Max API
6.0.0

Cycling '74

Tue Oct 11 2011 15:48:11

Chapter 1

Objects in C: A Roadmap

Max has an extensive API for developing new objects in C. Before you start learning
about it, however, we would like to save you time and make sure you learn the minimum
about the API for what you need to do. Therefore, we’ve made a brief list of application
areas for object development along with the sections of this document with which you'll
probably want to become familiar.

1.1 Max Objects

For logic and arithmetic objects, such as new mathematical functions or more com-
plex conditional operations than what is offered in Max, it should be sufficient to read
the Anatomy of a Max Object section.

For objects that use Data Structures, you'll want to read, in addition, the Atoms and
Messages section to learn about Max’s basic mechanisms for representing and com-
municating data.

If you are interested in writing interfaces to operating system services, you may need
to learn about Max’s Threading model and The Scheduler.

For objects that deal with time and timing you’ll want to learn about The Scheduler. If
you're interested in tempo-based scheduling, you’ll want to read the section on ITM and
look at the delay2 example.

To create new user interface gadgets, you’ll want to read all of the above, plus the
section on Attributes and the Anatomy of a Ul Object. The section on JGraphics will
also be helpful.

To create objects with editing windows, things are much more complicated than they
used to be. You'll need to learn everything about Ul objects, plus understand the scripto
example object project.

For patcher scripting and interrogation objects, the section on Scripting the Patcher, plus
a few of the examples will be very helpful. It is also helpful to have a clear conceptual
understanding of the patcher, which might be aided by reading the patcher scripting
sections of the js object documentation.

2 Objects in C: A Roadmap

Max 6 introduces support for passing structured data with the Dictionary Passing API.

1.2 MSP Objects

To create audio filters and signal generators, read the Anatomy of a Max Object,
then read the Anatomy of a MSP Object section. MSP objects make use of Creating
and Using Proxies when receiving multiple audio inputs, so familiarity with that concept
could be helpful.

For audio objects that output events (messages), you'll need to use the services of The
Scheduler, so we suggest reading about that.

For Ul objects for analyzing and controlling audio, you’ll need to learn about regular
MSP objects as well as Max Ul objects.

Information on updating MSP objects from Max 5 or earlier for 64-bit audio in Max 6 is
located in Appendix: Updating MSP Externals for Max 6.

1.3 Jitter Objects

The Jitter Object Model outlines some important basic information about Jitter’s flexible
object model. Jitter Max Wrappers describes how to write Max wrapper objects that
contain Jitter objects for use in the Max patcher world. Matrix Operator QuickStart and
Matrix Operator Details describe how to create a particular type of Jitter object called
matrix operators, or MOPs. OB3D QuickStart and OB3D Details describe how to create
OB3D Jitter objects for use in rendering OpenGL scenes. Scheduler and Low Priority
Queue Issues covers important threading and timing issues when building Jitter objects.
Jitter Object Registration and Notification explains how Jitter objects can be registered
by name and notify clients as they change or important events occur. Using Jitter -
Objects in C provides some examples of how to instantiate and take advantage of Jitter
objects from C, just as one would from Java, Javascript, or the patcher. Finally, The JXF
File Specification and Jitter Networking Specification contain information relating to the
data formats involved in the JXF file format and Jitter networking protocols, respectively.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 2

Development System Information

2.1 Building

This SDK documentation is accompanied by a series of projects for compiling some ex-
ample Max external objects. The details of how to build these projects are documented
below in separate sections for the Mac and Windows.

When you build the example projects, the resulting Max external will be located in a
folder called "sdk-build" two folder-levels up from the project. If you leave the arrange-
ment of folders intact, sdk-build will be found in the MaxSDK folder.

We recommende that you add the sdk-build folder to your Max search path using the
File Preferences window. This permits you to put the MaxSDK folder wherever you like
and load the objects in Max after building them without copying them to your Cycling ‘74
folder.

2.2 Mac

Max external objects for the Mac are Mach-O bundles (folders that appear to be files)
whose filenames must end with the .mxo extension. The example projects are in Xcode
3.x format. To download Xcode, you need to open a free Apple Developer account. For
more information, visit http://developer.apple.com/

2.21 XCode Project Setup

The example projects are set up to have Development and Deployment build configu-
rations. The Development configuration does not optimize and builds only for the target
platform you are using (i.e., PPC on a PPC machine, Intel on an Intel machine). The
Deployment configuration creates a universal binary and performs optimization.

The files required for this projects are included in the project folders with the except of
the following two files:

http://developer.apple.com/

4 Development System Information

* Info.plist

» maxmspsdk.xcconfig

These two files are located one folder-level up from the project folder, and are required
for the Xcode project to build the Max external.

2.2.2 Linking and Frameworks

External objects use dynamic linking to access the API functions provided by the Max
application. When an objects is loaded, calls to functions inside the application are
resolved by the operating system to the correct memory address. Each external object
Xcode project must reference MaxAPl.framework in order to link with the application.
Frameworks are libraries that define the functions in the Max API. Due to the fact that
"Max" could exist as an application, a standalone you create, or a library inside another
application, the MaxAPI.framework does not actually contain the code to implement the
functions of the Max API for external objects. It serves instead to isolate external objects
from the specific library or application implementation that contains the real code.

Audio objects will link against MaxAudioAPl.framework and Jitter objects link against
JitterAPIl.framework. Unlike MaxAPI.framework, these frameworks are real libraries. -
The most recent version of all frameworks will be found inside the application you are
using (they are found inside the application bundle in Contents/Frameworks). In addi-
tion, there are versions inside the c74support folder provided with the SDK. These will
be used only to link your objects; they are never actually executed.

Xcode uses something called the Frameworks Search Path to locate frameworks when
linking. The example SDK projects use a frameworks search path with a c74support
folder two levels up from your the folder containing your Xcode project. If you rearrange
the SDK folders, projects may not find the frameworks and will fail to link properly. -
Furthermore, even though we specify the frameworks search path, Xcode seems to look
in /Library/Frameworks first. If you have installed a version of the Max SDK for version
4.6 or ealier, you may have older versions of MaxAPIl.framework and MaxAudioAPI.-
framework in /Library/Frameworks. When you try to link objects that contain references
to functions only defined in the newest MaxAPl.framework, the link may fail because
the projects are using the old frameworks. To fix this, you'll need to remove the Max
frameworks from /Library/Frameworks. If you want to develop objects for both the Max
4.6 and Max 5 SDKs on the same machine, you'll need to modify your 4.6 projects to
specify a Frameworks Search Path, and relocate the 4.6 frameworks to the specified
location.

