector_ltp_float32
Operator Vector Module, 923

jit_op_vector_ltp_float64
Operator Vector Module, 923

jit_op_vector_ltp_long
Operator Vector Module, 924

jit_op_vector_max_char
Operator Vector Module, 924

jit_op_vector_max_float32
Operator Vector Module, 924

jit_op_vector_max_float64
Operator Vector Module, 925

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1068 INDEX

jit_op_vector_max_long
Operator Vector Module, 925

jit_op_vector_min_char
Operator Vector Module, 925

jit_op_vector_min_float32
Operator Vector Module, 925

jit_op_vector_min_float64
Operator Vector Module, 926

jit_op_vector_min_long
Operator Vector Module, 926

jit_op_vector_mod_char
Operator Vector Module, 926

jit_op_vector_mod_float32
Operator Vector Module, 927

jit_op_vector_mod_float64
Operator Vector Module, 927

jit_op_vector_mod_long
Operator Vector Module, 927

jit_op_vector_mult_char
Operator Vector Module, 927

jit_op_vector_mult_float32
Operator Vector Module, 928

jit_op_vector_mult_float64
Operator Vector Module, 928

jit_op_vector_mult_long
Operator Vector Module, 928

jit_op_vector_neq_char
Operator Vector Module, 929

jit_op_vector_neq_float32
Operator Vector Module, 929

jit_op_vector_neq_float64
Operator Vector Module, 929

jit_op_vector_neq_long
Operator Vector Module, 929

jit_op_vector_neqp_char
Operator Vector Module, 930

jit_op_vector_neqp_float32
Operator Vector Module, 930

jit_op_vector_neqp_float64
Operator Vector Module, 930

jit_op_vector_neqp_long
Operator Vector Module, 931

jit_op_vector_not_char
Operator Vector Module, 931

jit_op_vector_not_float32
Operator Vector Module, 931

jit_op_vector_not_float64
Operator Vector Module, 931

jit_op_vector_not_long
Operator Vector Module, 932

jit_op_vector_or_char
Operator Vector Module, 932

jit_op_vector_or_float32
Operator Vector Module, 932

jit_op_vector_or_float64
Operator Vector Module, 933

jit_op_vector_or_long
Operator Vector Module, 933

jit_op_vector_pass_char
Operator Vector Module, 933

jit_op_vector_pass_float32
Operator Vector Module, 933

jit_op_vector_pass_float64
Operator Vector Module, 934

jit_op_vector_pass_long
Operator Vector Module, 934

jit_op_vector_pow_float32
Operator Vector Module, 934

jit_op_vector_pow_float64
Operator Vector Module, 935

jit_op_vector_round_float32
Operator Vector Module, 935

jit_op_vector_round_float64
Operator Vector Module, 935

jit_op_vector_rshift_char
Operator Vector Module, 935

jit_op_vector_rshift_long
Operator Vector Module, 936

jit_op_vector_sin_float32
Operator Vector Module, 936

jit_op_vector_sin_float64
Operator Vector Module, 936

jit_op_vector_sinh_float32
Operator Vector Module, 937

jit_op_vector_sinh_float64
Operator Vector Module, 937

jit_op_vector_sqrt_float32
Operator Vector Module, 937

jit_op_vector_sqrt_float64
Operator Vector Module, 937

jit_op_vector_sub_char
Operator Vector Module, 938

jit_op_vector_sub_float32
Operator Vector Module, 938

jit_op_vector_sub_float64
Operator Vector Module, 938

jit_op_vector_sub_long
Operator Vector Module, 939

jit_op_vector_subs_char
Operator Vector Module, 939

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1069

jit_op_vector_tan_float32
Operator Vector Module, 939

jit_op_vector_tan_float64
Operator Vector Module, 939

jit_op_vector_tanh_float32
Operator Vector Module, 940

jit_op_vector_tanh_float64
Operator Vector Module, 940

jit_op_vector_trunc_float32
Operator Vector Module, 940

jit_op_vector_trunc_float64
Operator Vector Module, 941

jit_op_vector_wrap_float32
Operator Vector Module, 941

jit_op_vector_wrap_float64
Operator Vector Module, 941

jit_parallel_ndim_calc
Parallel Utility Module, 848

jit_parallel_ndim_simplecalc1
Parallel Utility Module, 849

jit_parallel_ndim_simplecalc2
Parallel Utility Module, 849

jit_parallel_ndim_simplecalc3
Parallel Utility Module, 850

jit_parallel_ndim_simplecalc4
Parallel Utility Module, 850

jit_post_sym
Miscellaneous Utility Module, 777

jit_qt_codec_acodec2sym
QuickTime Codec Module, 943

jit_qt_codec_getcodeclist_audio
QuickTime Codec Module, 943

jit_qt_codec_getcodeclist_audio_raw
QuickTime Codec Module, 943

jit_qt_codec_getcodeclist_gfx
QuickTime Codec Module, 944

jit_qt_codec_getcodeclist_gfx_raw
QuickTime Codec Module, 944

jit_qt_codec_getcodeclist_video
QuickTime Codec Module, 944

jit_qt_codec_getcodeclist_video_raw
QuickTime Codec Module, 945

jit_qt_codec_qual2sym
QuickTime Codec Module, 945

jit_qt_codec_sym2acodec
QuickTime Codec Module, 945

jit_qt_codec_sym2qual
QuickTime Codec Module, 946

jit_qt_codec_sym2type
QuickTime Codec Module, 946

jit_qt_codec_sym2type_valid
QuickTime Codec Module, 946

jit_qt_codec_type2sym
QuickTime Codec Module, 946

jit_qt_codec_type2sym_valid
QuickTime Codec Module, 947

jit_qt_movie_matrix_calc
jit.qt.movie Module, 948

jit_qt_movie_matrix_to_image
jit.qt.movie Module, 949

jit_qt_movie_new
jit.qt.movie Module, 949

jit_qt_movie_read_typed
jit.qt.movie Module, 950

jit_qt_record_matrix_calc
jit.qt.record Module, 951

jit_qt_record_new
jit.qt.record Module, 951

jit_qt_utils_moviedataref_create
QuickTime Utilties Module, 955

jit_qt_utils_moviefile_close
QuickTime Utilties Module, 955

jit_qt_utils_moviefile_create
QuickTime Utilties Module, 956

jit_qt_utils_str2type
QuickTime Utilties Module, 956

jit_qt_utils_tempfile
QuickTime Utilties Module, 957

jit_qt_utils_tempmoviefile_create
QuickTime Utilties Module, 957

jit_qt_utils_trackmedia_add
QuickTime Utilties Module, 957

jit_qt_utils_trackmedia_dispose
QuickTime Utilties Module, 958

jit_qt_utils_trackmedia_get
QuickTime Utilties Module, 958

jit_qt_utils_trackname_get
QuickTime Utilties Module, 958

jit_qt_utils_trackname_set
QuickTime Utilties Module, 959

jit_qt_utils_tracktype_get
QuickTime Utilties Module, 959

jit_qt_utils_tracktypecode_get
QuickTime Utilties Module, 959

jit_qt_utils_type2str
QuickTime Utilties Module, 959

jit_rand
Miscellaneous Utility Module, 778

jit_rand_setseed
Miscellaneous Utility Module, 778

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1070 INDEX

jkeyboard_getcurrentmodifiers
Mouse and Keyboard, 505

jkeyboard_getcurrentmodifiers_realtime
Mouse and Keyboard, 505

jmonitor_getdisplayrect
Monitors and Displays, 499

jmonitor_getdisplayrect_foralldisplays
Monitors and Displays, 499

jmonitor_getdisplayrect_forpoint
Monitors and Displays, 500

jmonitor_getnumdisplays
Monitors and Displays, 500

jmouse_getposition_global
Mouse and Keyboard, 505

jmouse_setcursor
Mouse and Keyboard, 505

jmouse_setposition_box
Mouse and Keyboard, 506

jmouse_setposition_global
Mouse and Keyboard, 506

jmouse_setposition_view
Mouse and Keyboard, 506

jpatcher, 553
jpatcher_deleteobj, 555
jpatcher_get_bgcolor, 555
jpatcher_get_bghidden, 556
jpatcher_get_bglocked, 556
jpatcher_get_box, 556
jpatcher_get_count, 556
jpatcher_get_currentfileversion, 557
jpatcher_get_default_fontface, 557
jpatcher_get_default_fontname, 557
jpatcher_get_default_fontsize, 557
jpatcher_get_defrect, 558
jpatcher_get_dirty, 558
jpatcher_get_editing_bgcolor, 558
jpatcher_get_fghidden, 559
jpatcher_get_filename, 559
jpatcher_get_filepath, 559
jpatcher_get_fileversion, 559
jpatcher_get_firstline, 560
jpatcher_get_firstobject, 560
jpatcher_get_firstview, 560
jpatcher_get_gridsize, 561
jpatcher_get_lastobject, 561
jpatcher_get_name, 561
jpatcher_get_parentpatcher, 562
jpatcher_get_presentation, 562
jpatcher_get_rect, 562
jpatcher_get_title, 562

jpatcher_get_toppatcher, 563
jpatcher_is_patcher, 563
jpatcher_set_bgcolor, 563
jpatcher_set_bghidden, 564
jpatcher_set_bglocked, 564
jpatcher_set_defrect, 564
jpatcher_set_dirty, 565
jpatcher_set_editing_bgcolor, 565
jpatcher_set_fghidden, 565
jpatcher_set_gridsize, 566
jpatcher_set_locked, 566
jpatcher_set_presentation, 566
jpatcher_set_rect, 566
jpatcher_set_title, 567
jpatcher_uniqueboxname, 567

jpatcher_deleteobj
jpatcher, 555

jpatcher_get_bgcolor
jpatcher, 555

jpatcher_get_bghidden
jpatcher, 556

jpatcher_get_bglocked
jpatcher, 556

jpatcher_get_box
jpatcher, 556

jpatcher_get_count
jpatcher, 556

jpatcher_get_currentfileversion
jpatcher, 557

jpatcher_get_default_fontface
jpatcher, 557

jpatcher_get_default_fontname
jpatcher, 557

jpatcher_get_default_fontsize
jpatcher, 557

jpatcher_get_defrect
jpatcher, 558

jpatcher_get_dirty
jpatcher, 558

jpatcher_get_editing_bgcolor
jpatcher, 558

jpatcher_get_fghidden
jpatcher, 559

jpatcher_get_filename
jpatcher, 559

jpatcher_get_filepath
jpatcher, 559

jpatcher_get_fileversion
jpatcher, 559

jpatcher_get_firstline

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1071

jpatcher, 560
jpatcher_get_firstobject

jpatcher, 560
jpatcher_get_firstview

jpatcher, 560
jpatcher_get_gridsize

jpatcher, 561
jpatcher_get_lastobject

jpatcher, 561
jpatcher_get_name

jpatcher, 561
jpatcher_get_parentpatcher

jpatcher, 562
jpatcher_get_presentation

jpatcher, 562
jpatcher_get_rect

jpatcher, 562
jpatcher_get_title

jpatcher, 562
jpatcher_get_toppatcher

jpatcher, 563
jpatcher_is_patcher

jpatcher, 563
jpatcher_set_bgcolor

jpatcher, 563
jpatcher_set_bghidden

jpatcher, 564
jpatcher_set_bglocked

jpatcher, 564
jpatcher_set_defrect

jpatcher, 564
jpatcher_set_dirty

jpatcher, 565
jpatcher_set_editing_bgcolor

jpatcher, 565
jpatcher_set_fghidden

jpatcher, 565
jpatcher_set_gridsize

jpatcher, 566
jpatcher_set_locked

jpatcher, 566
jpatcher_set_presentation

jpatcher, 566
jpatcher_set_rect

jpatcher, 566
jpatcher_set_title

jpatcher, 567
jpatcher_uniqueboxname

jpatcher, 567
jpatcherview, 597

patcherview_findpatcherview, 598
patcherview_get_jgraphics, 598
patcherview_get_locked, 598
patcherview_get_nextview, 599
patcherview_get_patcher, 599
patcherview_get_presentation, 599
patcherview_get_rect, 599
patcherview_get_topview, 600
patcherview_get_visible, 600
patcherview_get_zoomfactor, 600
patcherview_set_locked, 601
patcherview_set_presentation, 601
patcherview_set_rect, 601
patcherview_set_visible, 601
patcherview_set_zoomfactor, 602

jpatchline, 592
jpatchline_get_box1, 593
jpatchline_get_box2, 593
jpatchline_get_color, 593
jpatchline_get_endpoint, 593
jpatchline_get_hidden, 594
jpatchline_get_inletnum, 594
jpatchline_get_nextline, 594
jpatchline_get_nummidpoints, 595
jpatchline_get_outletnum, 595
jpatchline_get_startpoint, 595
jpatchline_set_color, 596
jpatchline_set_hidden, 596

