Scala .scl in Max/Msp?


    Mar 12 2011 | 6:37 pm
    Hello,
    Does anybody know of a way to get .scl or scala files into Max/MSP. I was messing around with this in Audio Paint and it was great to have nearly 4000 scales just right there already made up.

    • Mar 12 2011 | 7:16 pm
      i have converted the scala library into a custom 110 format which stores the values in a coll.
      to simplify the process i have not been using the .scl files but an existing text format from victor cerullos little application.
      when i am not wrong there is also an external now since a while, you might search the forums or maxobjects.com, i cant remember the name or who made it.
    • Mar 12 2011 | 8:50 pm
      Great I'll look into it. I had a look at the MaxObjects but I could not find the 110 externals. I saw the yahoo group though so I'll have a look there.
      thanks
    • Apr 09 2016 | 4:48 pm
      anyone got a zip of scala scales converted to .txt files for the coll object
    • Apr 09 2016 | 8:32 pm
      thats the complete scala library from 2008 in coll format.
      the first two integer numbers after the scale name are:
      - type of scale
      - number of notes per octave.
      i call type 1 "expandable" - which means it should be played over several octaves.
      type 1 the most common format.
      only very few scales are not to be expanded - or not expandable because the base set already spreads across more than one octave.
      05-19.scl, "5 out of 19-tET" 1 5 261.62558 302.729614 350.291534 405.325928 469.006775; 05-22.scl, "Pentatonic "generator" of 09-22.scl" 1 5 261.62558 306.264099 358.51886 394.059265 461.29361; 05-24.scl, "5 out of 24-tET symmetrical" 1 5 261.62558 277.182617 359.461395 380.83609 493.883301; 06-41.scl, "Hexatonic scale in 41-tET" 1 6 261.62558 315.097046 325.933289 392.548096 406.047882 505.854706; 07-19.scl, "7 out of 19-tET major" 1 7 261.62558 291.884644 325.643402 350.291534 390.805542 436.00528 486.432739; 07-37.scl, "Miller's Porcupine-7" 1 7 261.62558 287.316071 315.529266 346.512878 380.53894 417.906219 458.94278; 08-11.scl, "8 out of 11-tET" 1 8 261.62558 296.765167 316.067078 336.62442 381.837311 406.672424 433.122833 491.296661; 08-13.scl, "8 out of 13-tET" 1 8 261.62558 275.953766 307.007263 341.555237 360.260864 400.801575 422.751892 470.324799; 08-19.scl, "8 out of 19-tET" 1 8 261.62558 281.428162 313.977539 337.742706 363.306641 405.325928 436.00528 469.006775; 08-19a.scl, "Kleismic generator is 6/5 in 19-tET" 1 8 261.62558 271.346283 313.977539 325.643402 376.805328 390.805542 452.205078 469.006775; 08-37.scl, "Miller's Porcupine-8" 1 8 261.62558 287.316071 315.529266 346.512878 380.53894 417.906219 458.94278 504.009003; 09-15.scl, "Charyan scale of Andal 1/1=a. Boudewijn Rempt 1999.0000" 1 9 261.62558 286.957458 314.742096 329.627563 361.543732 396.550201 415.304688 455.516571 499.621948; 09-19.scl, "9 out of 19-tET" 1 9 261.62558 281.428162 302.729614 337.742706 363.306641 390.805542 420.385834 452.205078 486.432739; 09-22.scl, "Three interval "Tryhill" scale in 22-tET TL 05-12-2000" 1 9 261.62558 278.641968 306.264099 326.183838 358.51886 394.059265 419.689301 461.29361 476.058838; 09-23.scl, "9 out of 23-tET Dan Stearns" 1 9 261.62558 286.3815 304.173584 332.955566 353.641144 387.103912 411.153595 450.058411 478.019257; 09-29.scl, "Cycle of g=124.138 in 29-tET" 1 9 261.62558 281.074341 301.968933 324.416748 348.533325 374.442688 402.278107 432.182739 464.310455; 10-13.scl, "Carl Lumma 10 out of 13-tET MOS TL 21-12-1999" 1 10 261.62558 291.066681 307.007263 323.820831 360.260864 379.990967 400.801575 445.904358 470.324799 496.082642; 10-19.scl, "10 out of 19-tET. For 9 out of 19 discard degree 3" 1 10 261.62558 281.428162 302.729614 313.977539 337.742706 363.306641 390.805542 420.385834 452.205078 486.432739; 10-29.scl, "10 out of 29-tET chain of 124.1380 cents intervals Keenan" 1 10 261.62558 281.074341 301.968933 324.416748 340.301575 365.598999 392.776978 421.975342 453.344238 487.045044; 10-48.scl, "Chain of 10 g=125 generators in 48-tET" 1 10 261.62558 281.214355 302.269806 324.901764 339.286377 364.68988 391.995422 421.345428 452.893005 486.802582; 10-72.scl, "Chain of 10 Miracle generators g=116.667 in 72-tET" 1 10 261.62558 279.863953 299.37381 320.243713 342.568481 366.449554 391.995422 419.322174 448.553894 479.823395; 11-19-gould.scl, "11 out of 19-tET Mark Gould 2002" 1 11 261.62558 281.428162 302.729614 313.977539 337.742706 363.306641 390.805542 405.325928 436.00528 469.006775 504.506195; 11-19-krantz.scl, "11 out of 19-tET Richard Krantz" 1 11 261.62558 281.428162 302.729614 325.643402 350.291534 376.805328 390.805542 420.385834 436.00528 469.006775 504.506195; 11-19-mandel.scl, "11 out of 19-tET Joel Mandelbaum" 1 11 261.62558 281.428162 291.884644 313.977539 337.742706 363.306641 376.805328 405.325928 436.00528 469.006775 486.432739; 11-19-mclaren.scl, "11 out of 19-tET Brian McLaren. Asc: 311313313 Desc: 313131313" 1 11 261.62558 291.884644 302.729614 313.977539 350.291534 363.306641 376.805328 390.805542 405.325928 452.205078 469.006775; 11-23.scl, "11 out of 23-tET Dan Stearns" 1 11 261.62558 277.879639 295.143494 313.48 332.955566 353.641144 387.103912 411.153595 436.697418 463.828186 492.644531; 11-31.scl, "Jon Wild 11 out of 31-tET chain of "7/6"s. TL 9-9-99" 1 11 261.62558 279.777069 299.187927 327.18 349.879547 357.790833 382.614258 409.16 447.440887 478.484192 511.681274; 12-19.scl, "12 out of 19-tET scale from Mandelbaum's dissertation" 1 12 261.62558 271.346283 291.884644 302.729614 325.643402 350.291534 363.306641 390.805542 405.325928 436.00528 452.205078 486.432739; 12-22.scl, "Hexachordal 12-tone scale in 22-tET" 1 12 261.62558 278.641968 296.765167 316.067078 336.62442 347.3992 369.994415 394.059265 419.689301 446.986359 476.058838 507.022217; 12-22a.scl, "12 out of 22-tET Pythagorean. Paul Erlich TL 4-4-2000" 1 12 261.62558 270. 296.765167 306.264099 316.067078 347.3992 358.51886 394.059265 406.672424 419.689301 461.29361 476.058838; 12-31.scl, "12 out of 31-tET meantone Eb-G#" 1 12 261.62558 273.59079 292.572449 312.871033 327.18 349.879547 365.881012 391.265717 409.16 437.547302 467.904205 489.303406; 12-43.scl, "12 out of 43-tET (1/5-comma meantone)" 1 12 261.62558 274.58844 292.876862 312.383331 327.861145 349.697662 367.024323 391.469208 410.86554 438.230408 467.417847 490.57724; 12-46.scl, "12 out of 46-tET diaschismic" 1 12 261.62558 277.879639 295.143494 308.791687 327.976044 348.352264 369.994415 392.98114 417.395935 436.697418 463.828186 492.644531; 12-50.scl, "12 out of 50-tET meantone Eb-G#" 1 12 261.62558 272.735687 292.310883 313.291046 326.595184 350.036041 364.9 391.09079 407.698761 436.960693 468.322876 488.210571; 12-55.scl, "12 out of 55-tET (1/6-comma meantone)" 1 12 261.62558 275.152374 293.048584 312.108795 328.245728 349.595184 367.670288 391.583984 411.83 438.615875 467.143951 491.296661; 12-70.scl, "Mix of 7-tET and 5-tET shifted 120 cents" 1 12 261.62558 280.403351 288.858032 318.92514 322.098846 352.121887 369.994415 388.774109 425.011993 429.241394 473.920929 488.210571; 12-91.scl, "12 out of 91-tET (1/7-comma meantone)" 1 12 261.62558 275.953766 293.292206 311.72 328.791687 349.45 368.587982 391.746704 413.201111 439.162933 466.75592 492.318329; 13-19.scl, "13 out of 19-tET" 1 13 261.62558 281.428162 291.884644 313.977539 325.643402 350.291534 363.306641 390.805542 405.325928 436.00528 452.205078 486.432739 504.506195; 13-31.scl, "13 out of 31-tET" 1 13 261.62558 286.103241 292.572449 319.945496 327.18 357.790833 365.881012 400.112793 409.16 447.440887 457.558167 500.367249 511.681274; 14-19.scl, "14 out of 19-tET" 1 14 261.62558 271.346283 291.884644 302.729614 313.977539 337.742706 350.291534 363.306641 390.805542 405.325928 420.385834 452.205078 469.006775 504.506195; 14-26.scl, "Two interlaced diatonic in 26-tET tetrachordal. Paul Erlich (1996)" 1 14 261.62558 275.953766 291.066681 307.007263 323.820831 341.555237 350.783386 369.994415 390.257568 411.630432 434.173828 457.951813 483.032043 509.485809; 14-26a.scl, "Two interlaced diatonic in 26-tET maximally even. Paul Erlich (1996)" 1 14 261.62558 275.953766 291.066681 307.007263 323.820831 341.555237 360.260864 369.994415 390.257568 411.630432 434.173828 457.951813 483.032043 509.485809; 15-27-gram.scl, "15 out of 27-ET Gram tuning" 2 16 261.62558 275.36795 289.832214 297.346802 312.965515 329.404633 346.707275 364.918762 374.380127 394.045197 414.743195 436.528381 459.457886 471.370422 496.13 522.190308; 15-27.scl, "15 out of 27-tET" 1 15 261.62558 275.409363 289.919373 297.458557 313.130219 329.627563 346.994049 365.275513 374.774292 394.519379 415.304688 437.18512 460.218292 472.186035 497.063263; 15-37.scl, "Miller's Porcupine-15" 1 15 261.62558 276.750244 287.316071 303.925934 315.529266 333.770142 346.512878 366.544922 380.53894 402.538055 417.906219 442.065552 458.94278 485.474457 504.009003; 16-139.scl, "g=9 steps of 139-tET. Gene Ward Smith "Quartaminorthirds" 7-limit temperament" 1 16 261.62558 273.634796 286.195282 299.332336 313.072388 327.443176 342.473602 358.193939 374.635895 391.832581 409.818634 428.63028 448.30542 468.883698 490.406586 512.917419; 17-31.scl, "17 out of 31 with split C#/Db D#/Eb F#/Gb G#/Ab and A#/Bb" 1 17 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 349.879547 365.881012 374.154083 391.265717 409.16 418.411621 437.547302 457.558167 467.904205 489.303406; 17-53.scl, "17 out of 53-tET Arabic Pythagorean scale" 1 17 261.62558 275.6763 290.481628 294.305573 310.111389 326.766083 331.067688 348.847839 367.582886 387.324097 392.422882 413.498138 435.705261 441.440948 465.148773 490.129822 516.452454; 19-31.scl, "19 out of 31-tET meantone Gb-B#" 1 19 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 342.143219 349.879547 365.881012 374.154083 391.265717 409.16 418.411621 437.547302 457.558167 467.904205 489.303406 511.681274; 19-31a.scl, "Septimal interpretation of 19 out of 31-tET OdC" 1 19 261.62558 275.933228 280.31311 294.328766 305.229828 315.352234 327.031952 343.383545 348.834076 367.91095 373.750793 392.438354 406.973114 420.469666 436.042603 457.844727 465.112122 490.547943 515.075317; 19-31ji.scl, "A septimal interpretation of 19 out of 31 tones after Wilson XH7+8" 1 19 261.62558 272.526642 279.067261 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 457.844727 465.112122 490.547943 504.563599; 19-36.scl, "19 out of 36-tET Tomasz Liese Tuning List 1997" 1 19 261.62558 271.89679 282.571228 293.664764 305.193817 317.175507 329.627563 342.568481 349.228241 362.93866 377.187347 391.995422 407.384888 423.378479 440. 457.274048 475.226288 493.883301 503.484711; 19-50.scl, "19 out of 50-tET meantone Gb-B#" 1 19 261.62558 272.735687 280.403351 292.310883 304.724091 313.291046 326.595184 340.464294 350.036041 364.9 375.159363 391.09079 407.698761 419.160706 436.960693 455.516571 468.322876 488.210571 508.94281; 19-53.scl, "19 out of 53-tET by Larry H. Hanson 1978" 1 19 261.62558 272.094421 282.982147 294.305573 302.105133 314.193756 326.766083 339.841492 348.847839 362.806824 377.324402 392.422882 408.125519 418.941498 435.705261 453.139832 471.272064 490.129822 503.119019; 19-55.scl, "19 out of 55-tET meantone Gb-B#" 1 19 261.62558 275.152374 278.641968 293.048584 308.2 312.108795 328.245728 345.21701 349.595184 367.670288 372.333252 391.583984 411.83 417.053009 438.615875 461.29361 467.143951 491.296661 516.69812; 19-any.scl, "2 out of 1/7 1/5 1/3 1 3 5 7 CPS" 1 19 261.62558 279.067261 286.152954 299. 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 436.042603 448.5 457.844727 478.401031 490.547943; 20-31.scl, "20 out of 31-tET" 1 20 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 334.577911 349.879547 365.881012 374.154083 391.265717 400.112793 409.16 427.872498 437.547302 457.558167 467.904205 489.303406 511.681274; 20-55.scl, "20 out of 55-tET J. Chesnut: Mozart's teaching of intonation JAMS 30/2 (1977)" 1 20 261.62558 275.152374 278.641968 293.048584 296.765167 308.2 312.108795 328.245728 332.408691 349.595184 367.670288 372.333252 391.583984 411.83 417.053009 438.615875 444.178589 461.29361 467.143951 491.296661; 21-any.scl, "1.3.5.7.9.11.13 2)7 21-any 1.3000 tonic" 1 21 261.62558 269.801361 283.427704 294.328766 299.779297 305.229828 318.856171 327.031952 343.383545 354.284607 359.735138 381.537292 389.713074 392.438354 419.69101 425.141541 436.042603 457.844727 479.646881 490.547943 495.998474; 22-41.scl, "22 out of 41 by Stephen Soderberg TL 17-11-98" 1 22 261.62558 270.622925 279.93 289.556519 299.514435 309.814789 320.46936 325.933289 337.142181 348.736572 360.729675 373.135254 385.967438 399.240936 406.047882 420.011932 434.456238 449.397247 464.852112 480.83847 497.374573 514.47937; 22-46.scl, "22 shrutis out of 46-tET by Graham Breed" 1 22 261.62558 273.723816 277.879639 290.729492 295.143494 308.791687 313.48 327.976044 332.955566 348.352264 353.641144 369.994415 375.611877 392.98114 411.153595 417.395935 436.697418 443.327576 463.828186 470.87027 492.644531 500.124115; 22-53.scl, "22 shrutis out of 53-tET" 1 22 261.62558 275.6763 279.305328 290.481628 294.305573 310.111389 314.193756 326.766083 331.067688 348.847839 353.440125 367.582886 372.421783 392.422882 413.498138 418.941498 435.705261 441.440948 465.148773 471.272064 490.129822 496.58194; 24-36.scl, "12 and 18-tET mixed" 1 24 261.62558 271.89682 277.182617 282.571198 293.664764 305.193878 311.126984 317.175446 329.627563 342.568542 349.228241 356.017395 369.994415 384.520203 391.995422 399.615997 415.304688 431.609314 440. 448.553802 466.163757 484.465088 493.883301 503.484619; 24-41.scl, "24 out of 41-tET neutral third generator 22 neutral triads Op de Coul 2001" 1 24 261.62558 266.086212 275.236969 284.702423 289.556519 299.514435 309.814789 320.46936 325.933289 337.142181 348.736572 354.682434 366.88 379.497101 392.548096 399.240936 412.970886 427.173035 434.456238 449.397247 464.852112 480.83847 489.036621 505.854706; 24-60.scl, "12 and 15-tET mixed" 1 24 261.62558 273.998932 277.182617 286.957458 293.664764 300.52887 311.126984 314.742096 329.627563 345.21701 349.228241 361.543732 369.994415 378.642639 391.995422 396.550201 415.304688 434.946167 440. 455.516571 466.163757 477.059814 493.883301 499.621948; 24-94.scl, "24 tone schismic temperament in 94-et Gene Ward Smith 2002" 1 24 261.62558 265.512573 275.484589 279.577484 290.077759 294.387482 309.981995 314.587433 326.402588 331.251984 348.8 353.981445 367.276154 372.732819 386.731781 392.477478 413.268097 419.408051 435.16 441.625244 465.019348 471.928192 489.65271 496.927521; 28-any.scl, "6)8 28-any from 1.3.5.7.9.11.13.15 only 26 tones" 1 26 261.62558 265.71347 280.31311 283.427704 289.869232 303.672546 309.193848 318.856171 327.031952 331.279114 340.11322 354.284607 356.762146 364.407043 377.903595 386.49231 392.438354 404.896698 425.141541 436.042603 455.508789 463.790771 472.379486 485.876038 490.547943 515.323059; 30-29-min3.scl, "30/29 x 29/28 x 28/27 plus 6/5" 1 9 261.62558 270.647125 280.31311 290.695068 348.834076 392.438354 405.970703 420.469666 436.042603; 56-any.scl, "3)8 56-any from 1.3.5.7.9.11.13.15 1.3.5 tonic only 48 notes" 1 48 261.62558 265.71347 269.801361 272.8 274.706848 283.427704 286.152954 287.788116 292.284821 294.328766 297.6 305.229828 311.770477 314.76825 318.856171 323.761627 327.031952 335.752808 340.11322 343.383545 350.74176 359.735138 366.275787 367.91095 371.99884 377.721924 382.62738 389.713074 392.438354 396.798767 404.702057 412.060272 419.69101 425.141541 431.68219 441.493134 446.398621 449.668945 457.844727 467.655701 470.926025 478.284241 479.646881 490.547943 495.998474 503.629211 510.169861 515.075317; 70-any.scl, "1.3.5.7.11.13.17.19 4)8 70-any tonic 1.3.5.7" 3 71 220. 222.0625 222.373505 224.714279 226.416672 232.636902 233.75 238.333328 238.758926 239.479172 240.567703 242. 242.589279 244.880951 253.229172 253.785721 257.125 261.25 262.166656 266.848206 267.142853 273.690491 274.934509 278.552094 280.892853 283.020844 286. 287.375 289.404755 290.796143 293.857147 296.083344 298.571442 302.5 303.875 311.322906 311.666656 317.232147 318.345245 323.452393 327.708344 328.428558 339.625 342.833344 343.668152 345.714294 347.285706 348.333344 348.955353 355.797607 357.5 367.321442 370.104156 374. 374.523804 378.034973 383.166656 388.142853 393.25 397.931549 403.333344 405.166656 407.114594 408.571442 410.535706 412.401794 418. 422.976196 428.541656 434.107147 440.; abell1.scl, "Ross Abell's French Baroque Meantone 1 a'=520" 1 12 261.62558 273.682556 292.648773 305.958679 327.161621 342.041229 365.955994 391.316742 409.350555 437.718536 457.626373 489.339874; abell2.scl, "Ross Abell's French Baroque Meantone 2 a'=520" 1 12 261.62558 275.904724 294.684296 308.8 330.008575 348.02 369.140533 392.902191 412.674286 441.527557 463.211212 493.598114; abell3.scl, "Ross Abell's French Baroque Meantone 3 a' = 520" 1 12 261.62558 275.90506 293.495758 308.086823 329.246979 350.036316 368.714966 392.448944 412.283264 440.254669 462.142944 492.744019; abell4.scl, "Ross Abell's French Baroque Meantone 4 a'=520" 1 12 261.62558 274.950165 292.98703 308.264801 328.10788 346.015533 367.43869 391.542847 411.484161 438.477722 461.875336 491.038757; abell5.scl, "Ross Abell's French Baroque Meantone 5 a'=520" 1 12 261.62558 277.984314 295.878235 311.666595 331.154297 349.43 371.278961 395.63504 416.26535 442.293335 466.702606 495.884277; abell6.scl, "Ross Abell's French Baroque Meantone 6 a'=520" 1 12 261.62558 277.022583 293.325714 311.666595 330.008575 349.43 369.994415 391.769073 414.825195 440.763123 466.702606 494.168671; abell7.scl, "Ross Abell's French Baroque Meantone 7 a'=520" 1 12 261.62558 277.503021 294.344055 310.050568 328.866821 348.825012 369.994415 392.448547 416.26535 438.477722 465.087952 493.31308; abell8.scl, "Ross Abell's French Baroque Meantone 8 a'=520" 1 12 261.62558 277.823792 294.684296 311.486633 329.627563 350.036041 371.278961 392.448547 415.304688 441.017792 467.782166 494.454193; abell9.scl, "Ross Abell's French Baroque Meantone 9 a'=520" 1 12 261.62558 276.064148 293.325714 309.692596 330.2 348.623596 369.140533 391.995422 412.674286 440. 464.550964 493.883301; ad-dik.scl, "Amin Ad-Dik d'Erlanger vol 5 p.42" 1 24 261.62558 269.034882 275.622009 285.409698 294.328766 300.460602 310.074738 321.085907 327.031952 336.375732 348.834076 358.8 367.496002 378.422699 392.438354 400.614136 413.432983 428.114563 441.493134 453.484314 470.926025 479.646881 490.547943 508.71637; adjeng.scl, "Soeroepan adjeng" 1 5 261.62558 285.304688 305.782013 383.042236 417.710541; AEOLIC.SCL, "Ancient Greek Aeolic also tritriadic scale of the 54:64:81 triad" 1 7 261.62558 294.328766 310.074738 348.834076 392.438354 413.432983 465.112122; agricola.scl, "Agricola's Monochord Rudimenta musices (1539)" 1 12 261.62558 275.933228 294.328766 310.424866 331.119843 348.834076 367.91095 392.438354 413.9 441.493134 465.112122 496.679779; al-din.scl, "Safi al-Din's complete lute tuning on 5 strings 4/3 apart" 2 36 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659 516.208374 523.25116 551.244019 580.734436 588.657532 620.149475 653.326233 688.277832 697.668152 734.992004 774.312561 784.876709 826.865967 871.101624 917.703735 930.224243 979.989319 1032.416748 1046.502319 1102.488037; al-din_19.scl, "Arabic scale by Safi al-Din" 1 19 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 344.138916 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 458.851868 465.112122 489.994659 516.208374; al-farabi.scl, "Al-Farabi Syn Chrom" 1 7 261.62558 279.067261 299. 348.834076 392.438354 418.6 448.5; al-farabi_19.scl, "Arabic scale by Al Farabi" 1 19 261.62558 275.622009 285.409698 294.328766 310.074738 326.663116 331.119843 336.871338 348.834076 367.496002 380.546265 392.438354 413.432983 435.550812 441.493134 455.289795 465.112122 489.994659 507.39505; al-farabi_blue.scl, "Another tuning from Al Farabi c700 AD" 1 7 261.62558 294.328766 367.91095 380.810547 392.438354 490.547943 506.9; al-farabi_chrom.scl, "Al Farabi's Chromatic c700 AD" 1 7 261.62558 294.328766 353.194519 372.509827 392.438354 470.926025 497.088562; al-farabi_chrom2.scl, "Al-Farabi's Chromatic permuted" 1 7 261.62558 279.067261 325.578491 348.834076 392.438354 418.6 488.367737; al-farabi_diat.scl, "Al-Farabi's Diatonic" 1 7 261.62558 299. 341.715027 348.834076 392.438354 448.5 512.57251; AL-FARABI_DIAT2.scl, "Old Phrygian permuted form of Al-Farabi's reduplicated 10/9 diatonic genus same as ptolemy_diat.scl" 1 7 261.62558 290.695068 313.950684 348.834076 392.438354 436.042603 470.926025; al-farabi_div.scl, "Al Farabi's 10 intervals for the division of the tetrachord" 2 11 261.62558 275.622009 277.015289 284.451965 288.322052 294.328766 310.074738 311.642212 321.085907 331.119843 348.834076; al-farabi_div2.scl, "Al-Farabi's tetrachord division incl. extra 2187/2048 & 19683/16384" 2 13 261.62558 275.622009 277.015289 279.382385 284.451965 288.322052 294.328766 310.074738 311.642212 314.305176 321.085907 331.119843 348.834076; al-farabi_divo.scl, "Al Farabi's theoretical octave division with identical tetrachords 10th c." 1 24 261.62558 275.622009 277.015289 284.451965 288.322052 294.328766 310.074738 311.642212 321.085907 331.119843 348.834076 367.496002 369.353729 379.269287 392.438354 413.432983 415.522949 426.677948 432.483063 441.493134 465.112122 467.463318 481.628876 496.679779; AL-FARABI_dor.scl, "Dorian mode of Al-Farabi's 10/9 Diatonic" 1 7 261.62558 282.555603 313.950684 348.834076 392.438354 423.833405 470.926025; AL-FARABI_DOR2.scl, "Dorian mode of Al-Farabi's Diatonic" 1 7 261.62558 267.076111 305.229828 348.834076 392.438354 400.614136 457.844727; al-farabi_g1.scl, "Al-Farabi's Greek genus conjunctum medium Land" 1 7 261.62558 294.328766 331.119843 367.91095 392.438354 441.493134 490.547943; al-farabi_g10.scl, "Al-Farabi's Greek genus chromaticum forte" 1 7 261.62558 294.328766 343.383545 367.91095 392.438354 457.844727 490.547943; al-farabi_g11.scl, "Al-Farabi's Greek genus chromaticum mollissimum" 1 7 261.62558 294.328766 353.194519 372.509827 392.438354 470.926025 496.679779; al-farabi_g12.scl, "Al-Farabi's Greek genus mollissimum ordinantium" 1 7 261.62558 294.328766 367.91095 380.174652 392.438354 490.547943 506.9; al-farabi_g3.scl, "Al-Farabi's Greek genus conjunctum primum" 1 7 261.62558 294.328766 336.375732 378.422699 392.438354 448.5 504.563599; al-farabi_g4.scl, "Al-Farabi's Greek genus forte duplicatum primum" 1 7 261.62558 294.328766 336.375732 384.429413 392.438354 448.5 512.57251; al-farabi_g5.scl, "Al-Farabi's Greek genus conjunctum tertium or forte aequatum" 1 7 261.62558 294.328766 327.031952 359.735138 392.438354 436.042603 479.646881; al-farabi_g6.scl, "Al-Farabi's Greek genus forte disjunctum primum" 1 7 261.62558 294.328766 336.375732 373.750793 392.438354 448.5 498.334412; al-farabi_g7.scl, "Al-Farabi's Greek genus non continuum acre" 1 7 261.62558 294.328766 343.383545 374.6 392.438354 457.844727 499.46698; al-farabi_g8.scl, "Al-Farabi's Greek genus non continuum mediocre" 1 7 261.62558 294.328766 353.194519 378.422699 392.438354 470.926025 504.563599; al-farabi_g9.scl, "Al-Farabi's Greek genus non continuum laxum" 1 7 261.62558 294.328766 367.91095 383.717499 392.438354 490.547943 511.623322; Al-Hwarizmi.scl, "Al-Hwarizmi's tetrachord division" 2 7 261.62558 294.328766 302.738159 311.642212 321.085907 331.119843 348.834076; al-kindi.scl, "Al-Kindi's tetrachord division" 2 7 261.62558 275.622009 279.382385 294.328766 310.074738 331.119843 348.834076; al-kindi2.scl, "Arabic mode by al-Kindi" 1 14 261.62558 275.622009 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659; al-mausili.scl, "Arabic mode by Ishaq al-Mausili ? - 850 AD" 1 11 261.62558 275.622009 294.328766 310.074738 331.119843 348.834076 367.496002 392.438354 413.432983 441.493134 465.112122; albion.scl, "Terry Riley's Harp of New Albion scale inverse Malcolm's Monochord 1/1 on C#" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 465.112122 490.547943; alembert.scl, "Jean-Le Rond d'Alembert modified meantone (1752)" 1 12 261.62558 273.706116 292.506287 307.83252 327.031952 347.991211 365.928619 391.221466 409.451599 437.398895 462.867188 489.224609; alembert2.scl, "d'Alembert (?)" 