2.3 Windows

Max external objects for Windows are Dynamic Link Libraries (DLLs) whose filenames
must end with the .mxe extension. These DLLs will export a single function called
"main" which is called by max when the external object is first loaded. Generally these
DLLs will import functions of the Max API from the import library "MaxAPL.lib" which is
located in the c74support\max-includes\ folder. External objects that use audio func-

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

2.3 Windows 5

tionality will import functions from the import library "MaxAudio.lib" which is located in
c74support\msp-includes\.

The example projects are in Visual C++ 2008 format. A free version of Visual C++ can
be obtained from Microsoft at http://www.microsoft.com/express/. The
projects are set up to have both a Debug and a Release configuration. The Release
configuration is optimized whereas the Debug one is not. Note that for debugging pur-
poses you can exercise your object in the Max Runtime since the copy protection for the
Max Application will interfere when run under the debugger.

Another thing to note is that Max has a private build of the Microsoft C Runtime Library.
By linking with this version of the C runtime library you won’t have to worry about de-
ployment issues due to dependencies your external may have on Microsoft’s C Runtime.
When you include "ext.h" from the max API it will include ext_prefix.h which for the re-
lease build will automatically cause your project to use the max C runtime library. If you
prefer to use the Microsoft C Runtime you can do that by defining the C preprocessor
macro MAXAPI_USE_MSCRT before including ext.h.

2.3.1 Compiling with Cygwin

It is also possible to compile Max external objects on Windows using Cygwin. The
following steps show how to build the simplemax project from the Max SDK using -
Cygwin’s gcc (Gnu Compiler Collection). This provides access to a high quality, free C
compiler using the Cygwin Unix tools for Windows.

2.3.1.1 Requirements

Install the following Cygwin packages. Feel free to add on any other Cygwin packages
that strike your fancy. The Cygwin installer and more information can be foundat ht t p—
://www.cygwin.com/

+ Base (ALL)

* Devel

binutils

gcc "GCC Compiler”

gcc-mingw "Mingw32 support headers and libraries for GCC"

gcc-mingw-core "Mingw32 support headers and libraries for GCC"

mingw-runtime

2.3.1.2 Build Steps

STEP 0: cd to the directory containing the minimum SDK example project
STEP 1:

gcc -c -—mno-cygwin -DWIN_VERSION -DWIN_EXT_VERSION -I../../c74support/
max—includes simplemax.c

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

http://www.microsoft.com/express/.
http://www.cygwin.com/
http://www.cygwin.com/

6 Development System Information

Description of gcc arguments:
"-c" means compile.

"-mnocygwin" means use the Microsoft standard C libraries, instead of Cygwin standard
C libraries. This step is important if you wish to distribute your extern to people that
might not have Cygwin installed.

"-DWIN_VERSION" and "-DWIN_EXT_VERSION" define these preprocessor defini-
tions on the command line to guarantee that the header files and source code know
it is being compiled for a Windows machine, instead of Macintosh.

"-1../../c74support/max-includes" specifies an additional directory where the necessary
headers files will be found.

"simplemax.c" is the compiler input.
STEP 2:

gcc -shared -mno-cygwin -o simplemax.mxe simplemax.o simplemax.def -L..
/../cT4support/max—-includes -1MaxAPI
Description of gcc arguments:
"-shared" means link files to make a DLL.

"-mnocygwin" means use the Microsoft standard C libraries, instead of Cygwin standard
C libraries. This step is important if you wish to distribute your extern to people that
might not have Cygwin installed.

"-0 simplemax.mxe" specifies the name of the output file.

"simplemax.o" and "simplemax.def" are the linker input. The .def file is necessary to
ensure that the function main will be exported.

"-L../../c74support/max-includes” specifies an additional directory where library files will
be found.

"-IMaxAPI" means link to the MaxAPL.lib linker library for MaxAPI.dll.
STEP 3: copy your file to a directory in your search path. For example:

cp minimum.mxe c:\Program Files\Common Files\Cycling ’74\myexterns\

2.3.1.3 Additional Notes

You can ignore the warning that main() does not return int. This message is harmless,
and only relevant to applications, not shared libraries.

2.4 Important Project Settings

The easiest way to create a new external is to choose one of the existing SDK examples,
duplicate it, and then change only the settings that need to be changes (such as the
name of the project). This will help to guarantee that important project settings are
correct. Project settings of particular importance are noted below.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

2.5 Platform-specificity 7

241 Mac

Particularly important for Max externals on the Mac are that the Info.plist is correct set
up and that the "Force Package Info Generation" is set to true. Without these your object
may fail to load on some machines.

2.4.2 Windows

In the preprocessor definitions for the Visual Studio project it is important to define WI-
N_VERSION and EXT_WIN_VERSION to ensure that the headers are set up properly.

2.5 Platform-specificity

If you are writing a cross-platform object and you need to do something that is specific
to one platform, the Max API headers provide some predefined symbols you can use.

#ifdef MAC_VERSION

// do something specific to the Mac
#endif

#ifdef WIN_VERSION

// do something specific to Windows
#endif

Another reason for conditional compilation is to handle endianness on the Mac platform.
If you are still supporting PowerPC, you may have situations where the ordering of bytes
within a 16- or 32-bit word is important. ext_byteorder.h provides cross-platform tools
for manipulating memory in an endian-independent way.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Development System Information

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 3

Anatomy of a Max Object

Max objects are written in the C language, and the Max APl is C-based.

You could use C++ but we don’t support it at the API level. Writing a Max object in C,
you have five basic tasks:

1) including the right header files (usually ext.h and ext_obex.h)
2) declaring a C structure for your object
3) writing an initialization routine called main that defines the class

4) writing a new instance routine that creates a new instance of the class, when some-
one makes one or types its name into an object box

5) writing methods (or message handlers) that implement the behavior of the object

Let’s look at each of these in more detail. It's useful to open the simplemax example
project as we will be citing examples from it.

3.1 Include Files

Most of the basic Max API is included in the files ext.h and ext_obex.h. These are
essentially required for any object. Beyond this there are specific include files for more
specialized objects.

The header files are cross-platform.

* jpatcher_api.h is required for any Max Ul objects

+ z_dsp.h is required for MSP audio objects

#include "ext.h" // should always be first, followed by ext_obex.h and any
other files.

10 Anatomy of a Max Object

3.2 The Object Declaration

Basic Max objects are declared as C structures. The first element of the structure is
a t_object, followed by whatever you want. The example below has one long structure
member.

typedef struct _simp
{

t_object s_obj; // t_object header
long s_value; // something else
} t_simp;

Your structure declaration will be used in the prototypes to functions you declare, so
you’ll need to place above these prototypes.