jpatchline_get_box1
jpatchline, 593

jpatchline_get_box2
jpatchline, 593

jpatchline_get_color
jpatchline, 593

jpatchline_get_endpoint
jpatchline, 593

jpatchline_get_hidden
jpatchline, 594

jpatchline_get_inletnum
jpatchline, 594

jpatchline_get_nextline
jpatchline, 594

jpatchline_get_nummidpoints
jpatchline, 595

jpatchline_get_outletnum
jpatchline, 595

jpatchline_get_startpoint
jpatchline, 595

jpatchline_set_color
jpatchline, 596

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1072 INDEX

jpatchline_set_hidden
jpatchline, 596

jpopupmenu_additem
Popup Menus, 721

jpopupmenu_addseperator
Popup Menus, 721

jpopupmenu_addsubmenu
Popup Menus, 721

jpopupmenu_clear
Popup Menus, 722

jpopupmenu_create
Popup Menus, 722

jpopupmenu_destroy
Popup Menus, 722

jpopupmenu_popup
Popup Menus, 722

jpopupmenu_popup_abovebox
Popup Menus, 722

jpopupmenu_popup_belowrect
Popup Menus, 723

jpopupmenu_popup_nearbox
Popup Menus, 723

jpopupmenu_setcolors
Popup Menus, 724

jpopupmenu_setfont
Popup Menus, 724

jrgba_attr_get
Colors, 701

jrgba_attr_set
Colors, 701

jrgba_compare
Colors, 702

jrgba_copy
Colors, 702

jrgba_set
Colors, 702

jrgba_to_atoms
Colors, 702

jsvg_create_from_file
Scalable Vector Graphics, 686

jsvg_create_from_resource
Scalable Vector Graphics, 686

jsvg_create_from_xmlstring
Scalable Vector Graphics, 687

jsvg_destroy
Scalable Vector Graphics, 687

jsvg_get_size
Scalable Vector Graphics, 687

jsvg_render
Scalable Vector Graphics, 688

jtextlayout_create
TextLayout, 716

jtextlayout_destroy
TextLayout, 716

jtextlayout_draw
TextLayout, 716

jtextlayout_getchar
TextLayout, 717

jtextlayout_getcharbox
TextLayout, 717

jtextlayout_getnumchars
TextLayout, 717

jtextlayout_measuretext
TextLayout, 717

jtextlayout_set
TextLayout, 718

jtextlayout_settextcolor
TextLayout, 718

jtextlayout_withbgcolor
TextLayout, 718

jwind_getactive
Windows, 501

jwind_getat
Windows, 501

jwind_getcount
Windows, 501

linklist_append
Linked List, 344

linklist_chuck
Linked List, 345

linklist_chuckindex
Linked List, 345

linklist_chuckobject
Linked List, 346

linklist_clear
Linked List, 346

linklist_deleteindex
Linked List, 346

linklist_deleteobject
Linked List, 347

linklist_findall
Linked List, 347

linklist_findfirst
Linked List, 348

linklist_flags
Linked List, 349

linklist_funall
Linked List, 349

linklist_funall_break

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1073

Linked List, 349
linklist_funindex

Linked List, 350
linklist_getflags

Linked List, 350
linklist_getindex

Linked List, 351
linklist_getsize

Linked List, 351
linklist_insert_sorted

Linked List, 351
linklist_insertafterobjptr

Linked List, 352
linklist_insertbeforeobjptr

Linked List, 352
linklist_insertindex

Linked List, 352
linklist_last

Linked List, 352
linklist_makearray

Linked List, 353
linklist_match

Linked List, 353
linklist_methodall

Linked List, 353
linklist_methodindex

Linked List, 354
linklist_moveafterobjptr

Linked List, 354
linklist_movebeforeobjptr

Linked List, 355
linklist_new

Linked List, 355
linklist_next

Linked List, 355
linklist_objptr2index

Linked List, 355
linklist_prev

Linked List, 356
linklist_readonly

Linked List, 356
linklist_reverse

Linked List, 356
linklist_rotate

Linked List, 356
linklist_shuffle

Linked List, 357
linklist_sort

Linked List, 357
linklist_substitute

Linked List, 357
linklist_swap

Linked List, 358
listout

Inlets and Outlets, 269
locatefile

Files and Folders, 420
locatefile_extended

Files and Folders, 420
locatefiletype

Files and Folders, 421

max_addmethod_defer
Max Wrapper Module, 823

max_addmethod_defer_low
Max Wrapper Module, 824

max_addmethod_usurp
Max Wrapper Module, 824

max_addmethod_usurp_low
Max Wrapper Module, 824

max_jit_attr_args
Max Wrapper Module, 824

max_jit_attr_args_offset
Max Wrapper Module, 824

max_jit_attr_get
Max Wrapper Module, 825

max_jit_attr_getdump
Max Wrapper Module, 825

max_jit_attr_set
Max Wrapper Module, 825

max_jit_classex_addattr
Max Wrapper Module, 825

max_jit_classex_mop_mproc
MOP Max Wrapper Module, 853

max_jit_classex_mop_wrap
MOP Max Wrapper Module, 853

max_jit_classex_setup
Max Wrapper Module, 826

max_jit_classex_standard_wrap
Max Wrapper Module, 826

max_jit_mop_adapt_matrix_all
MOP Max Wrapper Module, 854

max_jit_mop_assist
MOP Max Wrapper Module, 854

max_jit_mop_bang
MOP Max Wrapper Module, 854

max_jit_mop_clear
MOP Max Wrapper Module, 855

max_jit_mop_free
MOP Max Wrapper Module, 855

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1074 INDEX

max_jit_mop_get_io_by_name
MOP Max Wrapper Module, 855

max_jit_mop_getinput
MOP Max Wrapper Module, 855

max_jit_mop_getoutput
MOP Max Wrapper Module, 856

max_jit_mop_getoutputmode
MOP Max Wrapper Module, 856

max_jit_mop_inputs
MOP Max Wrapper Module, 856

max_jit_mop_jit_matrix
MOP Max Wrapper Module, 856

max_jit_mop_matrix_args
MOP Max Wrapper Module, 857

max_jit_mop_matrixout_new
MOP Max Wrapper Module, 857

max_jit_mop_notify
MOP Max Wrapper Module, 857

max_jit_mop_outputmatrix
MOP Max Wrapper Module, 858

max_jit_mop_outputs
MOP Max Wrapper Module, 858

max_jit_mop_setup
MOP Max Wrapper Module, 858

max_jit_mop_setup_simple
MOP Max Wrapper Module, 859

max_jit_mop_variable_addinputs
MOP Max Wrapper Module, 859

max_jit_mop_variable_addoutputs
MOP Max Wrapper Module, 859

max_jit_ob3d_assist
OB3D Module, 871

max_jit_ob3d_attach
OB3D Module, 871

max_jit_ob3d_detach
OB3D Module, 872

max_jit_obex_adornment_get
Max Wrapper Module, 826

max_jit_obex_attr_get
Max Wrapper Module, 827

max_jit_obex_attr_set
Max Wrapper Module, 827

max_jit_obex_dumpout
Max Wrapper Module, 827

max_jit_obex_dumpout_get
Max Wrapper Module, 828

max_jit_obex_dumpout_set
Max Wrapper Module, 828

max_jit_obex_free
Max Wrapper Module, 828

max_jit_obex_gimmeback
Max Wrapper Module, 828

max_jit_obex_gimmeback_dumpout
Max Wrapper Module, 829

max_jit_obex_inletnumber_get
Max Wrapper Module, 829

max_jit_obex_inletnumber_set
Max Wrapper Module, 829

max_jit_obex_jitob_get
Max Wrapper Module, 829

max_jit_obex_jitob_set
Max Wrapper Module, 830

max_jit_obex_new
Max Wrapper Module, 830

max_jit_obex_proxy_new
Max Wrapper Module, 830

max_ob3d_bang
OB3D Module, 872

max_ob3d_notify
OB3D Module, 872

maxversion
Miscellaneous, 471

newhandle
Memory Management, 457

newinstance
Old-Style Classes, 262

newobject
Old-Style Classes, 263

newobject_fromdictionary
Objects, 524

newobject_sprintf
Objects, 524

ob3d_auto_get
OB3D Module, 872

ob3d_dest_dim_get
OB3D Module, 872

ob3d_dest_dim_set
OB3D Module, 873

ob3d_dirty_get
OB3D Module, 873

ob3d_dirty_set
OB3D Module, 873

ob3d_enable_get
OB3D Module, 873

ob3d_jitob_get
OB3D Module, 874

ob3d_outlet_get
OB3D Module, 874

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1075

ob3d_patcher_get
OB3D Module, 874

ob3d_render_ptr_get
OB3D Module, 874

ob3d_render_ptr_set
OB3D Module, 875

ob3d_ui_get
OB3D Module, 875

object_addattr
Attributes, 234

object_alloc
Objects, 525

object_attach
Objects, 526

object_attach_byptr
Objects, 526

object_attach_byptr_register
Objects, 527

object_attr_get
Attributes, 234

object_attr_get_rect
Attributes, 235

object_attr_getchar_array
Attributes, 235

object_attr_getcolor
Attributes, 235

object_attr_getdouble_array
Attributes, 236

object_attr_getdump
Attributes, 236

object_attr_getfloat
Attributes, 237

object_attr_getfloat_array
Attributes, 237

object_attr_getjrgba
Attributes, 238

object_attr_getlong
Attributes, 238

object_attr_getlong_array
Attributes, 238

object_attr_getpt
Attributes, 239

object_attr_getsize
Attributes, 239

object_attr_getsym
Attributes, 240

object_attr_getsym_array
Attributes, 240

object_attr_method
Attributes, 240

object_attr_set_rect
Attributes, 241

object_attr_setchar_array
Attributes, 241

object_attr_setcolor
Attributes, 242

object_attr_setdouble_array
Attributes, 242

object_attr_setfloat
Attributes, 242

object_attr_setfloat_array
Attributes, 243

object_attr_setjrgba
Attributes, 243

object_attr_setlong
Attributes, 243

object_attr_setlong_array
Attributes, 244

object_attr_setparse
Attributes, 244

object_attr_setpt
Attributes, 245

object_attr_setsize
Attributes, 245

object_attr_setsym
Attributes, 245

object_attr_setsym_array
Attributes, 246

object_attr_setvalueof
Attributes, 246

object_attr_touch
Objects, 528

object_attr_touch_parse
Objects, 528

object_attr_usercanget
Attributes, 246

object_attr_usercanset
Attributes, 247

object_chuckattr
Attributes, 247

object_class
Objects, 528

object_classname
Objects, 529

object_classname_compare
Objects, 529

object_deleteattr
Attributes, 247

object_detach
Objects, 529

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1076 INDEX

object_detach_byptr
Objects, 530

object_dictionaryarg
Objects, 530

object_error
Console, 476

object_error_obtrusive
Console, 477

object_findregistered
Objects, 531

object_findregisteredbyptr
Objects, 531

object_free
Objects, 531

object_getmethod
Objects, 532

object_getvalueof
Objects, 532

object_method
Objects, 533

object_method_char
Objects, 533

object_method_char_array
Objects, 534

object_method_double
Objects, 534

object_method_double_array
Objects, 535

object_method_float
Objects, 535

object_method_float_array
Objects, 536

object_method_format
Objects, 536

object_method_long
Objects, 537

object_method_long_array
Objects, 537

object_method_obj
Objects, 538

object_method_obj_array
Objects, 538

object_method_parse
Objects, 539

object_method_sym
Objects, 539

object_method_sym_array
Objects, 539

object_method_typed
Objects, 540

object_method_typedfun
Objects, 540

object_new
Objects, 541

object_new_parse
Attributes, 248

object_new_typed
Objects, 541

object_notify
Objects, 542

object_obex_dumpout
Objects, 543

object_obex_lookup
Objects, 543

object_obex_quickref
Miscellaneous, 471

object_obex_store
Objects, 544

object_openhelp
Objects, 544

object_openquery
Objects, 545

object_openrefpage
Objects, 545

object_post
Console, 477

object_register
Objects, 545

object_register_getnames
Objects, 545

object_setvalueof
Objects, 546

object_subscribe
Objects, 546

object_super_method
Objects, 547

object_this_method
Objects, 547

object_unregister
Objects, 548

object_unsubscribe
Objects, 548

object_warn
Console, 478

open_dialog
Files and Folders, 422

open_promptset
Files and Folders, 422

ouchstring
Console, 478

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1077

outlet_anything
Inlets and Outlets, 270

outlet_bang
Inlets and Outlets, 270

outlet_float
Inlets and Outlets, 271

outlet_int
Inlets and Outlets, 271

outlet_list
Inlets and Outlets, 271

outlet_new
Inlets and Outlets, 272

patcherview_findpatcherview
jpatcherview, 598

patcherview_get_jgraphics