1 12 261.62558 275. 292.577515 309.287903 327.031952 348.538757 367.080963 391.316742 412.034454 437.505432 464.324951 489.994293; alves.scl, "Bill Alves tuning for "Instantaneous Motion" 1/1 vol. 6/3" 1 13 261.62558 267.076111 294.328766 305.229828 327.031952 336.375732 348.834076 359.735138 392.438354 425.141541 448.5 457.844727 504.563599; angklung.scl, "Scale of an anklung set from Tasikmalaya. 1/1=174 Hz" 2 9 261.62558 294.704712 326.28 372.139709 421.006561 533.776306 589.409424 672.107056 757.812134; appunn.scl, "Probable tuning of A. Appunn's 36-tone harmonium w. 3 manuals 80/81 apart 1887" 1 36 261.62558 272.526642 275.933228 279.382385 287.106232 290.695068 294.328766 302.465851 306.246674 310.074738 322.994537 327.031952 331.119843 340.274078 344.527496 348.834076 363.368835 367.91095 372.509827 382.808319 387.593445 392.438354 408.79 413.9 419.073578 430.659363 436.042603 441.493134 453.698761 459.37 465.112122 484.491791 490.547943 496.679779 510.411102 516.79126; arabic.scl, "Arabic 17-tone Pythagorean mode Safi al-Din" 1 17 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659 516.208374; arabic_s.scl, "Schimatically altered Arabic 17-tone Pythagorean mode" 1 17 261.62558 275.622009 290.695068 294.328766 310.074738 327.031952 331.119843 348.834076 367.91095 387.593445 392.438354 413.432983 436.042603 441.493134 465.112122 490.547943 516.79126; ARCH_CHROM.SCL, "Archytas' Chromatic" 1 7 261.62558 271.315399 294.328766 348.834076 392.438354 406.973114 441.493134; ARCH_CHROMc2.scl, "Product set of 2 of Archytas' Chromatic" 1 14 261.62558 271.315399 294.328766 305.229828 331.119843 343.383545 348.834076 361.753876 392.438354 406.973114 422.046173 441.493134 457.844727 496.679779; ARCH_DOR.SCL, "Dorian mode of Archytas' Chromatic with added 16/9" 1 8 261.62558 271.315399 294.328766 348.834076 392.438354 406.973114 465.112122 441.493134; arch_enh.scl, "Archytas' Enharmonic" 1 7 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 418.6; ARCH_ENH2.SCL, "Archytas' Enharmonic with added 16/9" 1 8 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 465.112122 418.6; arch_enh3.scl, "Complex 9 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 271.315399 279.067261 336.375732 348.834076 358.8 448.5; ARCH_ENHp.scl, "Permutation of Archytas's Enharmonic with the 36/35 first" 1 7 261.62558 269.1 279.067261 348.834076 392.438354 403.650879 418.6; arch_enht.scl, "Complex 6 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 269.1 271.315399 279.067261 336.375732 348.834076 504.563599; ARCH_ENHt2.scl, "Complex 5 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 271.315399 279.067261 327.031952 348.834076 490.547943 508.71637; ARCH_ENHT3.scl, "Complex 1 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 271.315399 279.067261 281.364105 289.403107 348.834076 361.753876; arch_enht4.scl, "Complex 8 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 271.315399 279.067261 327.031952 339.144257 348.834076 436.042603; ARCH_ENHT5.scl, "Complex 10 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 263.77887 271.315399 279.067261 339.144257 348.834076 508.71637; arch_enht6.scl, "Complex 2 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 271.315399 279.067261 289.403107 297.671753 348.834076 372.089691; arch_enht7.scl, "Complex 11 of p. 113 based on Archytas's Enharmonic" 1 7 261.62558 269.1 271.315399 279.067261 287.040619 348.834076 358.8; arch_mult.scl, "Multiple Archytas" 1 12 261.62558 271.315399 279.067261 327.031952 336.375732 348.834076 361.753876 392.438354 406.973114 418.6 490.547943 504.563599; arch_ptol.scl, "Archytas/Ptolemy Hybrid 1" 1 12 261.62558 271.315399 279.067261 290.695068 310.074738 348.834076 361.753876 392.438354 406.973114 418.6 436.042603 465.112122; arch_ptol2.scl, "Archytas/Ptolemy Hybrid 2" 1 12 261.62558 271.315399 279.067261 294.328766 313.950684 348.834076 361.753876 392.438354 406.973114 418.6 441.493134 470.926025; arch_sept.scl, "Archytas Septimal" 1 12 261.62558 271.315399 279.067261 294.328766 310.074738 348.834076 361.753876 392.438354 406.973114 418.6 441.493134 465.112122; ariel1.scl, "Ariel 1" 1 12 261.62558 282.555603 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 470.926025 490.547943; ariel2.scl, "Ariel 2" 1 12 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 470.926025 490.547943; ariel3.scl, "Ariel's 12-tone JI scale" 1 12 261.62558 279.067261 290.695068 310.074738 322.994537 348.834076 363.368835 392.438354 418.6 436.042603 465.112122 484.491791; ariel_19.scl, "Ariel 19-tone scale" 1 19 261.62558 272.526642 279.067261 290.695068 302.807373 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 452.088989 470.926025 490.547943 502.321075; ariel_31.scl, "Ariel's 31-tone system" 1 31 261.62558 267.904572 272.526642 279.067261 283.881897 294.328766 301.392639 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 357.206116 363.368835 376.740814 383.24057 392.438354 401.856873 408.79 418.6 428.647339 436.042603 446.507629 454.21106 465.112122 482.228241 490.547943 502.321075 510.987427; arist_archenh.scl, "PsAristo Arch. Enharmonic 4 + 3 + 23 parts similar to Archytas' enharmonic" 1 7 261.62558 271.89679 279.863953 349.228241 391.995422 407.384888 419.322174; arist_chrom.scl, "Dorian Neo-Chromatic 6+18+6 parts = Athanasopoulos' Byzant.liturg. 2nd chromatic" 1 7 261.62558 277.182617 329.627563 349.228241 391.995422 415.304688 493.883301; arist_chrom2.scl, "Dorian Mode a 1:2 Chromatic 8 + 18 + 4 parts" 1 7 261.62558 282.571228 336.035736 349.228241 391.995422 423.378479 503.484711; arist_chrom3.scl, "PsAristo 3 Chromatic 7 + 7 + 16 parts" 1 7 261.62558 279.863892 299.372528 349.228699 391.994904 419.323883 448.556244; ARIST_CHROM4.scl, "PsAristo Chromatic 5.5000 + 5.5000 + 19 parts" 1 7 261.62558 275.851654 290.851166 349.228241 391.995422 413.310516 435.784332; arist_chromenh.scl, "Aristoxenos' Chromatic/Enharmonic 3 + 9 + 18 parts" 1 7 261.62558 269.291779 293.664764 349.228241 391.995422 403.481781 440.; ARIST_CHROMINV.scl, "Aristoxenos' Inverted Chromatic Dorian mode 18 + 6 + 6 parts" 1 7 261.62558 311.126984 329.627563 349.228241 391.995422 466.163757 493.883301; arist_chromrej.scl, "Aristoxenos Rejected Chromatic 6 + 3 + 21 parts" 1 7 261.62558 277.182617 285.304688 349.228241 391.995422 415.304688 427.47406; ARIST_CHROMunm.scl, "Unmelodic Chromatic genus of Aristoxenos Dorian Mode 4.5000 + 3.5000 + 22 parts" 1 7 261.62558 273.20871 282.571198 349.228241 391.995422 409.350555 423.378418; arist_diat.scl, "Phrygian octave species on E 12 + 6 + 12 parts" 1 7 261.62558 293.664764 311.126984 349.228241 391.995422 440. 466.163757; arist_diat2.scl, "PsAristo 2 Diatonic 7 + 11 + 12 parts" 1 7 261.62558 279.863953 311.126984 349.228241 391.995422 419.322174 466.163757; arist_diat3.scl, "PsAristo Diat 3 9.5000 + 9.5000 + 11 parts" 1 7 261.62558 286.681335 314.136688 349.228241 391.995422 429.536682 470.673218; arist_diat4.scl, "PsAristo Diatonic 8 + 8 + 14 parts" 1 7 261.62558 282.571228 305.193817 349.228241 391.995422 423.378479 457.274048; arist_diatdor.scl, "PsAristo Redup. Diatonic 14 + 2 + 14 parts" 1 7 261.62558 299.37381 305.193817 349.228241 391.995422 448.553894 457.274048; arist_diatinv.scl, "Lydian octave species on E major mode 12 + 12 + 6 parts" 1 7 261.62558 293.664764 329.627563 349.228241 391.995422 440. 493.883301; arist_diatred.scl, "Aristo Redup. Diatonic Dorian Mode 14 + 14 + 2 parts" 1 7 261.62558 299.37381 342.568481 349.228241 391.995422 448.553894 513.272766; arist_diatred2.scl, "PsAristo 2 Redup. Diatonic 2 4 + 13 + 13 parts" 1 7 261.62558 271.89679 308.146118 349.228241 391.995422 407.384888 461.69751; arist_diatred3.scl, "PsAristo 3 Redup. Diatonic 8 + 11 + 11 parts" 1 7 261.62558 282.571228 314.136688 349.228241 391.995422 423.378479 470.673218; arist_enh.scl, "Aristoxenos' Enharmonion Dorian mode" 1 7 261.62558 269.291779 277.182617 349.228241 391.995422 403.481781 415.304688; arist_enh2.scl, "PsAristo 2 Enharmonic 3.5000 + 3.5000 + 23 parts" 1 7 261.62558 270.591095 279.864014 349.228241 391.995422 405.428558 419.322235; arist_enh3.scl, "PsAristo Enharmonic 2.5000 + 2.5000 + 25 parts" 1 7 261.62558 267.998718 274.526947 349.228241 391.995422 401.544342 411.325653; arist_hemchrom.scl, "Aristoxenos's Chromatic Hemiolion Dorian Mode" 1 7 261.62558 273.20871 285.304688 349.228241 391.995422 409.350555 427.47406; arist_hemchrom2.scl, "PsAristo C/H Chromatic 4.5000 + 7.5000 + 18 parts" 1 7 261.62558 273.20871 293.664764 349.228241 391.995422 409.350555 440.; ARIST_HEMCHROM3.scl, "Dorian mode of Aristoxenos' Hemiolic Chromatic according to Ptolemy's interpret" 1 7 261.62558 271.818756 282.83844 348.834076 392.438354 407.728149 424.25766; arist_hypenh2.scl, "PsAristo 2nd Hyperenharmonic 37.5000 + 37.5000 + 425 cents" 1 7 261.62558 267.354431 273.20871 349.228241 391.995422 400.57901 409.350555; arist_hypenh3.scl, "PsAristo 3 Hyperenharmonic 1.5000 + 1.5000 + 27 parts" 1 7 261.62558 265.431 269.291779 349.228241 391.995422 397.697144 403.481781; arist_hypenh4.scl, "PsAristo 4 Hyperenharmonic 2 + 2 + 26 parts" 1 7 261.62558 266.71167 271.89682 349.228241 391.995422 399.615997 407.384949; ARIST_HYPENH5.scl, "PsAristo Hyperenharmonic 23 + 23 + 454 cents" 1 7 261.62558 265.124542 268.670288 349.228241 391.995422 397.237976 402.550629; arist_intdiat.scl, "Dorian mode of Aristoxenos's Intense Diatonic according to Ptolemy" 1 7 261.62558 275.395325 307.794769 348.834076 392.438354 413.092987 461.692169; ARIST_PENH2.SCL, "Permuted Aristoxenos's Enharmonion 3 + 24 + 3 parts" 1 7 261.62558 269.291779 339.286377 349.228241 391.995422 403.481781 508.355194; arist_penh3.scl, "Permuted Aristoxenos's Enharmonion 24 + 3 + 3 parts" 1 7 261.62558 329.627563 339.286377 349.228241 391.995422 493.883301 508.355194; arist_pschrom2.scl, "PsAristo 2 Chromatic 6.5000 + 6.5000 + 17 parts" 1 7 261.62558 278.52 296.505615 349.228241 391.995422 417.308502 444.256439; arist_softchrom.scl, "Aristoxenos's Chromatic Malakon Dorian Mode" 1 7 261.62558 271.89679 282.571228 349.228241 391.995422 407.384888 423.378479; ARIST_SOFTCHROM2.scl, "Aristoxenos' Soft Chromatic 6 + 16.5000 + 9.5000 parts" 1 7 261.62558 277.182617 324.901764 349.228241 391.995422 415.304688 486.802582; arist_SOFTCHROM3.scl, "Aristoxenos's Chromatic Malakon 9.5000 + 16.5000 + 6 parts" 1 7 261.62558 281.214355 329.627563 349.228241 391.995422 421.345428 493.883301; ARIST_SOFTCHROM4.scl, "PsAristo S. Chromatic 6 + 7.5000 + 16.5000 parts" 1 7 261.62558 277.182617 297.936218 349.228241 391.995422 415.304688 446.4; ARIST_SOFTCHROM5.scl, "Dorian mode of Aristoxenos' Soft Chromatic according to Ptolemy's interpretati" 1 7 261.62558 270.647125 280.31311 348.834076 392.438354 405.970703 420.469666; arist_softdiat.scl, "Aristoxenos's Diatonon Malakon Dorian Mode" 1 7 261.62558 277.182617 302.269806 349.228241 391.995422 415.304688 452.893005; ARIST_SOFTDIAT2.SCL, "Dorian Mode 6 + 15 + 9 parts" 1 7 261.62558 277.182617 320.243713 349.228241 391.995422 415.304688 479.823395; arist_SOFTDIAT3.scl, "Dorian Mode 9 + 15 + 6 parts" 1 7 261.62558 285.304688 329.627563 349.228241 391.995422 427.47406 466.163757; arist_softdiat4.scl, "Dorian Mode 9 + 6 + 15 parts" 1 7 261.62558 285.304688 302.269806 349.228241 391.995422 427.47406 452.893005; arist_softdiat5.scl, "Dorian Mode 15 + 6 + 9 parts" 1 7 261.62558 302.269806 320.243713 349.228241 391.995422 452.893005 479.823395; arist_softdiat6.scl, "Dorian Mode 15 + 9 + 6 parts" 1 7 261.62558 302.269806 329.627563 349.228241 391.995422 452.893005 493.883301; ARIST_SOFTDIAT7.scl, "Dorian mode of Aristoxenos's Soft Diatonic according to Ptolemy" 1 7 261.62558 275.395325 299. 348.834076 392.438354 413.092987 448.5; arist_synchrom.scl, "Aristoxenos's Chromatic Syntonon Dorian Mode" 1 7 261.62558 277.182617 293.664764 349.228241 391.995422 415.304688 440.; arist_syndiat.scl, "Aristoxenos's Diatonon Syntonon Dorian Mode" 1 7 261.62558 277.182617 311.126984 349.228241 391.995422 415.304688 466.163757; arist_unchrom.scl, "Aristoxenos's Unnamed Chromatic Dorian Mode 4 + 8 + 18 parts" 1 7 261.62558 271.89679 293.664764 349.228241 391.995422 407.384888 440.; arist_unchrom2.scl, "Dorian Mode a 1:2 Chromatic 8 + 4 + 18 parts" 1 7 261.62558 282.571228 293.664764 349.228241 391.995422 423.378479 440.; arist_unchrom3.scl, "Dorian Mode a 1:2 Chromatic 18 + 4 + 8 parts" 1 7 261.62558 311.126984 323.341583 349.228241 391.995422 466.163757 484.464996; arist_unchrom4.scl, "Dorian Mode a 1:2 Chromatic 18 + 8 + 4 parts" 1 7 261.62558 311.126984 336.035736 349.228241 391.995422 466.163757 503.484711; arith13.scl, "The first 13 terms of the arithmetic series octave reduced" 1 12 261.62558 269.801361 294.328766 318.856171 327.031952 343.383545 367.91095 371.99884 392.438354 449.668945 457.844727 490.547943; arith22.scl, "The first 22 terms of the arithmetic series octave reduced" 1 19 261.62558 269.801361 277.977173 294.328766 312.724304 318.856171 327.031952 343.383545 349.515411 367.91095 371.99884 388.350433 392.438354 429.229431 449.668945 457.844727 472.152374 490.547943 517.119263; aron-neidhardt.scl, "Aron-Neidhardt equal beating well temperament" 1 12 261.62558 275.622009 292.535187 310.074738 327.04 348.834076 367.496002 391.421326 413.432983 437.438568 465.112122 489.994659; artusi.scl, "Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals" 1 12 261.62558 276.635284 292.506287 309.287689 327.031952 349.91922 369.994415 391.221375 413.666382 437.398834 462.493103 489.026794; art_nam.scl, "Artificial Nam System" 1 9 261.62558 287.788116 317.688171 324.77655 348.834076 353.194519 392.438354 431.68219 473.417694; ATHAN_CHROM.SCL, "Athanasopoulos's Byzantine Liturgical mode Chromatic" 1 7 261.62558 285.304688 329.627563 349.228241 391.995422 427.47406 493.883301; auftetf.scl, "5/4 C.I. again" 2 9 261.62558 264.295227 269.801361 287.788116 359.735138 380.546265 384.429413 392.438354 418.6; augmented.scl, "Augmented temperament g=91.2 oct=1/3 5-limit" 1 6 261.62558 312.712128 329.627563 393.992584 415.304688 496.4; augteta.scl, "Linear Division of the 11/8 duplicated on the 16/11" 2 9 261.62558 280.76889 302.934875 328.9 359.735138 380.546265 408.391113 440.632538 478.401031; AUGTETA2.scl, "Linear Division of the 7/5 duplicated on the 10/7" 2 9 261.62558 281.75061 305.229828 332.977997 366.275787 373.750793 402.5 436.042603 475.682831; augtetb.scl, "Harmonic mean division of 11/8" 2 9 261.62558 270.859406 280.76889 302.934875 359.735138 380.546265 295.483002 408.391113 440.632538; augtetc.scl, "11/10 C.I." 2 9 261.62558 280.31311 301.875641 327.031952 359.735138 380.546265 407.728149 439.091858 475.682831; augtetd.scl, "11/9 C.I." 2 9 261.62558 271.68808 282.555603 294.328766 359.735138 380.546265 395.182678 410.99 428.114563; augtete.scl, "5/4 C.I." 2 9 261.62558 269.801361 278.504639 287.788116 359.735138 380.546265 392.438354 405.097656 418.6; augtetg.scl, "9/8 C.I." 2 9 261.62558 278.504639 297.711853 319.764587 359.735138 380.546265 405.097656 433.035431 465.112122; augteth.scl, "9/8 C.I. A gapped version of this scale is called AugTetI" 2 9 261.62558 278.504639 287.788116 319.764587 359.735138 380.546265 405.097656 418.6 465.112122; augtetj.scl, "9/8 C.I. comprised of 11:10:9:8 subharmonic series on 1 and 8:9:10:11 on 16/11" 2 7 261.62558 287.788116 319.764587 359.735138 380.546265 428.114563 475.682831; augtetk.scl, "9/8 C.I. This is the converse form of AugTetJ" 2 7 261.62558 294.328766 327.031952 359.735138 380.546265 418.6 465.112122; augtetl.scl, "9/8 C.I. This is the harmonic form of AugTetI" 2 7 261.62558 294.328766 327.031952 359.735138 380.546265 428.114563 475.682831; avg_bac.scl, "Average Bac System" 1 7 261.62558 290.695068 307.794769 348.834076 392.438354 436.042603 461.692169; avicenna.scl, "Soft diatonic of Avicenna (Ibn Sina)" 1 7 261.62558 290.695068 299. 348.834076 392.438354 436.042603 448.5; avicenna_19.scl, "Arabic scale by Ibn Sina" 1 19 261.62558 275.622009 283.496918 294.328766 310.074738 326.663116 331.119843 348.834076 358.8 372.509827 377.99588 392.438354 413.432983 425.245361 441.493134 465.112122 478.401031 496.679779 503.456116; AVICENNA_chrom.scl, "Dorian mode a chromatic genus of Avicenna" 1 7 261.62558 269.1 299. 348.834076 392.438354 403.650879 448.5; AVICENNA_CHROM2.SCL, "Dorian Mode a 1:2 Chromatic 4 + 18 + 8 parts" 1 7 261.62558 271.89682 323.341644 349.228241 391.995422 407.384949 484.465088; AVICENNA_CHROM3.scl, "Avicenna's Chromatic permuted" 1 7 261.62558 290.695068 339.144257 348.834076 392.438354 436.042603 508.71637; AVICENNA_diat.scl, "Dorian mode a soft diatonic genus of Avicenna" 1 7 261.62558 281.75061 305.229828 348.834076 392.438354 422.625916 457.844727; avicenna_diff.scl, "Difference tones of Avicenna's Soft diatonic reduced by 2/1" 1 12 261.62558 269.801361 286.152954 294.328766 310.680359 343.383545 367.91095 392.438354 400.614136 441.493134 457.844727 515.075317; AVICENNA_enh.scl, "Dorian mode of Avicenna's (Ibn Sina) Enharmonic genus" 1 7 261.62558 268.333923 279.067261 348.834076 392.438354 402.5 418.6; awad.scl, "d'Erlanger vol.5 p.37 after Mans.ur 'Awad" 1 24 261.62558 268.333923 275.395325 282.83844 290.695068 299. 307.794769 317.121887 327.031952 337.58136 348.834076 358.8 369.353729 380.546265 392.438354 402.5 413.092987 424.25766 436.042603 448.5 461.692169 475.682831 490.547943 506.37207; awraamoff.scl, "Awraamoff Septimal Just" 1 12 261.62558 294.328766 299. 313.950684 327.031952 343.383545 348.834076 392.438354 418.6 448.5 457.844727 490.547943; ayers.scl, "Lydia Ayers algorithmic composition." 2 37 261.62558 268.892944 276.575592 284.710175 293.337769 302.504547 312.262756 322.671539 333.798126 345.719482 358.523926 372.313293 387.205841 403.339417 420.875916 440.006622 460.95932 484.007294 509.481354 537.785889 569.420349 605.009094 645.343079 691.438965 744.626587 806.678833 880.013245 968.014587 1075.571777 1210.018188 1382.87793 1613.357666 1936.029175 2420.036377 3226.715332 4840.072754 9680.145508; ayers_19.scl, "Scale for NINETEEN for 19 for the 90's CD. Repeats at 37/19 (or 2/1)" 1 19 261.62558 268.892944 276.575592 284.710175 293.337769 302.504547 312.262756 322.671539 333.798126 345.719482 358.523926 372.313293 387.205841 403.339417 420.875916 440.006622 460.95932 484.007294 509.481354; ayers_ap.scl, "Lydia Ayers' Appetizer ICMC 96 Balinese Slendro from Singaraja" 1 5 261.62558 299. 336.375732 388.7 448.5; ayers_me.scl, "Scale for Merapi (1996) Lydia Ayers. Slendro 0 2 4 5 7 9 Pelog 0 1 3 6 8 9" 1 9 261.62558 280.31311 299. 308.344421 336.375732 392.438354 420.469666 448.5 504.563599; b10_13.scl, "10-tET approximation with minimal order 13 beats" 1 10 261.62558 281.75061 299. 322. 348.834076 370.63623 392.438354 425.141541 457.844727 485.876038; b12_17.scl, "12-tET approximation with minimal order 17 beats" 1 12 261.62558 277.015289 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 415.522949 436.042603 465.112122 494.18161; b14_19.scl, "14-tET approximation with minimal order 19 beats" 1 14 261.62558 275.395325 289.1651 305.229828 319.764587 336.375732 348.834076 370.63623 392.438354 408.79 429.813416 450.577362 474.19635 497.088562; b15_21.scl, "15-tET approximation with minimal order 21 beats" 1 15 261.62558 274.083923 287.788116 300.869415 313.950684 327.031952 348.834076 361.29245 377.903595 392.438354 415.522949 436.042603 457.844727 477.081909 499.46698; b8_11.scl, "8-tET approximation with minimal order 11 beats" 1 8 261.62558 285.409698 313.950684 340.11322 366.275787 404.330414 436.042603 479.646881; bach2.scl, "Well-temperament for Bach from Jacob Breetvelt's Tuner" 1 12 261.62558 275.933411 293.664764 310.42511 327.771637 349.228241 367.911224 391.995422 413.9 438.759583 465.637634 491.10257; badings1.scl, "Henk Badings harmonic scale Lydomixolydisch" 2 10 261.62558 294.328766 327.031952 359.735138 392.438354 425.141541 457.844727 523.25116 588.657532 654.063904; badings2.scl, "Henk Badings subharmonic scale Dorophrygisch" 2 10 261.62558 290.695068 327.031952 373.750793 402.5 436.042603 475.682831 523.25116 581.390137 654.063904; bagpipe2.scl, "Highland Bagpipe from Acustica4: 231 (1954) J.M.A Lenihan and S. McNeill" 1 9 261.62558 232.556061 261.62558 294.328766 327.031952 353.194519 392.438354 436.042603 470.926025; bagpipe3.scl, "Highland Bagpipe Allan Chatto 1991.0000 From Australian Pipe Band College" 1 9 261.62558 235.463013 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 470.926025; bagpipe4.scl, "Highland Bagpipe Ewan Macpherson in 'NZ Pipeband' Winter 1998" 2 10 261.62558 228.922363 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 457.844727 520.237427; balafon.scl, "Observed balafon tuning from Patna" 2 8 261.62558 291.467865 321.355499 354.512573 385.706512 428.95813 462.142212 529.942871; balafon2.scl, "Observed balafon tuning from West-Africa" 1 7 261.62558 285.634491 308.8 355.948914 397.467499 437.46579 476.784332; balafon3.scl, "Pitt-River's balafon tuning from West-Africa" 2 8 261.62558 292.817841 309.156403 351.860504 388.838257 414.346252 468.322876 525.978394; balafon4.scl, "Mandinka balafon scale from Gambia" 2 8 261.62558 285.469543 319.320129 354.512573 383.042236 430.198822 472.944275 505.719299; bamboo.scl, "Pythagorean scale with fifth average from Chinese bamboo tubes" 1 23 261.62558 268.980865 277.503021 286.295197 294.344055 303.66983 313.291046 323.217102 332.303955 342.832428 353.694427 363.638153 375.159363 387.045593 397.926941 410.534515 423.541565 435.448914 449.245331 463.478851 478.16333 491.606354 507.182007; bapere.scl, "African Bapere Horns Aerophone made of reed one note each" 2 6 261.62558 369.780762 418.434998 469.135132 528.414551 625.858643; BARBOUR_chrom1.scl, "Barbour's #1 Chromatic" 1 7 261.62558 266.47049 290.695068 348.834076 392.438354 399.705719 436.042603; barbour_chrom2.scl, "Barbour's #2 Chromatic" 1 7 261.62558 268.333923 290.695068 348.834076 392.438354 402.5 436.042603; BARBOUR_CHROM3.SCL, "Barbour's #3 Chromatic" 1 7 261.62558 265.778351 299. 348.834076 392.438354 398.667542 448.5; BARBOUR_CHROM3p.scl, "permuted Barbour's #3 Chromatic" 1 7 261.62558 294.328766 299. 