3.3 Initialization Routine

The initialization routine, which must be called main, is called when Max loads your
object for the first time. In the initialization routine, you define one or more classes.
Defining a class consists of the following:

1) telling Max about the size of your object’s structure and how to create and destroy
an instance 2) defining methods that implement the object’s behavior 3) in some cases,
defining attributes that describe the object’s data 4) registering the class in a name
space

Here is the simp class example initialization routine:

static t_class xs_simp_class; // global pointer to our class definition

that is setup in main()

int main ()
{

t_class *c;

c = class_new("simp", (method)simp_new, (method)NULL, sizeof (t_simp),

L, 0);
class_addmethod (c, (method)simp_int, "int", A_LONG, O0);
class_addmethod (c, (method)simp_bang, "bang", 0);

class_register (CLASS_BOX, c);
s_simp_class = c;

return 0;

class_new() creates a class with the new instance routine (see below), a free function
(in this case there isn’t one, so we pass NULL), the size of the structure, a no-longer
used argument, and then a description of the arguments you type when creating an
instance (in this case, there are no arguments, so we pass 0).

class_addmethod() binds a C function to a text symbol. The two methods defined here
are int and bang.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

0

3.4 New Instance Routine 11

class_register() adds this class to the CLASS_BOX name space, meaning that it will be
searched when a user tries to type it into a box.

Finally, we assign the class we've created to a global variable so we can use it when
creating new instances.

More complex classes will declare more methods. In many cases, you'll declare meth-
ods to implement certain API features. This is particularly true for Ul objects.

3.4 New Instance Routine

The standard new instance routine allocates the memory to create an instance of your
class and then initializes this instance. It then returns a pointer to the newly created
object.

Here is the simp new instance routine

void +simp_new ()
{

t_simp *x = (t_simp *)object_alloc(s_simp_class);
x->s_value = 0;

return x;

The first line uses the global variable s_simp_class we defined in the initialization routine
to create a new instance of the class. Essentially, the instance is a block of memory of
the size defined by the class, along with a pointer to the class that permits us to dispatch
messages correctly.

The next line initializes our data. More complex objects will do a lot more here, such
as creating inlets and outlets. By default, the object being created will appear with one
inlet and no outlets.

Finally, in the last line, we return a pointer to the newly created instance.

3.5 Message Handlers

We are now ready to define some actual behavior for our object by writing C functions
that will be called when our object is sent messages. For this simple example, we will
write only two functions. simp_int will be called when our object receives numbers. It
will store the received number in the s_value field. simp_bang will be called when our
object receives a bang. It will print the value in the Max window. So, yes, this object is
pretty useless!

The C functions you write will be declared according to the arguments the message
requires. All functions are passed a pointer to your object as the first argument. For a
function handling the int message, a single second argument that is a long is passed.
For a function handling the bang message, no additional arguments are passed.

Here is the int method:

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

12 Anatomy of a Max Object

void simp_int (t_simp *x, long n)
{
x—->s_value = n;

}

This simply copies the value of the argument to the internal storage within the instance.

Here is the bang method:

void simp_bang (t_simp =xx)
{
post ("value is %1d",x->s_value);

}

The post() function is similar to printf(), but puts the text in the Max window. post() is
very helpful for debugging, particularly when you cannot stop user interaction or real-
time computation to look at something in a debugger.

You can also add a float message, which is invoked when a floating-point number is
sent to your object. Add the following to your initialization routine:

class_addmethod (c, (method)simp_float, "float", A_FLOAT, 0);

Then write the method that receives the floating-point value as follows:

void simp_float (t_simp xx, double f)
{

post ("got a float and it is %.2f", f);
}

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 4

Inlets and Outlets

You are familiar with inlets and outlets when connecting two objects together in a
patcher.

To receive data in your object or send data to other objects, you need to create the C
versions of inlets and outlets. In this section, we’ll explain what inlets and outlets are,
how to create them, and how to use them. We’'ll also discuss a more advanced type of
inlet called a proxy that permits a message to be received in any of your object’s inlets.
Proxies are used by audio objects to permit inlets to handle both signals and normal
Max messages.

By default, every object shows one inlet. Additional inlets appear to the right of the
default inlet, with the rightmost inlet being created last.

Inlets are essentially message translators. For example, if you create an int inlet, your
object will receive the "in1" message instead of the "int" message when a number arrives
at this newly created inlet. You can use the different message name to define special
behavior for numbers arriving at each inlet. For example, a basic arithmetic object in
Max such as + stores the number to be added when it arrives in the right inlet, but
performs the computation and outputs the result when a number arrives in the left inlet.

Outlets define connections between objects and are used to send messages from your
object to the objects to which it is connected. What is not obvious about an outlet,
however, is that when you send a number out an outlet, the outlet-sending function
does not return until all computation "below" the outlet has completed. This stack-
based execution model is best illustrated by observing a patch with the Max debugger
window. To understand this stack-based model it may be helpful to use the breakpoint
and debugging features in Max and follow the stack display as you step through the
execution of a patch. Outlets, like inlets, appear in the order you create them from right-
to-left. In other words, the first inlet or outlet you create will be the visually farthest to
the right.

14 Inlets and Outlets

4.1 Creating and Using Inlets

Proper use of an inlet involves two steps: first, add a method that will respond to the
message sent via the inlet in your initialization routine, and second, create the inlet in
your new instance routine. (Creating inlets at any other time is not supported.)

There are three types of inlets: int, float, and custom. We’ll only describe int and float
inlets here because proxies are generally a better way to create an inlet that can respond
to any message. For int inlets, you'll bind a function to a message "in1", "in2", "in3" etc.
depending on the inlet number you assign. Here’s how to create a single inlet using
"in1"...

In your initialization routine:
class_addmethod (c, (method)myobject_inl, "inl", A_LONG, O0);
In your new instance routine, after calling object_alloc() to create your instance:
intin(x, 1);
The method that will be called when an int is received in the right inlet:
void myobject_inl (t_myobject *x, long n)
{ // do something with n
}
Creating a single inlet in this way gives your object two inlets (remember that it always

has one by default). If you want to create multiple inlets, you'll need to create them in
order from right to left, as shown below:

intin(x, 2); // creates an inlet (the right inlet) that will
send your object the "in2" message
intin(x, 1); // creates an inlet (the middle inlet) that will

send your object the "inl" message

Inlets that send float messages to your object are created with floatin() and translate the
float message into "ft1","ft2","ft3" etc. Example:

In initialization routine:

class_addmethod (c, (method)myobject_ftl, "ftl", A_FLOAT, 0);
In new instance routine:

floatin(x, 1);
Method:

void myobject_ftl (t_myobject *x, double f)
{

post ("float %.2f received in right inlet, f);
}

Note that you can mix int and float inlets, but each inlet must have a unique number.
Example:

intin(x, 2);
floatin(x, 1);

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

4.2 Creating and Using Outlets 15

4.2 Creating and Using Outlets

You create outlets in your new instance routine. Outlet creators return a pointer that you
should store for later use when you want to send a message. As with inlets, outlets are
created from right to left.