jpatcherview, 598

patcherview_get_locked
jpatcherview, 598

patcherview_get_nextview
jpatcherview, 599

patcherview_get_patcher
jpatcherview, 599

patcherview_get_presentation
jpatcherview, 599

patcherview_get_rect
jpatcherview, 599

patcherview_get_topview
jpatcherview, 600

patcherview_get_visible
jpatcherview, 600

patcherview_get_zoomfactor
jpatcherview, 600

patcherview_set_locked
jpatcherview, 601

patcherview_set_presentation
jpatcherview, 601

patcherview_set_rect
jpatcherview, 601

patcherview_set_visible
jpatcherview, 601

patcherview_set_zoomfactor
jpatcherview, 602

path_closefolder
Files and Folders, 423

path_createsysfile
Files and Folders, 423

path_fileinfo
Files and Folders, 423

path_foldernextfile

Files and Folders, 424
path_frompathname

Files and Folders, 424
path_getapppath

Files and Folders, 425
path_getdefault

Files and Folders, 425
path_getfilemoddate

Files and Folders, 425
path_getmoddate

Files and Folders, 425
path_nameconform

Files and Folders, 426
path_openfolder

Files and Folders, 426
path_opensysfile

Files and Folders, 426
path_resolvefile

Files and Folders, 427
path_setdefault

Files and Folders, 427
path_topathname

Files and Folders, 428
path_topotentialname

Files and Folders, 428
post

Console, 479
post_sym

Miscellaneous, 471
postargs

Atoms, 399
postatom

Console, 480
postdictionary

Dictionary, 322
preset_int

Presets, 492
preset_set

Presets, 493
preset_store

Presets, 493
proxy_getinlet

Inlets and Outlets, 273
proxy_new

Inlets and Outlets, 273

qelem_free
Qelems, 617

qelem_front
Qelems, 617

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1078 INDEX

qelem_new
Qelems, 617

qelem_set
Qelems, 618

qelem_unset
Qelems, 618

quickmap_add
Quick Map, 360

quickmap_drop
Quick Map, 360

quickmap_lookup_key1
Quick Map, 360

quickmap_lookup_key2
Quick Map, 361

quickmap_new
Quick Map, 361

quickmap_readonly
Quick Map, 361

quittask_install
Miscellaneous, 471

quittask_remove
Miscellaneous, 472

readatom
Binbufs, 407

readtohandle
Loading Max Files, 497

saveas_dialog
Files and Folders, 428

saveas_promptset
Files and Folders, 429

saveasdialog_extended
Files and Folders, 429

schedule
Threads, 643

schedule_delay
Threads, 644

scheduler_fromobject
Clocks, 610

scheduler_get
Clocks, 611

scheduler_gettime
Clocks, 611

scheduler_new
Clocks, 611

scheduler_run
Clocks, 611

scheduler_set
Clocks, 612

scheduler_settime
Clocks, 612

scheduler_shift
Clocks, 612

serialno
Event and File Serial Numbers, 495

setclock_delay
Clocks, 613

setclock_fdelay
Clocks, 613

setclock_getftime
Clocks, 613

setclock_gettime
Clocks, 614

setclock_unset
Clocks, 614

setup
Old-Style Classes, 263

snprintf_zero
Miscellaneous, 472

string_append
String Object, 363

string_chop
String Object, 363

string_getptr
String Object, 363

string_new
String Object, 363

string_reserve
String Object, 363

stringload
Loading Max Files, 498

strncat_zero
Miscellaneous, 472

strncpy_zero
Miscellaneous, 473

swapf32
Miscellaneous Utility Module, 778

swapf64
Miscellaneous Utility Module, 778

symbol_unique
Miscellaneous, 473

symbolarray_sort
Miscellaneous, 473

symobject_linklist_match
Symbol Object, 365

symobject_new
Symbol Object, 366

sys_getblksize
MSP, 512

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1079

sys_getdspobjdspstate
MSP, 512

sys_getdspstate
MSP, 512

sys_getmaxblksize
MSP, 513

sys_getsr
MSP, 513

sysdateformat_formatdatetime
Systime API, 620

sysdateformat_strftimetodatetime
Systime API, 620

sysfile_close
Files and Folders, 431

sysfile_geteof
Files and Folders, 431

sysfile_getpos
Files and Folders, 431

sysfile_openhandle
Files and Folders, 432

sysfile_openptrsize
Files and Folders, 432

sysfile_read
Files and Folders, 432

sysfile_readtextfile
Files and Folders, 433

sysfile_readtohandle
Files and Folders, 433

sysfile_readtoptr
Files and Folders, 433

sysfile_seteof
Files and Folders, 434

sysfile_setpos
Files and Folders, 434

sysfile_spoolcopy
Files and Folders, 435

sysfile_write
Files and Folders, 435

sysfile_writetextfile
Files and Folders, 435

sysmem_copyptr
Memory Management, 457

sysmem_freehandle
Memory Management, 457

sysmem_freeptr
Memory Management, 457

sysmem_handlesize
Memory Management, 458

sysmem_lockhandle
Memory Management, 458

sysmem_newhandle
Memory Management, 458

sysmem_newhandleclear
Memory Management, 459

sysmem_newptr
Memory Management, 459

sysmem_newptrclear
Memory Management, 459

sysmem_nullterminatehandle
Memory Management, 460

sysmem_ptrandhand
Memory Management, 460

sysmem_ptrbeforehand
Memory Management, 460

sysmem_ptrsize
Memory Management, 461

sysmem_resizehandle
Memory Management, 461

sysmem_resizeptr
Memory Management, 461

sysmem_resizeptrclear
Memory Management, 462

systhread_create
Threads, 644

systhread_exit
Threads, 645

systhread_getpriority
Threads, 645

systhread_ismainthread
Threads, 645

systhread_istimerthread
Threads, 645

systhread_join
Threads, 646

systhread_mutex_free
Mutexes, 652

systhread_mutex_lock
Mutexes, 653

systhread_mutex_new
Mutexes, 653

systhread_mutex_newlock
Mutexes, 653

systhread_mutex_trylock
Mutexes, 654

systhread_mutex_unlock
Mutexes, 654

systhread_self
Threads, 646

systhread_setpriority
Threads, 646

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1080 INDEX

systhread_sleep
Threads, 646

systhread_terminate
Threads, 647

systime_datetime
Systime API, 621

systime_datetoseconds
Systime API, 621

systime_ms
Systime API, 621

systime_seconds
Systime API, 621

systime_secondstodate
Systime API, 621

systime_ticks
Systime API, 622

systimer_gettime
Clocks, 615

t_atom, 961
t_atomarray, 962
t_atombuf, 963
t_attr, 964
t_box

Patcher, 551
t_buffer, 965
t_celldesc, 968
t_charset_converter, 968
t_class, 969
t_cmpfn

Data Storage, 276
t_database

Database, 287
t_datetime, 969
t_db_result

Database, 287
t_db_view

Database, 287
t_dictionary, 970
t_dictionary_entry, 972
t_double

MSP, 510
t_expr, 972
t_filehandle

Files and Folders, 417
t_fileinfo, 973
t_float

MSP, 510
t_funbuff, 973
t_hashtab, 975

t_hashtab_entry, 976
t_indexmap, 977
t_indexmap_entry, 978
t_int

MSP, 510
t_itm

ITM Time Objects, 637
t_jbox, 978
t_jboxdrawparams, 979
t_jcolumn, 980
t_jdataview, 984
t_jgraphics_fileformat

JGraphics, 661
t_jgraphics_font_extents, 988
t_jgraphics_font_slant

JFont, 690
t_jgraphics_font_weight

JFont, 690
t_jgraphics_format

JGraphics, 662
t_jgraphics_text_justification

JGraphics, 662
t_jgraphics_textlayout_flags

TextLayout, 716
t_jit_attr, 989
t_jit_attr_filter_clip, 990
t_jit_attr_filter_proc, 991
t_jit_attr_offset, 992
t_jit_attr_offset_array, 993
t_jit_attribute, 995
t_jit_gl_context_view, 996
t_jit_gl_drawinfo, 999
t_jit_glchunk, 999
t_jit_matrix_info, 1001
t_jit_mop, 1002
t_jit_mop_io, 1003
t_jit_op_info, 1005
t_jmatrix, 1006
t_jmouse_cursortype

Mouse and Keyboard, 504
t_jrgb, 1006
t_jrgba, 1007
t_line_3d, 1007
t_linklist, 1008
t_llelem, 1009
t_matrix_conv_info, 1009
t_max_err

Data Types, 378
t_messlist, 1010
t_modifiers

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

INDEX 1081

Mouse and Keyboard, 504
t_object, 1010
t_patcher

Patcher, 551
t_path, 1011
t_pathlink, 1011
t_perfroutine

MSP, 514
t_pfftpub, 1012
t_privatesortrec, 1013
t_pt, 1015
t_pxdata, 1015
t_pxjbox, 1016
t_pxobject, 1017
t_quickmap, 1018
t_rect, 1019
t_sample

MSP, 510
t_signal, 1019
t_size, 1020
t_stack_splat, 1020
t_string, 1021
t_symbol, 1021
t_symobject, 1022
t_timeobject

ITM Time Objects, 637
t_tinyobject, 1023
t_vptr

MSP, 510
t_wind_mouse_info, 1024
t_zll, 1025
table_dirty

Table Access, 488
table_get

Table Access, 488
textfield_get_autoscroll

TextField, 706
textfield_get_bgcolor

TextField, 706
textfield_get_editonclick

TextField, 706
textfield_get_emptytext

TextField, 706
textfield_get_noactivate

TextField, 707
textfield_get_owner

TextField, 707
textfield_get_readonly

TextField, 707
textfield_get_selectallonedit

TextField, 707
textfield_get_textcolor

TextField, 708
textfield_get_textmargins

TextField, 708
textfield_get_underline

TextField, 708
textfield_get_useellipsis

TextField, 709
textfield_get_wantsreturn

TextField, 709
textfield_get_wantstab

TextField, 709
textfield_get_wordwrap

TextField, 710
textfield_set_autoscroll

TextField, 710
textfield_set_bgcolor

TextField, 710
textfield_set_editonclick

TextField, 710
textfield_set_emptytext

TextField, 711
textfield_set_noactivate

TextField, 711
textfield_set_readonly

TextField, 711
textfield_set_selectallonedit

TextField, 712
textfield_set_textcolor

TextField, 712
textfield_set_textmargins

TextField, 712
textfield_set_underline

TextField, 712
textfield_set_useellipsis

TextField, 713
textfield_set_wantsreturn

TextField, 713
textfield_set_wantstab

TextField, 713
textfield_set_wordwrap

TextField, 714
time_calcquantize

ITM Time Objects, 633
time_getitm

ITM Time Objects, 633
time_getms

ITM Time Objects, 633
time_getnamed

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

1082 INDEX

ITM Time Objects, 634
time_getphase

ITM Time Objects, 634
time_getticks

ITM Time Objects, 634
time_isfixedunit

ITM Time Objects, 634
time_listen

ITM Time Objects, 635
time_new

ITM Time Objects, 635
time_now

ITM Time Objects, 635
time_schedule

ITM Time Objects, 636
time_schedule_limit

ITM Time Objects, 636
time_setclock

ITM Time Objects, 636
time_setvalue

ITM Time Objects, 636
time_stop

ITM Time Objects, 637
time_tick

ITM Time Objects, 637
typedmess

Old-Style Classes, 264

vptr
MSP, 510

wind_advise
Miscellaneous, 473

wind_setcursor
Miscellaneous, 474

word, 1025

z_dsp_free
MSP, 513

z_dsp_setup
MSP, 513

zgetfn
Old-Style Classes, 264

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

	Objects in C: A Roadmap
	Max Objects
	MSP Objects
	Jitter Objects

	Development System Information
	Building
	Mac
	XCode Project Setup
	Linking and Frameworks

	Windows
	Compiling with Cygwin
	Requirements
	Build Steps
	Additional Notes

	Important Project Settings
	Mac
	Windows

	Platform-specificity

	Anatomy of a Max Object
	Include Files
	The Object Declaration
	Initialization Routine
	New Instance Routine
	Message Handlers

	Inlets and Outlets
	Creating and Using Inlets
	Creating and Using Outlets
	Creating and Using Proxies
	Example

	Atoms and Messages
	Argument Type Specifiers
	Writing A_GIMME Functions
	Writing `¨Anything`¨ Methods

	The Scheduler
	Creating and Using Clocks
	Creating and Using Qelems
	Defer
	Defer Variants

	Schedule

	Memory Allocation
	Anatomy of a MSP Object
	Additional Header Files
	C Structure Declaration
	Initialization Routine
	New Instance Routine
	The DSP Method and Perform Routine
	Free Function

	Advanced Signal Object Topics
	Saving Internal State
	Observing Patcher Muting
	Using Connection Information