348.834076 392.438354 441.493134 448.5; BARBOUR_CHROM3P2.scl, "permuted Barbour's #3 Chromatic" 1 7 261.62558 305.229828 310.074738 348.834076 392.438354 457.844727 465.112122; BARBOUR_CHROM4.SCL, "Barbour's #4 Chromatic" 1 7 261.62558 264.895874 294.328766 348.834076 392.438354 397.343842 441.493134; BARBOUR_CHROM4p.scl, "permuted Barbour's #4 Chromatic" 1 7 261.62558 290.695068 294.328766 348.834076 392.438354 436.042603 441.493134; BARBOUR_CHROM4P2.scl, "permuted Barbour's #4 Chromatic" 1 7 261.62558 310.074738 313.950684 348.834076 392.438354 465.112122 470.926025; barca.scl, Barca 1 12 261.62558 275.933411 293.222931 310.42511 328.389099 348.834076 367.911224 391.553009 413.9 438.842163 465.112122 491.472412; barca_a.scl, "Barca A" 1 12 261.62558 275.933411 293.664764 310.42511 329.131622 348.834076 368.604309 392.438354 413.9 439.834412 465.637634 492.583679; barkechli.scl, "Mehdi Barkechli 27-tone pyth. Arabic scale" 1 27 261.62558 265.195007 275.622009 279.382385 290.367218 294.328766 298.34436 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 397.79248 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779 516.208374; barnes.scl, "John Barnes' temperament (1979) made after analysis of Wohltemperierte Klavier" 1 12 261.62558 276.245178 293.002258 310.775848 328.141998 349.622833 368.326935 391.553009 414.367798 438.511902 466.163757 492.212982; beardsley_8.scl, "David Beardsley's scale used in "Sonic Bloom" 1999" 1 8 261.62558 294.328766 305.229828 336.375732 359.735138 392.438354 425.141541 457.844727; becket.scl, "Quasi-equal temperament by the Becket and Co. plan (1840)" 1 12 261.62558 277.211761 293.631805 311.16629 329.638824 349.365112 370.146698 392.0401 415.419403 440.049438 466.351166 494.06; belet.scl, "Belet Brian 1992 Proceedings of the ICMC pp.158-161." 1 13 261.62558 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 359.735138 392.438354 418.6 425.141541 457.844727 490.547943; bellingwolde.scl, "Current 1/6-P. comma mod.mean of Freytag organ in Bellingwolde. Ortgies 2002" 1 12 261.62558 275.622009 293.002258 311.478516 328.141998 349.622833 367.496002 391.553009 414.367798 438.511902 466.163757 491.10257; bellingwolde_org.scl, "Original tuning of the Freytag organ in Bellingwolde" 1 12 261.62558 275.622009 293.002258 311.478516 328.141998 349.622833 367.496002 392.438354 414.367798 438.511902 466.163757 492.212982; bemetzrieder2.scl, "Anton Bemetzrieder temperament 2 (1808) is Vallotti in F#." 1 12 261.62558 278.12326 294.328766 311.478516 331.119843 348.834076 371.669464 392.438354 416.243713 441.493134 466.163757 496.679779; bendeler.scl, "J. Ph. Bendeler well temperament" 1 12 261.62558 275.622009 292.75528 310.074738 328.193176 348.834076 367.496002 392.438354 413.432983 437.590881 465.112122 492.289734; bermudo.scl, "Irregular temperament of Fr.J. Bermudo (1555)" 1 12 261.62558 277.2 293.7 310.074738 329.705933 348.834076 369.598816 392.438354 415.798645 440.54953 465.112122 494.558899; bethisy.scl, "Bethisy temperament ordinaire see Pierre-Yves Asselin: Musique et temperament" 1 12 261.62558 275.077881 292.506287 309.11319 327.031952 348.473206 367.184937 391.221375 412.150909 437.398834 464.150238 489.994385; bey-r.scl, "Idris Ragib Bey vol.5 d'Erlanger p 40.0000 Idris Rag'ib Bey" 1 24 261.62558 269.995422 281.015656 288.12 294.328766 303.494476 311.459015 323.777679 335.777039 341.994202 348.834076 360.365784 371.064545 381.378387 392.438354 407.463318 417.228241 432.796631 450.284515 458.155334 465.112122 476.509033 487.198456 503.126099; bey_24.scl, "Yekta Bey 24-tone pyth. Arabic scale" 1 24 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779 516.208374; biezen.scl, "Jan van Biezen modified meantone (1974)" 1 12 261.62558 275.077606 292.506287 311.039215 327.031952 349.919128 366.770142 391.221466 412.616394 437.398895 466.558838 490.547943; biggulp.scl, "Big Gulp" 1 12 261.62558 269.801361 294.328766 305.229828 327.031952 343.383545 359.735138 392.438354 404.702057 441.493134 457.844727 490.547943; billeter.scl, "Organ well temperament of Otto Bernhard Billeter" 1 12 261.62558 276.089264 293.333344 310.6 328.141998 349.425476 368.119019 391.77417 414.133881 438.759583 465.9 491.657471; blackjack.scl, "21 note MOS of "MIRACLE" temperament Erlich & Keenan miracle1.scl TL 2-5-2001" 1 21 261.62558 274.526978 279.863953 293.664764 299.37381 314.136688 320.243713 326.469452 342.568481 349.228241 366.449554 373.573578 391.995422 399.616089 419.322174 427.47406 448.553894 457.274048 479.823395 489.151489 513.272766; blackjack_r.scl, "Rational "Wilson/Grady"-style version Paul Erlich TL 28-11-2001" 1 21 261.62558 274.706848 280.31311 294.328766 299. 313.950684 319.764587 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 428.114563 448.5 457.844727 479.646881 490.547943 515.075317; blackwood_6.scl, "Easley Blackwood whole tone scale arrangement of 4:5:7:9:11:13 1/1=G p.114" 1 6 261.62558 294.328766 327.031952 359.735138 425.141541 457.844727; blackwood_9.scl, "Blackwood scale with pure triads on I II III IV VI and dom.7th on V. page 83" 1 9 261.62558 290.695068 294.328766 327.031952 343.383545 348.834076 392.438354 436.042603 490.547943; blasquinten.scl, "Blasquintenzirkel. 23 fifths in 2 oct. C. Sachs Vergleichende Musikwiss. p. 28" 2 24 261.62558 286.295197 313.291046 342.832428 375.159363 387.045593 410.534515 423.541565 449.245331 463.478851 491.606354 507.182007 537.961731 555.006042 588.68811 607.339661 644.197693 664.60791 704.941467 727.276306 795.853882 870.897827 953.018066 1042.881592; boeth_chrom.scl, "Boethius's Chromatic. The CI is 19/16" 1 7 261.62558 275.622009 293.755035 348.834076 392.438354 413.432983 440.632538; boeth_enh.scl, "Boethius's Enharmonic with a CI of 81/64 and added 16/9" 1 8 261.62558 268.441467 275.622009 348.834076 392.438354 402.662201 465.112122 413.432983; bohlen-eg.scl, "Bohlen-Pierce with two tones altered by minor BP diesis slightly more equal" 2 14 261.62558 284.881165 311.459015 336.375732 366.275787 400.447296 436.042603 470.926025 512.786133 560.626221 610.459656 659.296448 720.805115 784.876709; bohlen-p.scl, "See Bohlen H. 13-Tonstufen in der Duodezime Acustica 39: 76-86 (1978)" 2 14 261.62558 282.555603 311.459015 336.375732 366.275787 400.447296 436.042603 470.926025 512.786133 560.626221 610.459656 659.296448 726.737671 784.876709; BOHLEN-P_9.scl, "Bohlen-Pierce subscale by J.R. Pierce with 3:5:7 triads" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 721.273193 784.876709; bohlen-p_9a.scl, "Pierce's 9 of 313 see Mathews et al. J. Acoust. Soc. Am. 84 1214-1222" 2 10 261.62558 284.881165 336.375732 366.275787 432.483063 470.926025 560.626221 610.459656 720.805115 784.876709; BOHLEN-P_EB.scl, "Bohlen-Pierce scale with equal beating 5/3 and 7/3" 2 14 261.62558 285.647156 310.525391 337.570374 366.970825 400.664886 435.560486 473.4953 514.734009 561.995239 610.941772 664.151306 721.995056 784.876709; bohlen-p_ebt.scl, "Bohlen-Pierce scale with equal beating 7/3 tenth" 2 14 261.62558 284.532043 309.68 337.288574 366.739746 399.072723 434.56955 472.435364 514.006348 559.645142 608.329712 661.778137 720.456543 784.876709; bohlen-p_ebt2.scl, "Bohlen-Pierce scale with equal beating 7/5 tritone" 2 14 261.62558 284.595398 309.708221 337.163879 367.18103 399.338837 434.496735 472.934692 514.95874 559.98 609.2 663.013855 721.847473 784.876709; bohlen-p_et.scl, "13-tone equal division of 3/1. Bohlen-Pierce equal approximation" 2 14 261.62558 284.696289 309.801453 337.120453 366.84848 399.197998 434.4 472.706543 514.390869 559.751038 609.111145 662.823914 721.273193 784.876709; bohlen5.scl, "5-limit version of Bohlen-Pierce" 2 14 261.62558 282.555603 313.950684 339.066742 363.368835 406.88 436.042603 470.926025 504.678955 565.111206 605.614746 654.063904 726.737671 784.876709; bohlen_11.scl, "11-tone scale by Bohlen generated from the 1/1 3/2 5/2 triad" 2 12 261.62558 290.695068 313.950684 348.834076 392.438354 436.042603 470.926025 523.25116 588.657532 654.063904 706.389038 784.876709; bohlen_12.scl, "12-tone scale by Bohlen generated from the 4:7:10 triad Acustica 39/2 1978" 2 13 261.62558 287.788116 313.950684 341.250732 373.750793 411.125885 457.844727 499.46698 549.413696 601.738831 654.063904 719.470276 784.876709; bohlen_8.scl, "See Bohlen H. 13-Tonstufen in der Duodezime Acustica 39: 76-86 (1978)" 1 8 261.62558 290.695068 313.950684 336.375732 366.275787 406.973114 436.042603 470.926025; bohlen_coh.scl, "Differentially coherent Bohlen-Pierce interval=2" 2 14 261.62558 283.776886 309.951904 336.216278 367.189392 398.34549 434.937134 471.954407 515.137329 559.162903 609.729614 662.480225 721.801697 784.876709; bohlen_delta.scl, "Bohlen's delta scale a mode B-P see Acustica 39: 76-86 (1978)" 2 10 261.62558 309.801453 337.120453 399.197998 434.4 472.706543 559.751038 609.111145 721.273193 784.876709; BOHLEN_D_JI.scl, "Bohlen's delta scale just version. "Dur" form "moll" is inversion." 2 10 261.62558 311.459015 336.375732 400.447296 436.042603 470.926025 560.626221 610.459656 726.737671 784.876709; bohlen_enh.scl, "Bohlen-Pierce scale all enharmonic tones" 2 50 261.62558 282.555603 284.881165 286.033783 288.38797 305.16 307.671661 308.916473 311.459015 332.2854 335.020264 336.375732 339.144257 363.285797 366.275787 367.757721 370.784546 395.57785 398.833649 400.447296 403.743164 427.224091 430.740326 432.483063 436.042603 470.926025 474.801941 476.722961 480.646606 508.6 512.786133 514.860779 519.098328 553.809021 558.367065 560.626221 565.240417 605.476318 610.459656 612.929504 617.974243 659.296448 664.722717 667.41217 672.905273 712.040161 717.9 720.805115 726.737671 784.876709; bohlen_eq.scl, "Most equal selection from all enharmonic Bohlen-Pierce tones" 2 14 261.62558 284.881165 308.916473 336.375732 366.275787 398.833649 436.042603 470.926025 514.860779 560.626221 610.459656 664.722717 720.805115 784.876709; bohlen_gamma.scl, "Bohlen's gamma scale a mode of the Bohlen-Pierce scale" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 514.390869 609.111145 721.273193 784.876709; BOHLEN_G_JI.scl, "Bohlen's gamma scale just version" 2 10 261.62558 282.555603 336.375732 366.275787 436.042603 470.926025 512.786133 610.459656 726.737671 784.876709; bohlen_harm.scl, "Bohlen's harmonic scale inverse of lambda" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 662.823914 784.876709; bohlen_h_ji.scl, "Bohlen's harmonic scale just version" 2 10 261.62558 282.555603 336.375732 366.275787 436.042603 470.926025 560.626221 610.459656 659.296448 784.876709; bohlen_lambda.scl, "Bohlen's lambda scale a mode of the Bohlen-Pierce scale" 2 10 261.62558 309.801453 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 721.273193 784.876709; bohlen_lambda_pyth.scl, "Dave Benson's BP-Pythagorean scale lambda mode of bohlen_pyth.scl" 2 10 261.62558 306.394714 336.375732 369.290405 432.483063 474.801941 556.049683 610.459656 714.921021 784.876709; bohlen_l_ji.scl, "Bohlen's lambda scale just version" 2 10 261.62558 311.459015 336.375732 366.275787 436.042603 470.926025 560.626221 610.459656 726.737671 784.876709; bohlen_mean.scl, "1/3 minor BP diesis (245/243) tempered 7/3 meantone scale" 2 14 261.62558 284.103851 310.609344 337.296051 366.275787 400.447296 434.852844 472.214478 512.786133 560.626221 608.794006 661.1 722.777222 784.876709; bohlen_pyth.scl, "Cycle of 13 7/3 BP tenths" 2 14 261.62558 287.225861 306.394714 336.375732 369.290405 393.936066 432.483063 474.801941 521.26178 556.049683 610.459656 670.193726 714.921021 784.876709; bohlen_t.scl, "Bohlen scale based on the twelfth" 2 9 261.62558 311.126984 349.228241 391.995422 440. 523.25116 587.329529 659.255127 783.990845; bohlen_t_ji.scl, "Bohlen scale based on twelfth just version" 2 9 261.62558 313.950684 348.834076 392.438354 436.042603 523.25116 588.657532 654.063904 784.876709; bolivia.scl, "Observed scale from pan-pipe from La Paz. 1/1=171 Hz." 2 8 261.62558 315.834808 401.621613 478.716064 581.254578 714.369324 884.075867 1042.881592; Boomsliter.scl, "Boomsliter & Creel basic set of their referential tuning." 1 12 261.62558 294.328766 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025; bossard.scl, "Ferdinand Bossard's Modified meantone (1743/44) organ in Klosterkirche Muri" 1 12 261.62558 274.07016 292.836884 312.1828 327.401703 349.622833 366.253113 391.77417 410.409454 437.769745 466.427032 489.718079; boulliau.scl, "Monsieur Boulliau's irregular temp. (1373) reported by Mersenne in 1636.0000" 1 12 261.62558 277.015289 294.328766 311.642212 331.119843 348.834076 369.353729 392.438354 415.522949 441.493134 465.112122 492.471649; bps_temp17.scl, "Bohlen-Pierce-Stearn temperament. Highest 7-limit error 8.4000 cents 2001" 2 18 261.62558 268.970764 290.206238 313.118256 337.839233 347.324127 374.745697 404.332184 436.254547 448.502502 483.91217 522.117432 563.33905 579.154968 624.8797 674.214539 727.444336 784.876709; breed-blues1.scl, "Graham Breed's blues scale in 22-tET" 1 7 261.62558 296.765167 326.183838 336.62442 394.059265 433.122833 446.986359; breed-blues2.scl, "Graham Breed's blues scale in 29-tET" 1 8 261.62558 294.836945 301.968933 324.416748 340.301575 392.776978 432.182739 453.344238; breed-dias13.scl, "13-limit Diaschismic temperament g=103.897 oct=1/2 13-limit" 1 46 261.62558 265.182831 268.788452 272.443085 277.80722 281.584503 285.413147 289.293823 294.99 299. 303.066071 307.186798 313.234985 317.493988 321.810852 326.186432 332.608734 337.131134 341.715027 346.361237 353.180756 357.982849 362.85025 369.994415 375.025146 380.124268 385.292725 392.878754 398.220642 403.635132 409.12326 417.178497 422.850769 428.6 434.427734 442.981171 449.004303 455.109283 461.297302 470.379791 476.775421 483.258026 489.828766 499.472992 506.264221 513.147766; breed-ht.scl, "Hemithird temperament g=193.202 5-limit" 1 19 261.62558 279.05069 285.703033 292.513947 311.996338 319.434052 327.049072 348.831665 357.147491 365.66156 390.015869 399.313477 408.832764 436.062408 446.457733 457.1 487.545349 499.167999 511.067719; breed-kleismic.scl, "Kleismic temperament g=317.080 5-limit" 1 7 261.62558 272.156372 314.211639 326.8591 377.367371 392.556946 453.217224; breed-magic.scl, "Graham Breed's Magic temperament g=380.384 9-limit close to 41-tET" 1 13 261.62558 294.316376 304.492889 315.021271 325.913696 366.637482 379.314636 392.43 406. 456.729736 472.521973 488.86026 505.763458; breed-mult29.scl, "Multiple-29 temperament g=15.563 oct=1/29 15-limit" 1 58 261.62558 263.988037 267.954163 270.373779 274.435852 276.914001 281.074341 283.612427 287.873413 290.4729 294.836945 297.5 301.968933 304.695679 309.273407 312.066132 316.754608 319.614868 324.416748 327.346222 332.264252 335.264587 340.301575 343.374481 348.533325 351.680573 356.964203 360.187561 365.598999 368.9 374.442688 377.823883 383.5 386.963257 392.776978 396.32373 402.278107 405.910645 412.009033 415.729431 421.975342 425.785767 432.182739 436.085327 442.637054 446.634033 453.344238 457.437927 464.310455 468.503143 475.541901 479.836029 487.045044 491.443054 498.826477 503.330841 510.892853 515.506165; breed.scl, "Graham Breed's fourth based 12-tone keyboard scale. Tuning List 23-10-97" 2 13 261.62558 265.195007 268.81311 279.382385 283.194061 294.328766 298.34436 310.074738 314.305176 318.593323 331.119843 335.637421 348.834076; breed4-3.scl, "Graham Breed's neutral third chain subset of 7+3 scale in 24-tET" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 427.47406 479.823395; breed7-3.scl, "Graham Breed's 7 + 3 scale in 24-tET" 1 10 261.62558 285.304688 293.664764 320.243713 349.228241 380.83609 391.995422 427.47406 466.163757 479.823395; breedt1.scl, "Graham Breed's 1/4 P temperament TL 10-06-99" 1 12 261.62558 275.622009 292.341278 310.074738 326.663116 348.834076 367.496002 391.111115 413.432983 437.028839 465.112122 489.994659; breedt2.scl, "Graham Breed's 1/5 P temperament TL 10-06-99" 1 12 261.62558 276.37 293.532135 310.91626 328.438568 349.780792 368.493347 392.438354 414.554993 439.106537 466.37439 492.657837; breedt3.scl, "Graham Breed's other 1/4 P temperament TL 10-06-99" 1 12 261.62558 276.557312 293.333344 311.126984 328.883942 350.017853 368.743103 392.438354 414.835968 438.511902 466.69046 491.657471; brown.scl, "Tuning of Colin Brown's Voice Harmonium Glasgow. Helmholtz/Ellis p. 470-473" 1 45 261.62558 272.526642 275.622009 275.933228 279.382385 287.106232 290.695068 291.023315 294.328766 306.246674 306.592468 310.074738 310.424866 322.994537 327.031952 331.119843 344.527496 344.916504 348.834076 349.227966 363.368835 367.496002 367.91095 372.509827 382.808319 387.593445 388.031067 392.438354 408.79 413.432983 413.9 430.659363 436.042603 436.534973 441.493134 459.37 459.888702 465.112122 465.637299 484.491791 489.994659 490.547943 496.679779 516.79126 517.374756; bulgaria.scl, "Bulgarian bagpipe tuning" 1 12 261.62558 271.792114 294.004211 314.015747 329.437225 351.048462 378.642639 393.356354 416.024994 442.548889 469.135132 491.606354; burma.scl, "Observed patala tuning from Burma" 2 8 261.62558 289.621796 320.243713 355.948914 393.583618 439.745911 480.655579 537.340576; burma2.scl, "Observed balafon tuning from Burma" 2 8 261.62558 279.433228 320.243713 359.461395 389.062927 424.521271 474.860413 522.043579; burma3.scl, "Burmese scale von Hornbostel" 1 7 261.62558 287.710297 317.688263 350.391479 389.3237 429.813324 476.143097; burt-forks.scl, "Warren Burt 19-tone Forks. Interval 5(3): pp. 13+23 Winter 1986-87" 1 19 261.62558 271.315399 279.067261 290.695068 294.328766 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 465.112122 470.926025 490.547943 504.563599; burt1.scl, "W. Burt's 13diatsub #1" 1 12 261.62558 272.090576 283.427704 295.750641 309.193848 340.11322 358.013947 377.903595 415.522949 425.141541 453.484314 485.876038; burt10.scl, "W. Burt's 19enhsub #10" 1 12 261.62558 265.113892 268.696533 272.377289 276.160309 355.063263 368.213745 382.375824 386.088226 389.873383 393.733521 397.670868; burt11.scl, "W. Burt's 19enhharm #11" 1 12 261.62558 344.244171 347.686615 351.129059 354.571503 358.013947 371.783691 385.553467 495.711609 502.596466 509.481354 516.366272; burt12.scl, "W. Burt's 19diatharm #12" 1 12 261.62558 302.934875 316.70462 330.474396 344.244171 358.013947 371.783691 385.553467 440.632538 468.172058 495.711609 509.481354; burt13.scl, "W. Burt's 23diatsub #13" 1 12 261.62558 273.517639 286.542297 293.531128 300.869415 334.3 353.963989 376.086761 401.15921 429.813416 445.732452 462.876007; burt14.scl, "W. Burt's 23enhsub #14" 1 12 261.62558 264.5 267.439453 270.444397 273.517639 334.3 353.963989 376.086761 382.056366 388.218567 394.582825 401.15921; burt15.scl, "W. Burt's 23enhharm #15" 1 12 261.62558 341.250732 346.938263 352.625763 358.313263 364. 386.750824 409.5 500.501068 506.188599 511.876099 517.563599; burt16.scl, "W. Burt's 23diatharm #16" 1 12 261.62558 295.750641 307.125671 318.5 341.250732 364. 386.750824 409.5 455. 466.376007 477.751038 500.501068; burt17.scl, "W. Burt's "2 out of 3 5 11 17 31 dekany" CPS with 1/1=3/1. 1/1 vol. 10(1) '98" 1 36 261.62558 262.277618 262.775299 280.510803 281.043091 281.335846 286.121033 286.66394 306.911835 308.56189 309.1474 336.612976 337.251709 337.602997 338.422729 339.418091 363.013977 369.188416 370.274261 396.015259 398.144379 399.315399 403.935577 406.107269 434.339325 434.791748 435.616791 437.958801 475.218323 476.868378 477.773254 478.270935 479.178467 521.207153 521.750122 522.740173; burt18.scl, "W. Burt's "2 out of 1 3 5 7 11 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) '98" 1 36 261.62558 268.268402 269.801361 270.503967 275.422241 281.043091 286.152954 295.095245 300.460602 306.592468 309.1474 314.76825 321.922089 324.604767 337.251709 343.383545 344.277771 354.114288 357.691193 367.91095 370.976868 375.575775 393.460327 404.702057 413.133331 421.564636 429.229431 432.806366 449.668945 463.7211 472.152374 490.547943 491.825409 500.76767 505.877563 515.075317; burt19.scl, "W. Burt's "2 out of 2 3 4 5 7 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) '98" 1 20 261.62558 268.268402 286.152954 294.328766 300.460602 306.592468 321.922089 327.031952 343.383545 357.691193 367.91095 375.575775 392.438354 400.614136 408.79 429.229431 457.844727 490.547943 500.76767 515.075317; burt2.scl, "W. Burt's 13enhsub #2" 1 12 261.62558 264.165619 266.755493 269.396606 272.090576 340.11322 344.418457 348.834076 353.36441 358.013947 412.258453 485.876038; burt20.scl, "Warren Burt tuning for "Commas" (1993) 1/1=263. XH 16" 1 12 261.62558 269.1 279.067261 279.382385 294.328766 298.007874 330.746399 335.25885 367.91095 376.740814 412.060272 418.6; burt3.scl, "W. Burt's 13enhharm #3" 1 12 261.62558 281.75061 332.063232 382.375824 387.407074 392.438354 397.469604 402.5 503.126099 508.157349 513.188599 518.219849; burt4.scl, "W. Burt's 13diatharm #4 see his post 3/30/94 in Tuning Digest #57" 1 12 261.62558 281.75061 301.875641 322. 342.125732 362.250793 382.375824 402.5 442.750946 462.876007 483.001038 503.126099; burt5.scl, "W. Burt's 17diatsub #5" 1 12 261.62558 277.977173 296.508972 317.688171 342.125732 277.977173 386.750824 404.330414 423.584259 444.763458 468.172058 494.18161; burt6.scl, "W. Burt's 17enhsub #6" 1 12 261.62558 265.530426 269.553619 273.7 277.977173 370.63623 386.750824 404.330414 408.977905 413.733459 418.6 423.584259; burt7.scl, "W. Burt's 17enhharm #7" 1 12 261.62558 323.184509 327.031952 330.879395 334.726837 338.574249 353.963989 369.353729 492.471649 500.166534 507.861389 515.556274; burt8.scl, "W. Burt's 17diatharm #8" 1 12 261.62558 277.015289 292.405029 307.794769 323.184509 338.574249 353.963989 369.353729 400.133209 430.912689 461.692169 492.471649; burt9.scl, "W. Burt's 19diatsub #9" 1 12 261.62558 268.696533 276.160309 292.405029 310.680359 355.063263 368.213745 382.375824 397.670868 414.240479 432.250946 451.898712; bushmen.scl, "Observed scale of South-African bushmen almost (4 notes) equal pentatonic" 1 4 261.62558 347.016327 394.266235 453.940613; cairo.scl, "P.42 of d'Erlanger vol.5. Congress of Arabic Music Cairo 1932" 1 26 261.62558 269.38382 276.034576 285.150482 293.631378 300.857361 309.8 312.202332 320.031281 327.933777 337.668518 348.834076 357.411987 367.916687 380.214447 392.438354 401.020172 414.620544 417.265656 427.772339 440.447083 451.935669 468.863007 480.046906 491.777374 510.987427; canright.scl, "David Canright's piano tuning for "Fibonacci Suite" (2001)" 1 9 261.62558 286.484253 306.034424 335.112701 357.981354 391.995422 418.74588 458.533569 489.824677; carlos_alpha.scl, "Wendy Carlos' Alpha scale with perfect fifth divided in nine" 2 19 261.62558 273.682556 286.295197 299.489105 313.291046 327.729034 342.832428 358.631836 375.159363 392.448547 410.534515 429.453979 449.245331 469.948792 491.606354 514.261963 537.961731 562.753662 588.68811; carlos_alpha2.scl, "Wendy Carlos' Alpha prime scale with perfect fifth divided by eightteen" 2 37 261.62558 267.586151 273.682556 279.917847 286.295197 292.817841 299.489105 306.312347 313.291046 320.428741 327.729034 335.195679 342.832428 350.643158 358.631836 366.802521 375.159363 383.706573 392.448547 401.389679 410.534515 419.887695 429.453979 439.23819 449.245331 459.480469 469.948792 480.655579 491.606354 502.80658 514.261963 525.978394 537.961731 550.218079 562.753662 575.574829 588.68811; carlos_beta.scl, "Wendy Carlos' Beta scale with perfect fifth divided by eleven" 2 23 261.62558 271.44693 281.636993 292.209595 303.179077 314.560364 326.368896 338.620697 351.332458 364.521393 378.205475 392.403229 407.133942 422.417664 438.275146 454.727905 471.798279 489.509491 507.88559 526.951477 546.733154 567.257385 588.552124; carlos_beta2.scl, "Wendy Carlos' Beta prime scale with perfect fifth divided by twentytwo" 2 45 261.62558 266.490997 271.44693 276.495026 281.636993 286.874603 292.209595 297.643799 303.179077 308.817291 314.560364 320.410217 326.368896 332.438354 338.620697 344.91803 351.332458 357.86618 364.521393 371.3 378.205475 385.238922 392.403229 399.7 407.133942 414.705414 422.417664 430.273346 438.275146 446.42572 454.727905 463.184448 471.798279 480.572296 489.509491 498.612885 507.88559 517.330688 526.951477 536.751221 546.733154 556.9 567.257385 577.806641 588.552124; carlos_Gamma.scl, "Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty" 2 36 261.62558 266.983887 272.451965 278.032013 283.726349 289.537323 295.467316 301.518738 307.694122 313.995972 320.42688 326.989502 333.686554 340.520752 347.494904 354.611908 361.874695 369.286194 376.849518 384.567719 392.444 400.481628 408.683838 417.054047 425.595673 434.312256 443.207367 452.284637 461.547852 471. 