Here’s a simple example. First we’ll add two void pointers to our data structure to store
the outlets for each instance.

typedef struct _myobject
{
t_object m_ob;
void *m_outletl;
void *m_outlet2;
} t_myobject;

Then we’ll create the outlets in our new instance routine.

x = (t_myobject *)object_alloc (s_myobject_class);
x->m_outlet2 = bangout ((t_object «)x);
x->m_outletl = intout ((t_object =*)x);

return x;

These outlets are type-specific, meaning that we will always send the same type of
message through them. If you want to create outlets that can send any message, use
outlet_new(). Type-specific outlets execute faster, because they make a direct connec-
tion to the method handler that will be called at the time you send a message. When we
want to send messages out these outlets, say, in our bang method, we do the following:

void myobject_bang (t_myobject =*x)
{
outlet_bang (x->m_outlet2);
outlet_int (x->m_outletl, 74);

The bang method above sends the bang message out the m_outlet2 outlet first, then
sends the number 74 out the m_outlet1. This is consistent with the general design in
Max to send values out outlets from right to left. However, there is nothing enforcing this
design, and you could reverse the statements if you felt like it.

A more general message-sending routine, outlet_anything(), will be shown in the Atoms
and Messages section.

4.3 Creating and Using Proxies

A proxy is a small object that controls an inlet, but does not translate the message it
receives. Instead it sets a location inside your object’s data structure to a value you
associate with the inlet. If the message comes "directly" to your object via the left inlet,
the value will be 0. However, in order to be thread-safe, you should not read the value of
this "inlet number" directly. Instead, you'll use the proxy_getinlet() routine to determine
the inlet that has received the message.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

16 Inlets and Outlets

The advantage of proxies over regular inlets is that your object can respond to any mes-
sage in all of its inlets, not just the left inlet. As a Max user, you may already appreciate
the proxy feature without knowing it. For example, the pack object can combine ints,
floats, lists, or symbols arriving in any of its inlets. It uses proxies to make this happen.
MSP audio objects that accept signals in more than one inlet use proxies as well. In fact,
the proxy capability is built into the way you create audio objects, as will be discussed
in the Anatomy of a MSP Object section.

If your object’s non-left inlets will only respond to ints or floats, implementing proxies is
usually overkill.

4.4 Example

First, add a place in your object to store the proxy value. You shouldn’t access this
directly, but the proxy needs it. Second, you'll need to store the proxy, because you
need to free it when your object goes away. If you create many proxies, you'll need to
store pointers to all of them, but all proxies share the same long integer value field.

typedef struct _myobject
{
t_object m_obij;
long m_in; // space for the inlet number used by all the
proxies
void xm_proxy;
} t_myobject;

In your new instance routine, create the proxy, passing your object, a non-zero code
value associated with the proxy, and a pointer to your object’s inlet number location.

X—>m_proxy = proxy_new((t_object *)x, 1, &x->m_in);

If you want to create regular inlets for your object, you can do so. Proxies and regular
inlets can be mixed, although such a design might confuse a user of your object.

Finally, here is a method that takes a different action depending on the value of x->m_in
that we check using proxy_getinlet().

void myobject_bang (t_myobject =x)
{
switch (proxy_getinlet ((t_object x)x)) {
case 0:
post ("bang received in left inlet");
break;
case 1:
post ("bang received in right inlet");
break;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 5

Atoms and Messages

When a Max object receives a message, it uses its class to look up the message selector

("int", "bang", "set" etc.) and invoke the associated C function (method).

This association is what you are creating when you use class_addmethod() in the ini-
tialization routine. If the lookup fails, you'll see an "object doesn’t understand message”
error in the Max window.

Message selectors are not character strings, but a special data structure called a symbol
(t_symbol). A symbol holds a string and a value, but what is more important is that every
symbol in Max is unique. This permits you to compare two symbols for equivalence by
comparing pointers, rather than having to compare each character in two strings.

The "data" or argument part of a message, if it exists, is transmitted in the form of an
array of atoms (t_atom). The atom is a structure that can hold integers, floats, symbols,
or even pointers to other objects, identified by a tag. You’ll use symbols and atoms both
in sending messages and receiving them.

To illustrate the use of symbols and atoms, here is how you would send a message out
an outlet. Let's say we want to send the message "green 43 crazy 8.34." This message
consists of a selector "green" plus an array of three atoms.

First, we’ll need to create a generic outlet with outlet_new in our new instance routine.

x->m_outlet = outlet_new((t_object =)x, NULL);

The second argument being NULL indicates that the outlet can be used to send any
message. If the second argument had been a character string such as "int" or "set" only
that specific message could be sent out the outlet. You'd be correct if you wondered
whether intout() is actually just outlet_new(x, "int").

Now that we have our generic outlet, we’'ll call outlet_anything() on it in a method. The
first step, however, is to assemble our message, with a selector "green" plus an array of
atoms. Assigning ints and floats to an atom is relatively simple, but to assign a symbol,
we need to transform a character string into a symbol using gensym(). The gensym()
function returns a pointer to a symbol that is guaranteed to be unique for the string you
supply. This means the string is compared with other symbols to ensure its uniqueness.
If it already exists, gensym() will supply a pointer to the symbol. Otherwise it will create

18 Atoms and Messages

a new one and store it in a table so it can be found the next time someone asks for it.

void myobject_bang (t_object *x)
{

t_atom argv[3];

atom_setlong(argv, 43);
atom_setsym(argv + 1, gensym("crazy"));
atom_setfloat (argv + 2, 8.34);

outlet_anything (x->m_outlet, gensym("green"), 3, argv);

In the call to outlet_anything() above, gensym("green") represents the message se-
lector. The outlet_anything() function will try to find a message "green" in each of the
objects connected to the outlet. If outlet_anything() finds such a message, it will execute
it, passing it the array of atoms it received.

If it cannot find a match for the symbol green, it does one more thing, which allows
objects to handle messages generically. Your object can define a special method bound
to the symbol "anything" that will be invoked if no other match is found for a selector.
We’ll discuss the anything method in a moment, but first, we need to return to class_-
addmethod() and explain the final arguments it accepts.

To access atoms, you can use the functions atom_setlong(), atom_getlong() etc. or
you can access the t_atom structure directly. We recommend using the accessor func-
tions, as they lead to both cleaner code and will permit your source to work without
modifications when changes to the t_atom structure occur over time.