	Sending Messages, Calling Methods
	Attributes
	Attribute Basics
	Defining Attributes
	Attributes With Custom Getters and Setters

	Receiving Notifications

	Anatomy of a UI Object
	Required Headers
	UI Object Data Structure
	Initialization Routine for UI Objects
	UI Object Methods
	Defining Attributes
	Standard Color Attribute
	Setting a Default Size

	New Instance Routine
	Dynamic Updating
	The Paint Method
	Handling Mouse Gestures
	Freeing a UI Object

	File Handling
	Reading Text Files
	Reading Data Files
	Writing Files

	Scripting the Patcher
	Knowing the Patcher
	Patcher Name and File Path
	Patcher Hierarchy
	Getting Objects in a Patcher
	Iteration Using Callbacks

	Creating Objects
	Connecting Objects

	Deleting Objects
	Obtaining and Changing Patcher and Object Attributes
	Patcher Attributes
	Box Attributes

	Enhancements to Objects
	Preset Support
	Pattr Support
	Assistance
	Hot and Cold Inlets
	Showing a Text Editor
	Accessing Data in table Objects

	Data Structures
	Available Data Structures
	Passing Data Structures

	Threading
	Max Threading Operation
	Thread Protection
	When Messages Arrive
	Critical Section Example

	Drag'n'Drop
	Discussion

	ITM
	Scheduling Temporary Events
	Permanent Events
	Cleaning Up

	Jitter Object Model
	Jitter Object Model Basics
	Defining a Jitter Class
	Object Struct
	Constructor/Destructor
	Methods
	Attributes
	Array Attributes
	Attribute Notification

	Jitter Max Wrappers
	Max Wrapper Classes
	Object Struct
	Defining Your Max Class
	Constructor
	Destructor
	Dumpout
	Additional inlets/outlets
	Max Wrapper Attributes

	Matrix Operator QuickStart
	Defining the MOP Jitter Class
	The Jitter Class Constructor/Destructor
	The Matrix Calculation Method
	Processing N-Dimensional Matrices
	Defining the MOP Max Wrapper Class
	The Max Class Constructor/Destructor

	Matrix Operator Details
	Defining the MOP Jitter Class
	The jit_mop_io Object
	Restricting Input/Output Attributes
	The ioproc Function
	Variable Inputs/Outputs
	Adding jit_mop as a Class Adornment
	The Matrix Calculation Method
	Accessing the Input and Output Lists
	Locking and Unlocking Matrices
	Retrieving Matrix Information
	Retrieving the Data Pointer
	Processing the Data
	Processing N-Dimensional Matrices
	Defining the MOP Max Wrapper Class
	Overriding the jit_matrix Method
	Overriding the bang and outputmatrix Methods
	Overriding the name, type, dim, and planecount Attributes
	Overriding the clear and notify Methods
	Overriding the adapt and outputmode Attributes
	Defining an mproc Method
	The Max Class Constructor/Destructor
	Variable Inputs/Outputs
	Matrix Arguments

	OB3D QuickStart
	Defining the OB3D Jitter Class
	The Jitter Class Constructor/Destructor
	The OB3D draw Method
	Defining the OB3D Max Wrapper Class
	The Max Class Constructor/Destructor

	OB3D Details
	Defining the OB3D Jitter Class
	Declaring a Draw Method
	Declaring Destination and Geometry Related Methods
	Declaring a Register Method
	Overriding Rotation and Scale Related Attributes
	Overriding Color Related Attributes
	Overriding Texture Related Attributes
	Overriding Lighting and Material Related Attributes
	Overriding Fog Related Attributes
	Overriding Polygon Variable Related Attributes
	Overriding Blending Related Attributes
	Overriding Depth Buffer and Antialiasing Related Attributes
	Overriding Matrixoutput and Automatic Attributes
	Declaring a User Interface Object
	The Jitter Class Constructor and Destructor
	The OB3D Draw Method
	The t_jit_glchunk Structure and Matrix Output
	OB3D OpenGL Caveats
	Getting Information About the OB3D Attributes
	Getting Information About the Context
	Playing Well with Others
	Defining the OB3D Max Wrapper Class
	Matrix Input

	Scheduler and Low Priority Queue Issues
	Defer and Usurp
	Using Defer and Usurp in Jitter Object Methods
	Using Defer and Usurp in Jitter Object Attributes
	Using Defer and Usurp in the Max Wrapper Object
	When Not to Use the Usurp Mechanism
	Overriding Defer and Usurp

	Jitter Object Registration and Notification
	Registering Named Objects
	Looking Up an Object by Name
	Attaching to Named Objects
	Notifying Clients

	Using Jitter Objects in C
	Example 1: the t_jit_qt_movie object

	JXF File Specification
	The Binary JXF API
	Specification of the JXF Format

	Jitter Networking Specification
	Appendix: Messages sent to Objects
	Messages for All Objects
	Messages for Non-UI Objects
	Messages for User Interface Objects
	Message for Audio Objects
	Messages for Objects Containing Text Fields
	Messages for Objects with Text Editor Windows
	Messages for Dataview Client Objects

	Appendix: Providing Icons for UI Objects
	Object SVG Icon
	Object Palette Definition

	Appendix: Additional Resources
	Appendix: Updating MSP Externals for Max 6
	Background
	API
	Example Code

	Module Documentation
	Attributes
	Detailed Description
	Setting and Getting Attribute Values
	Writing a custom Attribute Getter
	Writing a custom Attribute Getter

	Attribute Notificaton
	Define Documentation
	CLASS_ATTR_ACCESSORS
	CLASS_ATTR_ADD_FLAGS
	CLASS_ATTR_ALIAS
	CLASS_ATTR_ATOM
	CLASS_ATTR_ATOM_ARRAY
	CLASS_ATTR_ATOM_VARSIZE
	CLASS_ATTR_BASIC
	CLASS_ATTR_CATEGORY
	CLASS_ATTR_CHAR
	CLASS_ATTR_CHAR_ARRAY
	CLASS_ATTR_CHAR_VARSIZE
	CLASS_ATTR_DEFAULT
	CLASS_ATTR_DEFAULT_PAINT
	CLASS_ATTR_DEFAULT_SAVE
	CLASS_ATTR_DEFAULT_SAVE_PAINT
	CLASS_ATTR_DEFAULTNAME
	CLASS_ATTR_DEFAULTNAME_PAINT
	CLASS_ATTR_DEFAULTNAME_SAVE
	CLASS_ATTR_DEFAULTNAME_SAVE_PAINT
	CLASS_ATTR_DOUBLE
	CLASS_ATTR_DOUBLE_ARRAY
	CLASS_ATTR_DOUBLE_VARSIZE
	CLASS_ATTR_ENUM
	CLASS_ATTR_ENUMINDEX
	CLASS_ATTR_FILTER_CLIP
	CLASS_ATTR_FILTER_MAX
	CLASS_ATTR_FILTER_MIN
	CLASS_ATTR_FLOAT
	CLASS_ATTR_FLOAT_ARRAY
	CLASS_ATTR_FLOAT_VARSIZE
	CLASS_ATTR_INVISIBLE
	CLASS_ATTR_LABEL
	CLASS_ATTR_LONG
	CLASS_ATTR_LONG_ARRAY
	CLASS_ATTR_LONG_VARSIZE
	CLASS_ATTR_MAX
	CLASS_ATTR_MIN
	CLASS_ATTR_OBJ
	CLASS_ATTR_OBJ_ARRAY
	CLASS_ATTR_OBJ_VARSIZE
	CLASS_ATTR_ORDER
	CLASS_ATTR_PAINT
	CLASS_ATTR_REMOVE_FLAGS
	CLASS_ATTR_RGBA
	CLASS_ATTR_SAVE
	CLASS_ATTR_STYLE
	CLASS_ATTR_STYLE_LABEL
	CLASS_ATTR_SYM
	CLASS_ATTR_SYM_ARRAY
	CLASS_ATTR_SYM_VARSIZE
	CLASS_METHOD_ATTR_PARSE
	CLASS_STICKY_ATTR
	CLASS_STICKY_ATTR_CLEAR
	CLASS_STICKY_METHOD
	CLASS_STICKY_METHOD_CLEAR
	OBJ_ATTR_ATOM
	OBJ_ATTR_ATOM_ARRAY
	OBJ_ATTR_CHAR
	OBJ_ATTR_CHAR_ARRAY
	OBJ_ATTR_DEFAULT
	OBJ_ATTR_DEFAULT_SAVE
	OBJ_ATTR_DOUBLE
	OBJ_ATTR_DOUBLE_ARRAY
	OBJ_ATTR_FLOAT
	OBJ_ATTR_FLOAT_ARRAY
	OBJ_ATTR_LONG
	OBJ_ATTR_LONG_ARRAY
	OBJ_ATTR_OBJ
	OBJ_ATTR_OBJ_ARRAY
	OBJ_ATTR_SAVE
	OBJ_ATTR_SYM
	OBJ_ATTR_SYM_ARRAY
	STATIC_ATTR_ATOM
	STATIC_ATTR_ATOM_ARRAY
	STATIC_ATTR_CHAR
	STATIC_ATTR_CHAR_ARRAY
	STATIC_ATTR_DOUBLE
	STATIC_ATTR_DOUBLE_ARRAY
	STATIC_ATTR_FLOAT
	STATIC_ATTR_FLOAT_ARRAY
	STATIC_ATTR_LONG
	STATIC_ATTR_LONG_ARRAY
	STATIC_ATTR_OBJ
	STATIC_ATTR_OBJ_ARRAY
	STATIC_ATTR_SYM
	STATIC_ATTR_SYM_ARRAY
	STRUCT_ATTR_ATOM
	STRUCT_ATTR_ATOM_ARRAY
	STRUCT_ATTR_ATOM_VARSIZE
	STRUCT_ATTR_CHAR
	STRUCT_ATTR_CHAR_ARRAY
	STRUCT_ATTR_CHAR_VARSIZE
	STRUCT_ATTR_DOUBLE
	STRUCT_ATTR_DOUBLE_ARRAY
	STRUCT_ATTR_DOUBLE_VARSIZE
	STRUCT_ATTR_FLOAT
	STRUCT_ATTR_FLOAT_ARRAY
	STRUCT_ATTR_FLOAT_VARSIZE
	STRUCT_ATTR_LONG
	STRUCT_ATTR_LONG_ARRAY
	STRUCT_ATTR_LONG_VARSIZE
	STRUCT_ATTR_OBJ
	STRUCT_ATTR_OBJ_ARRAY
	STRUCT_ATTR_OBJ_VARSIZE
	STRUCT_ATTR_SYM
	STRUCT_ATTR_SYM_ARRAY
	STRUCT_ATTR_SYM_VARSIZE

	Enumeration Type Documentation
	e_max_attrflags

	Function Documentation
	attr_addfilter_clip
	attr_addfilter_clip_scale
	attr_addfilterget_clip
	attr_addfilterget_clip_scale
	attr_addfilterget_proc
	attr_addfilterset_clip
	attr_addfilterset_clip_scale
	attr_addfilterset_proc
	attr_args_dictionary
	attr_args_offset
	attr_args_process
	attr_dictionary_process
	attr_offset_array_new
	attr_offset_new
	attribute_new
	object_addattr
	object_attr_get
	object_attr_get_rect
	object_attr_getchar_array
	object_attr_getcolor
	object_attr_getdouble_array
	object_attr_getdump
	object_attr_getfloat
	object_attr_getfloat_array
	object_attr_getjrgba
	object_attr_getlong
	object_attr_getlong_array
	object_attr_getpt
	object_attr_getsize
	object_attr_getsym
	object_attr_getsym_array
	object_attr_method
	object_attr_set_rect
	object_attr_setchar_array
	object_attr_setcolor
	object_attr_setdouble_array
	object_attr_setfloat
	object_attr_setfloat_array
	object_attr_setjrgba
	object_attr_setlong
	object_attr_setlong_array
	object_attr_setparse
	object_attr_setpt
	object_attr_setsize
	object_attr_setsym
	object_attr_setsym_array
	object_attr_setvalueof
	object_attr_usercanget
	object_attr_usercanset
	object_chuckattr
	object_deleteattr
	object_new_parse

	Classes
	Detailed Description
	Define Documentation
	CLASS_BOX

	Enumeration Type Documentation
	e_max_class_flags

	Function Documentation
	class_addattr
	class_addmethod
	class_alias
	class_dumpout_wrap
	class_findbyname
	class_findbyname_casefree
	class_free
	class_is_ui
	class_nameget
	class_new
	class_obexoffset_get
	class_obexoffset_set
	class_register
	class_subclass
	class_super_construct

	Old-Style Classes
	Function Documentation
	addbang
	addfloat
	addftx
	addint
	addinx
	addmess
	alias
	class_setname
	egetfn
	freeobject
	getfn
	newinstance
	newobject
	setup
	typedmess
	zgetfn