480.647278 490.491364 500.537048 510.788483 521.249878 531.925537; carlos_harm.scl, "Carlos Harmonic & Ben Johnston's scale of 'Blues' from Suite f.micr.piano (1977) & David Beardsley's scale of 'Science Friction'" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 425.141541 441.493134 457.844727 490.547943; carlos_super.scl, "Carlos Super Just" 1 12 261.62558 277.977173 294.328766 313.950684 327.031952 348.834076 359.735138 392.438354 425.141541 436.042603 457.844727 490.547943; carlson.scl, "Brian Carlson's guitar scale (or 7 is 21/16 instead) fretted by Mark Rankin" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 457.844727 470.926025 490.547943 508.71637; cassandra1.scl, "Cassandra temperament (Erv Wilson) 13-limit g=497.866" 1 41 261.62558 265.523132 271.43631 275.48 279.583984 283.749084 290.068146 294.389435 298.775085 305.428772 309.978912 314.596802 319.283508 326.393921 331.256378 336.191254 343.678192 348.798157 353.994354 359.267975 367.268829 372.740234 378.293121 386.717682 392.47879 398.325745 407.196411 413.262604 419.419189 425.66748 435.147034 441.629639 448.208832 458.190369 465.016266 471.943848 478.97464 489.641327 496.93576 504.338867 515.570435; cassandra2.scl, "Cassandra temperament schismic variant 13-limit g=497.395" 1 41 261.62558 265.345947 270.181305 275.104797 279.016846 284.101349 289.278473 293.39209 298.738556 304.182434 309.725494 314.129883 319.854218 325.682892 330.314178 336.333466 342.462433 348.703064 353.661713 360.106445 366.66864 371.882721 378.659515 385.559784 392.585785 398.168457 405.424225 412.812225 418.682526 426.312134 434.08075 440.253479 448.276184 456.445068 464.762817 471.371826 479.961609 488.707886 495.65741 504.689728 513.886658; catler.scl, "Catler 24-tone JI from "Over and Under the 13 Limit" 1/1 3(3)" 1 24 261.62558 269.801361 279.067261 294.328766 299. 305.229828 313.950684 318.934021 322. 327.031952 343.383545 348.834076 359.735138 367.91095 380.546265 392.438354 418.6 425.141541 436.042603 441.493134 457.844727 465.112122 483.001038 490.547943; ceb88f.scl, "88 cents steps with equal beating fifths" 2 14 261.62558 275.302795 289.608521 304.803101 320.695831 337.318848 354.974731 373.441864 393.056488 413.572327 435.030884 457.822754 481.661896 506.596405; ceb88s.scl, "88 cents steps with equal beating sevenths" 2 15 261.62558 275.277496 289.607117 304.748779 320.64209 337.32428 354.951904 373.454529 392.87558 413.397247 434.937592 457.54715 481.438049 506.514862 533.012817; ceb88t.scl, "88 cents steps with equal beating 7/6 thirds" 2 15 261.62558 275.203857 289.6091 304.541016 320.382324 337.188477 354.609009 373.090576 392.697723 413.021698 434.583496 457.458527 481.16983 506.325287 533.012817; cet105.scl, "Equal temperament with very good 6/5 and 13/8" 2 14 261.62558 277.984375 295.366058 313.834595 333.457886 354.308197 376.46225 400.001495 425.012634 451.587616 479.82431 509.826538 541.704773 575.576233; cet105a.scl, "18th root of 3" 2 19 261.62558 278.091003 295.592651 314.195801 333.97 354.988159 377.329346 401.076599 426.31839 453.148773 481.667725 511.981506 544.203125 578.452576 614.857544 653.55365 694.685059 738.40509 784.876709; cet111.scl, "25th root of 5 Karlheinz Stockhausen in "Studie II" (1954)" 2 26 261.62558 279.022339 297.575928 317.36322 338.466248 360.972565 384.975403 410.57431 437.875427 466.991943 498.044525 531.161987 566.481567 604.149719 644.322632 687.166809 732.86 781.591431 833.563293 888.991028 948.104431 1011.148621 1078.384888 1150.092041 1226.567261 1308.127808; cet111a.scl, "17th root of 3.0000 McLaren 'Microtonal Music' volume 1 track 8" 2 18 261.62558 279.091187 297.722809 317.598206 338.8 361.418152 385.545746 411.284058 438.740601 468.03 499.274902 532.605591 568.161316 606.090698 646.552185 689.714783 735.75885 784.876709; cet112.scl, "53rd root of 31.0000 McLaren 'Microtonal Music' volume 4 track 16" 2 54 261.62558 279.138062 297.822815 317.75827 339.028168 361.721802 385.934479 411.767883 439.330536 468.738129 500.114197 533.590515 569.307617 607.415527 648.07428 691.45459 737.738708 787.120972 839.808716 896.023254 956. 1019.992737 1088.268311 1161.114014 1238.835938 1321.760254 1410.235229 1504.63269 1605.348633 1712.806396 1827.457031 1949.782104 2080.295166 2219.544678 2368.11499 2526.630127 2695.755859 2876.202637 3068.727783 3274.140137 3493.302246 3727.134521 3976.618896 4242.803223 4526.804688 4829.816895 5153.111816 5498.047363 5866.071777 6258.730957 6677.67334 7124.658691 7601.564453 8110.392578; cet114.scl, "21st root of 4" 2 22 261.62558 279.47934 298.551483 318.92514 340.689117 363.938324 388.774109 415.304688 443.645782 473.920929 506.262085 540.810303 577.716064 617.140381 659.255127 704.243774 752.302612 803.640991 858.482788 917.067139 979.649353 1046.502319; cet117.scl, "72nd root of 128 step = generator of Miracle" 2 37 261.62558 279.863953 299.37381 320.243713 342.568481 366.449554 391.995422 419.322174 448.553894 479.823395 513.272766 549.053955 587.329529 628.273376 672.071472 718.922791 769.040222 822.651428 880. 941.346436 1006.969421 1077.167114 1152.258423 1232.584473 1318.510254 1410.426025 1508.74939 1613.927124 1726.437012 1846.79 1975.533203 2113.251221 2260.569824 2418.158447 2586.732666 2767.058594 2959.955322; cet118.scl, "16th root of 3.0000 McLaren 'Microtonal Music' volume 1 track 7" 2 17 261.62558 280.220734 300.137543 321.47 344.318604 368.791229 395.003235 423.078278 453.148773 485.356537 519.853516 556.802307 596.377319 638.765137 684.165649 732.793091 784.876709; cet126.scl, "15th root of 3.0000 McLaren 'Microtonal Music' volume 1 track 6" 2 16 261.62558 281.506409 302.897949 325.91507 350.681213 377.329346 406.002472 436.854462 470.050842 505.769836 544.203125 585.556885 630.053162 677.930664 729.44635 784.876709; cet126a.scl, "19th root of 4" 2 20 261.62558 281.428162 302.729614 325.643402 350.291534 376.805328 405.325928 436.00528 469.006775 504.506195 542.692566 583.769287 627.955078 675.485413 726.613281 781.611084 840.771667 904.410156 972.865479 1046.502319; cet133.scl, "13th root of e" 2 14 261.62558 282.544891 305.136902 329.535339 355.884644 384.34082 415.072327 448.261108 484.103607 522.812073 564.615601 609.761658 658.517639 711.171997; cet140.scl, "24th root of 7" 2 25 261.62558 283.721741 307.684082 333.670197 361.851074 392.411987 425.554016 461.495117 500.47171 542.740112 588.57843 638.288147 692.196167 750.657166 814.055542 882.808411 957.36792 1038.224487 1125.91 1221.001343 1324.123657 1435.955444 1557.232178 1688.751709 1831.378906; cet141.scl, "17th root of 4" 2 18 261.62558 283.854309 307.97168 334.138153 362.527832 393.32962 426.748444 463.006653 502.34552 545.026733 591.334351 641.576416 696.08728 755.229614 819.396851 889.015991 964.550293 1046.502319; cet146.scl, "13th root of 3 Bohlen-Pierce approximation" 2 14 261.62558 284.696289 309.801453 337.120453 366.84848 399.197998 434.4 472.706543 514.390869 559.751038 609.111145 662.823914 721.273193 784.876709; cet148.scl, "21th root of 6 Moreno's C-21" 2 22 261.62558 284.927917 310.305756 337.943939 368.043762 400.824524 436.524994 475.405212 517.748352 563.862976 614.084839 668.78 728.346497 793.218567 863.868591 940.811218 1024.607056 1115.866211 1215.253784 1323.493408 1441.373779 1569.753418; cet152.scl, "13th root of pi" 2 14 261.62558 285.708069 312.007385 340.727325 372.091125 406.341949 443.745575 484.592133 529.198364 577.910828 631.107239 689.2 752.640991 821.921265; cet158.scl, "12th root of 3 Moreno's A-12 see dissertation "Embedding Equal Pitch Spaces." 2 13 261.62558 286.708313 314.195801 344.318604 377.329346 413.504944 453.148773 496.593353 544.203125 596.377319 653.55365 716.211548 784.876709; cet159.scl, "4e-th root of e. e-th root of e is highest x-th root of x" 2 9 261.62558 286.82843 314.459106 344.751526 377.962036 414.371796 454.288971 498.051453 546.029602; cet160.scl, "15th root of 4 Rudolf Escher in "The Long Christmas Dinner" (1960)" 2 16 261.62558 286.957458 314.742096 345.21701 378.642639 415.304688 455.516571 499.621948 547.997864 601.057739 659.255127 723.087463 793.1 869.892334 954.119629 1046.502319; cet160a.scl, "37th root of 31.0000 McLaren 'Microtonal Music' volume 2 track 7" 2 38 261.62558 287.069641 314.98822 345.622009 379.235046 416.117096 456.586029 500.990723 549.713928 603.17572 661.836792 726.202881 796.828857 874.323425 959.354675 1052.655518 1155.030151 1267.361206 1390.616821 1525.859497 1674.255127 1837.082764 2015.74585 2211.784668 2426.88916 2662.913086 2921.891357 3206.056396 3517.857422 3859.982178 4235.379883 4647.286621 5099.252441 5595.173828 6139.325195 6736.397949 7391.537598 8110.392578; cet163.scl, "9th root of 7/3. Jeff Scott in "Quiet Moonlight" (2001)" 2 10 261.62558 287.452759 315.82959 347.00769 381.263672 418.901306 460.254486 505.69 555.610779 610.459656; cet163a.scl, "5th root of 8/5" 2 9 261.62558 287.41153 315.738953 346.858368 381.044922 418.6 459.858429 505.182343 554.973389; cet166.scl, "3rd root of 4/3" 2 4 261.62558 287.956207 316.936798 348.834076; cet173.scl, "11th root of 3 Moreno's A-11" 2 12 261.62558 289.104492 319.469574 353.023926 390.10257 431.075623 476.352173 526.384155 581.671082 642.764832 710.275391 784.876709; cet175.scl, "28th root of 7.0000 McLaren 'Microtonal Music' volume 6 track 3" 2 29 261.62558 289.484161 320.309174 354.416565 392.155762 433.913544 480.117798 531.242004 587.81 650.401611 719.658081 796.289185 881.0802 974.9 1078.709839 1193.57373 1320.668579 1461.296875 1616.9 1789.071411 1979.576416 2190.366943 2423.603027 2681.674561 2967.226318 3283.18457 3632.786621 4019.615234 4447.634766; cet175a.scl, "4th root of 3/2" 2 8 261.62558 289.536285 320.424561 354.608063 392.438354 434.304413 480.636841 531.912109; cet178.scl, "27th root of 16" 2 28 261.62558 289.919373 321.27301 356.017456 394.519379 437.18512 484.464996 536.858032 594.917114 659.255127 730.551025 809.557251 897.107788 994.126526 1101.637451 1220.775269 1352.797363 1499.097168 1661.21875 1840.873169 2039.956543 2260.569824 2505.041748 2775.952393 3076.160889 3408.835938 3777.488281 4186.009277; cet181.scl, "6.6250 tET. The 16/3 is the so-called Kidjel Ratio promoted by Kidjel in 60's" 2 17 261.62558 290.480927 322.518799 358.09021 397.584869 441.435516 490.122559 544.179443 604.198364 670.836914 744.825256 826.973877 918.182983 1019.45166 1131.889648 1256.728516 1395.336304; cet182.scl, "17th root of 6 Moreno's C-17" 2 18 261.62558 290.705872 323.018494 358.92276 398.817841 443.1474 492.404266 547.136108 607.951599 675.526855 750.61322 834.045654 926.75177 1029.762329 1144.2229 1271.405884 1412.725586 1569.753418; cet195.scl, "7th root of 11/5" 2 8 261.62558 292.817963 327.729279 366.802887 410.535095 459.481262 514.263062 575.576233; cet21k.scl, "scale of syntonic comma's almost 56-tET" 2 57 261.62558 264.895874 268.207092 271.559662 274.954163 278.391083 281.870972 285.394379 288.961792 292.573822 296.230988 299.933899 303.683044 307.479095 311.322571 315.214111 319.154297 323.143707 327.183014 331.272797 335.413727 339.606384 343.851471 348.149597 352.501495 356.907745 361.36911 365.8862 370.459778 375.090546 379.779175 384.526398 389.332977 394.2 399.127136 404.116241 409.167694 414.282288 419.460815 424.704071 430.012878 435.388031 440.830383 446.340759 451.92 457.569031 463.288635 469.079742 474.943237 480.88 486.891022 492.977173 499.139374 505.378632 511.695862 518.092041 524.568237; cet222.scl, "14th root of 6 Moreno's C-14" 2 15 261.62558 297.346222 337.943939 384.084595 436.524994 496.125275 563.862976 640.849121 728.346497 827.790161 940.811218 1069.263428 1215.253784 1381.176514 1569.753418; cet233.scl, "21st root of 17.0000 McLaren 'Microtonal Music' volume 2 track 15" 2 22 261.62558 299.414612 342.661865 392.155762 448.798492 513.622681 587.81 672.713013 769.879272 881.0802 1008.342896 1153.987305 1320.668579 1511.425171 1729.734497 1979.576416 2265.505127 2592.733398 2967.226318 3395.810791 3886.3 4447.634766; cet24.scl, "least squares fit primes 2-13" 2 51 261.62558 265.341095 269.109406 272.931244 276.807343 280.738495 284.725464 288.769073 292.87 297.029358 301.247681 305.52594 309.864929 314.265564 318.728668 323.255188 327.845978 332.501953 337.22406 342.013245 346.870422 351.7966 356.792725 361.859802 366.99884 372.210876 377.496918 382.858032 388.295288 393.809753 399.402557 405.074768 410.827515 416.661987 422.579315 428.580688 434.667297 440.840332 447.101013 453.450653 459.890442 466.421692 473.045685 479.763763 486.57724 493.487488 500.49588 507.60379 514.812683 522.123901 529.53894; cet258.scl, "12th root of 6 Moreno's C-12" 2 13 261.62558 303.756866 352.672882 409.466125 475.405212 551.962891 640.849121 744.049377 863.868591 1002.983093 1164.5 1352.027344 1569.753418; cet29.scl, "95th root of 5" 3 96 51.913086 52.8 53.702194 54.619736 55.552956 56.502121 57.467503 58.449379 59.448032 60.463749 61.496819 62.547539 63.616211 64.70314 65.808647 66.933037 68.076645 69.239784 70.422798 71.626022 72.849815 74.094505 75.360466 76.648064 77.957649 79.289619 80.644341 82.022217 83.42363 84.848984 86.298691 87.773178 89.27285 90.798141 92.349495 93.927361 95.532181 97.164421 98.824554 100.513046 102.230392 103.977074 105.753601 107.560486 109.398239 111.267395 113.16848 115.102051 117.068657 119.068871 121.103249 123.172394 125.276894 127.417343 129.59436 131.808578 134.060638 136.351166 138.680832 141.050293 143.460251 145.911377 148.404388 150.94 153.518921 156.141907 158.809723 161.523102 164.282852 167.089752 169.944611 172.848236 175.801483 178.805191 181.860214 184.967438 188.127747 191.342056 194.611282 197.936371 201.318268 204.757935 208.256393 211.814606 215.433624 219.114471 222.858215 226.665924 230.538681 234.477615 238.483841 242.558533 246.70282 250.917938 255.205063 259.56543; cet39.scl, "49th root of 3" 2 50 261.62558 267.557648 273.624207 279.828339 286.173126 292.661774 299.297577 306.083801 313.023926 320.121399 327.379791 334.802765 342.394043 350.15744 358.096893 366.216339 374.519867 383.011688 391.696075 400.577332 409.66 418.948578 428.447784 438.162354 448.097198 458.257294 468.647766 479.273834 490.140839 501.254242 512.619629 524.242737 536.129333 548.285461 560.717224 573.430908 586.4328 599.729492 613.327698 627.234253 641.456055 656. 670.874451 686.085815 701.642029 717.550964 733.820679 750.459229 767.475037 784.876709; cet39a.scl, "31-tET with least squares octave equal weight to 5/4 3/2 7/4 and 2/1" 2 32 261.62558 267.55 273.608429 279.804199 286.140289 292.61969 299.245972 306.022308 312.951904 320.038635 327.285797 334.696899 342.276001 350.026764 357.952789 366.058533 374.347809 382.824585 391.493561 400.358795 409.424561 418.695862 428.177124 437.872803 447.7883 457.928345 468.297729 478.902191 489.746796 500.83667 512.177979 523.776062; cet39b.scl, "31-tET with l.s. 8/7 5/4 4/3 3/2 8/5 7/4 2/1 equal weights" 2 32 261.62558 267.544434 273.597382 279.787079 286.117004 292.59 299.209503 305.978668 312.901123 319.98 327.219086 334.622101 342.192383 349.934174 357.850891 365.946899 374.225891 382.692169 391.350189 400.203888 409.258118 418.516937 427.985474 437.667999 447.569794 457.695374 468.05 478.639191 489.467651 500.541382 511.865356 523.445801; cet39c.scl, "10th root of 5/4" 2 32 261.62558 267.529205 273.56604 279.739105 286.051483 292.506287 299.10672 305.85614 312.757843 319.815277 327.031952 334.411499 341.95755 349.673889 357.564331 365.632843 373.883423 382.32016 390.947296 399.769073 408.79 418.014374 427.44693 437.092346 446.955414 457.041046 467.354279 477.9 488.684113 499.711365 510.987427 522.517944; cet39d.scl, "31-tET with l.s. 5/4 3/2 7/4" 2 32 261.62558 267.557861 273.624664 279.829071 286.174103 292.663055 299.3 306.085663 313.026093 320.123871 327.382599 334.805939 342.397583 350.161377 358.101196 366.221069 374.525055 383.017303 391.702148 400.583893 409.667053 418.956146 428.455902 438.171021 448.106445 458.267181 468.658264 479.285004 490.152679 501.266785 512.632874 524.256714; cet39e.scl, "15th root of 7/5 X.J. Scott" 2 16 261.62558 267.560516 273.630127 279.837433 286.185516 292.677612 299.317017 306.106995 313.051025 320.152588 327.415222 334.842621 342.438507 350.206726 358.151154 366.275787; cet44.scl, "least maximum error of 10.0911 cents to a set of 11-limit consonances" 2 29 261.62558 268.365112 275.27829 282.369537 289.643463 297.104767 304.758301 312.608948 320.661865 328.922211 337.395355 346.086761 355.002075 364.147034 373.527557 383.14975 393.019806 403.144135 413.529236 424.181885 435.108948 446.317505 457.814758 469.608215 481.705475 494.114349 506.842896 519.9 533.292114; cet45.scl, "11th root of 4/3" 2 12 261.62558 268.558136 275.674377 282.979034 290.477417 298.1745 306.075531 314.185913 322.51123 331.056946 339.829285 348.834076; cet45a.scl, "13th root of 7/5 X.J. Scott" 2 14 261.62558 268.485474 275.525269 282.749634 290.163422 297.771606 305.579254 313.591675 321.814148 330.252228 338.91153 347.797913 356.917297 366.275787; cet49.scl, "least squares fit primes 3-13" 2 26 261.62558 269.108826 276.806152 284.723633 292.867584 301.244476 309.860962 318.723907 327.840363 337.21759 346.863007 356.784332 366.989441 377.48642 388.283661 399.38974 410.813477 422.563965 434.650574 447.082886 459.870789 473.024445 486.554382 500.471283 514.786255 529.510681; cet49a.scl, "least squares fit primes 5-13" 2 26 261.62558 269.109406 276.807312 284.725403 292.87 301.24762 309.864838 318.728546 327.845825 337.223907 346.870239 356.792511 366.998596 377.496643 388.295013 399.402191 410.827148 422.578918 434.66684 447.1 459.889893 473.045105 486.57663 500.495209 514.811951 529.538208; cet49b.scl, "least squares fit primes 3-11" 2 26 261.62558 269.110901 276.810364 284.730164 292.876526 301.255951 309.875153 318.740936 327.860382 337.240723 346.889465 356.81427 367.02301 377.523834 388.325104 399.435425 410.863586 422.618744 434.710236 447.147644 459.940918 473.1 486.635986 500.559052 514.880432 529.611633; cet51.scl, "47nd root of 4" 2 48 261.62558 269.457306 277.523499 285.831146 294.387482 303.2 312.276215 321.624176 331.251984 341.167969 351.380829 361.9 372.732819 383.890533 395.382263 407.218018 419.408051 431.963013 444.893799 458.21167 471.928192 486.055328 500.605347 515.590942 531.025146 546.921326 563.293396 580.155518 597.522461 615.409241 633.831482 652.805176 672.346863 692.473511 713.202637 734.552307 756.541077 779.18811 802.513 826.536194 851.278503 876.761475 903.007263 930.038696 957.879333 986.553406 1016.085815 1046.502319; cet53.scl, "5th root of 7/6 X.J. Scott" 2 6 261.62558 269.817139 278.265198 286.977753 295.963135 305.229828; cet54.scl, "62nd root of 7" 2 63 261.62558 269.967072 278.574524 287.456421 296.62149 306.078796 315.837616 325.907593 336.298615 347.020966 358.085144 369.502106 381.283081 393.439667 405.983856 418.928009 432.284821 446.067535 460.289673 474.96524 490.108734 505.735077 521.859619 538.49823 555.667358 573.383911 591.665344 610.529602 629.995361 650.081726 670.808533 692.196167 714.265747 737.03894 760.538208 784.786743 809.808411 835.627808 862.270447 889.762512 918.131165 947.404236 977.610718 1008.780212 1040.943604 1074.132324 1108.379272 1143.71814 1180.183716 1217.812012 1256.639893 1296.705811 1338.049194 1380.710693 1424.732422 1470.157715 1517.03125 1565.4 1615.30957 1666.811035 1719.95459 1774.792603 1831.378906; cet54a.scl, "101st root of 24" 3 102 36.708096 37.881512 39.092438 40.342075 41.631657 42.96246 44.335804 45.753052 47.215603 48.724903 50.282452 51.88979 53.548504 55.260246 57.026703 58.849628 60.730824 62.672157 64.675545 66.742973 68.876488 71.078209 73.350304 75.695038 78.114716 80.61174 83.188591 85.847809 88.592033 91.423981 94.346458 97.36235 100.474655 103.68644 107.0009 110.42131 113.95105 117.593628 121.352646 125.231827 129.235001 133.36615 137.629364 142.028839 146.568954 151.254211 156.089218 161.078796 166.227875 171.541534 177.025055 182.683868 188.523575 194.55 200.768967 207.186783 213.809753 220.644424 227.697586 234.976196 242.487488 250.238876 258.238068 266.49295 275.011688 283.802765 292.874847 302.236938 311.898285 321.868469 332.157379 342.775177 353.732391 365.039856 376.708771 388.750702 401.177582 414.001678 427.235748 440.892822 454.986481 469.53064 484.539734 500.028625 516.012634 532.507568 549.529785 567.09613 585.223999 603.931396 623.236755 643.159241 663.718567 684.93512 706.829895 729.4245 752.741394 776.80365 801.635132 827.260315 853.704651 880.994324; cet54b.scl, "35th root of 3 or shrunk 22-tET" 2 36 261.62558 269.967957 278.576355 287.459259 296.625397 306.083801 315.843842 325.91507 336.307434 347.031189 358.096893 369.515442 381.298065 393.456421 406.002472 418.948578 432.307495 446.092377 460.316803 474.994812 490.140839 505.769836 521.897217 538.538818 555.71106 573.430908 591.715698 610.583618 630.053162 650.143494 670.874451 692.266479 714.340576 737.118591 760.622925 784.876709; cet55.scl, "51th root of 5" 2 52 261.62558 270.013489 278.670349 287.604767 296.825592 306.342072 316.163666 326.3 336.761566 347.558441 358.701447 370.201691 382.070679 394.32019 406.962402 420.01 433.47583 447.373413 461.716583 476.519592 491.797211 507.564636 523.837585 540.632263 557.965393 575.854187 594.316528 613.37085 633.036011 653.331665 674.278015 695.895935 718.206909 741.233215 764.997803 789.524231 814.837036 840.961426 867.92334 895.749695 924.46814 954.107361 984.696838 1016.267029 1048.849365 1082.476318 1117.181396 1153. 1189.965332 1228.116577 1267.490967 1308.127808; cet55a.scl, "9th root of 4/3" 2 10 261.62558 270.123444 278.897308 287.956207 297.309296 306.966217 316.936798 327.231232 337.86 348.834076; cet63.scl, "30th root of 3 or stretched 19-tET" 2 31 261.62558 271.384003 281.506409 292.006348 302.897949 314.195801 325.91507 338.071442 350.681213 363.761353 377.329346 391.403442 406.002472 421.146057 436.854462 453.148773 470.050842 487.583374 505.769836 524.634644 544.203125 564.501465 585.556885 607.397705 630.053162 653.55365 677.930664 703.216919 729.44635 756.654114 784.876709; cet63a.scl, "44th root of 5" 2 45 261.62558 271.372528 281.482605 291.96933 302.846741 314.129395 325.832397 337.971405 350.562653 363.622986 377.169891 391.221466 405.79657 420.914642 436.596008 452.861511 469.733032 487.233093 505.385132 524.21344 543.743164 564. 585.012573 606.807373 629.414185 652.863281 677.185913 702.414673 728.583374 755.727051 783.881897 813.085693 843.377502 874.797791 907.388672 941.193787 976.258301 1012.629089 1050.35498 1089.486328 1130.075439 1172.17688 1215.84668 1261.143433 1308.127808; cet67.scl, "14th root of 12/7 X.J. Scott" 2 15 261.62558 271.894501 282.566467 293.657349 305.183533 317.16214 329.610901 342.548279 355.993469 369.96637 384.487701 399.579041 415.262695 431.561951 448.5; cet70.scl, "27th root of 3" 2 28 261.62558 272.490479 283.80661 295.592651 307.868195 320.653473 333.97 347.83902 362.284241 377.329346 393. 409.32 426.31839 444.022766 462.462341 481.667725 501.670654 522.504272 544.203125 566.80304 590.341553 614.857544 640.391602 666.986145 694.685059 723.534302 753.581604 784.876709; cet78.scl, "9th root of 3/2" 2 10 261.62558 273.681763 286.293549 299.486511 313.287415 327.724304 342.826477 358.624573 375.150696 392.438354; cet79.scl, "24th root of 3 James Hefferman (1906)." 