5.1 Argument Type Specifiers

In the simp example, you saw the int method defined as follows:

class_addmethod(c, (method)simp_int, "int", A_LONG, O0);

The A_LONG, 0 arguments to class_addmethod() specify the type of arguments ex-
pected by the C function you have written. A_LONG means that the C function accepts
a long integer argument. The 0 terminates the argument specifier list, so for the int
message, there is a single long integer argument.

The other options are A_FLOAT for doubles, A_SYM for symbols, and A_GIMME, which
passes the raw list of atoms that were originally used to send the Max message in the
first place. These argument type specifiers define what are known as "typed" methods in
Max. Typed methods are those where Max checks the type of each atom in a message
to ensure it is consistent with what the receiving object has said it expects for a given
selector.

If the atoms cannot be coerced into the format of the argument type specifier, a bad
arguments error is printed in the Max window.

There is a limit to the number of specifiers you can use, and in general, multiple A_FLO-
AT specifiers should be avoided due to the historically unpredictable nature of compiler

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

5.2 Writing A_GIMME Functions 19

implementations when passing floating-point values on the stack. Use A_GIMME for
more than four arguments or with multiple floating-point arguments.

You can also specify that missing arguments to a message be filled in with default values
before your C function receives them. A_DEFLONG will put a 0 in place of a missing
long argument, A_DEFFLOAT will put 0.0 in place of a missing float argument, and A_-
DEFSYM will put the empty symbol (equal to gensym("")) in place of a missing symbol
argument.

5.2 Writing A_.GIMME Functions

A method that uses A_GIMME is declared as follows:

void myobject_message (t_myobject *x, t_symbol *s, long argc, t_atom xargv);

The symbol argument s is the message selector. Ordinarily this might seem redundant,
but it is useful for the "anything" method as we’ll discuss below.

argc is the number of atoms in the argv array. It could be 0 if the message was sent
without arguments. argv is the array of atoms holding the arguments.

For typed messages, the atoms will be of type A_SYM, A_FLOAT, or A_LONG. Here is
an example of a method that merely prints all of the arguments.

void myobject_printargs (t_myobject *x, t_symbol s, long argc, t_atom *argv
)
{
long 1i;
t_atom xap;

post ("message selector is %s",s->s_name);
post ("there are %$1d arguments",argc);

// increment ap each time to get to the next atom
for (1 = 0, ap = argv; 1 < argc; i++, apt++) {
switch (atom_gettype (ap)) {
case A_LONG:
post ("$1d: %$1d",i+1l,atom_getlong(ap));
break;
case A_FLOAT:
post ("$1d: %.2f",i+1,atom_getfloat (ap));
break;
case A_SYM:
post ("$1d: %s",i+l, atom_getsym(ap)->s_name) ;
break;
default:
post ("$1d: unknown atom type (%1d)", i+l, atom_gettype (ap))

break;

You can interpret the arguments in whatever manner you wish. You cannot, however,
modify the arguments as they may be about to be passed to another object.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

20 Atoms and Messages

5.3 Writing ”Anything” Methods

As previously mentioned, your object can define a special method bound to the symbol
"anything" that will be invoked if no other match is found for a selector. For example:

class_addmethod(c, (method)myobject_anything, "anything", A_GIMME, O0);

Your function definition for an anything method follows the same pattern as for all other
A_GIMME methods:

void myobject_anything (t_myobject *x, t_symbol *s, long argc, t_atom xargv)
{
object_post ((t_objectx)x,
"This method was invoked by sending the ’%s’ message to
this object.",
s—>s_name) ;
// argc and argv are the arguments, as described in above.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 6

The Scheduler

The Max scheduler permits operations to be delayed until a later time.

It keeps track of time in double-precision, but the resolution of the scheduler depends
on the user’s environment preferences. The scheduler also works in conjunction with
a low-priority queue, which permits time-consuming operations that might be initiated
inside the scheduler to be executed in a way that does not disrupt timing accuracy.

Most objects interface with the scheduler via a clock (t_clock) object. A clock is asso-
ciated with a task function that will execute when the scheduler’s current time reaches
the clock’s time. There is also a function called schedule() that can be used for one-off
delayed execution of a function. It creates a clock to do its job however, so if your object
is going to be using the scheduler repeatedly, it is more efficient to store references to
the clocks it creates so the clocks can be reused.

The scheduler is periodically polled to see if it needs to execute clock tasks. There are
numerous preferences Max users can set to determine when and how often this polling
occurs. Briefly:

» The Overdrive setting determines whether scheduler polling occurs in a high-
prority timer thread or the main thread

* The Interval setting determines the number of milliseconds elapse between
polling the scheduler

» The Throttle setting determines how many tasks can be executed in any particular
scheduler poll

Similar Throttle and Interval settings exist for the low-priority queue as well.

For more information refer to the Timing documentation. While the details might be
a little overwhelming on first glance, the important point is that the exact time your
scheduled task will execute is subject to variability. Max permits this level of user control
over the scheduler to balance all computational needs for a specific application.

22 The Scheduler

6.1 Creating and Using Clocks

There are five steps to using a clock in an external object.
1. Add a member to your object’s data structure to hold a pointer to the clock object

typedef struct _myobject
{
t_object m_obj;

void xm_clock;
} t_object;

2. Write a task function that will do something when the clock is executed. The function
has only a single argument, a pointer to your object. The example below gets the current
scheduler time and prints it.

void myobject_task (t_myobject =x)
{

double time;

sched_getftime (&time) ;
post ("instance %lx is executing at time %.2f", x, time);

3. In your new instance routine, create the clock (passing a pointer to your object and
the task function) and store the result in your object’s data structure.

x->m_clock = clock_new((t_object =*)x, (method)myobject_task);

4. Schedule your clock. Use clock_fdelay() to schedule the clock in terms of a delay
from the current time. Below we schedule the clock to execute 100 milliseconds from
now.

clock_fdelay (x->m_clock, 100.);

If you want to cancel the execution of a clock for some reason, you can use clock_-
unset().

clock_unset (x->m_clock) ;
5. In your object’s free routine, free the clock

object_free (x->m_clock);

Note that if you call clock_delay() on a clock that is already set, its execution time will be
changed. It won’t execute twice.

6.2 Creating and Using Qelems

A gelem ("queue element") is used to ensure that an operation occurs in the low-priority
thread. The task function associated with a t_gelem is executed when the low-priority

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

6.2 Creating and Using Qelems 23

queue is serviced, always in the main (user interface) thread. Any gelem that is "set"
belongs to the low-priority queue and will be executed as soon as it serviced.

There are two principal things you want to avoid in the high priority thread: first, time-
consuming or unpredictable operations such as file access, and second, anything that
will block execution for any length of time -- for example, showing a dialog box (including
a file dialog).