	Inlets and Outlets
	Detailed Description
	Function Documentation
	bangout
	floatin
	floatout
	inlet_new
	intin
	intout
	listout
	outlet_anything
	outlet_bang
	outlet_float
	outlet_int
	outlet_list
	outlet_new
	proxy_getinlet
	proxy_new

	Data Storage
	Detailed Description
	Typedef Documentation
	t_cmpfn

	Enumeration Type Documentation
	e_max_datastore_flags

	Atom Array
	Detailed Description
	Define Documentation
	ATOMARRAY_FLAG_FREECHILDREN

	Function Documentation
	atomarray_appendatom
	atomarray_appendatoms
	atomarray_chuckindex
	atomarray_clear
	atomarray_copyatoms
	atomarray_duplicate
	atomarray_flags
	atomarray_funall
	atomarray_getatoms
	atomarray_getflags
	atomarray_getindex
	atomarray_getsize
	atomarray_new
	atomarray_setatoms

	Database
	Detailed Description
	Typedef Documentation
	t_database
	t_db_result
	t_db_view

	Function Documentation
	db_close
	db_open
	db_query
	db_query_getlastinsertid
	db_query_silent
	db_query_table_addcolumn
	db_query_table_new
	db_result_clear
	db_result_datetimeinseconds
	db_result_fieldname
	db_result_float
	db_result_long
	db_result_nextrecord
	db_result_numfields
	db_result_numrecords
	db_result_reset
	db_result_string
	db_transaction_end
	db_transaction_flush
	db_transaction_start
	db_util_datetostring
	db_util_stringtodate
	db_view_create
	db_view_getresult
	db_view_remove
	db_view_setquery

	Dictionary
	Detailed Description
	Using Dictionaries
	Understanding Dictionaries
	When to Free a Dictionary
	Some Common Uses of Dictionaries

	Function Documentation
	dictionary_appendatom
	dictionary_appendatomarray
	dictionary_appendatoms
	dictionary_appenddictionary
	dictionary_appendfloat
	dictionary_appendlong
	dictionary_appendobject
	dictionary_appendstring
	dictionary_appendsym
	dictionary_chuckentry
	dictionary_clear
	dictionary_copyatoms
	dictionary_copydefatoms
	dictionary_copyentries
	dictionary_copyunique
	dictionary_deleteentry
	dictionary_dump
	dictionary_entry_getkey
	dictionary_entry_getvalue
	dictionary_entry_getvalues
	dictionary_entryisatomarray
	dictionary_entryisdictionary
	dictionary_entryisstring
	dictionary_freekeys
	dictionary_funall
	dictionary_getatom
	dictionary_getatomarray
	dictionary_getatoms
	dictionary_getdefatom
	dictionary_getdefatoms
	dictionary_getdeffloat
	dictionary_getdeflong
	dictionary_getdefstring
	dictionary_getdefsym
	dictionary_getdictionary
	dictionary_getentrycount
	dictionary_getfloat
	dictionary_getkeys
	dictionary_getlong
	dictionary_getobject
	dictionary_getstring
	dictionary_getsym
	dictionary_hasentry
	dictionary_new
	dictionary_read
	dictionary_sprintf
	dictionary_write
	postdictionary

	Hash Table
	Detailed Description
	Define Documentation
	HASH_DEFSLOTS

	Function Documentation
	hashtab_chuck
	hashtab_chuckkey
	hashtab_clear
	hashtab_delete
	hashtab_findfirst
	hashtab_flags
	hashtab_funall
	hashtab_getflags
	hashtab_getkeyflags
	hashtab_getkeys
	hashtab_getsize
	hashtab_keyflags
	hashtab_lookup
	hashtab_lookupflags
	hashtab_methodall
	hashtab_new
	hashtab_print
	hashtab_readonly
	hashtab_store
	hashtab_store_safe
	hashtab_storeflags

	Index Map
	Detailed Description
	Function Documentation
	indexmap_append
	indexmap_clear
	indexmap_datafromindex
	indexmap_delete
	indexmap_delete_index
	indexmap_delete_index_multi
	indexmap_delete_multi
	indexmap_getsize
	indexmap_indexfromdata
	indexmap_move
	indexmap_new
	indexmap_sort

	Linked List
	Detailed Description
	Function Documentation
	linklist_append
	linklist_chuck
	linklist_chuckindex
	linklist_chuckobject
	linklist_clear
	linklist_deleteindex
	linklist_deleteobject
	linklist_findall
	linklist_findfirst
	linklist_flags
	linklist_funall
	linklist_funall_break
	linklist_funindex
	linklist_getflags
	linklist_getindex
	linklist_getsize
	linklist_insert_sorted
	linklist_insertafterobjptr
	linklist_insertbeforeobjptr
	linklist_insertindex
	linklist_last
	linklist_makearray
	linklist_match
	linklist_methodall
	linklist_methodindex
	linklist_moveafterobjptr
	linklist_movebeforeobjptr
	linklist_new
	linklist_next
	linklist_objptr2index
	linklist_prev
	linklist_readonly
	linklist_reverse
	linklist_rotate
	linklist_shuffle
	linklist_sort
	linklist_substitute
	linklist_swap

	Quick Map
	Detailed Description
	Function Documentation
	quickmap_add
	quickmap_drop
	quickmap_lookup_key1
	quickmap_lookup_key2
	quickmap_new
	quickmap_readonly

	String Object
	Detailed Description
	Function Documentation
	string_append
	string_chop
	string_getptr
	string_new
	string_reserve

	Symbol Object
	Detailed Description
	Function Documentation
	symobject_linklist_match
	symobject_new

	Dictionary Passing API
	Detailed Description
	Registration and Access
	Dictionary Syntax
	Utilities
	Registration and Access
	Function Documentation
	dictobj_atom_safety
	dictobj_dictionaryfromatoms
	dictobj_dictionaryfromstring
	dictobj_dictionarytoatoms
	dictobj_findregistered_clone
	dictobj_findregistered_retain
	dictobj_jsonfromstring
	dictobj_namefromptr
	dictobj_outlet_atoms
	dictobj_register
	dictobj_release
	dictobj_unregister
	dictobj_validate

	Data Types
	Typedef Documentation
	t_max_err

	Atoms
	Enumeration Type Documentation
	e_max_atom_gettext_flags
	e_max_atomtypes

	Function Documentation
	atom_alloc
	atom_alloc_array
	atom_arg_getdouble
	atom_arg_getfloat
	atom_arg_getlong
	atom_arg_getobjclass
	atom_arg_getsym
	atom_copy
	atom_getatom_array
	atom_getchar_array
	atom_getcharfix
	atom_getdouble_array
	atom_getfloat
	atom_getfloat_array
	atom_getformat
	atom_getlong
	atom_getlong_array
	atom_getobj
	atom_getobj_array
	atom_getobjclass
	atom_getsym
	atom_getsym_array
	atom_gettext
	atom_gettype
	atom_setatom_array
	atom_setchar_array
	atom_setdouble_array
	atom_setfloat
	atom_setfloat_array
	atom_setformat
	atom_setlong
	atom_setlong_array
	atom_setobj
	atom_setobj_array
	atom_setparse
	atom_setsym
	atom_setsym_array
	atomisatomarray
	atomisdictionary
	atomisstring
	postargs

	Atombufs
	Detailed Description
	Function Documentation
	atombuf_free
	atombuf_new
	atombuf_text

	Binbufs
	Detailed Description
	Function Documentation
	binbuf_append
	binbuf_eval
	binbuf_getatom
	binbuf_insert
	binbuf_new
	binbuf_set
	binbuf_text
	binbuf_totext
	binbuf_vinsert
	readatom

	Symbols
	Detailed Description
	Function Documentation
	gensym
	gensym_tr

	Files and Folders
	Detailed Description
	The Sysfile API
	Example: filebyte (notes from the IRCAM workshop)
	Paths
	t_filehandle
	File Names
	File Path Names

	Collectives and Fileusage
	Filewatchers
	Define Documentation
	MAX_FILENAME_CHARS

	Typedef Documentation
	t_filehandle

	Enumeration Type Documentation
	e_max_fileinfo_flags
	e_max_openfile_permissions
	e_max_path_folder_flags
	e_max_path_styles
	e_max_path_types
	e_max_sysfile_posmodes
	e_max_sysfile_textflags

	Function Documentation
	fileusage_addfile
	filewatcher_new
	locatefile
	locatefile_extended
	locatefiletype
	open_dialog
	open_promptset
	path_closefolder
	path_createsysfile
	path_fileinfo
	path_foldernextfile
	path_frompathname
	path_getapppath
	path_getdefault
	path_getfilemoddate
	path_getmoddate
	path_nameconform
	path_openfolder
	path_opensysfile
	path_resolvefile
	path_setdefault
	path_topathname
	path_topotentialname
	saveas_dialog
	saveas_promptset
	saveasdialog_extended
	sysfile_close
	sysfile_geteof
	sysfile_getpos
	sysfile_openhandle
	sysfile_openptrsize
	sysfile_read
	sysfile_readtextfile
	sysfile_readtohandle
	sysfile_readtoptr
	sysfile_seteof
	sysfile_setpos
	sysfile_spoolcopy
	sysfile_write
	sysfile_writetextfile

	Jitter
	Memory Management
	Detailed Description
	Sysmem API
	Define Documentation
	MM_UNIFIED

	Function Documentation
	disposhandle
	freebytes
	freebytes16
	getbytes
	getbytes16
	growhandle
	newhandle
	sysmem_copyptr
	sysmem_freehandle
	sysmem_freeptr
	sysmem_handlesize
	sysmem_lockhandle
	sysmem_newhandle
	sysmem_newhandleclear
	sysmem_newptr
	sysmem_newptrclear
	sysmem_nullterminatehandle
	sysmem_ptrandhand
	sysmem_ptrbeforehand
	sysmem_ptrsize
	sysmem_resizehandle
	sysmem_resizeptr
	sysmem_resizeptrclear

	Miscellaneous
	Define Documentation
	BEGIN_USING_C_LINKAGE
	calcoffset
	CLIP
	InRange
	MAX
	MIN

	Enumeration Type Documentation
	e_max_errorcodes
	e_max_wind_advise_result

	Function Documentation
	error_subscribe
	error_sym
	error_unsubscribe
	globalsymbol_bind
	globalsymbol_dereference
	globalsymbol_reference
	globalsymbol_unbind
	maxversion
	object_obex_quickref
	post_sym
	quittask_install
	quittask_remove
	snprintf_zero
	strncat_zero
	strncpy_zero
	symbol_unique
	symbolarray_sort
	wind_advise
	wind_setcursor

	Console
	Function Documentation
	cpost
	error
	object_error
	object_error_obtrusive
	object_post
	object_warn
	ouchstring
	post
	postatom

	Byte Ordering
	Detailed Description
	Define Documentation
	BYTEORDER_SWAPF32
	BYTEORDER_SWAPF64
	BYTEORDER_SWAPW16
	BYTEORDER_SWAPW32
	C74_BIG_ENDIAN
	C74_LITTLE_ENDIAN

	Extending expr
	Detailed Description
	Enumeration Type Documentation
	e_max_expr_types

	Function Documentation
	expr_eval
	expr_new

	Table Access
	Detailed Description
	Function Documentation
	table_dirty
	table_get

	Text Editor Windows
	Presets
	Detailed Description
	Function Documentation
	preset_int
	preset_set
	preset_store

	Event and File Serial Numbers
	Detailed Description
	Using Event Serial Numbers
	Function Documentation
	evnum_get
	serialno

	Loading Max Files
	Detailed Description
	Function Documentation
	fileload
	intload
	readtohandle
	stringload

	Monitors and Displays
	Detailed Description
	Function Documentation
	jmonitor_getdisplayrect
	jmonitor_getdisplayrect_foralldisplays
	jmonitor_getdisplayrect_forpoint
	jmonitor_getnumdisplays

	Windows
	Function Documentation
	jwind_getactive
	jwind_getat
	jwind_getcount

	Mouse and Keyboard
	Enumeration Type Documentation
	t_jmouse_cursortype
	t_modifiers

	Function Documentation
	jkeyboard_getcurrentmodifiers
	jkeyboard_getcurrentmodifiers_realtime
	jmouse_getposition_global
	jmouse_setcursor
	jmouse_setposition_box
	jmouse_setposition_global
	jmouse_setposition_view

	MSP
	Define Documentation
	PI
	PIOVERTWO
	TWOPI

	Typedef Documentation
	t_double
	t_float
	t_int
	t_sample
	t_vptr
	vptr

	Enumeration Type Documentation
	anonymous enum

	Function Documentation
	class_dspinit
	class_dspinitjbox
	dsp_add
	dsp_addv
	sys_getblksize
	sys_getdspobjdspstate
	sys_getdspstate
	sys_getmaxblksize
	sys_getsr
	z_dsp_free
	z_dsp_setup