2 25 261.62558 273.88 286.708313 300.137543 314.195801 328.912537 344.318604 360.446289 377.329346 395.003235 413.504944 432.87326 453.148773 474.373993 496.593353 519.853516 544.203125 569.693237 596.377319 624.311279 653.55365 684.165649 716.211548 749.758484 784.876709; cet80.scl, "35th root of 5" 2 36 261.62558 273.937042 286.827881 300.325287 314.457886 329.255524 344.749512 360.972595 377.959106 395.744965 414.367798 433.866943 454.283691 475.661194 498.044403 521.481201 546.020813 571.715271 598.618835 626.788391 656.283569 687.166748 719.503174 753.361267 788.812622 825.932312 864.798706 905.49408 948.104492 992.72 1039.435059 1088.348389 1139.563477 1193.188599 1249.337158 1308.127808; cet84.scl, "33rd root of 5" 2 34 261.62558 274.701538 288.43103 302.846741 317.982941 333.875641 350.562653 368.083679 386.480377 405.79657 426.078156 447.373413 469.733032 493.210144 517.860657 543.743164 570.919312 599.453674 629.414185 660.872131 693.902344 728.583374 764.997803 803.232178 843.377502 885.529236 929.78772 976.258301 1025.051392 1076.283203 1130.075439 1186.556396 1245.860107 1308.127808; cet87.scl, "Least-squares stretched ET to telephone dial tones. 1/1=697 Hz" 2 18 261.62558 275.058197 289.180481 304.027863 319.637543 336.048676 353.302399 371.441986 390.512909 410.562988 431.642487 453.80426 477.103912 501.596924 527.350403 554.426086 582.892029 612.819336; cet88.scl, "88 cents steps by Gary Morrison" 2 15 261.62558 275.268005 289.621796 304.724091 320.613861 337.332245 354.922363 373.429749 392.902191 413.39 434.946167 457.626373 481.489227 506.596405 533.012817; cet88b.scl, "87.9745 cents steps. Least squares of 7/6 11/9 10/7 3/2 7/4." 2 15 261.62558 275.263855 289.613281 304.710541 320.595001 337.307281 354.891022 373.391144 392.855896 413.335083 434.882111 457.552094 481.404144 506.5 532.902893; cet88bis.scl, "Bistep approximation of 2212121 mode in 7/4 to 11/9 9/7 10/7 3/2" 2 8 261.62558 289.532715 320.416687 337.263062 373.238342 392.861908 434.767822 457.626373; cet88bm.scl, "87.7541 cents steps. Minimal highest deviation for 7/6 11/9 10/7 3/2 7/4." 2 15 261.62558 275.228912 289.539551 304.594269 320.431793 337.092773 354.62 373.058685 392.456024 412.861938 434.328857 456.911987 480.669312 505.661926 531.954041; cet88c.scl, "38th root of 7.0000 McLaren 'Microtonal Music' volume 3 track 7" 2 39 261.62558 275.371887 289.840485 305.069244 321.098206 337.96933 355.726898 374.41748 394.090118 414.796387 436.590607 459.53 483.674561 509.087769 535.836243 563.990112 593.623291 624.813416 657.642334 692.196167 728.565552 766.845825 807.13739 849.545959 894.1828 941.164917 990.615601 1042.664429 1097.44812 1155.110229 1215.802002 1279.682617 1346.92 1417.689453 1492.177612 1570.57959 1653.1 1739.95813 1831.378906; cet88_appr.scl, "88 cents scale approximated" 2 23 261.62558 275.622009 290.695068 305.229828 320.491302 336.375732 354.371124 373.750793 392.438354 413.432983 436.042603 457.844727 482.338501 504.563599 531.556702 560.626221 588.657532 620.149475 654.063904 686.76709 723.507751 763.074585 801.228271; cet89.scl, "31st root of 5.0000 McLaren 'Microtonal Music' volume 2 track 22" 2 32 261.62558 275.567261 290.251862 305.718994 322.010376 339.169891 357.243805 376.280853 396.332367 417.452393 439.697876 463.128815 487.808319 513.802979 541.182861 570.02179 600.397522 632.391907 666.091248 701.586365 738.973022 778.351929 819.829224 863.516846 909.532532 958. 1009.050903 1062.821899 1119.458252 1179.112793 1241.946167 1308.127808; cet90.scl, "Scale with limma steps" 2 18 261.62558 275.622009 290.367218 305.901245 322.266327 339.506927 357.669861 376.804443 396.962708 418.2 440.572205 464.141907 488.972565 515.131592 542.69 571.722839 602.308838 634.531128; cet93.scl, "Tuning used in John Chowning's STRIA 9th root of Phi" 2 10 261.62558 275.994873 291.153412 307.144501 324.013855 341.809723 360.583008 380.38739 401.27951 423.319061; cet98.scl, "8th root of 11/7 X.J. Scott" 2 9 261.62558 276.832458 292.923248 309.94931 327.964996 347.027863 367.19873 388.542023 411.125885; cet99.scl, "Scale with 18/17 steps" 1 12 261.62558 277.015289 293.310333 310.563873 328.832336 348.175415 368.656311 390.34198 413.303345 437.615143 463.35733 494.18161; chahargah.scl, "Chahargah in C" 1 12 261.62558 277.182617 283.661469 311.126984 326.972687 348.825012 367.863403 392.448547 415.304688 425.011993 466.163757 493.883301; Chahargah2.scl, "Dastgah Chahargah in C Mohammad Reza Gharib" 1 7 261.62558 283.661469 327.729034 348.825012 392.448547 425.011993 493.883301; chalmers.scl, "Chalmers' 19-tone with more hexanies than Perrett's Tierce-Tone" 1 19 261.62558 274.706848 279.067261 294.328766 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 412.060272 418.6 436.042603 457.844727 470.926025 488.367737 515.075317; CHALMERS_17.scl, "7-limit figurative scale Chalmers '96 Adnexed S&H decads" 1 17 261.62558 269.1 286.152954 294.328766 313.950684 327.031952 336.375732 343.383545 376.740814 384.429413 392.438354 400.614136 408.79 448.5 457.844727 470.926025 490.547943; chalmers_19.scl, "7-limit figurative scale. Reversed S&H decads" 1 19 261.62558 269.1 290.695068 294.328766 305.229828 313.950684 336.375732 348.834076 356.101471 363.368835 376.740814 384.429413 392.438354 406.973114 436.042603 448.5 465.112122 470.926025 508.71637; chalmers_csurd.scl, "Combined Surd Scale combination of Surd and Inverted Surd JHC 26-6-97" 1 15 261.62558 273.351074 287.046661 303.38 315.80838 323.386353 348.834076 357.388031 383.046661 392.438354 423.316895 433.477661 451.235718 476.91156 500.80603; chalmers_isurd.scl, "Inverted Surd Scale of the form 4/(SQRT(N)+1 JHC 26-6-97" 1 8 261.62558 273.351074 287.046661 303.38 323.386353 348.834076 383.046661 433.477661; chalmers_ji1.scl, "Based loosely on Wronski's and similar JI scales May 2 1997.0000" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 466.020538 490.547943; chalmers_ji2.scl, "Based loosely on Wronski's and similar JI scales May 2 1997.0000" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 416.965759 441.493134 466.020538 490.547943; chalmers_ji3.scl, "15 16 17 18 19 20 21 on 1/1 15-20 on 3/2 May 2 1997.0000 See other scales" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 366.275787 392.438354 418.6 444.763458 470.926025 497.088562; chalmers_ji4.scl, "15 16 17 18 19 20 on 1/1 same on 4/3 + 16/15 on 16/9" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 372.089691 395.345306 418.6 441.856506 465.112122 496.119598; chalmers_surd.scl, "Surd Scale Surds of the form (SQRT(N)+1)/2 JHC 26-6-97" 1 8 261.62558 315.80838 357.388031 392.438354 423.316895 451.235718 476.91156 500.80603; CHALMERS_SURD2.scl, "Surd Scale Surds of the form (SQRT(N)+1)/4" 1 40 261.62558 272.239563 282.334839 291.980774 301.232483 310.134705 318.724243 327.031952 335.083862 342.902222 350.506256 357.912659 365.136139 372.189575 379.084412 385.830963 392.438354 398.914856 405.267975 411.504486 417.630585 423.651947 429.573761 435.4 441.137512 446.787903 452.355804 457.844727 463.257935 468.59848 473.869171 479.072723 484.211639 489.288239 494.304779 499.263306 504.165802 509.01413 513.81 518.555176; chalung.scl, "Tuning of chalung from Tasikmalaya. "slendroid". 1/1=185 Hz" 2 12 261.62558 328.092529 362.033173 390.317139 479.411163 527.493591 647.7 728.309204 823.06 961.650513 1054.987183 1301.056641; chaumont.scl, "Lambert Chaumont organ temperament (1695) 1st interpretation" 1 12 261.62558 273.374298 292.506287 309.497498 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 465.401093 489.026825; chaumont2.scl, "Lambert Chaumont organ temperament (1695) 2nd interpretation" 1 12 261.62558 274.565491 292.869873 309.305328 327.84549 349.701843 366.998016 391.464539 410.826294 438.214691 465.112122 490.547943; chimes.scl, "Heavenly Chimes" 2 4 261.62558 288.690277 130.81279 144.345139; chimes_peck.scl, "Kris Peck 9-tone windchime tuning. TL 7-3-2001" 2 9 261.62558 327.031952 392.438354 457.844727 588.657532 719.470276 850.283081 981.095886 1046.502319; chin_12.scl, "Chinese scale 4th cent." 1 12 261.62558 277.054565 293.58 310.534485 329.246979 347.79895 368.97 391.769073 413.127441 439.01 462.115509 491.436005; chin_5.scl, "Chinese pentatonic from Zhou period" 1 5 261.62558 294.328766 348.834076 392.438354 441.493134; chin_60.scl, "Chinese scale of fifths (the 60 lu")" 1 60 261.62558 262.172455 265.195007 268.81311 272.480591 276.19812 279.382385 283.194061 287.05777 290.974152 294.328766 294.944 298.34436 302.414764 306.54068 310.7229 314.305176 318.593323 322.94 327.345947 331.119843 331.812012 335.637421 340.216614 344.858276 349.563263 353.593323 358.41748 363.307465 368.26416 372.509827 373.288513 377.592102 382.743683 387.965546 392.438354 393.258667 397.79248 403.219666 408.720917 414.297211 419.073578 424.791107 430.586639 436.461243 441.493134 442.416016 447.516541 453.622131 459.811035 466.084351 471.457764 477.89 484.41 491.01889 496.679779 497.717987 503.456116 510.32489 517.287415; chin_7.scl, "Chinese heptatonic scale and tritriadic of 64:81:96 triad" 1 7 261.62558 294.328766 331.119843 348.834076 392.438354 441.493134 496.679779; chin_bianzhong.scl, "Pitches of Bianzhong bells (Xinyang). 1/1=b Liang Mingyue 1975.0000" 2 13 261.62558 277.823792 312.568024 375.159363 420.13031 469.406189 506.596405 563.729675 627.668823 764.758118 849.533142 949.172424 1225.957275; chin_bianzhong2a.scl, "A-tones (GU) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=d#=619 Hz" 2 13 261.62558 284.81073 312.568024 372.567932 413.39 447.95 491.606354 562.753662 652.059448 695.638062 863.883545 960.756042 1173.302856; CHIN_BIANZHONG2B.scl, "B-tones (SUI) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=b+=506.6 Hz" 2 13 261.62558 279.592316 312.747375 375.375366 418.430481 468.860291 505.129456 562.086975 624.420593 762.98 849.534241 936.088623 1215.376221; chin_bianzhong3.scl, "A and B-tones of 13 Xinyang bells (Ma Cheng-Yuan) abs. pitches wrt middle-C" 2 27 261.62558 508.355194 542.329712 608.041687 619.027527 673.885498 729.801208 739.561523 812.576416 881.526245 911.033142 978.114624 982.077515 1059.885742 1092.203857 1163.180908 1213.276855 1331.52124 1483.401123 1542.82605 1645.936646 1649.743896 1818.911621 2044.019165 2273.227539 2362.92749 2776.130615; CHIN_BRONZE.scl, "Scale found on ancient Chinese bronze instrument 3rd c.BC & "Scholar's Lute"" 1 7 261.62558 299. 313.950684 327.031952 348.834076 392.438354 436.042603; chin_chime.scl, "Pitches of 12 stone chimes F. Kuttner 1951 ROMA Toronto. %1=b4" 2 13 261.62558 248.659271 341.744995 392.56192 548.789734 648.865845 714.369324 785.577454 889.71106 886.888977 992.628235 1044.087158 1326.148315; chin_ching.scl, "Scale of Ching Fang c.45 BC. Pyth.steps 0 1 2 3 4 5 47 48 49 50 51 52 53" 2 13 261.62558 276.19812 294.328766 310.7229 331.119843 349.563263 368.26416 392.438354 414.297211 441.493134 466.084351 496.679779 524.34491; chin_di.scl, "Chinese di scale" 2 7 261.62558 298.70636 316.56 360.50766 409.94873 433.753662 527.371216; chin_huang.scl, "Huang Zhong qin tuning" 2 7 261.62558 331.119843 392.438354 441.493134 523.25116 588.657532 662.239685; chin_liu-an.scl, "Scale of Liu An in: "Huai Nan Tzu" c.122 BC 1st known corr. to Pyth. scale" 2 12 261.62558 278.837769 294.328766 311.642212 331.119843 353.194519 371.783691 392.438354 415.522949 441.493134 470.926025 492.829559; chin_lu.scl, "Chinese Lu" scale by Huai Nan zi Han era. Père Amiot 1780 Kurt Reinhard" 1 12 261.62558 277.015289 294.328766 313.950684 328.55304 348.834076 371.783691 392.438354 415.522949 441.493134 470.926025 495.711609; chin_lu2.scl, "Chinese Lu" (Lushi chunqiu by Lu Buwei). Mingyue: Music of the billion p.67" 1 12 261.62558 279.382385 294.328766 314.305176 331.119843 353.593323 372.509827 392.438354 419.073578 441.493134 471.457764 496.679779; chin_lu3.scl, "Chinese Lu" scale by Ho Ch'êng-T'ien reported in Sung Shu (500 AD)" 1 12 261.62558 277.342773 293.664764 310.588318 329.246979 347.819031 369.140533 391.769073 413.151306 439.23819 462.142212 491.606354; chin_lu3a.scl, "Chinese Lu" scale by Ho Ch'êng-T'ien calc. basis is "big number" 177147" 1 12 261.62558 277.060333 293.588287 310.537811 329.251434 347.79483 368.745789 391.78067 413.13681 439. 462.107208 491.179077; chin_lu4.scl, "Chinese Lu" "749-Temperament"" 1 12 261.62558 276.785217 293.544403 310.553558 329.357422 348.441711 369.539673 391.9151 414.624268 439.729523 465.209259 493.377411; chin_lu5.scl, "Chinese Lu" scale by Ch'ien Lo-Chih c.450 AD Pyth.steps 0 154 255 103 204 etc" 2 13 261.62558 277.354034 293.414703 311.372406 329.402985 349.206116 369.805359 392.037384 415.163208 440.12207 466.084351 494.104492 522.716431; chin_lusheng.scl, "Observed tuning of a small Lusheng 1/1=d OdC '97" 2 6 261.62558 316.382599 348.825012 389.28772 466.97226 520.538025; chin_pan.scl, "Pan Huai-su pure system in: Sin-Yan Shen 1991" 1 23 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 326.663116 331.119843 344.138916 348.834076 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 458.851868 465.112122 489.994659 496.679779 516.208374; chin_pipa.scl, "Observed tuning from Chinese balloon guitar (p'i-p'a) Ellis" 2 6 261.62558 284.481903 320.428741 380.176727 433.441376 521.742126; chin_sheng.scl, "Observed tuning from Chinese sheng or mouth organ" 2 8 261.62558 295.365936 318.031616 348.825012 395.406586 442.037933 477.059814 522.948975; chin_sientsu.scl, "Observed tuning from Chinese tamboura (sien-tsu) Ellis" 1 5 261.62558 291.804779 326.972687 392.448547 438.224518; chin_sona.scl, "Observed tuning from Chinese oboe (so-na) Ellis" 2 8 261.62558 284.481903 310.588318 337.332245 377.987061 418.434998 469.948792 528.109436; chin_titsu.scl, "Observed tuning from Chinese flute (ti-tsu) Ellis" 2 8 261.62558 289.956573 318.215363 338.894653 383.485016 436.960693 494.739868 522.043579; chin_wang-po.scl, "Scale of Wang Po 958 AD. H. Pischner: Musik in China Berlin 1955 p.20" 2 8 261.62558 294.328766 330.242645 371.979462 392.438354 440.941956 495.711609 517.501099; chin_yangqin.scl, "Observed tuning from Chinese dulcimer (yang-chin) Ellis" 2 8 261.62558 288.453125 306.489319 347.41745 383.26358 434.444 465.087952 522.646973; chin_yunlo.scl, "Observed tuning from Chinese gong-chime (yu"n-lo) Ellis" 2 8 261.62558 288.453125 323.403839 367.014435 386.152374 409.350555 483.160828 525.674683; choquel.scl, Choquel/Barbour/Marpurg? 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 475.682831 490.547943; chordal.scl, "Chordal Notes S&H" 2 41 261.62558 392.438354 327.031952 457.844727 588.657532 719.470276 850.283081 981.095886 981.095886 490.547943 555.954346 621.360718 310.680359 523.25116 348.834076 418.6 299. 465.112122 380.546265 322. 279.067261 610.459656 915.689453 872.085205 697.668152 654.063904 627.901367 448.5 319.764587 377.903595 444.763458 889.526917 336.375732 294.328766 465.112122 411.125885 305.229828 366.275787 373.750793 313.950684 470.926025; CHROM15.scl, "Tonos-15 Chromatic" 1 7 261.62558 280.31311 301.875641 356.762146 392.438354 413.092987 436.042603; chrom15_inv.scl, "Inverted Chromatic Tonos-15 Harmonia" 1 7 261.62558 313.950684 331.392395 348.834076 383.717499 453.484314 488.367737; CHROM15_INV2.scl, "A harmonic form of the Chromatic Tonos-15 inverted" 1 7 261.62558 279.067261 296.508972 348.834076 383.717499 401.15921 418.6; chrom17.scl, "Tonos-17 Chromatic" 1 7 261.62558 277.977173 296.508972 370.63623 404.330414 423.584259 444.763458; chrom17_con.scl, "Conjunct Tonos-17 Chromatic" 1 7 261.62558 277.977173 296.508972 370.63623 386.750824 404.330414 494.18161; chrom19.scl, "Tonos-19 Chromatic" 1 7 261.62558 276.160309 292.405029 355.063263 382.375824 397.670868 414.240479; chrom19_con.scl, "Conjunct Tonos-19 Chromatic" 1 7 261.62558 276.160309 292.405029 355.063263 368.213745 382.375824 451.898712; chrom21.scl, "Tonos-21 Chromatic" 1 7 261.62558 274.706848 289.1651 343.383545 392.438354 406.973114 422.625916; chrom21_inv.scl, "Inverted Chromatic Tonos-21 Harmonia" 1 7 261.62558 323.917358 336.375732 348.834076 398.667542 473.417694 498.334412; CHROM21_INV2.scl, "Inverted harmonic form of the Chromatic Tonos-21" 1 7 261.62558 279.067261 299. 348.834076 398.667542 423.584259 448.5; chrom23.scl, "Tonos-23 Chromatic" 1 7 261.62558 273.517639 286.542297 334.3 376.086761 401.15921 429.813416; chrom23_con.scl, "Conjunct Tonos-23 Chromatic" 1 7 261.62558 273.517639 286.542297 334.3 353.963989 376.086761 462.876007; chrom25.scl, "Tonos-25 Chromatic" 1 7 261.62558 278.325073 297.301788 363.368835 408.79 436.042603 467.188507; chrom25_con.scl, "Conjunct Tonos-25 Chromatic" 1 7 261.62558 278.325073 297.301788 363.368835 384.743469 408.79 503.126099; chrom27.scl, "Tonos-27 Chromatic" 1 7 261.62558 277.015289 294.328766 353.194519 392.438354 415.522949 441.493134; chrom27_inv.scl, "Inverted Chromatic Tonos-27 Harmonia" 1 7 261.62558 310.074738 329.454407 348.834076 387.593445 465.112122 494.18161; chrom27_inv2.scl, "Inverted harmonic form of the Chromatic Tonos-27" 1 7 261.62558 271.315399 281.005249 348.834076 387.593445 406.973114 436.042603; chrom29.scl, "Tonos-29 Chromatic" 1 7 261.62558 270.96933 281.005249 344.87 379.357056 399.323242 421.507843; chrom29_con.scl, "Conjunct Tonos-29 Chromatic" 1 7 261.62558 270.96933 281.005249 344.87 361.29245 379.357056 474.19635; chrom31.scl, "Tonos-31 Chromatic. Tone 24 alternates with 23 as MESE or A" 1 8 261.62558 279.668701 300.384918 337.933014 352.625763 368.654205 386.209167 405.519623; chrom31_con.scl, "Conjunct Tonos-31 Chromatic" 1 8 261.62558 279.668701 300.384918 337.933014 352.625763 368.654205 386.209167 450.577362; chrom33.scl, "Tonos-33 Chromatic. A variant is 66 63 60 48" 1 7 261.62558 278.504639 297.711853 359.735138 392.438354 411.125885 431.68219; chrom33_con.scl, "Conjunct Tonos-33 Chromatic" 1 7 261.62558 278.504639 297.711853 359.735138 375.375824 392.438354 479.646881; chrom_new.scl, "New Chromatic genus 4.5000 + 9 + 16.5000" 1 7 261.62558 273.20871 297.936218 349.228241 391.995422 409.350555 446.4; chrom_new2.scl, "New Chromatic genus 14/3 + 28/3 + 16 parts" 1 7 261.62558 273.647461 299.373749 349.228241 391.995422 410.007935 448.553802; chrom_soft.scl, "100/81 Chromatic. This genus is a good approximation to the soft chromatic" 1 7 261.62558 271.68808 282.555603 348.834076 392.438354 407.532135 423.833405; CHROM_SOFT2.scl, "1:2 Soft Chromatic" 1 7 261.62558 268.428925 282.571198 349.228241 391.995422 402.188965 423.378418; chrom_soft3.scl, "Soft chromatic genus is from K. Schlesinger's modified Mixolydian Harmonia" 1 7 261.62558 271.315399 281.75061 348.834076 392.438354 406.973114 422.625916; cifariello.scl, "F. Cifariello Ciardi ICMC 86 Proc. 15-tone 5-limit tuning" 1 15 261.62558 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 465.112122 470.926025 490.547943; ckring1.scl, "Double-tie circular mirroring with common pivot of 4:5:6:7 = square 1 3 5 7" 1 13 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727; ckring2.scl, "Double-tie circular mirroring with common pivot of 3:5:7:9" 1 13 261.62558 290.695068 305.229828 313.950684 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 436.042603 448.5 470.926025; clampitt-phi.scl, "David Clampitt phi+1 mod 3phi+2 from "Pairwise Well-Formed Scales" 1997" 1 7 261.62558 289.467529 320.27243 340.928589 377.2099 444.269623 491.548431; cluster.scl, "13-tone 5-limit Tritriadic Cluster" 1 13 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 376.740814 392.438354 408.79 418.6 436.042603 470.926025 490.547943; cluster6a.scl, "Six-Tone Triadic Cluster 4:5:6" 1 6 261.62558 327.031952 348.834076 392.438354 436.042603 490.547943; cluster6b.scl, "Six-Tone Triadic Cluster 4:6:5" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 490.547943; cluster6c.scl, "Six-Tone Triadic Cluster 3:4:5" 1 6 261.62558 290.695068 313.950684 348.834076 418.6 436.042603; cluster6d.scl, "Six-Tone Triadic Cluster 3:5:4" 1 6 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603; CLUSTER6e.scl, "Six-Tone Triadic Cluster 5:6:8" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 502.321075; CLUSTER6f.scl, "Six-Tone Triadic Cluster 5:8:6" 1 6 261.62558 313.950684 348.834076 418.6 436.042603 502.321075; CLUSTER6g.scl, "Six-Tone Triadic Cluster 4:5:7" 1 6 261.62558 286.152954 299. 327.031952 373.750793 457.844727; CLUSTER6h.scl, "Six-Tone Triadic Cluster 4:7:5" 1 6 261.62558 286.152954 327.031952 366.275787 418.6 457.844727; CLUSTER6i.scl, "Six-Tone Triadic Cluster 5:6:7" 1 6 261.62558 313.950684 366.275787 373.750793 439.530945 448.5; CLUSTER6j.scl, "Six-Tone Triadic Cluster 5:7:6" 1 6 261.62558 305.229828 313.950684 366.275787 436.042603 439.530945; cluster8a.scl, "Eight-Tone Triadic Cluster 4:5:6" 1 8 261.62558 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 490.547943; cluster8b.scl, "Eight-Tone Triadic Cluster 4:6:5" 1 8 261.62558 306.592468 313.950684 327.031952 392.438354 408.79 418.6 490.547943; cluster8c.scl, "Eight-Tone Triadic Cluster 3:4:5" 1 8 261.62558 290.695068 313.950684 348.834076 363.368835 418.6 436.042603 484.491791; cluster8d.scl, "Eight-Tone Triadic Cluster 3:5:4" 1 8 261.62558 290.695068 327.031952 348.834076 387.593445 392.438354 436.042603 465.112122; cluster8e.scl, "Eight-Tone Triadic Cluster 5:6:8" 1 8 261.62558 313.950684 327.031952 334.880737 392.438354 401.856873 418.6 502.321075; CLUSTER8f.scl, "Eight-Tone Triadic Cluster 5:8:6" 1 8 261.62558 301.392639 313.950684 348.834076 376.740814 418.6 436.042603 502.321075; CLUSTER8g.scl, "Eight-Tone Triadic Cluster 4:5:7" 1 8 261.62558 286.152954 299. 327.031952 373.750793 400.614136 457.844727 500.76767; CLUSTER8h.scl, "Eight-Tone Triadic Cluster 4:7:5" 1 8 261.62558 286.152954 327.031952 357.691193 366.275787 408.79 418.6 457.844727; CLUSTER8i.scl, "Eight-Tone Triadic Cluster 5:6:7" 1 8 261.62558 307.671661 313.950684 366.275787 373.750793 439.530945 448.5 512.786133; CLUSTER8j.scl, "Eight-Tone Triadic Cluster 5:7:6" 1 8 261.62558 263.718567 305.229828 313.950684 366.275787 376.740814 436.042603 439.530945; cohenf_11.scl, "Flynn Cohen 7-limit scale of "Rameau's nephew" 1996" 1 11 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727; coleman.scl, "Jim Coleman's ModX piano temperament. TL 16 Mar 1999" 1 12 261.62558 276.702728 293.156342 310.588318 328.487122 349.43 368.927368 391.769073 414.585663 438.984558 465.894562 491.890381; collengettes.scl, "R.P. Collengettes from p.23 of d'Erlanger vol 5.0000 24 tone Arabic system" 1 24 261.62558 269.1 275.622009 285.409698 294.328766 302.738159 310.074738 321.085907 331.119843 340.580414 348.834076 358.8 367.496002 380.546265 392.438354 403.650879 413.432983 428.114563 441.493134 454.107239 465.112122 478.401031 496.679779 507.39505; colonna1.scl, "Colonna 1" 1 12 261.62558 272.526642 290.695068 308.863525 327.031952 348.834076 363.368835 392.438354 399.705719 436.042603 463.295258 490.547943; colonna2.scl, "Colonna 2" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 470.926025 479.646881; concertina.scl, "English Concertina see Helmholtz p 470.0000 from Ellis" 1 14 261.62558 272.526642 290.695068 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 441.493134 465.112122 490.547943; cons11.scl, "Set of intervals with num + den cons12.scl, "Set of intervals with num + den cons13.scl, "Set of intervals with num + den cons14.scl, "Set of intervals with num + den cons15.scl, "Set of intervals with num + den cons16.scl, "Set of intervals with num + den cons17.scl, "Set of intervals with num + den cons18.scl, "Set of intervals with num + den cons19.scl, "Set of intervals with num + den cons20.scl, "Set of intervals with num + den cons21.scl, "Set of intervals with num + den cons8.scl, "Set of intervals with num + den cons9.scl, "Set of intervals with num + den cons_5.scl, "Set of consonant 5-limit intervals within the octave" 1 8 261.62558 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025; cons_7.scl, "Set of consonant 7-limit intervals of tetrad 4:5:6:7 and inverse" 2 11 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727; cons_7a.scl, "Set of consonant 7-limit intervals harmonic entropy minima" 2 12 261.62558 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 457.844727; cont_frac1.scl, "Continued fraction scale 1 see McLaren in Xenharmonikon 15 pp.33-38" 2 15 261.62558 264.296722 267.018585 284.4 288.643127 304.516815 328.363251 342.472382 368.247589 390.362457 408.236969 419.803314 448.303314 488.426056 498.2; cont_frac2.scl, "Continued fraction scale 2 see McLaren in Xenharmonikon 15 pp.33-38" 2 16 261.62558 268.670776 283.001587 287.788239 303.560394 306.30899 329.632874 333.856018 352.97052 380.09613 393.101044 426.457947 432.83316 472.910126 483.946533 519.430298; cordier.scl, "Serge Cordier piano tuning 1975 (Piano bien tempéré et justesse orchestrale)" 2 13 261.62558 277.227356 293.759521 311.277588 329.840332 349.51 370.352722 392.438354 415.841034 440.639313 466.916382 494.760498 524.265076; corner11.scl, "Quadratic Corner 11-limit. Chalmers '96" 1 15 261.62558 269.801361 286.152954 294.328766 314.76825 327.031952 343.383545 359.735138 392.438354 400.614136 408.79 449.668945 457.844727 490.547943 494.635834; corner13.scl, "Quadratic Corner 13-limit. Chalmers '96" 1 21 261.62558 265.71347 269.801361 286.152954 292.284821 294.328766 314.76825 318.856171 327.031952 343.383545 345.42749 359.735138 371.99884 392.438354 400.614136 408.79 425.141541 449.668945 457.844727 490.547943 494.635834; corner17.scl, "Quadratic Corner 17-limit." 