The procedure for using a gelem is analogous to that for using a clock.
1. Add a member to your object’s data structure to hold a pointer to the gelem

typedef struct _myobject
{
t_object m_obj;

void *m_gelem
} t_myobject;

2. Write a task function that will do something when the gelem is executed. The function
has only a single argument, a pointer to your object.

void myobject_gtask (t_myobject =xx)
{

post ("I am being executed a low priority!"

}

3. In your new instance routine, create the gelem (passing a pointer to your object and
the task function) and store the result in your object’s data structure.

x->m_gelem = gelem_new ((t_object =*)x, (method)myobject_gtask);

4. Set the gelem by using gelem_set(). You could, for example, call gelem_set() in a
clock task function or in direct response to a message such as bang or int.

gelem_set (x—>m_qgelemn) ;

If you want to cancel the execution of a gelem for some reason, you can use gelem_-
unset().

gelem_unset (x—>m_gelem) ;

5. In your object’s free routine, call gelem_free(). Do not call object_free() or freeobject()
-- unlike the clock, the gelem is not an object.

gelem_free (x->m_gelem) ;

Note that if you call gelem_set() on a gelem that is already set, it won’t execute twice.
This is a feature, not a bug, as it permits you to execute a low-priority task only as
fast as the low-priority queue operates, not at the high-priority rate that the task might
be triggered. An example would be that a number box will redraw more slowly than a
counter that changes its value. This is not something you need to worry about, even if
you are writing Ul objects, as Max handles it internally (using a gelem).

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

24 The Scheduler

6.3 Defer

The defer function and its variants use a gelem to ensure that a function executes at
low-priority. There are three variants: defer(), defer_low(), and defer_medium(). The dif-
ference between using defer() and a gelem is that defer() is a one-shot deal -- it creates
a gelem, sets it, and then gets rid of it when the task function has executed. The effect
of this is that if you have some rapid high-priority event that needs to trigger something
to happen at low-priority, defer() will ensure that this low-priority task happens every
time the high-priority event occurs (in a 1:1 ratio), whereas using a gelem will only run
the task at a rate that corresponds to the service interval of the low-priority queue. If you
repeatedly defer() something too rapidly, the low-priority queue will become backlogged
and the responsiveness of the Ul will suffer.

A typical use of defer() is if your object implements a read message to ask the user for
a file. Opening the dialog in the timer thread and waiting for user input will likely crash,
but even if it didn’t, the scheduler would effectively stop.

To use defer(), you write a deferred task function that will execute at low priority. The
function will be passed a pointer to your object, plus a symbol and atom list modeled on
the prototype for an anything method. You need not pass any arguments to the deferred
task if you don’t need them, however.

void myobject_deferredtask (t_myobject xx, t_symbol *s, long argc, t_atom =
argv)
{

post ("I am deferred");

}

To call the task, use defer() as shown below. The first example passes no arguments.
The second passes a couple of long atoms.

defer ((t_object *)x, (method)myobject_deferredtask, NULL, 0, NULL);
t_atom av[2];

atom_setlong(av, 1);
atom_setlong(av+ 2, 74);

defer ((t_object *)x, (method)myobject_deferredtask, NULL, 2, av);

Defer copies any atoms you pass to newly allocated memory, which it frees when the
deferred task has executed.

6.3.1 Defer Variants

defer has two variants, defer_low() and defer_medium(). Here is a comparison:
defer()

If executing at high priority, defer() puts the deferred task at the front of the low-priority
queue. If not executing at highpriority, defer() calls the deferred task immediately.

defer_low()

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

6.4 Schedule 25

At all priority levels, defer_low() puts the deferred task at the back of the low-priority
queue.

defer_medium()

If executing at high priority, defer_medium() puts the deferred task at the back of the
low-priority queue. If not executing at high priority, defer_medium() calls the deferred
task immediately.

6.4 Schedule

The schedule() function is to clocks as defer() is to gelems. Schedule creates a clock
for a task function you specify and calls clock_fdelay() on it to make the task execute at
a desired time. As with defer(), schedule() can copy arguments to be delivered to the
task when it executes.

A schedule() variant, schedule_defer(), executes the task function at low priority after a
specified delay.

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

26

The Scheduler

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 7

Memory Allocation

The Max API offers cross-platform calls memory management.

There are two types of calls, those for pointers and those for handles. Handles are
pointers to pointers, and were used in the early Mac OS to permit memory to be relo-
cated without changing a reference, and many Mac OS API calls used handle. There
are a few legacy Max API calls that use handles as well, but in general, unless the OS
or Max requires the use of a handle, you're probably better off using the simpler pointer.

Longtime Max object programmers may have used memory calls getbytes() and free-
bytes() in the past, but all memory calls now use same underlying OS mechanisms, so
while getbytes() and freebytes() are still supported, they are restricted to 32K of memory
or less due to the arguments they use, and we recommend the use of sysmem_newptr()
and sysmem_freeptr() instead.

Here are some examples of allocating and freeing pointers and handles.

char xptr;
char =xxhand;

ptr = sysmem_newptr (2000) ;

post ("I have a pointer %1x and it is %1d bytes in size",ptr,
sysmem_ptrsize (ptr));

ptr = sysmem_resizeptrclear (ptr, 3000);

post ("Now I have a pointer %1lx and it is %1d bytes in size",ptr,
sysmem_ptrsize(ptr));

sysmem_freeptr (ptr);

hand = sysmem_newhandle (2000) ;

post ("I have a handle %1x and it is %1d bytes in size",hand,
sysmem_handlesize (hand));

sysmem_resizehandle (hand, 3000);

post ("Now the handle %1x is %1d bytes in size",hand, sysmem_ptrsize (
hand)) ;

sysmem_freehandle (hand) ;

28

Memory Allocation

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 8

Anatomy of a MSP Object

An MSP object that handles audio signals is a regular Max object with a few extras.

Refer to the simplemsp~ example project source as we detail these additions.
simplemsp~ is simply an object that adds a number to a signal, identical in func-
tion to the regular MSP +~ object if you were to give it an argument of 1.