	Variable Documentation
	t_perfroutine

	Buffers
	Detailed Description

	PFFT
	Detailed Description

	Poly
	Objects
	Detailed Description
	Define Documentation
	MAXARG

	Function Documentation
	classname_openhelp
	classname_openquery
	classname_openrefpage
	newobject_fromdictionary
	newobject_sprintf
	object_alloc
	object_attach
	object_attach_byptr
	object_attach_byptr_register
	object_attr_touch
	object_attr_touch_parse
	object_class
	object_classname
	object_classname_compare
	object_detach
	object_detach_byptr
	object_dictionaryarg
	object_findregistered
	object_findregisteredbyptr
	object_free
	object_getmethod
	object_getvalueof
	object_method
	object_method_char
	object_method_char_array
	object_method_double
	object_method_double_array
	object_method_float
	object_method_float_array
	object_method_format
	object_method_long
	object_method_long_array
	object_method_obj
	object_method_obj_array
	object_method_parse
	object_method_sym
	object_method_sym_array
	object_method_typed
	object_method_typedfun
	object_new
	object_new_typed
	object_notify
	object_obex_dumpout
	object_obex_lookup
	object_obex_store
	object_openhelp
	object_openquery
	object_openrefpage
	object_register
	object_register_getnames
	object_setvalueof
	object_subscribe
	object_super_method
	object_this_method
	object_unregister
	object_unsubscribe

	Patcher
	Detailed Description
	Typedef Documentation
	t_box
	t_patcher

	Enumeration Type Documentation
	anonymous enum

	jpatcher
	Detailed Description
	Function Documentation
	jpatcher_deleteobj
	jpatcher_get_bgcolor
	jpatcher_get_bghidden
	jpatcher_get_bglocked
	jpatcher_get_box
	jpatcher_get_count
	jpatcher_get_currentfileversion
	jpatcher_get_default_fontface
	jpatcher_get_default_fontname
	jpatcher_get_default_fontsize
	jpatcher_get_defrect
	jpatcher_get_dirty
	jpatcher_get_editing_bgcolor
	jpatcher_get_fghidden
	jpatcher_get_filename
	jpatcher_get_filepath
	jpatcher_get_fileversion
	jpatcher_get_firstline
	jpatcher_get_firstobject
	jpatcher_get_firstview
	jpatcher_get_gridsize
	jpatcher_get_lastobject
	jpatcher_get_name
	jpatcher_get_parentpatcher
	jpatcher_get_presentation
	jpatcher_get_rect
	jpatcher_get_title
	jpatcher_get_toppatcher
	jpatcher_is_patcher
	jpatcher_set_bgcolor
	jpatcher_set_bghidden
	jpatcher_set_bglocked
	jpatcher_set_defrect
	jpatcher_set_dirty
	jpatcher_set_editing_bgcolor
	jpatcher_set_fghidden
	jpatcher_set_gridsize
	jpatcher_set_locked
	jpatcher_set_presentation
	jpatcher_set_rect
	jpatcher_set_title
	jpatcher_uniqueboxname

	jbox
	Detailed Description
	Define Documentation
	JBOX_NOINSPECTFIRSTIN

	Enumeration Type Documentation
	anonymous enum
	HitTestResult

	Function Documentation
	jbox_free
	jbox_get_annotation
	jbox_get_background
	jbox_get_canhilite
	jbox_get_color
	jbox_get_drawfirstin
	jbox_get_drawinlast
	jbox_get_fontname
	jbox_get_fontsize
	jbox_get_growboth
	jbox_get_growy
	jbox_get_hidden
	jbox_get_hint
	jbox_get_hintstring
	jbox_get_id
	jbox_get_ignoreclick
	jbox_get_maxclass
	jbox_get_nextobject
	jbox_get_nogrow
	jbox_get_object
	jbox_get_outline
	jbox_get_patcher
	jbox_get_patching_position
	jbox_get_patching_rect
	jbox_get_patching_size
	jbox_get_presentation
	jbox_get_presentation_position
	jbox_get_presentation_rect
	jbox_get_presentation_size
	jbox_get_prevobject
	jbox_get_rect_for_sym
	jbox_get_rect_for_view
	jbox_get_textfield
	jbox_get_varname
	jbox_new
	jbox_notify
	jbox_ready
	jbox_redraw
	jbox_set_annotation
	jbox_set_background
	jbox_set_color
	jbox_set_fontname
	jbox_set_fontsize
	jbox_set_hidden
	jbox_set_hint
	jbox_set_hintstring
	jbox_set_ignoreclick
	jbox_set_outline
	jbox_set_patching_position
	jbox_set_patching_rect
	jbox_set_patching_size
	jbox_set_position
	jbox_set_presentation
	jbox_set_presentation_position
	jbox_set_presentation_rect
	jbox_set_presentation_size
	jbox_set_rect
	jbox_set_rect_for_sym
	jbox_set_rect_for_view
	jbox_set_size
	jbox_set_varname

	jpatchline
	Detailed Description
	Function Documentation
	jpatchline_get_box1
	jpatchline_get_box2
	jpatchline_get_color
	jpatchline_get_endpoint
	jpatchline_get_hidden
	jpatchline_get_inletnum
	jpatchline_get_nextline
	jpatchline_get_nummidpoints
	jpatchline_get_outletnum
	jpatchline_get_startpoint
	jpatchline_set_color
	jpatchline_set_hidden

	jpatcherview
	Detailed Description
	Function Documentation
	patcherview_findpatcherview
	patcherview_get_jgraphics
	patcherview_get_locked
	patcherview_get_nextview
	patcherview_get_patcher
	patcherview_get_presentation
	patcherview_get_rect
	patcherview_get_topview
	patcherview_get_visible
	patcherview_get_zoomfactor
	patcherview_set_locked
	patcherview_set_presentation
	patcherview_set_rect
	patcherview_set_visible
	patcherview_set_zoomfactor

	Timing
	Clocks
	Detailed Description
	Using Clocks
	Scheduling with setclock Objects
	Using the setclock Object Routines

	Creating Schedulers
	Function Documentation
	clock_delay
	clock_fdelay
	clock_getftime
	clock_new
	clock_unset
	gettime
	scheduler_fromobject
	scheduler_get
	scheduler_gettime
	scheduler_new
	scheduler_run
	scheduler_set
	scheduler_settime
	scheduler_shift
	setclock_delay
	setclock_fdelay
	setclock_getftime
	setclock_gettime
	setclock_unset
	systimer_gettime

	Qelems
	Detailed Description
	Function Documentation
	qelem_free
	qelem_front
	qelem_new
	qelem_set
	qelem_unset

	Systime API
	Detailed Description
	Enumeration Type Documentation
	e_max_dateflags

	Function Documentation
	sysdateformat_formatdatetime
	sysdateformat_strftimetodatetime
	systime_datetime
	systime_datetoseconds
	systime_ms
	systime_seconds
	systime_secondstodate
	systime_ticks

	ITM Time Objects
	Detailed Description
	Enumeration Type Documentation
	anonymous enum

	Function Documentation
	class_time_addattr
	itm_barbeatunitstoticks
	itm_dereference
	itm_dump
	itm_getglobal
	itm_getname
	itm_getnamed
	itm_getresolution
	itm_getstate
	itm_getticks
	itm_gettime
	itm_gettimesignature
	itm_isunitfixed
	itm_mstosamps
	itm_mstoticks
	itm_pause
	itm_reference
	itm_resume
	itm_sampstoms
	itm_setresolution
	itm_settimesignature
	itm_tickstobarbeatunits
	itm_tickstoms
	time_calcquantize
	time_getitm
	time_getms
	time_getnamed
	time_getphase
	time_getticks
	time_isfixedunit
	time_listen
	time_new
	time_now
	time_schedule
	time_schedule_limit
	time_setclock
	time_setvalue
	time_stop
	time_tick

	Variable Documentation
	t_itm
	t_timeobject

	Threads
	Detailed Description
	Define Documentation
	ATOMIC_COMPARE_SWAP32
	ATOMIC_DECREMENT
	ATOMIC_INCREMENT

	Enumeration Type Documentation
	e_max_systhread_mutex_flags

	Function Documentation
	defer
	defer_low
	isr
	schedule
	schedule_delay
	systhread_create
	systhread_exit
	systhread_getpriority
	systhread_ismainthread
	systhread_istimerthread
	systhread_join
	systhread_self
	systhread_setpriority
	systhread_sleep
	systhread_terminate

	Critical Regions
	Detailed Description
	Function Documentation
	critical_enter
	critical_exit
	critical_free
	critical_new
	critical_tryenter

	Mutexes
	Detailed Description
	Function Documentation
	systhread_mutex_free
	systhread_mutex_lock
	systhread_mutex_new
	systhread_mutex_newlock
	systhread_mutex_trylock
	systhread_mutex_unlock

	User Interface
	JGraphics
	Detailed Description
	Define Documentation
	JGRAPHICS_2PI
	JGRAPHICS_3PIOVER2
	JGRAPHICS_PI
	JGRAPHICS_PIOVER2

	Enumeration Type Documentation
	t_jgraphics_fileformat
	t_jgraphics_format
	t_jgraphics_text_justification

	Function Documentation
	jgraphics_append_path
	jgraphics_arc
	jgraphics_arc_negative
	jgraphics_bubble
	jgraphics_close_path
	jgraphics_copy_path
	jgraphics_curve_to
	jgraphics_destroy
	jgraphics_device_to_user
	jgraphics_ellipse
	jgraphics_font_extents
	jgraphics_get_current_point
	jgraphics_getfiletypes
	jgraphics_line_to
	jgraphics_move_to
	jgraphics_new_path
	jgraphics_oval
	jgraphics_ovalarc
	jgraphics_path_contains
	jgraphics_path_createstroked
	jgraphics_path_destroy
	jgraphics_path_getlength
	jgraphics_path_getnearestpoint
	jgraphics_path_getpointalongpath
	jgraphics_path_intersectsline
	jgraphics_path_roundcorners
	jgraphics_position_one_rect_near_another_rect_but_keep_inside_a_third_rect
	jgraphics_rectangle
	jgraphics_rectangle_rounded
	jgraphics_rectcontainsrect
	jgraphics_rectintersectsrect
	jgraphics_reference
	jgraphics_rel_curve_to
	jgraphics_rel_line_to
	jgraphics_rel_move_to
	jgraphics_round
	jgraphics_select_font_face
	jgraphics_select_jfont
	jgraphics_set_font_size
	jgraphics_set_underline
	jgraphics_show_text
	jgraphics_system_canantialiastexttotransparentbg
	jgraphics_text_measure
	jgraphics_text_measuretext_wrapped
	jgraphics_text_path
	jgraphics_user_to_device

	JSurface
	Detailed Description
	Function Documentation
	jgraphics_create
	jgraphics_get_resource_data
	jgraphics_image_surface_clear
	jgraphics_image_surface_create
	jgraphics_image_surface_create_for_data
	jgraphics_image_surface_create_from_file
	jgraphics_image_surface_create_from_filedata
	jgraphics_image_surface_create_from_resource
	jgraphics_image_surface_create_referenced
	jgraphics_image_surface_draw
	jgraphics_image_surface_draw_fast
	jgraphics_image_surface_get_height
	jgraphics_image_surface_get_pixel
	jgraphics_image_surface_get_width
	jgraphics_image_surface_scroll
	jgraphics_image_surface_set_pixel
	jgraphics_image_surface_writepng
	jgraphics_surface_destroy
	jgraphics_surface_reference
	jgraphics_write_image_surface_to_filedata

	Scalable Vector Graphics
	Function Documentation
	jsvg_create_from_file
	jsvg_create_from_resource
	jsvg_create_from_xmlstring
	jsvg_destroy
	jsvg_get_size
	jsvg_render

	JFont
	Enumeration Type Documentation
	t_jgraphics_font_slant
	t_jgraphics_font_weight

	Function Documentation
	jbox_get_font_slant
	jbox_get_font_weight
	jfont_create
	jfont_destroy
	jfont_extents
	jfont_get_em_dimensions
	jfont_getfontlist
	jfont_isequalto
	jfont_reference
	jfont_set_font_size
	jfont_set_underline
	jfont_text_measure
	jfont_text_measuretext_wrapped

	JGraphics Matrix Transformations
	Detailed Description
	Function Documentation
	jgraphics_matrix_init
	jgraphics_matrix_init_identity
	jgraphics_matrix_init_rotate
	jgraphics_matrix_init_scale
	jgraphics_matrix_init_translate
	jgraphics_matrix_invert
	jgraphics_matrix_multiply
	jgraphics_matrix_rotate
	jgraphics_matrix_scale
	jgraphics_matrix_transform_point
	jgraphics_matrix_translate