1 28 261.62558 265.71347 269.801361 277.977173 286.152954 292.284821 294.328766 295.350739 314.76825 318.856171 327.031952 343.383545 345.42749 347.471466 359.735138 371.99884 382.218597 392.438354 400.614136 408.79 416.965759 425.141541 449.668945 451.712891 457.844727 486.46 490.547943 494.635834; CORNER17a.scl, "Quadratic Corner 17 odd limit." 1 42 261.62558 265.71347 269.801361 275.933228 277.977173 286.152954 292.284821 294.328766 295.350739 306.592468 312.724304 314.76825 318.856171 327.031952 331.119843 337.251709 343.383545 345.42749 347.471466 359.735138 367.91095 371.99884 382.218597 392.438354 398.57019 400.614136 404.702057 408.79 416.965759 425.141541 429.229431 441.493134 449.668945 451.712891 457.844727 459.888702 478.284241 486.46 490.547943 494.635834 515.075317 521.207153; corner7.scl, "Quadratic corner 7-limit. Chalmers '96" 1 10 261.62558 286.152954 294.328766 327.031952 343.383545 392.438354 400.614136 408.79 457.844727 490.547943; corner9.scl, "First 9 harmonics of 5th through 9th harmonics" 1 14 261.62558 286.152954 294.328766 327.031952 331.119843 343.383545 367.91095 392.438354 400.614136 408.79 441.493134 457.844727 490.547943 515.075317; corners11.scl, "Quadratic Corners 11-limit. Chalmers '96" 1 29 261.62558 269.801361 276.760925 279.067261 286.152954 294.328766 299. 304.437012 314.76825 327.031952 334.880737 341.715027 343.383545 348.834076 359.735138 380.546265 392.438354 398.667542 400.614136 408.79 418.6 434.91 449.668945 457.844727 465.112122 478.401031 490.547943 494.635834 507.39505; corners13.scl, "Quadratic Corners 13-limit. Chalmers '96" 1 41 261.62558 265.71347 269.801361 276.760925 279.067261 286.152954 292.284821 294.328766 299. 304.437012 314.76825 318.856171 322. 327.031952 334.880737 341.715027 343.383545 345.42749 348.834076 359.735138 368. 371.99884 380.546265 392.438354 396.308563 398.667542 400.614136 408.79 418.6 425.141541 429.334259 434.91 449.668945 457.844727 465.112122 468.364655 478.401031 490.547943 494.635834 507.39505 515.201111; corners7.scl, "Quadratic Corners 7-limit. Chalmers '96" 1 19 261.62558 279.067261 286.152954 294.328766 299. 327.031952 334.880737 341.715027 343.383545 348.834076 392.438354 398.667542 400.614136 408.79 418.6 457.844727 465.112122 478.401031 490.547943; corrette.scl, "Corrette temperament" 1 12 261.62558 273.374298 292.506287 309.113251 327.031952 349.919128 365.632843 391.221466 411.337036 437.398895 465.112122 489.026825; coul1.scl, "Well-temperament Op de Coul 1998.0000 Fifths 5/14 4/14 and 5/14 Pyth comma flat" 1 12 261.62558 276.959137 294.328766 311.579041 329.52121 348.834076 370.711365 392.438354 415.438721 439.361633 467.368561 494.28183; coul_12.scl, "Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 340.658295 363.368835 392.438354 408.79 436.042603 470.926025 490.547943; coul_12a.scl, "Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 376.740814 392.438354 408.79 436.042603 470.926025 490.547943; coul_13.scl, "Symmetrical 13-tone 5-limit just system" 1 13 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 465.112122 490.547943; coul_20.scl, "Tuning for a 3-row symmetrical keyboard Op de Coul 1989" 1 20 261.62558 277.182617 282.236786 293.664764 305.555481 311.126984 329.627563 335.638 349.228241 363.368835 369.994415 391.995422 399.143097 415.304688 432.120697 440. 466.163757 474.663788 493.883301 513.881042; coul_27.scl, "Symmetrical 27-tone 5-limit just system" 1 27 261.62558 275.622009 275.933228 279.067261 293.996796 294.328766 310.074738 310.424866 327.031952 330.746399 331.119843 348.834076 367.496002 367.91095 372.089691 372.509827 392.438354 413.432983 413.9 418.6 440.995178 441.493134 465.112122 465.637299 490.547943 496.119598 496.679779; COUL_31.scl, "Op de Coul's 31-tone 5-limit just system" 1 31 261.62558 266.139282 272.526642 279.067261 287.43042 294.328766 299.406708 306.592468 313.950684 319.367157 327.031952 332.674103 340.658295 348.834076 359.288025 367.91095 376.740814 383.24057 392.438354 399.208923 408.79 418.6 425.822845 436.042603 449.11 459.888702 470.926025 479.05072 490.547943 499.011169 510.987427; cross13.scl, "13-limit harmonic/subharmonic cross" 1 19 261.62558 281.75061 285.409698 290.695068 299. 305.229828 322. 332.977997 336.375732 366.275787 373.750793 406.973114 411.125885 425.141541 448.5 457.844727 470.926025 479.646881 485.876038; cross2.scl, "Pusey's double 5-7 cross reduced by 3/1" 2 10 261.62558 282.555603 339.144257 366.275787 436.042603 470.926025 560.626221 605.476318 726.737671 784.876709; cross2_5.scl, "double 3-5 cross reduced by 2/1" 1 9 261.62558 279.067261 294.328766 313.950684 348.834076 392.438354 436.042603 465.112122 490.547943; cross2_7.scl, "longer 3-5-7 cross reduced by 2/1" 1 13 261.62558 294.328766 299. 327.031952 334.880737 341.715027 348.834076 392.438354 400.614136 408.79 418.6 457.844727 465.112122; cross3.scl, "Pusey's triple 5-7 cross reduced by 3/1" 2 14 261.62558 282.555603 311.459015 336.375732 363.285797 403.743164 436.042603 470.926025 508.6 565.240417 610.459656 659.296448 726.737671 784.876709; cross_7.scl, "3-5-7 cross reduced by 2/1 quasi diatonic similar to Zalzal's Flynn Cohen" 1 7 261.62558 299. 327.031952 348.834076 392.438354 418.6 457.844727; cross_72.scl, "double 3-5-7 cross reduced by 2/1" 1 13 261.62558 279.067261 294.328766 305.229828 313.950684 343.383545 348.834076 392.438354 398.667542 436.042603 448.5 465.112122 490.547943; cross_7a.scl, "2-5-7 cross reduced by 3/1" 2 8 261.62558 336.375732 392.438354 436.042603 470.926025 523.25116 610.459656 784.876709; cruciform.scl, "Cruciform Lattice" 1 12 261.62558 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 418.6 436.042603 490.547943; DANIELOU5_53.scl, "Danielou's Harmonic Division in 5-limit symmetrized" 1 53 261.62558 264.895874 267.904572 272.526642 275.622009 279.067261 282.555603 285.764893 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 317.875061 322.994537 327.031952 331.119843 334.880737 340.658295 344.527496 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 397.343842 401.856873 408.79 413.432983 418.6 423.833405 430.659363 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 479.05072 484.491791 490.547943 496.679779 502.321075 510.987427 516.79126; danielou_53.scl, "Danielou's Harmonic Division of the Octave see p. 153" 1 53 261.62558 264.895874 267.439453 272.526642 275.622009 279.067261 282.555603 287.788116 290.695068 294.328766 297.671753 301.875641 306.592468 310.074738 313.950684 318.934021 322.994537 327.031952 331.119843 334.880737 340.658295 344.527496 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 397.343842 401.856873 408.79 413.432983 418.6 423.833405 430.659363 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 479.646881 484.491791 490.547943 496.679779 502.321075 510.987427 516.79126; dan_semantic.scl, "The Semantic Scale from Alain Danie'lou: "Se'mantique Musicale" 1967.0000" 1 35 261.62558 272.526642 275.622009 279.067261 290.695068 294.328766 297.671753 306.592468 310.074738 313.950684 322.994537 327.031952 331.119843 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 387.593445 392.438354 397.343842 408.79 413.432983 418.6 430.659363 436.042603 441.493134 459.888702 465.112122 470.926025 484.491791 490.547943 496.679779 516.79126; darreg.scl, "This set of 19 ratios in 5-limit JI is for his megalyra family" 1 19 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 372.089691 392.438354 408.79 418.6 436.042603 441.493134 459.888702 470.926025 490.547943; darreg_ennea.scl, "Ivor Darreg's Mixed Enneatonic a mixture of chromatic and enharmonic" 1 9 261.62558 269.291779 277.182617 293.664764 349.228241 391.995422 403.481781 415.304688 440.; darreg_genus.scl, "Ivor Darreg's Mixed JI Genus (Archytas Enh Ptolemy Soft Chrom Didymos Chrom" 1 9 261.62558 271.315399 279.067261 290.695068 348.834076 392.438354 406.973114 418.6 436.042603; DARREG_GENUS2.scl, "Darreg's Mixed JI Genus 2 (Archytas Enharmonic and Chromatic Genera)" 1 9 261.62558 271.315399 279.067261 294.328766 348.834076 392.438354 406.973114 418.6 441.493134; david11.scl, "11-limit system from Gary David 1967" 1 22 261.62558 269.801361 274.706848 285.409698 294.328766 305.229828 314.76825 327.031952 332.977997 343.383545 359.735138 366.275787 374.6 392.438354 406.973114 419.69101 428.114563 441.493134 457.844727 479.646881 490.547943 499.46698; david7.scl, "Gary David's Constant Structure 1967.0000 A mode of Fokker's 7-limit scale" 1 12 261.62558 279.067261 294.328766 313.950684 336.375732 348.834076 366.275787 392.438354 418.6 448.5 470.926025 488.367737; degung1.scl, "Gamelan Degung Kabupaten Sukabumi. 1/1=363 Hz" 1 5 261.62558 286.130371 319.28418 390.636536 420.907349; degung2.scl, "Gamelan Degung Kabupaten Bandung. 1/1=252 Hz" 1 5 261.62558 276.679382 325.993774 390.36203 415.278778; degung3.scl, "Gamelan Degung Kabupaten Sumedang. 1/1=388.5 Hz" 1 5 261.62558 282.838501 320.550171 393.280243 426.951385; degung4.scl, "Gamelan Degung Kasepuhan Cheribon. 1/1=250 Hz" 1 5 261.62558 284.64856 319.183105 379.880371 415.461365; degung5.scl, "Gamelan Degung Kanoman Cheribon. 1/1=428 Hz" 1 5 261.62558 284.242737 317.862823 388.77066 430.337494; degung6.scl, "Gamelan Degung Kacherbonan Cheribon. 1/1=426 Hz" 1 5 261.62558 273.294281 298.474152 379.54129 409.020142; dekany.scl, "2)5 Dekany 1.3.5.7.11 (1.3 tonic)" 1 10 261.62558 299.779297 305.229828 327.031952 359.735138 381.537292 419.69101 436.042603 457.844727 479.646881; dekany2.scl, "3)5 Dekany 1.3.5.7.9 (1.3.5.7.9 tonic)" 1 10 261.62558 279.067261 299. 313.950684 348.834076 358.8 398.667542 418.6 448.5 465.112122; dekany3.scl, "2)5 Dekany 1.3.5.7.9 and 3)5 Dekany 1 1/3 1/5 1/7 1/9" 1 10 261.62558 294.328766 305.229828 327.031952 343.383545 381.537292 392.438354 436.042603 457.844727 490.547943; dekany4.scl, "2)5 Dekany 1.7.13.19.29 (1.7 tonic)" 1 10 261.62558 270.96933 288.488892 310.680359 321.776093 355.063263 425.141541 440.325165 474.19635 485.876038; dekany_union.scl, "Union of 2)5 and 3)5 [ 1 3 5 7 9] dekanies" 1 14 261.62558 274.706848 294.328766 305.229828 327.031952 343.383545 366.275787 381.537292 392.438354 412.060272 436.042603 457.844727 470.926025 490.547943; de_caus.scl, "De Caus (a mode of Ellis's duodene) (1615)" 1 12 261.62558 272.526642 290.695068 306.592468 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943; diacycle13.scl, "Diacycle on 20/13 13/10 there are also nodes at 3/2 4/3 13/9 18/13" 1 23 261.62558 268.333923 275.395325 282.83844 290.695068 299. 307.794769 317.121887 327.031952 337.58136 348.834076 360.862854 373.750793 387.593445 402.5 413.092987 424.25766 436.042603 448.5 461.692169 475.682831 490.547943 506.37207; diamond11a.scl, "11-limit Diamond with added 16/15 & 15/8 Zoomoozophone tuning: 1/1 = 392 Hz" 1 31 261.62558 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943; diamond11ak.scl, "microtempered version of diamond11a Dave Keenan TL 11-1-2000 225/224&385/384" 1 31 261.62558 279.723297 285.633179 287.788116 290.695068 293.868378 299.074921 305.392944 314.196503 319.764587 326.520447 333.416809 335.933014 349.107208 359.172485 366.758484 373.258911 381.142426 392.131317 407.50943 410.584808 419.256683 428.114563 435.701447 448.261383 457.731049 465.840759 470.926025 475.682831 479.271606 489.397461; diamond11at.scl, "microtempered version of diamond11a OdC" 1 31 261.62558 279.837036 285.335754 287.982697 290.849487 293.821198 299.273895 305.223816 314.190796 320.239807 326.485168 332.71524 336.027191 349.112213 359.536804 366.523315 373.498413 380.756226 392.125702 407.395233 411.450562 419.301941 427.479248 435.709381 448.509827 457.426727 465.915558 470.675995 475.361481 479.77121 489.198547; diamond15.scl, "15-limit Diamond + 2nd ratios. See Novaro 1927 Sistema Natural..." 1 59 261.62558 269.801361 279.067261 280.31311 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 301.875641 305.229828 309.193848 310.074738 313.950684 318.856171 319.764587 322. 327.031952 332.977997 336.375732 340.11322 343.383545 348.834076 356.762146 359.735138 362.250793 366.275787 367.91095 372.089691 373.750793 377.903595 380.546265 383.717499 392.438354 398.667542 402.5 406.973114 411.125885 418.6 425.141541 428.114563 429.334259 436.042603 441.493134 442.750946 448.5 453.484314 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 488.367737 490.547943 507.39505; diamond17.scl, "17-limit Diamond" 1 43 261.62558 277.977173 281.75061 283.427704 285.409698 287.788116 299. 305.229828 307.794769 309.193848 313.950684 317.688171 322. 327.031952 332.977997 338.574249 340.11322 342.125732 348.834076 359.735138 366.275787 369.353729 370.63623 373.750793 380.546265 392.438354 400.133209 402.5 404.330414 411.125885 418.6 425.141541 430.912689 436.042603 442.750946 444.763458 448.5 457.844727 475.682831 479.646881 483.001038 485.876038 492.471649; DIAMOND17A.scl, "17-limit +9 Diamond" 1 55 261.62558 277.015289 277.977173 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 305.229828 307.794769 309.193848 313.950684 317.688171 319.764587 322. 327.031952 332.977997 336.375732 338.574249 340.11322 342.125732 348.834076 359.735138 362.250793 366.275787 369.353729 370.63623 373.750793 377.903595 380.546265 392.438354 400.133209 402.5 404.330414 406.973114 411.125885 418.6 425.141541 428.114563 430.912689 436.042603 442.750946 444.763458 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 492.471649 494.18161; diamond19.scl, "19-limit Diamond" 1 57 261.62558 275.395325 277.977173 281.75061 283.427704 285.409698 287.788116 292.405029 299. 302.934875 305.229828 307.794769 309.193848 310.680359 313.950684 317.688171 322. 327.031952 330.474396 332.977997 338.574249 340.11322 342.125732 348.834076 355.063263 358.013947 359.735138 366.275787 369.353729 370.63623 373.750793 380.546265 382.375824 385.553467 392.438354 400.133209 402.5 404.330414 411.125885 414.240479 418.6 425.141541 430.912689 436.042603 440.632538 442.750946 444.763458 448.5 451.898712 457.844727 468.172058 475.682831 479.646881 483.001038 485.876038 492.471649 497.088562; diamond7.scl, "7-limit Diamond also double-tie circular mirroring of 4:5:6:7" 1 13 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727; diamond9.scl, "9-limit Diamond" 1 19 261.62558 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025; diamond_chess.scl, "9-limit chessboard pattern diamond. OdC" 1 11 261.62558 299. 313.950684 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 436.042603 457.844727; DIAMOND_CHESS11.scl, "11-limit chessboard pattern diamond. OdC" 1 17 261.62558 287.788116 299. 313.950684 319.764587 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 428.114563 436.042603 457.844727 475.682831; diamond_mod.scl, "13-tone Octave Modular Diamond based on Archytas's Enharmonic" 1 13 261.62558 269.1 271.315399 279.067261 327.031952 336.375732 348.834076 392.438354 406.973114 418.6 490.547943 504.563599 508.71637; diamond_tetr.scl, "Tetrachord Modular Diamond based on Archytas's Enharmonic" 1 8 261.62558 271.315399 279.067261 327.031952 336.375732 339.144257 348.834076 358.8; diaphonic_10.scl, "10-tone Diaphonic Cycle" 1 10 261.62558 277.015289 294.328766 313.950684 336.375732 362.250793 392.438354 418.6 448.5 483.001038; diaphonic_12.scl, "12-tone Diaphonic Cycle conjunctive form on 3/2 and 4/3" 1 12 261.62558 274.706848 289.1651 305.229828 323.184509 343.383545 366.275787 392.438354 413.092987 436.042603 461.692169 490.547943; DIAPHONIC_12a.scl, "2nd 12-tone Diaphonic Cycle conjunctive form on 10/7 and 7/5" 1 12 261.62558 274.706848 289.1651 305.229828 323.184509 343.383545 366.275787 385.553467 406.973114 430.912689 457.844727 488.367737; diaphonic_5.scl, "D5-tone Diaphonic Cycle" 1 5 261.62558 299. 348.834076 392.438354 448.5; diaphonic_7.scl, "7-tone Diaphonic Cycle disjunctive form on 4/3 and 3/2" 1 7 261.62558 285.409698 313.950684 348.834076 380.546265 418.6 465.112122; diat13.scl, "This genus is from K.S's diatonic Hypodorian harmonia" 1 7 261.62558 279.067261 322. 348.834076 392.438354 418.6 483.001038; diat15.scl, "Tonos-15 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 301.875641 327.031952 356.762146 373.750793 392.438354 436.042603 490.547943; diat15_inv.scl, "Inverted Tonos-15 Harmonia a harmonic series from 15 from 30.0000" 1 8 261.62558 279.067261 313.950684 348.834076 366.275787 383.717499 418.6 453.484314; diat17.scl, "Tonos-17 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 296.508972 342.125732 370.63623 386.750824 404.330414 444.763458 494.18161; diat19.scl, "Tonos-19 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 276.160309 310.680359 355.063263 368.213745 382.375824 414.240479 451.898712; diat21.scl, "Tonos-21 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 289.1651 305.229828 343.383545 366.275787 392.438354 422.625916 457.844727; diat21_inv.scl, "Inverted Tonos-21 Harmonia a harmonic series from 21 from 42.0000" 1 8 261.62558 299. 323.917358 348.834076 373.750793 398.667542 448.5 473.417694; diat23.scl, "Tonos-23 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 286.542297 300.869415 334.3 353.963989 376.086761 429.813416 462.876007; diat25.scl, "Tonos-25 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 297.301788 327.031952 363.368835 384.743469 408.79 467.188507 503.126099; diat27.scl, "Tonos-27 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 294.328766 336.375732 353.194519 371.783691 392.438354 441.493134 504.563599; diat27_inv.scl, "Inverted Tonos-27 Harmonia a harmonic series from 27 from 54" 1 8 261.62558 271.315399 310.074738 348.834076 377.903595 387.593445 406.973114 465.112122; diat29.scl, "Tonos-29 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 291.813141 316.13089 344.87 361.29245 379.357056 421.507843 474.19635; diat31.scl, "Tonos-31 Diatonic. The disjunctive and conjunctive diatonic forms are the same" 1 8 261.62558 289.656891 311.938171 337.933014 352.625763 368.654205 405.519623 450.577362; diat33.scl, "Tonos-33 Diatonic. The conjunctive form is 23 (Bb instead of B) 20 18 33/2" 1 8 261.62558 287.788116 319.764587 359.735138 375.375824 392.438354 431.68219 479.646881; diat_chrom.scl, "Diatonic- Chromatic on the border between the chromatic and diatonic genera" 1 7 261.62558 280.31311 301.875641 348.834076 392.438354 420.469666 452.813477; diat_dies2.scl, "Dorian Diatonic 2 part Diesis" 1 7 261.62558 266.71167 311.126984 349.228241 391.995422 399.615997 466.163757; diat_dies5.scl, "Dorian Diatonic 5 part Diesis" 1 7 261.62558 274.526947 311.126984 349.228241 391.995422 411.325653 466.163757; diat_enh.scl, "Diat. + Enharm. Diesis Dorian Mode" 1 7 261.62558 269.291779 311.126984 349.228241 391.995422 403.481781 466.163757; DIAT_ENH2.scl, "Diat. + Enharm. Diesis Dorian Mode 3 + 12 + 15 parts" 1 7 261.62558 269.291779 302.269806 349.228241 391.995422 403.481781 452.893005; diat_enh3.scl, "Diat. + Enharm. Diesis Dorian Mode 15 + 3 + 12 parts" 1 7 261.62558 302.269806 311.126984 349.228241 391.995422 452.893005 466.163757; diat_enh4.scl, "Diat. + Enharm. Diesis Dorian Mode 15 + 12 + 3 parts" 1 7 261.62558 302.269806 339.286377 349.228241 391.995422 452.893005 508.355194; DIAT_ENH5.scl, "Dorian Mode 12 + 15 + 3 parts" 1 7 261.62558 293.664764 339.286377 349.228241 391.995422 440. 508.355194; DIAT_ENH6.scl, "Dorian Mode 12 + 3 + 15 parts" 1 7 261.62558 293.664764 302.269806 349.228241 391.995422 440. 452.893005; diat_eq.scl, "Equal Diatonic Islamic form similar to 11/10 x 11/10 x 400/363" 1 7 261.62558 288.064667 317.175446 349.228241 391.995422 431.609314 475.226196; diat_eq2.scl, "Equal Diatonic 11/10 x 400/363 x 11/10" 1 7 261.62558 287.788116 317.121887 348.834076 392.438354 431.68219 475.682831; diat_gold.scl, "Diatonic scale with ratio between whole and half tone the Golden Section" 1 7 261.62558 292.383331 326.75708 349.992584 391.139343 437.12326 488.51297; diat_hemchrom.scl, "Diat. + Hem. Chrom. Diesis Another genus of Aristoxenos Dorian Mode" 1 7 261.62558 273.20871 311.126984 349.228241 391.995422 409.350555 466.163757; diat_smal.scl, ""Smallest number" diatonic scale" 1 7 261.62558 299. 327.031952 348.834076 392.438354 436.042603 457.844727; diat_sofchrom.scl, "Diat. + Soft Chrom. Diesis Another genus of Aristoxenos Dorian Mode" 1 7 261.62558 271.89682 311.126984 349.228241 391.995422 407.384949 466.163757; diat_soft.scl, "Soft Diatonic genus 5 + 10 + 15 parts" 1 7 261.62558 274.526947 302.269806 349.228241 391.995422 411.325653 452.893005; diat_soft2.scl, "Soft Diatonic genus with equally divided Pyknon Dorian Mode" 1 7 261.62558 281.214355 302.269806 349.228241 391.995422 421.345428 452.893005; diat_soft3.scl, "New Soft Diatonic genus with equally divided Pyknon Dorian Mode 1:1 pyknon" 1 7 261.62558 281.214355 324.901764 349.228241 391.995422 421.345428 486.802582; diat_soft4.scl, "New Soft Diatonic genus with equally divided Pyknon Dorian Mode 1:1 pyknon" 1 7 261.62558 302.269806 324.901764 349.228241 391.995422 452.893005 486.802582; didy_chrom.scl, "Didymus Chromatic" 1 7 261.62558 279.067261 290.695068 348.834076 392.438354 418.6 436.042603; didy_chrom1.scl, "Permuted Didymus Chromatic" 1 7 261.62558 279.067261 334.880737 348.834076 392.438354 418.6 502.321075; DIDY_CHROM2.scl, "Didymos's Chromatic 6/5 x 25/24 x 16/15" 1 7 261.62558 313.950684 327.031952 348.834076 392.438354 470.926025 490.547943; DIDY_CHROM3.scl, "Didymos's Chromatic 25/24 x 16/15 x 6/5" 1 7 261.62558 272.526642 290.695068 348.834076 392.438354 408.79 436.042603; didy_diat.scl, "Didymus Diatonic" 1 7 261.62558 279.067261 310.074738 348.834076 392.438354 418.6 465.112122; didy_diatinv.scl, "Inverse Didymus Diatonic variant of Ptolemy with 2 identical triads" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 441.493134 490.547943; didy_enh.scl, "Dorian mode of Didymos's Enharmonic" 1 7 261.62558 270.065094 279.067261 348.834076 392.438354 405.097656 418.6; didy_enh2.scl, "Permuted Didymus Enharmonic" 1 7 261.62558 275.622009 279.067261 348.834076 392.438354 413.432983 418.6; diesic-m.scl, "Minimal Diesic temperament g=176.021 5-limit" 1 7 261.62558 289.625244 320.621521 354.935089 392.920959 434.972137 481.523712; diesic-t.scl, "Tiny Diesic temperament g=443.017 5-limit" 1 19 261.62558 272.922394 281.873047 294.044159 303.6875 316.8 327.190186 337.920563 352.51178 364.072601 379.79303 392.248566 409.185608 422.605103 436.464661 455.310944 470.243134 490.547943 506.635742; dimteta.scl, "A heptatonic form on the 9/7" 1 7 261.62558 282.555603 307.125671 336.375732 406.973114 439.530945 477.751038; dimtetb.scl, "A pentatonic form on the 9/7" 1 5 261.62558 294.328766 336.375732 406.973114 457.844727; div_fifth1.scl, "Divided Fifth #1 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 273. 