Here is an enumeration of the basic tasks:

8.1 Additional Header Files

After including ext.h and ext_obex.h, include z_dsp.h

#include "z_dsp.h"

8.2 C Structure Declaration

The C structure declaration must begin with a t_pxobject, not a t_object:

typedef struct _mydspobject
{

t_pxobject m_obj;

// rest of the structure’s fields
} t_mydspobiject;

8.3 Initialization Routine

When creating the class with class_new(), you must have a free function. If you have
nothing special to do, use dsp_free(), which is defined for this purpose. If you write your
own free function, the first thing it should do is call dsp_free(). This is essential to avoid
crashes when freeing your object when audio processing is turned on.

c = class_new ("mydspobiject", (method)mydspobject_new, (method)dsp_free,
sizeof (t_mydspobject), NULL, O0);

30 Anatomy of a MSP Object

After creating your class with class_new(), you must call class_dspinit(), which will add
some standard method handlers for internal messages used by all signal objects.

class_dspinit (c);

Your signal object needs a method that is bound to the symbol "dsp" -- we’ll detail what
this method does below, but the following line needs to be added while initializing the
class:

class_addmethod (c, (method)mydspobject_dsp, "dsp", A_CANT, 0);

8.4 New Instance Routine

The new instance routine must call dsp_setup(), passing a pointer to the newly allocated
object pointer plus a number of signal inlets the object will have. If the object has no
signal inlets, you may pass 0. The simplemsp~ object (as an example) has a single
signal inlet:

dsp_setup ((t_pxobject *)x, 1);

dsp_setup() will make the signal inlets (as proxies) so you need not make them yourself.

If your object will have audio signal outputs, they need to be created in the new instance
routine with outlet_new(). However, you will never access them directly, so you don'’t
need to store pointers to them as you do with regular outlets. Here is an example of
creating two signal outlets:

outlet_new((t_object *)x, "signal");
outlet_new((t_object x)x, "signal");

8.5 The DSP Method and Perform Routine

The dsp method specifies the signal processing function your object defines along with
its arguments. Your object’s dsp method will be called when the MSP signal compiler is
building a sequence of operations (known as the DSP Chain) that will be performed on
each set of audio samples. The operation sequence consists of a pointers to functions
(called perform routines) followed by arguments to those functions.

The dsp method is declared as follows:
void mydspobject_dsp (t_mydspobiject *x, t_signal xxsp, short =xcount);

To add an entry to the DSP chain, your dsp method uses dsp_add(). The dsp method
is passed an array of signals (t_signal pointers), which contain pointers to the actual
sample memory your object’s perform routine will be using for input and output. The
array of signals starts with the inputs (from left to right), followed by the outputs. For
example, if your object has two inputs (because your new instance routine called dsp_-
setup(x, 2)) and three outputs (because your new instance created three signal outlets),
the signal array sp would contain five items as follows:

[0] // left input
[1] // right input
spl[2] // left output
[3] // middle output
[4] // right output

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

8.5 The DSP Method and Perform Routine 31

The t_signal data structure (defined in z_dsp.h), contains two important elements: the
s_n field, which is the size of the signal vector, and s_vec, which is a pointer to an array
of 32-bit floats containing the signal data. All t_signals your object will receive have the
same size. This size is not necessarily the same as the global MSP signal vector size,
because your object might be inside a patcher within a poly~ object that defines its own
size. Therefore it is important to use the s_n field of a signal passed to your object’s dsp
method.

You can use a variety of strategies to pass arguments to your perform routine via dsp_-
add(). For simple unit generators that don’t store any internal state between computing
vectors, it is sufficient to pass the inputs, outputs, and vector size. For objects that need
to store internal state between computing vectors such as filters or ramp generators,
you will pass a pointer to your object, whose data structure should contain space to
store this state. The plus1~ object does not need to store internal state. It passes the
input, output, and vector size to its perform routine. The plus1~ dsp method is shown
below:

void plusl_dsp(t_plusl *x, t_signal =*xsp, short =xcount)
{

dsp_add (plusl_perform, 3, sp[0]->s_vec, spl[l]l->s_vec, spl[0]->s_n);
}

The first argument to dsp_add() is your perform routine, followed by the number of
additional arguments you wish to copy to the DSP chain, and then the arguments.

The perform routine is not a "method" in the traditional sense. It will be called within
the callback of an audio driver, which, unless the user is employing the Non-Real -
Time audio driver, will typically be in a high-priority thread. Thread protection inside
the perform routine is minimal. You can use a clock, but you cannot use gelems or
outlets. The design of the perform routine is somewhat unlike other Max methods. It
receives a pointer to a piece of the DSP chain and it is expected to return the location
of the next perform routine on the chain. The next location is determined by the number
of arguments you specified for your perform routine with your call to dsp_add(). For
example, if you will pass three arguments, you need to return w + 4.

Here is the plus1 perform routine:

t_int *plusl_perform(t_int =*w)
{

t_float *in, =*out;

int n;

in = (t_float *)wl[l]; // get input signal vector

out = (t_float *)w[2]; // get output signal vector

n = (int)w[3]; // vector size

while (n—-) // perform calculation on all samples
*out++ = xin++ + 1.;

return w + 4; // must return next DSP chain location

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

32 Anatomy of a MSP Object

8.6 Free Function

The free function for the class must either be dsp_free() or it must be written to call
dsp_free() as shown in the example below:

void mydspobject_free (t_mydspobject =xx)
{
dsp_free ((t_pxobject =*)x);

// can do other stuff here

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 9

Advanced Signal Object Topics

Here are some techniques for implementing additional features found in most signal
objects.

9.1 Saving Internal State

To implement unit generators such as filters and ramp generators, you need to save
internal state between calls to your object’s perform routine. Here is a very simple low-
pass filter (it just averages successive samples) that saves the value of the last sample
in a vector to be averaged with the first sample of the next vector. First we add a field to
our data structure to hold the value:

typedef struct _myfilter
{
t_pxobject f_obij;
t_float f_sample;
} t_myfilter;

Then, in our dsp method (which has one input and one output), we pass a pointer to the
object as one of the DSP chain arguments. The dsp method also initializes the value of
the internal state, to avoid any noise when the audio starts.

void myfilter_dsp(t_myfilter *x, t_signal *xsp, short xcount)
{

dsp_add (myfilter_perform, 4, x, sp[0]->s_vec, spl[l]l->s_vec, sp[0]->s_n)

x->f_sample = 0;

Here is the perform routine, which obtains the internal state before entering the pro-
cessing loop, then stores the most recent value after the loop is finished.

t_int smyfilter_perform(t_int #w)

34 Advanced Signal Object Topics

t_myfilter *x = (t_myfilter *)w[1l];
t_float *in = (t_float *)w[2];
t_float xout = (t_float *)w[3];

int n = (int)w[4];

t_float samp = x->f_sample; // read from internal state
t_float val;

while (n—-) {
val = xin++;
*out++ = (val + samp) * 0.5;

samp = val;
}

x->f_sample = samp; // save to internal state

return w + 5;

9.2 Observing Patcher Muting

The enable message to the pcontrol object, as well as the MSP mute~ object, can be
used to disable a subpatcher. If your object is at all computationally expensive in its
perform routine, it should check to see whether it has been disabled. To do this, you’ll
need to pass a pointer to your object as one of the DSP chain arguments when calling
dsp_add(). Here is a simple modification of our filter object’s perform routine that checks
to see if the object has been disabled.