	JPattern
	Detailed Description

	Colors
	Function Documentation
	atoms_to_jrgba
	jrgba_attr_get
	jrgba_attr_set
	jrgba_compare
	jrgba_copy
	jrgba_set
	jrgba_to_atoms

	TextField
	Detailed Description
	Function Documentation
	textfield_get_autoscroll
	textfield_get_bgcolor
	textfield_get_editonclick
	textfield_get_emptytext
	textfield_get_noactivate
	textfield_get_owner
	textfield_get_readonly
	textfield_get_selectallonedit
	textfield_get_textcolor
	textfield_get_textmargins
	textfield_get_underline
	textfield_get_useellipsis
	textfield_get_wantsreturn
	textfield_get_wantstab
	textfield_get_wordwrap
	textfield_set_autoscroll
	textfield_set_bgcolor
	textfield_set_editonclick
	textfield_set_emptytext
	textfield_set_noactivate
	textfield_set_readonly
	textfield_set_selectallonedit
	textfield_set_textcolor
	textfield_set_textmargins
	textfield_set_underline
	textfield_set_useellipsis
	textfield_set_wantsreturn
	textfield_set_wantstab
	textfield_set_wordwrap

	TextLayout
	Detailed Description
	Enumeration Type Documentation
	t_jgraphics_textlayout_flags

	Function Documentation
	jtextlayout_create
	jtextlayout_destroy
	jtextlayout_draw
	jtextlayout_getchar
	jtextlayout_getcharbox
	jtextlayout_getnumchars
	jtextlayout_measuretext
	jtextlayout_set
	jtextlayout_settextcolor
	jtextlayout_withbgcolor

	Popup Menus
	Detailed Description
	Function Documentation
	jpopupmenu_additem
	jpopupmenu_addseperator
	jpopupmenu_addsubmenu
	jpopupmenu_clear
	jpopupmenu_create
	jpopupmenu_destroy
	jpopupmenu_popup
	jpopupmenu_popup_abovebox
	jpopupmenu_popup_belowrect
	jpopupmenu_popup_nearbox
	jpopupmenu_setcolors
	jpopupmenu_setfont

	Box Layer
	Detailed Description
	Function Documentation
	jbox_end_layer
	jbox_invalidate_layer
	jbox_paint_layer
	jbox_start_layer

	DataView
	Detailed Description
	Function Documentation
	jdataview_getclient
	jdataview_new
	jdataview_setclient

	Unicode
	Detailed Description
	Character Encodings
	Example Usage

	Function Documentation
	charset_convert
	charset_unicodetoutf8
	charset_utf8_count
	charset_utf8_offset
	charset_utf8tounicode

	Atom Module
	Function Documentation
	jit_atom_arg_getdouble
	jit_atom_arg_getfloat
	jit_atom_arg_getlong
	jit_atom_arg_getsym
	jit_atom_getcharfix
	jit_atom_getfloat
	jit_atom_getlong
	jit_atom_getobj
	jit_atom_getsym
	jit_atom_setfloat
	jit_atom_setlong
	jit_atom_setobj
	jit_atom_setsym

	Attribute Module
	Function Documentation
	jit_attr_canget
	jit_attr_canset
	jit_attr_filter_clip_new
	jit_attr_filter_proc_new
	jit_attr_filterget
	jit_attr_filterset
	jit_attr_get
	jit_attr_getchar_array
	jit_attr_getdouble_array
	jit_attr_getfloat
	jit_attr_getfloat_array
	jit_attr_getlong
	jit_attr_getlong_array
	jit_attr_getmethod
	jit_attr_getname
	jit_attr_getsym
	jit_attr_getsym_array
	jit_attr_gettype
	jit_attr_offset_array_new
	jit_attr_offset_new
	jit_attr_set
	jit_attr_setchar_array
	jit_attr_setdouble_array
	jit_attr_setfloat
	jit_attr_setfloat_array
	jit_attr_setlong
	jit_attr_setlong_array
	jit_attr_setsym
	jit_attr_setsym_array
	jit_attr_symcompare
	jit_attr_usercanget
	jit_attr_usercanset
	jit_attribute_new

	Binary Module
	Function Documentation
	jit_bin_read_chunk_info
	jit_bin_read_header
	jit_bin_read_matrix
	jit_bin_write_header
	jit_bin_write_matrix

	Class Module
	Function Documentation
	class_copy
	jit_class_addadornment
	jit_class_addattr
	jit_class_addinterface
	jit_class_addmethod
	jit_class_addtypedwrapper
	jit_class_adornment_get
	jit_class_attr_get
	jit_class_findbyname
	jit_class_free
	jit_class_mess
	jit_class_method
	jit_class_method_addargsafe
	jit_class_method_argsafe_get
	jit_class_nameget
	jit_class_new
	jit_class_register
	jit_class_symcompare
	jit_class_typedwrapper_get

	Object Module
	Function Documentation
	jit_object_attach
	jit_object_attr_get
	jit_object_attr_usercanget
	jit_object_attr_usercanset
	jit_object_class
	jit_object_classname
	jit_object_classname_compare
	jit_object_detach
	jit_object_exportattrs
	jit_object_exportsummary
	jit_object_findregistered
	jit_object_findregisteredbyptr
	jit_object_free
	jit_object_getmethod
	jit_object_importattrs
	jit_object_method
	jit_object_method_argsafe_get
	jit_object_method_typed
	jit_object_new
	jit_object_notify
	jit_object_register
	jit_object_unregister

	Miscellaneous Utility Module
	Function Documentation
	jit_err_from_max_err
	jit_error_code
	jit_error_sym
	jit_global_critical_enter
	jit_global_critical_exit
	jit_post_sym
	jit_rand
	jit_rand_setseed
	swapf32
	swapf64

	Linked List Module
	Function Documentation
	jit_linklist_append
	jit_linklist_chuck
	jit_linklist_chuckindex
	jit_linklist_clear
	jit_linklist_deleteindex
	jit_linklist_findall
	jit_linklist_findcount
	jit_linklist_findfirst
	jit_linklist_getindex
	jit_linklist_getsize
	jit_linklist_insertindex
	jit_linklist_makearray
	jit_linklist_methodall
	jit_linklist_methodindex
	jit_linklist_new
	jit_linklist_objptr2index
	jit_linklist_reverse
	jit_linklist_rotate
	jit_linklist_shuffle
	jit_linklist_sort
	jit_linklist_swap

	Math Module
	Function Documentation
	jit_math_acos
	jit_math_acosh
	jit_math_asin
	jit_math_asinh
	jit_math_atan
	jit_math_atan2
	jit_math_atanh
	jit_math_ceil
	jit_math_cos
	jit_math_cosh
	jit_math_exp
	jit_math_exp2
	jit_math_expm1
	jit_math_fast_acos
	jit_math_fast_asin
	jit_math_fast_atan
	jit_math_fast_cos
	jit_math_fast_invsqrt
	jit_math_fast_sin
	jit_math_fast_sqrt
	jit_math_fast_tan
	jit_math_floor
	jit_math_fmod
	jit_math_fold
	jit_math_hypot
	jit_math_is_finite
	jit_math_is_nan
	jit_math_is_poweroftwo
	jit_math_is_valid
	jit_math_j1
	jit_math_j1_0
	jit_math_log
	jit_math_log10
	jit_math_log2
	jit_math_p1
	jit_math_pow
	jit_math_q1
	jit_math_round
	jit_math_roundup_poweroftwo
	jit_math_sin
	jit_math_sinh
	jit_math_sqrt
	jit_math_tan
	jit_math_tanh
	jit_math_trunc
	jit_math_wrap

	Matrix Module
	Function Documentation
	jit_linklist_free
	jit_matrix_clear
	jit_matrix_data
	jit_matrix_exprfill
	jit_matrix_fillplane
	jit_matrix_free
	jit_matrix_freedata
	jit_matrix_fromgworld
	jit_matrix_frommatrix
	jit_matrix_getcell
	jit_matrix_getdata
	jit_matrix_getinfo
	jit_matrix_info_default
	jit_matrix_jit_gl_texture
	jit_matrix_new
	jit_matrix_newcopy
	jit_matrix_op
	jit_matrix_setall
	jit_matrix_setcell
	jit_matrix_setcell1d
	jit_matrix_setcell2d
	jit_matrix_setcell3d
	jit_matrix_setinfo
	jit_matrix_setinfo_ex
	jit_matrix_setplane1d
	jit_matrix_setplane2d
	jit_matrix_setplane3d
	jit_matrix_togworld

	Max Wrapper Module
	Function Documentation
	max_addmethod_defer
	max_addmethod_defer_low
	max_addmethod_usurp
	max_addmethod_usurp_low
	max_jit_attr_args
	max_jit_attr_args_offset
	max_jit_attr_get
	max_jit_attr_getdump
	max_jit_attr_set
	max_jit_classex_addattr
	max_jit_classex_setup
	max_jit_classex_standard_wrap
	max_jit_obex_adornment_get
	max_jit_obex_attr_get
	max_jit_obex_attr_set
	max_jit_obex_dumpout
	max_jit_obex_dumpout_get
	max_jit_obex_dumpout_set
	max_jit_obex_free
	max_jit_obex_gimmeback
	max_jit_obex_gimmeback_dumpout
	max_jit_obex_inletnumber_get
	max_jit_obex_inletnumber_set
	max_jit_obex_jitob_get
	max_jit_obex_jitob_set
	max_jit_obex_new
	max_jit_obex_proxy_new

	Memory Module
	Function Documentation
	jit_copy_bytes
	jit_disposeptr
	jit_freebytes
	jit_freemem
	jit_getbytes
	jit_handle_free
	jit_handle_lock
	jit_handle_new
	jit_handle_size_get
	jit_handle_size_set
	jit_newptr

	MOP Module
	Function Documentation
	jit_mop_free
	jit_mop_getinput
	jit_mop_getinputlist
	jit_mop_getoutput
	jit_mop_getoutputlist
	jit_mop_input_nolink
	jit_mop_io_free
	jit_mop_io_getioproc
	jit_mop_io_getmatrix
	jit_mop_io_ioproc
	jit_mop_io_matrix
	jit_mop_io_new
	jit_mop_io_newcopy
	jit_mop_io_restrict_dim
	jit_mop_io_restrict_planecount
	jit_mop_io_restrict_type
	jit_mop_ioproc_copy_adapt
	jit_mop_ioproc_copy_trunc
	jit_mop_ioproc_copy_trunc_zero
	jit_mop_ioproc_tosym
	jit_mop_methodall
	jit_mop_new
	jit_mop_newcopy
	jit_mop_output_nolink
	jit_mop_single_planecount
	jit_mop_single_type

	Parallel Utility Module
	Function Documentation
	jit_parallel_ndim_calc
	jit_parallel_ndim_simplecalc1
	jit_parallel_ndim_simplecalc2
	jit_parallel_ndim_simplecalc3
	jit_parallel_ndim_simplecalc4

	MOP Max Wrapper Module
	Function Documentation
	max_jit_classex_mop_mproc
	max_jit_classex_mop_wrap
	max_jit_mop_adapt_matrix_all
	max_jit_mop_assist
	max_jit_mop_bang
	max_jit_mop_clear
	max_jit_mop_free
	max_jit_mop_get_io_by_name
	max_jit_mop_getinput
	max_jit_mop_getoutput
	max_jit_mop_getoutputmode
	max_jit_mop_inputs
	max_jit_mop_jit_matrix
	max_jit_mop_matrix_args
	max_jit_mop_matrixout_new
	max_jit_mop_notify
	max_jit_mop_outputmatrix
	max_jit_mop_outputs
	max_jit_mop_setup
	max_jit_mop_setup_simple
	max_jit_mop_variable_addinputs
	max_jit_mop_variable_addoutputs

	OB3D Module
	Function Documentation
	jit_gl_begincapture
	jit_gl_bindtexture
	jit_gl_drawinfo_active_textures
	jit_gl_drawinfo_setup
	jit_gl_endcapture
	jit_gl_get_extensions
	jit_gl_get_glsl_version
	jit_gl_get_glu_version
	jit_gl_get_renderer
	jit_gl_get_vendor
	jit_gl_get_version
	jit_gl_is_extension_supported
	jit_gl_is_min_version
	jit_gl_report_error
	jit_gl_texcoord1f
	jit_gl_texcoord1fv
	jit_gl_texcoord2f
	jit_gl_texcoord2fv
	jit_gl_texcoord3f
	jit_gl_texcoord3fv
	jit_gl_unbindtexture
	jit_glchunk_copy
	jit_glchunk_delete
	jit_glchunk_grid_new
	jit_glchunk_new
	jit_ob3d_draw_chunk
	jit_ob3d_free
	jit_ob3d_new
	jit_ob3d_set_context
	jit_ob3d_setup
	max_jit_ob3d_assist
	max_jit_ob3d_attach
	max_jit_ob3d_detach
	max_ob3d_bang
	max_ob3d_notify
	ob3d_auto_get
	ob3d_dest_dim_get
	ob3d_dest_dim_set
	ob3d_dirty_get
	ob3d_dirty_set
	ob3d_enable_get
	ob3d_jitob_get
	ob3d_outlet_get
	ob3d_patcher_get
	ob3d_render_ptr_get
	ob3d_render_ptr_set
	ob3d_ui_get