285.409698 348.834076 392.438354; div_fifth2.scl, "Divided Fifth #2 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 279.067261 299. 348.834076 392.438354; div_fifth3.scl, "Divided Fifth #3 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 271.315399 305.229828 348.834076 392.438354; div_fifth4.scl, "Divided Fifth #4 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 274.706848 305.229828 343.383545 392.438354; div_fifth5.scl, "Divided Fifth #5 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 287.788116 319.764587 359.735138 411.125885; dkring1.scl, "Double-tie circular mirroring of 4:5:6:7" 1 12 261.62558 274.706848 305.229828 313.950684 320.491302 327.031952 366.275787 392.438354 439.530945 448.5 457.844727 470.926025; dkring2.scl, "Double-tie circular mirroring of 3:5:7:9" 1 12 261.62558 274.706848 305.229828 329.648224 336.375732 353.194519 366.275787 392.438354 406.973114 427.321747 436.042603 470.926025; dkring3.scl, "Double-tie circular mirroring of 6:7:8:9" 1 12 261.62558 294.328766 299. 305.229828 336.375732 348.834076 384.429413 392.438354 398.667542 448.5 465.112122 504.563599; dkring4.scl, "Double-tie circular mirroring of 7:8:9:10" 1 12 261.62558 290.695068 294.328766 299. 327.031952 336.375732 367.91095 373.750793 378.422699 420.469666 467.188507 470.926025; dodeceny.scl, "Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15" 1 12 261.62558 275.933228 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 490.547943; dorian_chrom.scl, "Dorian Chromatic Tonos" 2 25 261.62558 279.067261 299. 310.074738 315.925201 322. 348.834076 380.546265 398.667542 408.391113 418.6 465.112122 523.25116 558.134521 598.001282 620.149475 631.850403 644.001404 697.668152 761.092529 797.335083 816.782227 837.201782 930.224243 1046.502319; dorian_chrom2.scl, "Schlesinger's Dorian Harmonia in the chromatic genus" 1 7 261.62558 274.083923 287.788116 359.735138 411.125885 426.352783 442.750946; dorian_chrominv.scl, "A harmonic form of Schlesinger's Chromatic Dorian inverted" 1 7 261.62558 273. 285.409698 332.977997 380.546265 404.330414 428.114563; DORIAN_DIAT.SCL, "Dorian Diatonic Tonos" 2 25 261.62558 279.067261 299. 322. 334.880737 348.834076 364. 380.546265 418.6 440.632538 465.112122 492.471649 523.25116 558.134521 598.001282 644.001404 669.761475 697.668152 728.001587 761.092529 837.201782 881.265076 930.224243 984.943298 1046.502319; dorian_diat2.scl, "Schlesinger's Dorian Harmonia a subharmonic series through 13 from 22" 1 8 261.62558 287.788116 319.764587 359.735138 383.717499 411.125885 442.750946 479.646881; DORIAN_DIAT2INV.scl, "Inverted Schlesinger's Dorian Harmonia a harmonic series from 11 from 22" 1 8 261.62558 285.409698 309.193848 332.977997 356.762146 380.546265 428.114563 475.682831; dorian_diatcon.scl, "A Dorian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 287.788116 319.764587 359.735138 383.717499 411.125885 479.646881; dorian_diatred11.scl, "Dorian mode of a diatonic genus with reduplicated 11/10" 1 7 261.62558 287.788116 316.566925 348.834076 392.438354 431.68219 474.850403; DORIAN_ENH.SCL, "Dorian Enharmonic Tonos" 2 25 261.62558 279.067261 299. 304.437012 307.23 310.074738 348.834076 380.546265 389.396179 393.977325 398.667542 465.112122 523.25116 558.134521 598.001282 608.874023 614.46 620.149475 697.668152 761.092529 778.792358 787.954651 797.335083 930.224243 1046.502319; dorian_enh2.scl, "Schlesinger's Dorian Harmonia in the enharmonic genus" 1 7 261.62558 267.709869 274.083923 359.735138 411.125885 426.352783 442.750946; DORIAN_ENHinv.scl, "A harmonic form of Schlesinger's Dorian enharmonic inverted" 1 7 261.62558 267.192078 273. 332.977997 380.546265 392.438354 404.330414; DORIAN_PENT.scl, "Schlesinger's Dorian Harmonia in the pentachromatic genus" 1 7 261.62558 271.49823 287.788116 359.735138 411.125885 423.217834 442.750946; dorian_pis.scl, "Diatonic Perfect Immutable System in the Dorian Tonos a non-rep. 16 tone gamut" 2 16 261.62558 299. 322. 348.834076 380.546265 418.6 465.112122 523.25116 558.134521 598.001282 644.001404 697.668152 761.092529 837.201782 930.224243 1046.502319; dorian_schl.scl, "Schlesinger's Dorian Piano Tuning (Sub 22)" 1 12 261.62558 274.083923 287.788116 302.934875 319.764587 338.574249 359.735138 383.717499 411.125885 442.750946 460.460999 479.646881; dorian_tri1.scl, "Schlesinger's Dorian Harmonia in the first trichromatic genus" 1 7 261.62558 269.801361 278.504639 359.735138 411.125885 421.153351 431.68219; dorian_tri2.scl, "Schlesinger's Dorian Harmonia in the second trichromatic genus" 1 7 261.62558 269.801361 287.788116 359.735138 411.125885 421.153351 442.750946; dowland_12.scl, "subset of Dowland's lute tuning lowest octave" 1 12 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 392.438354 417.756958 441.493134 462.516632 492.471649; dow_high.scl, "Highest octave of Dowlands lute tuning strings 5 6.0000 1/1=G (1610)" 2 15 261.62558 277.015289 278.504639 294.328766 308.344421 313.317719 327.341949 331.119843 346.887482 348.834076 369.353729 392.438354 417.756958 441.493134 462.516632; dow_lmh.scl, "All three octaves of Dowland's lute tuning" 2 56 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 371.339508 392.438354 411.125885 417.756958 436.455933 441.493134 462.516632 465.112122 492.471649 495.119354 523.25116 548.167847 557.009277 581.941223 588.657532 616.688843 620.149475 626.635437 656.628845 662.239685 693.774963 697.668152 736.519348 742.679016 784.876709 822.25177 831.045898 835.513916 882.986267 925.033264 939.953125 982.025818 993.359558 1040.662354 1046.502319 1108.061157 1114.018555 1177.315063 1233.377686 1253.270874 1309.367798 1324.47937 1387.55 1395.336304 1477.414917 1569.753418 1671.027832 1765.972534 1850.066528; dow_low.scl, "Lowest octave of Dowlands lute tuning strings 1 2 3.0000 1/1=G. (1610)" 1 17 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 371.339508 392.438354 411.125885 417.756958 436.455933 441.493134 462.516632 465.112122 492.471649 495.119354; dow_middle.scl, "Middle octave of Dowlands lute tuning strings 3 4 5.0000 1/1=G (1610)" 1 24 261.62558 274.083923 278.504639 290.970612 294.328766 308.344421 310.074738 313.317719 328.314423 331.119843 346.887482 348.834076 368.259674 371.339508 392.438354 411.125885 415.522949 417.756958 441.493134 462.516632 469.976563 491.012909 496.679779 520.331177; druri.scl, "Scale of druri dana of Siwoli south Nias Jaap Kunst" 1 4 261.62558 285.8 326.972687 357.184662; dudon_a.scl, "Dudon Tetrachord A" 1 7 261.62558 285.850159 319.764587 348.834076 392.438354 428.775238 479.646881; dudon_b.scl, "Dudon Tetrachord B" 1 7 261.62558 283.427704 321.581421 348.834076 392.438354 425.141541 482.372131; dudon_c12.scl, "Differentially coherent scale in interval class 1 and 2" 1 7 261.62558 302.504547 327.031952 343.383545 392.438354 425.141541 474.19635; dudon_diat.scl, "Dudon Neutral Diatonic" 1 7 261.62558 294.328766 321.085907 350.816101 392.438354 428.114563 481.628876; dudon_mohajira.scl, "Dudon's Mohajira two 3 + 4 + 3 tetrachords neutral diatonic" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 479.823395; dudon_mohajira_r.scl, "Jacques Dudon JI Mohajira Lumières audibles" 1 7 261.62558 283.427704 321.581421 348.834076 392.438354 425.141541 479.646881; dudon_moha_baya.scl, "Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 466.163757; dudon_thai.scl, "Dudon coherent Thai heptatonic scale 1/1 vol. 11/2 2003" 1 7 261.62558 288.261475 317.635193 350.437531 386.470215 426.174622 469.979309; dudon_thai2.scl, "Slightly better version 3.6850 cents deviation" 1 7 261.62558 288.028137 314.430725 347.133911 383.137451 422.441284 475.358948; dudon_thai3.scl, "Dudon Thai scale with two 704/703 = 2.4600 c. deviations and simpler numbers" 1 7 261.62558 291.603485 321.581421 354.284607 394.4823 434.68 478.965546; duncan.scl, "Dudley Duncan's Superparticular Scale" 1 12 261.62558 277.977173 294.328766 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 490.547943; duoden12.scl, "Almost equal 12-tone subset of Duodenarium" 1 12 261.62558 275.933228 294.328766 310.424866 330.746399 348.834076 372.089691 392.438354 413.9 440.995178 465.637299 496.119598; duodenarium.scl, "Ellis's Duodenarium : genus [3^12 5^8]" 3 118 14.56762 14.73308 14.749719 14.91724 14.987267 15.00419 15.10371 15.174608 15.19174 15.34696 15.36429 15.538798 15.55634 15.715288 15.73303 15.80688 15.911729 15.93 16.004463 16.186241 16.204519 16.388578 16.574718 16.59343 16.781898 16.860668 16.879707 16.991669 17.071426 17.265327 17.284822 17.48114 17.679693 17.7 17.78274 17.9 17.984716 18.00502 18.209522 18.416349 18.437141 18.646551 18.734077 18.858339 18.879642 18.968252 18.98967 19.183702 19.20536 19.423492 19.445421 19.644102 19.666286 19.889654 19.912111 20.00559 20.138275 20.232801 20.25565 20.485712 20.71839 20.741783 20.977369 21.075836 21.215631 21.23959 21.339291 21.581657 21.60603 21.851427 22.1 22.124578 22.37586 22.480892 22.506275 22.65556 22.761909 23.020433 23.046432 23.308187 23.572927 23.6 23.71032 23.867584 23.98 24.006702 24.279367 24.30678 24.555128 24.582855 24.862068 24.890142 25.144451 25.17285 25.291002 25.319559 25.487503 25.60714 25.898006 25.927238 26.221712 26.519548 26.549482 26.67411 26.851032 26.97707 27.00753 27.314283 27.624519 27.655712 27.97 28.101114 28.28751 28.319448 28.452377 28.775541 28.808044 29.135242; duodene.scl, "Ellis's Duodene : genus [33355]" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 470.926025 490.547943; duodene14-18-21.scl, "14-18-21 Duodene" 1 12 261.62558 271.315399 294.328766 305.229828 336.375732 348.834076 378.422699 392.438354 406.973114 448.5 457.844727 504.563599; duodene3-11_9.scl, "3-11/9 Duodene" 1 12 261.62558 285.409698 294.328766 319.764587 321.085907 348.834076 359.735138 392.438354 426.352783 428.114563 479.646881 481.628876; DUODENE3-7.SCL, "3-7 Duodene" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 398.667542 448.5 457.844727 515.075317; DUODENE6-7-9.scl, "6-7-9 Duodene" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 406.973114 448.5 457.844727 504.563599; DUODENE_MIN.scl, "Minor Duodene" 1 12 261.62558 290.695068 294.328766 313.950684 327.031952 348.834076 353.194519 392.438354 418.6 436.042603 470.926025 490.547943; duodene_r-45.scl, "Ellis's Duodene rotated -45 degrees" 1 12 261.62558 279.067261 294.328766 313.950684 334.880737 353.194519 376.740814 401.856873 408.79 436.042603 465.112122 490.547943; duodene_r45.scl, "Ellis's Duodene rotated 45 degrees" 1 12 261.62558 275.933228 279.067261 294.328766 313.950684 334.880737 383.24057 408.79 436.042603 459.888702 465.112122 490.547943; duodene_r90.scl, "Ellis's Duodene rotated 90 degrees: genus [33555]" 1 12 261.62558 272.526642 279.067261 306.592468 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 490.547943; duodene_skew.scl, "Rotated 6/5x3/2 duodene" 1 12 261.62558 282.555603 290.695068 313.950684 327.031952 348.834076 376.740814 392.438354 418.6 436.042603 470.926025 502.321075; duodene_t.scl, "Duodene with equal tempered fifths" 1 12 261.62558 279.382599 293.664764 313.596344 327.031952 349.228241 367.080963 391.995422 418.6 436.535278 469.863617 489.994293; efg333.scl, "Genus primum [333]" 1 4 261.62558 294.328766 348.834076 392.438354; efg333333333337.scl, "Genus [333333333337]" 1 24 261.62558 275.017029 279.382385 289.729889 294.328766 309.394165 314.305176 325.946106 331.119843 343.383545 353.593323 366.689362 372.509827 386.306488 392.438354 412.525543 419.073578 434.594818 441.493134 457.844727 471.457764 488.919159 496.679779 515.075317; efg333333355.scl, "Genus [333333355]" 1 24 261.62558 264.895874 275.933228 279.067261 290.695068 294.328766 310.424866 313.950684 327.031952 331.119843 348.834076 353.194519 367.91095 372.089691 392.438354 397.343842 413.9 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.679779; efg33335.scl, "Genus [33335]" 1 10 261.62558 275.933228 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 490.547943; efg3333555.scl, "Genus [3333555]" 1 20 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 363.368835 367.91095 372.089691 392.438354 408.79 418.6 436.042603 459.888702 465.112122 470.926025 490.547943; efg33335555.scl, "Genus bis-ultra-chromaticum [33335555]" 1 25 261.62558 272.526642 279.067261 290.695068 294.328766 297.671753 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 367.91095 372.089691 376.740814 392.438354 408.79 418.6 436.042603 446.507629 459.888702 465.112122 470.926025 490.547943 502.321075; efg333355577.scl, "Genus [333355577]" 1 60 261.62558 267.076111 268.268402 272.526642 274.706848 278.204254 279.067261 281.681824 284.881165 286.152954 290.695068 294.328766 300.460602 305.229828 306.592468 312.98 313.950684 317.947723 320.491302 321.922089 325.578491 327.031952 333.845123 343.383545 348.834076 352.102264 356.101471 357.691193 360.552734 363.368835 366.275787 367.91095 372.089691 375.575775 381.537292 392.438354 400.614136 402.402588 406.973114 408.79 412.060272 417.306396 418.6 427.321747 429.229431 436.042603 445.126831 450.690918 457.844727 459.888702 465.112122 469.469696 470.926025 476.9216 480.736969 488.367737 490.547943 500.76767 508.71637 515.075317; efg33337.scl, "Genus [33337]" 1 10 261.62558 294.328766 305.229828 343.383545 348.834076 386.306488 392.438354 441.493134 457.844727 515.075317; efg3335.scl, "Genus diatonicum veterum correctum [3335]" 1 8 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603 465.112122 490.547943; efg33355.scl, "Genus diatonico-chromaticum hodiernum correctum [33355]" 1 12 261.62558 272.526642 290.695068 310.074738 327.031952 348.834076 363.368835 387.593445 408.79 436.042603 465.112122 484.491791; efg333555.scl, "Genus diatonico-hyperchromaticum [333555]" 1 16 261.62558 272.526642 279.067261 290.695068 306.592468 313.950684 327.031952 348.834076 363.368835 372.089691 392.438354 408.79 418.6 436.042603 465.112122 490.547943; efg33355555.scl, "Genus [33355555]" 1 24 261.62558 272.526642 279.067261 287.43042 294.328766 306.592468 313.950684 319.367157 327.031952 340.658295 348.834076 359.288025 367.91095 383.24057 392.438354 408.79 418.6 425.822845 436.042603 459.888702 470.926025 479.05072 490.547943 510.987427; efg333555777.scl, "Genus [333555777]" 1 64 261.62558 262.793549 267.076111 268.268402 269.1 272.526642 274.706848 279.067261 280.31311 281.681824 286.152954 294.328766 299. 300.460602 305.229828 306.592468 311.459015 312.98 313.950684 318.934021 320.491302 321.922089 327.031952 333.845123 336.375732 343.383545 348.834076 350.391388 352.102264 357.691193 358.8 360.552734 366.275787 367.91095 373.750793 375.575775 381.537292 392.438354 398.667542 400.614136 402.402588 408.79 412.060272 417.306396 418.6 420.469666 427.321747 429.229431 436.042603 448.5 450.690918 457.844727 459.888702 467.188507 469.469696 470.926025 476.9216 478.401031 480.736969 488.367737 490.547943 498.334412 500.76767 515.075317; efg333557.scl, "Genus diatonico-enharmonicum [333557]" 1 24 261.62558 265.778351 279.067261 280.31311 290.695068 299. 313.950684 318.934021 327.031952 332.222931 348.834076 358.8 372.089691 373.750793 392.438354 398.667542 418.6 425.245361 436.042603 448.5 465.112122 478.401031 490.547943 498.334412; efg33357.scl, "Genus diatonico-enharmonicum [33357]" 1 16 261.62558 274.706848 279.067261 305.229828 313.950684 325.578491 343.383545 348.834076 366.275787 372.089691 392.438354 406.973114 418.6 457.844727 465.112122 488.367737; EFG3335711.SCL, "Genus [3 3 3 5 7 11] expanded hexany 1 3 5 7 9 11" 1 32 261.62558 265.585724 269.801361 275.933228 286.152954 294.328766 295.095245 303.52652 314.76825 321.922089 327.031952 331.982147 337.251709 343.383545 354.114288 359.735138 367.91095 379.408173 386.306488 392.438354 393.460327 404.702057 429.229431 441.493134 442.642853 449.668945 457.844727 472.152374 482.883118 490.547943 505.877563 515.075317; efg333577.scl, "Genus [333577]" 1 24 261.62558 267.076111 281.681824 286.152954 294.328766 300.460602 305.229828 321.922089 327.031952 333.845123 343.383545 348.834076 367.91095 375.575775 381.537292 392.438354 400.614136 429.229431 436.042603 450.690918 457.844727 490.547943 500.76767 515.075317; efg3337.scl, "Genus [3337]" 1 8 261.62558 294.328766 305.229828 343.383545 348.834076 392.438354 457.844727 515.075317; efg33377.scl, "Genus [33377] Bi-enharmonicum simplex" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 398.667542 448.5 457.844727 515.075317; efg335.scl, "Genus secundum [335]" 1 6 261.62558 327.031952 348.834076 392.438354 436.042603 490.547943; efg3355.scl, "Genus chromaticum veterum correctum [3355]" 1 9 261.62558 279.067261 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 490.547943; efg33555.scl, "Genus bichromaticum [33555]" 1 12 261.62558 294.328766 306.592468 313.950684 327.031952 367.91095 392.438354 408.79 418.6 459.888702 470.926025 490.547943; efg335555577.scl, "Genus [335555577]" 1 45 261.62558 267.076111 268.268402 272.526642 274.706848 279.067261 286.152954 293.02063 300.460602 305.229828 306.592468 312.98 313.950684 320.491302 327.031952 333.845123 334.880737 341.857391 343.383545 348.834076 357.691193 366.275787 375.575775 381.537292 384.589569 390.694183 392.438354 400.614136 408.79 417.306396 418.6 427.321747 429.229431 436.042603 439.530945 446.507629 457.844727 469.469696 476.9216 480.736969 488.367737 490.547943 500.76767 502.321075 512.786133; efg33557.scl, "Genus chromatico-enharmonicum [33557]" 1 18 261.62558 274.706848 279.067261 286.152954 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 418.6 429.229431 436.042603 457.844727 488.367737 490.547943; efg335577.scl, "Genus chromaticum septimis triplex [335577]" 1 27 261.62558 274.706848 279.067261 280.31311 286.152954 299. 305.229828 313.950684 318.934021 327.031952 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 418.6 429.229431 436.042603 448.5 457.844727 478.401031 488.367737 490.547943 498.334412; efg3357.scl, "Genus enharmonicum vocale [3357]" 1 12 261.62558 286.152954 305.229828 327.031952 343.383545 348.834076 381.537292 392.438354 429.229431 436.042603 457.844727 490.547943; efg33577.scl, "Genus [33577]" 1 18 261.62558 280.31311 286.152954 299. 305.229828 327.031952 343.383545 348.834076 373.750793 381.537292 392.438354 398.667542 429.229431 436.042603 448.5 457.844727 490.547943 498.334412; efg337.scl, "Genus quintum [337]" 1 6 261.62558 294.328766 343.383545 392.438354 457.844727 515.075317; efg3377.scl, "Genus [3377]" 1 9 261.62558 299. 305.229828 343.383545 348.834076 392.438354 398.667542 448.5 457.844727; efg33777.scl, "Genus [33777]" 1 12 261.62558 267.076111 299. 300.460602 305.229828 343.383545 348.834076 392.438354 398.667542 400.614136 448.5 457.844727; efg33777a.scl, "Genus [33777] with comma discarded which disappears in 31-tET" 1 10 261.62558 267.076111 299. 305.229828 343.383545 348.834076 392.438354 398.667542 448.5 457.844727; efg355.scl, "Genus tertium [355]" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 490.547943; efg3555.scl, "Genus enharmonicum veterum correctum [3555]" 1 8 261.62558 306.592468 327.031952 383.24057 392.438354 408.79 490.547943 510.987427; efg35557.scl, "Genus [35557]" 1 16 261.62558 268.268402 274.706848 286.152954 306.592468 313.950684 327.031952 343.383545 357.691193 366.275787 392.438354 408.79 418.6 429.229431 457.844727 490.547943; efg3557.scl, "Genus enharmonicum instrumentale [3557]" 1 12 261.62558 274.706848 286.152954 313.950684 327.031952 343.383545 366.275787 392.438354 418.6 429.229431 457.844727 490.547943; efg35577.scl, "Genus [35577]" 1 18 261.62558 274.706848 280.31311 286.152954 299. 313.950684 327.031952 343.383545 358.8 366.275787 373.750793 392.438354 418.6 429.229431 448.5 457.844727 478.401031 490.547943; efg357.scl, "Genus sextum [357] & 7-limit Octony see ch.6 p.118" 1 8 261.62558 286.152954 327.031952 343.383545 392.438354 429.229431 457.844727 490.547943; EFG35711.scl, "Genus [3 5 7 11]" 1 16 261.62558 269.801361 286.152954 295.095245 314.76825 327.031952 337.251709 343.383545 359.735138 392.438354 393.460327 429.229431 449.668945 457.844727 472.152374 490.547943; efg3571113.scl, "Genus [3 5 7 11 13]" 1 32 261.62558 265.71347 269.801361 274.016998 279. 286.152954 292.284821 295.095245 314.76825 318.856171 319.686523 327.031952 337.251709 343.383545 348.748932 359.735138 365.356018 371.99884 383.62381 392.438354 393.460327 398.57019 425.141541 429.229431 438.427216 449.668945 457.844727 464.998566 472.152374 479.529755 490.547943 511.498413; efg3577.scl, "Genus [3577]" 1 12 261.62558 280.31311 286.152954 299. 327.031952 343.383545 373.750793 392.438354 429.229431 448.5 457.844727 490.547943; efg35777.scl, "Genus [35777]" 1 16 261.62558 280.31311 286.152954 299. 300.460602 327.031952 343.383545 373.750793 375.575775 392.438354 400.614136 429.229431 448.5 457.844727 490.547943 500.76767; efg35777a.scl, "Genus [35777] with comma discarded which disappears in 31-tET" 1 14 261.62558 280.31311 286.152954 299. 327.031952 343.383545 373.750793 392.438354 400.614136 429.229431 448.5 457.844727 490.547943 500.76767; efg377.scl, "Genus octavum [377]" 1 6 261.62558 300.460602 343.383545 392.438354 400.614136 457.844727; efg3777.scl, "Genus [3777]" 1 8 261.62558 262.903046 300.460602 343.383545 350.537384 392.438354 400.614136 457.844727; efg37777.scl, "Genus [37777]" 1 10 261.62558 262.903046 299. 300.460602 343.383545 350.537384 392.438354 400.614136 448.5 457.844727; efg37777a.scl, "Genus [37777] with comma discarded that disappears in 31-tET" 1 8 261.62558 299. 343.383545 350.537384 392.438354 400.614136 448.5 457.844727; efg555.scl, "Genus quartum [555]" 1 4 261.62558 327.031952 408.79 510.987427; efg55557.scl, "Genus [55557]" 1 10 261.62558 286.152954 327.031952 357.691193 366.275787 408.79 418.6 447.114014 457.844727 510.987427; efg5557.scl, "Genus [5557]" 1 8 261.62558 286.152954 327.031952 357.691193 408.79 447.114014 457.844727 510.987427; efg55577.scl, "Genus [55577]" 1 12 261.62558 286.152954 291.992828 299. 327.031952 357.691193 373.750793 408.79 447.114014 457.844727 467.188507 510.987427; efg557.scl, "Genus septimum [557]" 1 6 261.62558 286.152954 327.031952 366.275787 418.6 457.844727; efg5577.scl, "Genus [5577]" 1 9 261.62558 293.02063 320.491302 334.880737 366.275787 400.614136 418.6 457.844727 512.786133; efg55777.scl, "Genus [55777]" 1 12 261.62558 286.152954 299. 320.491302 327.031952 366.275787 373.750793 400.614136 418.6 457.844727 478.401031 500.76767; efg577.scl, "Genus nonum [577]" 1 6 261.62558 286.152954 327.031952 400.614136 457.844727 500.76767; efg5777.scl, "Genus [5777]" 1 8 261.62558 286.152954 299. 327.031952 373.750793 400.614136 457.844727 500.76767; efg57777.scl, "Genus [57777]" 1 10 261.62558 286.152954 299. 