t_int smyfilter_perform(t_int =w)

{

t_myfilter *x = (t_myfilter *)w[l];
t_float *in = (t_float x)w[2];
t_float *out = (t_float *)w[3];

int n = (int)w[4];

t_float samp = x->f_sample; // read from internal state
t_float val;

if (x->f_obj.z_disabled) // check for object being disabled
return w + 5;

while (n—-) {
val = *in++;
xout++ = (val + samp) * 0.5;

samp = val;
}

x->f_sample = samp; // save to internal state

return w + 5;

9.3 Using Connection Information

The third argument to the dsp method is an array of numbers that enumerate the num-
ber of objects connected to each of your objects inputs and outputs. This array follows
the same organization as the signal information as discussed in The DSP Method and

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

9.3 Using Connection Information 35

Perform Routine. More advanced dsp methods can use this information for optimization
purposes. For example, if you find that your object has no inputs or outputs, you could
avoid calling dsp_add() altogether. The MSP signal operator objects (such as +~ and
x~) to implement a basic polymorphism: they look at the connections count to deter-
mine whether the perform routine should use scalar or signal inputs. For example, if the
right input has no connected signals, the user can add a scalar value sent to the right
inlet.

To implement this behavior, you have a few different options. The first option is to write
two different perform methods, one which handles the two-signal case, and one which
handles the scalar case. The dsp method looks at the count array and passes a
different function to dsp_add(). The example below assumes that the second element
in the signal (sp[11]) and count (count [11]) arrays refer to the right input:

if (count[1]) // signal connected to second inlet
dsp_add (mydspobject_twosigperform, 5, x, sp[0]->s_vec, sp[l]->s_vec
, spl2]->s_vec, spl[0]l->s_n);
else
dsp_add (mydspobject_scalarperform, 4, x, sp[0]->s_vec, spl[2]->s_vec
; spl0]->s_n);

The second option is to pass the value of the count array for a particular signal to the
perform method, which can make the decision whether to use the signal value or a
scalar value that has been stored inside the object. In this case, many objects use a
single sample value from the signal as a substitute for the scalar. Using the first sample
(i.e., the value at index 0) is a technique that works for any vector size, since vector
sizes could be as small as a single sample. Here is an example of this technique for
an object that has two inputs and one output. The connection count for the right input
signal is passed as the second argument on the DSP chain, and the right input signal
vector is passed even if it not connected:

dsp_add (mydspobject_perform, 6, x, count[l], sp[0]->s_vec, spl[l]->s_vec
, spl[2]->s_vec, sp[0]->s_n);

Here is a perform routine that uses the connection count information as passed in the
format shown above:

t_int mydspobject_perform(t_int =xw)
{

t_mydspobject xx = (t_mydspobject *)w[l];
int connected = (int)w([2];

t_float *in = (t_float *)w[3];

t_float *in2 = (t_float =*)w[4];

t_float *out = (t_float =*)w[5];

int n = (int)w[6];

double in2value;

// get scalar sample or use signal depending on whether signal is
connected

in2value = connected? *in2 : x->m_scalarvalue;

// do calculation here

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

36

Advanced Signal Object Topics

return w + 7;

Generated on Tue Oct 11 2011 15:48:11 for Max API by Doxygen

Chapter 10

Sending Messages, Calling Methods

Max objects, such as the one you write, are C data structures in which methods are
dynamically bound to functions.

Your object’'s methods are called by Max, but your object can also call methods itself.
When you call a method, it is essential to know whether the method you are calling is
typed or not.

Calling a typed method requires passing arguments as an array of atoms. Calling an
untyped method requires that you know the exact arguments of the C function imple-
menting the method. In both cases, you supply a symbol that names the method.

In the typed method case, Max will take the array of atoms and pass the arguments to
the object according to the method’s argument type specifier list. For example, if the
method is declared to have an argument type specifier list of A_LONG, 0, the first atom
in the array you pass will be converted to an int and passed to the function on the stack.
If there are no arguments supplied, invoking a typed method that has A_LONG, 0 as
an argument type specifier will fail. To make typed method calls, use object_method_-
typed() or typedmess().

In the untyped method case, Max merely does a lookup of the symbol in the object, and,
if a matching function is found, calls the function with the arguments you pass.

Certain methods you write for your object, such as the assist method for describing your
object and the DSP method in audio objects, are declared as untyped using the A_CA-
NT argument type specifier. This means that Max will not typecheck the arguments you
pass to these methods, but, most importantly, a user cannot hook up a message box to
your object and send it a message to invoke an untyped method. (Try this for yourself --
send the assist message to a standard Max object.)

When you use an outlet, you're effectively making a typed method call on any objects
connected to the outlet.

38 Sending Messages, Calling Methods

10.1 Attributes

Attributes are descriptions of data in your object. The standardization of these descrip-
tions permits Max to provide a rich interface to object data, including the pattr system,
inspectors, the quick reference menu, @ arguments, etc.

It is essential that you have some understanding of attributes if you are going to write
a Ul object. But non-Ul objects can make use of attributes as well. The discussion
below is not specific to Ul objects. It does however, use the recently introduced system
of macros in ext_obex_util.h (included in ext_obex.h) for defining attributes, as well as
describing them using attributes of attributes (attr attrs). You can read more detailed
descriptions of the underlying attribute definition mechanisms on a per-function basis in
the Attributes reference.

10.1.1 Attribute Basics

While attributes can be defined for a specific instance of an object, it's much more
common to define an attribute for a class. In such a case, each instance of the class
will have the attribute description, but the value will be instance specific. The discussion
here focuses only on class attributes.

When an attribute is declared and is made user-settable, a user can send a message
to your object consisting of the attribute name and arguments that represent the new
value of the attribute. For example, if you declare an attribute called trackcount, the
message trackcount 20 will set it to 20. You don’t need to do anything special to obtain
this behavior. In addition, user-settable attributes will appear when the user opens the
inspector on your object.

If you define your attribute as an offset attribute, you describe its location (and size)
within your object’s C data structure. Max can then read and write the data directly. You
can also define custom getter and setter routines if the attribute’s value is more complex
than simply a stored number. As a theoretical example, you could have an object with
an attribute representing the Earth’s population. If this value was not able to be stored
inside your object, your custom getter routine could initiate a global census before re-
turning the result. A custom setter for the earth’s population might do something nasty
if the value was set to zero. If you are not a misanthrope, you can take advantage of the
ability to set such an attribute to be read-only.

10.1.2 Defining Attributes

Attributes are defined when you are defining methods in your initialization routine. You
can define your attributes before your methods if you like, but by convention, they are
typically defined after the methods. For each definition, you’ll specify the name, size,
and offset of the corresponding membe