	Operator Vector Module
	Function Documentation
	jit_op_vector_abs_float32
	jit_op_vector_abs_float64
	jit_op_vector_abs_long
	jit_op_vector_absdiff_char
	jit_op_vector_absdiff_float32
	jit_op_vector_absdiff_float64
	jit_op_vector_absdiff_long
	jit_op_vector_acos_float32
	jit_op_vector_acos_float64
	jit_op_vector_acosh_float32
	jit_op_vector_acosh_float64
	jit_op_vector_add_char
	jit_op_vector_add_float32
	jit_op_vector_add_float64
	jit_op_vector_add_long
	jit_op_vector_adds_char
	jit_op_vector_and_char
	jit_op_vector_and_float32
	jit_op_vector_and_float64
	jit_op_vector_and_long
	jit_op_vector_asin_float32
	jit_op_vector_asin_float64
	jit_op_vector_asinh_float32
	jit_op_vector_asinh_float64
	jit_op_vector_atan2_float32
	jit_op_vector_atan2_float64
	jit_op_vector_atan_float32
	jit_op_vector_atan_float64
	jit_op_vector_atanh_float32
	jit_op_vector_atanh_float64
	jit_op_vector_avg_char
	jit_op_vector_avg_float32
	jit_op_vector_avg_float64
	jit_op_vector_avg_long
	jit_op_vector_bitand_char
	jit_op_vector_bitand_long
	jit_op_vector_bitnot_char
	jit_op_vector_bitnot_long
	jit_op_vector_bitor_char
	jit_op_vector_bitor_long
	jit_op_vector_bitxor_char
	jit_op_vector_bitxor_long
	jit_op_vector_ceil_float32
	jit_op_vector_ceil_float64
	jit_op_vector_cos_float32
	jit_op_vector_cos_float64
	jit_op_vector_cosh_float32
	jit_op_vector_cosh_float64
	jit_op_vector_div_char
	jit_op_vector_div_float32
	jit_op_vector_div_float64
	jit_op_vector_div_long
	jit_op_vector_eq_char
	jit_op_vector_eq_float32
	jit_op_vector_eq_float64
	jit_op_vector_eq_long
	jit_op_vector_eqp_char
	jit_op_vector_eqp_float32
	jit_op_vector_eqp_float64
	jit_op_vector_eqp_long
	jit_op_vector_exp2_float32
	jit_op_vector_exp2_float64
	jit_op_vector_exp_float32
	jit_op_vector_exp_float64
	jit_op_vector_flipdiv_char
	jit_op_vector_flipdiv_float32
	jit_op_vector_flipdiv_float64
	jit_op_vector_flipdiv_long
	jit_op_vector_flipmod_char
	jit_op_vector_flipmod_float32
	jit_op_vector_flipmod_float64
	jit_op_vector_flipmod_long
	jit_op_vector_flippass_char
	jit_op_vector_flippass_float32
	jit_op_vector_flippass_float64
	jit_op_vector_flippass_long
	jit_op_vector_flipsub_char
	jit_op_vector_flipsub_float32
	jit_op_vector_flipsub_long
	jit_op_vector_floor_float32
	jit_op_vector_floor_float64
	jit_op_vector_fold_float32
	jit_op_vector_fold_float64
	jit_op_vector_gt_char
	jit_op_vector_gt_float32
	jit_op_vector_gt_float64
	jit_op_vector_gt_long
	jit_op_vector_gte_char
	jit_op_vector_gte_float32
	jit_op_vector_gte_float64
	jit_op_vector_gte_long
	jit_op_vector_gtep_char
	jit_op_vector_gtep_float32
	jit_op_vector_gtep_float64
	jit_op_vector_gtep_long
	jit_op_vector_gtp_char
	jit_op_vector_gtp_float32
	jit_op_vector_gtp_float64
	jit_op_vector_gtp_long
	jit_op_vector_hypot_float32
	jit_op_vector_hypot_float64
	jit_op_vector_log10_float32
	jit_op_vector_log10_float64
	jit_op_vector_log2_float32
	jit_op_vector_log2_float64
	jit_op_vector_log_float32
	jit_op_vector_log_float64
	jit_op_vector_lshift_char
	jit_op_vector_lshift_long
	jit_op_vector_lt_char
	jit_op_vector_lt_float32
	jit_op_vector_lt_float64
	jit_op_vector_lt_long
	jit_op_vector_lte_char
	jit_op_vector_lte_float32
	jit_op_vector_lte_float64
	jit_op_vector_lte_long
	jit_op_vector_ltep_char
	jit_op_vector_ltep_float32
	jit_op_vector_ltep_float64
	jit_op_vector_ltep_long
	jit_op_vector_ltp_char
	jit_op_vector_ltp_float32
	jit_op_vector_ltp_float64
	jit_op_vector_ltp_long
	jit_op_vector_max_char
	jit_op_vector_max_float32
	jit_op_vector_max_float64
	jit_op_vector_max_long
	jit_op_vector_min_char
	jit_op_vector_min_float32
	jit_op_vector_min_float64
	jit_op_vector_min_long
	jit_op_vector_mod_char
	jit_op_vector_mod_float32
	jit_op_vector_mod_float64
	jit_op_vector_mod_long
	jit_op_vector_mult_char
	jit_op_vector_mult_float32
	jit_op_vector_mult_float64
	jit_op_vector_mult_long
	jit_op_vector_neq_char
	jit_op_vector_neq_float32
	jit_op_vector_neq_float64
	jit_op_vector_neq_long
	jit_op_vector_neqp_char
	jit_op_vector_neqp_float32
	jit_op_vector_neqp_float64
	jit_op_vector_neqp_long
	jit_op_vector_not_char
	jit_op_vector_not_float32
	jit_op_vector_not_float64
	jit_op_vector_not_long
	jit_op_vector_or_char
	jit_op_vector_or_float32
	jit_op_vector_or_float64
	jit_op_vector_or_long
	jit_op_vector_pass_char
	jit_op_vector_pass_float32
	jit_op_vector_pass_float64
	jit_op_vector_pass_long
	jit_op_vector_pow_float32
	jit_op_vector_pow_float64
	jit_op_vector_round_float32
	jit_op_vector_round_float64
	jit_op_vector_rshift_char
	jit_op_vector_rshift_long
	jit_op_vector_sin_float32
	jit_op_vector_sin_float64
	jit_op_vector_sinh_float32
	jit_op_vector_sinh_float64
	jit_op_vector_sqrt_float32
	jit_op_vector_sqrt_float64
	jit_op_vector_sub_char
	jit_op_vector_sub_float32
	jit_op_vector_sub_float64
	jit_op_vector_sub_long
	jit_op_vector_subs_char
	jit_op_vector_tan_float32
	jit_op_vector_tan_float64
	jit_op_vector_tanh_float32
	jit_op_vector_tanh_float64
	jit_op_vector_trunc_float32
	jit_op_vector_trunc_float64
	jit_op_vector_wrap_float32
	jit_op_vector_wrap_float64

	QuickTime Codec Module
	Function Documentation
	jit_qt_codec_acodec2sym
	jit_qt_codec_getcodeclist_audio
	jit_qt_codec_getcodeclist_audio_raw
	jit_qt_codec_getcodeclist_gfx
	jit_qt_codec_getcodeclist_gfx_raw
	jit_qt_codec_getcodeclist_video
	jit_qt_codec_getcodeclist_video_raw
	jit_qt_codec_qual2sym
	jit_qt_codec_sym2acodec
	jit_qt_codec_sym2qual
	jit_qt_codec_sym2type
	jit_qt_codec_sym2type_valid
	jit_qt_codec_type2sym
	jit_qt_codec_type2sym_valid

	jit.qt.movie Module
	Function Documentation
	jit_qt_movie_matrix_calc
	jit_qt_movie_matrix_to_image
	jit_qt_movie_new
	jit_qt_movie_read_typed

	jit.qt.record Module
	Function Documentation
	jit_qt_record_matrix_calc
	jit_qt_record_new

	QuickTime Utilties Module
	Function Documentation
	jit_coerce_matrix_pixmap
	jit_gworld_can_coerce_matrix
	jit_gworld_clear
	jit_gworld_matrix_equal_dim
	jit_qt_utils_moviedataref_create
	jit_qt_utils_moviefile_close
	jit_qt_utils_moviefile_create
	jit_qt_utils_str2type
	jit_qt_utils_tempfile
	jit_qt_utils_tempmoviefile_create
	jit_qt_utils_trackmedia_add
	jit_qt_utils_trackmedia_dispose
	jit_qt_utils_trackmedia_get
	jit_qt_utils_trackname_get
	jit_qt_utils_trackname_set
	jit_qt_utils_tracktype_get
	jit_qt_utils_tracktypecode_get
	jit_qt_utils_type2str

	Data Structure Documentation
	Ex_ex Struct Reference
	Detailed Description

	t_atom Struct Reference
	Detailed Description

	t_atomarray Struct Reference
	Detailed Description

	t_atombuf Struct Reference
	Detailed Description

	t_attr Struct Reference
	Detailed Description

	t_buffer Struct Reference
	Detailed Description

	t_celldesc Struct Reference
	Detailed Description

	t_charset_converter Struct Reference
	Detailed Description

	t_class Struct Reference
	Detailed Description

	t_datetime Struct Reference
	Detailed Description

	t_dictionary Struct Reference
	Detailed Description

	t_dictionary_entry Struct Reference
	Detailed Description

	t_expr Struct Reference
	Detailed Description

	t_fileinfo Struct Reference
	Detailed Description

	t_funbuff Struct Reference
	Detailed Description

	t_hashtab Struct Reference
	Detailed Description

	t_hashtab_entry Struct Reference
	Detailed Description

	t_indexmap Struct Reference
	Detailed Description

	t_indexmap_entry Struct Reference
	Detailed Description

	t_jbox Struct Reference
	Detailed Description

	t_jboxdrawparams Struct Reference
	Detailed Description

	t_jcolumn Struct Reference
	Detailed Description

	t_jdataview Struct Reference
	Detailed Description

	t_jgraphics_font_extents Struct Reference
	Detailed Description

	t_jit_attr Struct Reference
	Detailed Description

	t_jit_attr_filter_clip Struct Reference
	Detailed Description

	t_jit_attr_filter_proc Struct Reference
	Detailed Description

	t_jit_attr_offset Struct Reference
	Detailed Description

	t_jit_attr_offset_array Struct Reference
	Detailed Description

	t_jit_attribute Struct Reference
	Detailed Description

	t_jit_gl_context_view Struct Reference
	Detailed Description

	t_jit_gl_drawinfo Struct Reference
	Detailed Description

	t_jit_glchunk Struct Reference
	Detailed Description

	t_jit_matrix_info Struct Reference
	Detailed Description

	t_jit_mop Struct Reference
	Detailed Description

	t_jit_mop_io Struct Reference
	Detailed Description

	t_jit_op_info Struct Reference
	Detailed Description

	t_jmatrix Struct Reference
	Detailed Description

	t_jrgb Struct Reference
	Detailed Description

	t_jrgba Struct Reference
	Detailed Description

	t_line_3d Struct Reference
	Detailed Description

	t_linklist Struct Reference
	Detailed Description

	t_llelem Struct Reference
	Detailed Description

	t_matrix_conv_info Struct Reference
	Detailed Description

	t_messlist Struct Reference
	Detailed Description

	t_object Struct Reference
	Detailed Description

	t_path Struct Reference
	Detailed Description

	t_pathlink Struct Reference
	Detailed Description

	t_pfftpub Struct Reference
	Detailed Description

	t_privatesortrec Struct Reference
	Detailed Description

	t_pt Struct Reference
	Detailed Description

	t_pxdata Struct Reference
	Detailed Description

	t_pxjbox Struct Reference
	Detailed Description

	t_pxobject Struct Reference
	Detailed Description

	t_quickmap Struct Reference
	Detailed Description

	t_rect Struct Reference
	Detailed Description

	t_signal Struct Reference
	Detailed Description

	t_size Struct Reference
	Detailed Description

	t_stack_splat Struct Reference
	Detailed Description

	t_string Struct Reference
	Detailed Description

	t_symbol Struct Reference
	Detailed Description

	t_symobject Struct Reference
	Detailed Description

	t_tinyobject Struct Reference
	Detailed Description

	t_wind_mouse_info Struct Reference
	Detailed Description

	t_zll Struct Reference
	Detailed Description

	word Union Reference
	Detailed Description