327.031952 350.537384 373.750793 400.614136 438.171722 457.844727 500.76767; efg777.scl, "Genus decimum [777]" 1 4 261.62558 350.537384 400.614136 457.844727; efg77777.scl, "Genus [77777]" 1 6 261.62558 299. 341.715027 350.537384 400.614136 457.844727; Eikosany.scl, "3)6 1.3.5.7.9.11 Eikosany (1.3.5 tonic)" 1 20 261.62558 269.801361 274.706848 287.788116 294.328766 305.229828 323.761627 335.752808 343.383545 359.735138 366.275787 377.721924 392.438354 412.060272 419.69101 431.68219 457.844727 470.926025 479.646881 503.629211; ekring1.scl, "Single-tie circular mirroring of 3:4:5" 1 12 261.62558 294.328766 313.950684 327.031952 353.194519 367.91095 376.740814 408.79 418.6 436.042603 470.926025 490.547943; ekring2.scl, "Single-tie circular mirroring of 6:7:8" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 384.429413 400.614136 448.5 457.844727 504.563599 515.075317; ekring3.scl, "Single-tie circular mirroring of 4:5:7" 1 12 261.62558 266.964874 299. 305.102692 327.031952 333.706085 341.715027 408.79 418.6 427.143768 457.844727 467.188507; EKRING4.SCL, "Single-tie circular mirroring of 4:5:6" 1 12 261.62558 279.067261 313.950684 334.880737 348.834076 376.740814 392.438354 401.856873 436.042603 446.507629 465.112122 502.321075; ekring5.scl, "Single-tie circular mirroring of 3:5:7" 1 12 261.62558 263.718567 269.1 305.229828 322.920685 366.275787 373.750793 376.740814 384.429413 439.530945 448.5 512.786133; ekring5bp.scl, "Single-tie BP circular mirroring of 3:5:7" 2 13 261.62558 282.555603 336.375732 363.285797 366.275787 395.57785 432.483063 512.786133 560.626221 605.476318 610.459656 659.296448 784.876709; ekring6.scl, "Single-tie circular mirroring of 6:7:9" 1 12 261.62558 288.322052 299. 336.375732 348.834076 384.429413 392.438354 406.973114 432.483063 465.112122 494.266388 512.57251; ekring7.scl, "Single-tie circular mirroring of 5:7:9" 1 12 261.62558 266.964874 290.695068 296.627625 322.994537 336.375732 343.24054 406.973114 415.278687 432.483063 470.926025 480.536743; ekring7bp.scl, "Single-tie BP circular mirroring of 5:7:9" 2 13 261.62558 311.459015 336.375732 400.447296 432.483063 436.042603 470.926025 514.860779 610.459656 667.41217 720.805115 726.737671 784.876709; ellis.scl, "Alexander John Ellis' imitation equal temperament (1875)" 1 12 261.62558 277.1 293.578766 310.987671 329.526093 349.111115 369.966858 391.938354 415.150238 439.868134 465.981506 493.789154; ellis_24.scl, "Ellis from p.421 of Helmholtz 24 tones of JI for 1 manual harmonium" 1 24 261.62558 264.895874 272.526642 275.933228 294.328766 298.007874 306.592468 310.424866 327.031952 331.119843 348.834076 353.194519 367.91095 372.509827 392.438354 397.343842 408.79 413.9 436.042603 441.493134 459.888702 465.637299 490.547943 496.679779; ellis_eb.scl, "Ellis' new equal beating temperament for pianofortes (1885)" 1 12 261.62558 277.215881 293.653748 311.192871 329.685486 349.21698 370.021179 391.938354 415.323822 439.980652 466.289276 494.028229; ellis_harm.scl, "Ellis's Just Harmonium" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 353.194519 392.438354 418.6 436.042603 470.926025 490.547943; ellis_mteb.scl, "Ellis' equal beating meantone tuning (1885)" 1 12 261.62558 273.319214 292.344635 313.055878 326.934937 350.188477 365.786926 391.15 408.783478 437.238434 468.272369 489.170319; enh14.scl, "14/11 Enharmonic" 1 7 261.62558 267.709869 274.083923 348.834076 392.438354 401.564819 411.125885; enh15.scl, "Tonos-15 Enharmonic" 1 7 261.62558 270.647125 280.31311 356.762146 392.438354 402.5 413.092987; enh15_inv.scl, "Inverted Enharmonic Tonos-15 Harmonia" 1 7 261.62558 331.392395 340.11322 348.834076 383.717499 488.367737 505.809418; ENH15_INV2.scl, "Inverted harmonic form of the enharmonic Tonos-15" 1 7 261.62558 270.346405 279.067261 348.834076 383.717499 392.438354 401.15921; enh17.scl, "Tonos-17 Enharmonic" 1 7 261.62558 269.553619 277.977173 370.63623 404.330414 413.733459 423.584259; enh17_con.scl, "Conjunct Tonos-17 Enharmonic" 1 7 261.62558 269.553619 277.977173 370.63623 378.522095 386.750824 494.18161; enh19.scl, "Tonos-19 Enharmonic" 1 7 261.62558 268.696533 276.160309 355.063263 382.375824 389.873383 397.670868; enh19_con.scl, "Conjunct Tonos-19 Enharmonic" 1 7 261.62558 268.696533 276.160309 355.063263 361.518951 368.213745 451.898712; enh2.scl, "1:2 Enharmonic. New genus 2 + 4 + 24 parts" 1 7 261.62558 266.71167 277.182617 349.228241 391.995422 399.615997 415.304688; enh21.scl, "Tonos-21 Enharmonic" 1 7 261.62558 268.006683 274.706848 343.383545 392.438354 399.573578 406.973114; enh21_inv.scl, "Inverted Enharmonic Tonos-21 Harmonia" 1 7 261.62558 336.375732 342.604919 348.834076 398.667542 498.334412 510.792755; enh21_inv2.scl, "Inverted harmonic form of the enharmonic Tonos-21" 1 7 261.62558 270.065094 279.067261 348.834076 398.667542 411.125885 423.584259; enh23.scl, "Tonos-23 Enharmonic" 1 7 261.62558 267.439453 273.517639 334.3 376.086761 388.218567 401.15921; enh23_con.scl, "Conjunct Tonos-23 Enharmonic" 1 7 261.62558 267.439453 273.517639 334.3 343.850739 353.963989 462.876007; enh25.scl, "Tonos-25 Enharmonic" 1 7 261.62558 269.717072 278.325073 363.368835 408.79 421.976715 436.042603; enh25_con.scl, "Conjunct Tonos-25 Enharmonic" 1 7 261.62558 269.717072 278.325073 363.368835 373.750793 384.743469 503.126099; enh27.scl, "Tonos-27 Enharmonic" 1 7 261.62558 269.1 277.015289 353.194519 392.438354 403.650879 415.522949; enh27_inv.scl, "Inverted Enharmonic Tonos-27 Harmonia" 1 7 261.62558 329.454407 339.144257 348.834076 387.593445 494.18161 508.71637; enh27_inv2.scl, "Inverted harmonic form of the enharmonic Tonos-27" 1 7 261.62558 266.382385 271.315399 348.834076 387.593445 397.283264 406.973114; enh29.scl, "Tonos-29 Enharmonic" 1 7 261.62558 266.215485 270.96933 344.87 379.357056 389.084167 399.323242; enh29_con.scl, "Conjunct Tonos-29 Enharmonic" 1 7 261.62558 266.215485 270.96933 344.87 352.890289 361.29245 474.19635; enh31.scl, "Tonos-31 Enharmonic. Tone 24 alternates with 23 as MESE or A" 1 8 261.62558 270.346405 279.668701 337.933014 352.625763 368.654205 377.22757 386.209167; enh31_con.scl, "Conjunct Tonos-31 Enharmonic" 1 8 261.62558 270.346405 279.668701 337.933014 352.625763 360.461884 368.654205 450.577362; enh33.scl, "Tonos-33 Enharmonic" 1 7 261.62558 269.801361 278.504639 359.735138 392.438354 401.564819 411.125885; enh33_con.scl, "Conjunct Tonos-33 Enharmonic" 1 7 261.62558 269.801361 278.504639 359.735138 367.389099 375.375824 479.646881; enh_invcon.scl, "Inverted Enharmonic Conjunct Phrygian Harmonia" 1 7 261.62558 283.427704 370.63623 381.537292 392.438354 501.449005 512.35; enh_mod.scl, "Enharmonic After Wilson's Purvi Modulations See page 111" 1 7 261.62558 294.328766 305.229828 348.834076 392.438354 406.973114 418.6; enh_perm.scl, "Permuted Enharmonic After Wilson's Marwa Permutations See page 110.0000" 1 7 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 465.112122; ennea45.scl, "Ennealimmal-45 in a 7-limit least-squares tuning g=48.999 G.W. Smith" 1 45 261.62558 267.020294 269.136139 274.68573 276.862335 282.571228 288.397858 290.683105 296.677002 299.027863 305.193817 311.486938 313.955109 320.428894 322.967957 329.627563 336.424469 339.090302 346.082336 348.824677 356.017456 363.358551 366.237762 373.789612 376.751495 384.520111 392.448944 395.558655 403.715088 406.914124 415.304688 423.868286 427.22702 436.036438 439.491547 448.553864 457.803101 461.430695 470.945404 474.677124 484.464996 494.454681 498.372681 508.649139 512.679688; epimore_enh.scl, "New Epimoric Enharmonic Dorian mode of the 4th new Enharmonic on Hofmann's list" 1 7 261.62558 265.113892 279.067261 348.834076 392.438354 397.670868 418.6; eratos_chrom.scl, "Dorian mode of Eratosthenes's Chromatic. same as Ptol. Intense Chromatic" 1 7 261.62558 275.395325 290.695068 348.834076 392.438354 413.092987 436.042603; ERATOS_DIAT.SCL, "Dorian mode of Eratosthenes's Diatonic Pythagorean" 1 7 261.62558 275.622009 310.074738 348.834076 392.438354 413.432983 465.112122; eratos_enh.scl, "Dorian mode of Eratosthenes's Enharmonic" 1 7 261.62558 268.333923 275.395325 348.834076 392.438354 402.5 413.092987; erlangen.scl, "Anonymus: Pro clavichordiis faciendis Erlangen 15th century" 1 12 261.62558 275.622009 293.996796 310.074738 327.031952 348.834076 367.496002 392.438354 413.432983 440.995178 465.112122 490.547943; erlangen2.scl, "Revised Erlangen" 1 12 261.62558 275.933228 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.9 441.493134 465.112122 490.547943; erlich1.scl, "Asymmetrical Major decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 326.183807 347.4 369.994415 394.059296 433.122772 461.293579 491.296631; erlich10.scl, "Canonical JI interpretation of the Pentachordal decatonic mode of 22-tET" 1 10 261.62558 274.706848 299. 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025; erlich10s1.scl, "Superparticular version of erlich10 using 50/49 decatonic comma" 1 10 261.62558 280.31311 299. 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025; erlich10s2.scl, "Other superparticular version of erlich10 using 50/49 decatonic comma" 1 10 261.62558 274.706848 293.02063 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025; erlich11.scl, "Canonical JI interpretation of the Symmetrical decatonic mode of 22-tET" 1 10 261.62558 280.31311 305.229828 327.031952 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943; erlich11s1.scl, "Superparticular version of erlich11 using 50/49 decatonic comma" 1 10 261.62558 274.706848 305.229828 327.031952 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943; erlich11s2.scl, "Other superparticular version of erlich11 using 50/49 decatonic comma" 1 10 261.62558 280.31311 305.229828 311.459015 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943; erlich12.scl, "Two 9-tET scales 3/2 shifted Paul Erlich TL 5-12-2001" 1 18 261.62558 267.013092 282.571228 288.39 305.193817 311.478516 329.627563 336.415405 356.017456 363.348755 384.520111 392.438354 415.304688 423.856873 448.553894 457.790741 484.464996 494.441345; erlich13.scl, "Just scale by Paul Erlich (2002)" 1 10 261.62558 269.801361 294.328766 327.031952 343.383545 359.735138 392.438354 441.493134 457.844727 490.547943; erlich2.scl, "Asymmetrical Minor decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 316.067139 347.4 369.994415 394.059296 419.689362 446.98642 476.058929; erlich3.scl, "Symmetrical Major decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 326.183807 347.4 369.994415 394.059296 419.689362 461.293579 491.296631; erlich4.scl, "Symmetrical Minor decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 316.067139 347.4 369.994415 394.059296 419.689362 446.98642 491.296631; erlich5.scl, "Unequal 22-note compromise between decatonic & Indian srutis Paul Erlich" 1 22 261.62558 269.330658 278.104767 287.164734 295.621979 306.179688 315.19693 326.453735 335.050507 348.070251 357.236267 368.874115 380.891083 393.3 406.112244 419.342346 433.003448 444.406067 461.675293 473.832947 490.755188 505.208374; erlich6.scl, "Scale of consonant tones against 1/1-3/2 drone. TL 23-9-1998" 1 22 261.62558 274.706848 280.31311 285.409698 294.328766 299. 305.229828 313.950684 327.031952 336.375732 343.383545 348.834076 359.735138 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727 470.926025 490.547943; erlich7.scl, "Meantone-like circle of sinuoidally varying fifths TL 08-12-99" 1 26 261.62558 272.641174 277.984314 281.848572 292.479767 303.511993 307.731079 313.761902 326.972687 337.05957 340.857849 350.056274 365.132538 373.602356 378.14 391.181152 406.945862 413.628876 420.421631 437.364716 452.448486 457.943695 468.566406 488.746674 501.936035 507.592316; erlich8.scl, "Two 12-tET scales 15 cents shifted Paul Erlich" 1 24 261.62558 263.902222 277.182617 279.594666 293.664764 296.220245 311.126984 313.834412 329.627563 332.496002 349.228241 352.267212 369.994415 373.214111 391.995422 395.406586 415.304688 418.918671 440. 443.828888 466.163757 470.220306 493.883301 498.181061; erlich9.scl, "11-limit periodicity block u.v.: 9801/9800 243/242 126/125 100/99" 1 20 261.62558 271.315399 280.31311 290.695068 302.707275 308.344421 319.764587 332.977997 345.345734 356.762146 369.975555 383.717499 396.402374 411.125885 428.114563 436.042603 452.238464 470.926025 488.367737 504.563599; erlich_bp.scl, "Erlich's Triple Bohlen-Pierce scale" 2 23 261.62558 282.555603 301.875641 309.193848 311.459015 319.764587 336.375732 356.762146 366.275787 377.903595 400.447296 411.125885 436.042603 470.926025 485.876038 512.786133 560.626221 575.576233 610.459656 659.296448 680.22644 726.737671 784.876709; erlich_bpf.scl, "Erlich's 39-tone Triple Bohlen-Pierce scale" 2 40 261.62558 269.931152 277.481659 282.555603 293.661346 301.875641 311.459015 319.764587 328.709045 336.375732 347.054321 356.762146 366.275787 377.903595 388.474335 400.447296 411.125885 422.625916 436.042603 447.67041 458.694183 470.926025 485.876038 499.46698 512.786133 528.590454 543.37616 560.626221 575.576233 591.67627 610.459656 624.697754 642.171814 659.296448 680.22644 699.253784 726.737671 740.026611 760.726624 784.876709; erlich_bpp.scl, "Periodicity block for erlich_bpf 1625/1617 1331/1323 275/273 245/243" 2 40 261.62558 268.602234 277.481659 282.555603 293.661346 299.680206 311.459015 319.764587 323.654602 336.375732 345.345734 356.762146 366.275787 380.672119 385.303101 400.447296 411.125885 419.552277 436.042603 447.67041 458.694183 470.926025 489.435577 499.46698 512.786133 528.590454 539.424377 560.626221 575.576233 594.603577 610.459656 629.274292 642.171814 659.296448 685.209839 699.253784 720.805115 740.026611 764.490295 784.876709; erlich_bpp2.scl, "Improved shape for erlich_bpp" 2 40 261.62558 268.602234 277.481659 282.555603 293.925018 299.680206 311.459015 319.764587 326.025696 336.375732 345.345734 356.762146 366.275787 377.903595 385.303101 400.447296 411.125885 422.625916 436.042603 447.67041 458.694183 470.926025 485.876038 499.46698 512.786133 528.590454 543.37616 560.626221 575.576233 594.603577 610.459656 629.839294 642.171814 659.296448 685.209839 698.626526 726.737671 740.026611 764.490295 784.876709; erlich_bppe.scl, "LS optimal 3:5:7:11:13 tempering virtually equal g=780.2702 cents" 2 40 261.62558 269.035278 276.773254 284.611969 292.797943 301.090515 309.750458 318.523132 327.684509 337.109344 346.65686 356.627411 366.727722 377.275543 387.960632 399.119141 410.598602 422.227478 434.371582 446.673737 459.520966 472.5354 486.126465 499.894409 514.272339 529.063843 544.047852 559.69574 575.547302 592.101196 608.870544 626.382874 644.398865 662.649353 681.708435 701.015625 721.178223 741.603271 762.933228 784.876709; ERLICH_BPPM.scl, "MM optimal 3:5:7:11:13 tempering g=780.352 cents" 2 40 261.62558 269.31485 276.838593 284.975006 292.936218 301.545746 309.97 319.08 327.99408 337.157104 347.066284 356.762146 367.247528 377.507172 388.602264 399.458496 410.617981 422.686249 434.494629 447.264648 459.759674 473.272217 486.493805 500.792084 514.782532 529.163757 544.716125 559.933594 576.39032 592.492676 609.906311 626.945007 644.459717 663.4 681.933777 701.976135 721.586975 742.794739 763.545837 784.876709; erlich_paj.scl, "Erlich's Pajara or Twintone with RMS optimal generator" 1 22 261.62558 269.741058 278.597412 287.23938 296.67041 305.872986 315.915649 325.71521 336.409332 346.844574 358.232666 369.994415 381.471466 393.996246 406.217804 419.555298 432.569733 446.772186 460.630859 475.754639 490.512329 506.617493; erlich_paj2.scl, "Erlich's Pajara or Twintone with minimax optimal generator" 1 22 261.62558 270.254486 278.68576 287.877533 296.858459 306.649597 316.216156 326.645752 336.836121 347.945831 358.8 369.994415 382.19754 394.121216 407.1203 419.821259 433.667999 447.197174 461.946838 476.358215 492.069702 507.420807; et-mix6.scl, "Mix of equal temperaments from 1-6 (= 4-6)" 1 12 261.62558 293.664764 300.52887 311.126984 329.627563 345.21701 369.994415 396.550201 415.304688 440. 455.516571 466.163757; et7a.scl, "7-tone equal temperament with pure fourth and fifth" 1 7 261.62558 288.858032 318.92514 348.834076 392.438354 429.241394 473.920929; euler.scl, "Euler's Monochord (a mode of Ellis's duodene) (1739) genus [33355]" 1 12 261.62558 272.526642 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 459.888702 490.547943; euler20.scl, "Genus [3333555] tempered by 225/224-planar" 1 20 261.62558 274.581451 285.657501 293.611023 305.454681 320.580994 326.623901 329.506897 342.798523 366.555817 381.341919 391.959564 407.770416 411.369659 427.96347 439.879181 457.623016 489.338074 509.076996 513.570435; euler24.scl, "Genus [33333555] tempered by 225/224-planar" 1 24 261.62558 274.581451 285.657501 293.611023 305.454681 308.150818 320.580994 326.623901 329.506897 342.798523 366.555817 381.341919 384.707886 391.959564 407.770416 411.369659 427.96347 439.879181 457.623016 480.284821 489.338074 493.657288 509.076996 513.570435; euler_diat.scl, "Euler's genus diatonicum veterum correctum" 1 8 261.62558 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 490.547943; euler_enh.scl, "Euler's Old Enharmonic From Tentamen Novae Theoriae Musicae" 1 7 261.62558 267.904572 275.622009 348.834076 392.438354 401.856873 413.432983; euler_gm.scl, "Euler's Genus Musicum Octony based on Archytas's Enharmonic" 1 8 261.62558 271.315399 279.067261 289.403107 348.834076 361.753876 372.089691 385.870789; exp2.scl, "Two times expanded major triad" 1 7 261.62558 306.592468 327.031952 367.91095 392.438354 459.888702 490.547943; exp3.scl, "Three times expanded major triad" 1 30 261.62558 269.466034 275.933228 279.067261 287.43042 294.328766 297.671753 303.149292 306.592468 313.950684 323.359222 327.031952 344.916504 348.834076 359.288025 367.91095 372.089691 378.936615 383.24057 392.438354 404.2 408.79 418.6 431.14566 436.042603 446.507629 459.888702 490.547943 505.24881 517.374756; far12_104.scl, "Farey approximation to 12-tET with den=104" 1 12 261.62558 276.71936 294.328766 311.938171 329.547577 349.672638 369.797668 392.438354 415.07901 440.235321 465.391632 493.063568; far12_65.scl, "Farey approximation to 12-tET with den=65" 1 12 261.62558 277.725586 293.825623 309.925659 330.05072 350.175751 370.3 390.425842 414.575897 438.725952 466.901001 495.07608; far12_80.scl, "Farey approximation to 12-tET with den=80" 1 12 261.62558 277.977173 294.328766 310.680359 330.302277 349.924194 369.546112 392.438354 415.330597 441.493134 467.655701 493.818268; farey3.scl, "Farey fractions between 0 and 1 until 3rd level normalised by 2/1" 1 5 261.62558 313.950684 348.834076 392.438354 418.6; farey4.scl, "Farey fractions between 0 and 1 until 4th level normalised by 2/1" 1 9 261.62558 299. 313.950684 327.031952 348.834076 373.750793 392.438354 418.6 448.5; farey5.scl, "Farey fractions between 0 and 1 until 5th level normalised by 2/1" 1 20 261.62558 285.409698 290.695068 299. 305.229828 313.950684 322. 327.031952 332.977997 348.834076 366.275787 373.750793 380.546265 392.438354 402.5 406.973114 418.6 436.042603 448.5 465.112122; farnsworth.scl, "Farnsworth's scale" 1 7 261.62558 294.328766 327.031952 343.383545 392.438354 441.493134 490.547943; fibo_9.scl, "First 9 Fibonacci terms reduced by 2/1 B. McLaren XH 13 1991" 1 8 261.62558 277.977173 327.031952 343.383545 363.823059 392.438354 425.141541 449.668945; finnamore.scl, "David J. Finnamore Tuning List 9 May '97. Tetrachordal scale 17/16x19/17x64/57" 1 8 261.62558 277.977173 310.680359 348.834076 392.438354 416.965759 457.844727 466.020538; finnamore53.scl, "David J. Finnamore tuning for "Crawlspace" 53-limit 1998.0000" 1 16 261.62558 286.152954 310.680359 327.031952 343.383545 359.735138 367.91095 376.086761 392.438354 408.79 416.965759 425.141541 433.317352 441.493134 457.844727 474.19635; finnamore_11.scl, "David J. Finnamore 11-limit scale Tuning List 3 Sept '98" 1 14 261.62558 287.788116 294.328766 305.229828 323.761627 331.119843 343.383545 348.834076 392.438354 431.68219 441.493134 457.844727 485.642456 515.075317; finnamore_7.scl, "David J. Finnamore TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 21/20 &15/14" 1 12 261.62558 274.706848 294.328766 309.045197 331.119843 348.834076 366.275787 392.438354 412.060272 441.493134 463.56781 496.679779; finnamore_7a.scl, "David J. Finnamore TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 15/14 &21/20" 1 12 261.62558 280.31311 294.328766 315.352234 331.119843 348.834076 373.750793 392.438354 420.469666 441.493134 473.028351 496.679779; finnamore_jc.scl, "Chalmers' modification of Finnamore. Tuning List 9-5-97 19/18 x 9/8 x 64/57" 1 7 261.62558 276.160309 310.680359 348.834076 392.438354 414.240479 466.020538; fisher.scl, "Alexander Metcalf Fisher's modified meantone temperament" 1 12 261.62558 273.374298 292.506287 310.675354 327.031952 349.718414 365.632843 391.221466 410.550629 437.398895 467.473297 489.026825; Fisk-Vogel.scl, "Modified meantone tuning of Fisk organ in Memorial Church at Stanford" 1 12 261.62558 273.915039 292.738373 312.853424 327.549255 349.781403 366.355743 391.375519 409.598907 437.918335 467.825409 489.993256; fj-10tet.scl, "Franck Jedrzejewski continued fractions approx. of 10-tet" 1 10 261.62558 280.31311 300.515839 322. 345.2 370.013306 396.526245 425.141541 455.422272 488.367737; fj-11tet.scl, "Franck Jedrzejewski continued fractions approx. of 11-tet" 1 11 261.62558 278.68811 296.769287 316.13089 336.375732 358.523926 381.831909 392.438354 433.035431 461.28717 491.345581; fj-12tet.scl, "Franck Jedrzejewski continued fractions approx. of 12-tet" 1 12 261.62558 277.198517 293.661346 311.122284 329.648224 348.834076 370.013306 391.994904 415.522949 440.006622 466.169189 490.547943; fj-13tet.scl, "Franck Jedrzejewski continued fractions approx. of 13-tet" 1 13 261.62558 275.961212 291.058441 306.973999 323.917358 341.566711 360.271271 379.98 400.788086 422.625916 445.952667 41.62225 496.186432; fj-14tet.scl, "Franck Jedrzejewski continued fractions approx. of 14-tet" 1 14 261.62558 274.928558 288.878235 303.485657 318.856171 335.064331 352.188263 370.013306 388.7 408.503082 429.334259 451.078552 473.887817 497.932526; fj-15tet.scl, "Franck Jedrzejewski continued fractions approx. of 15-tet" 1 15 261.62558 274.083923 286.944183 300.515839 314.76825 329.648224 345.2 361.518951 378.668579 396.526245 415.522949 392.438354 455.422272 477.081909 499.46698; fj-16tet.scl, "Franck Jedrzejewski continued fractions approx. of 16-tet" 1 16 261.62558 273.253357 285.409698 297.962463 311.122284 324.922058 339.295654 354.284607 370.013306 386.4 403.52417 421.507843 440.006622 459.44 479.646881 500.985138; fj-17tet.scl, "Franck Jedrzejewski continued fractions approx. of 17-tet" 1 17 261.62558 272.526642 283.891571 295.750641 307.989594 320.702301 334.3 348.033997 362.538269 373.750793 392.438354 409.715515 426.862762 444.763458 462.876007 482.372131 502.321075; fj-18tet.scl, "Franck Jedrzejewski continued fractions approx. of 18-tet" 1 18 261.62558 271.885406 282.555603 293.661346 305.229828 317.121887 329.648224 342.604919 355.98233 370.013306 384.510315 399.573578 415.522949 431.68219 448.5 466.169189 484.491791 503.126099; fj-19tet.scl, "Franck Jedrzejewski continued fractions approx. of 19-tet" 1 19 261.62558 271.315399 281.445679 291.813141 302.738159 313.950684 325.697144 337.734833 350.312195 363.368835 376.740814 390.782501 405.263123 420.469666 436.042603 451.898712 468.951477 485.876038 504.563599; fj-20tet.scl, "Franck Jedrzejewski continued fractions approx. of 20-tet" 1 20 261.62558 270.859406 280.31311 290.296875 300.515839 311.122284 322. 333.444336 345.2 357.342224 370.013306 383.094574 396.526245 410.481476 425.141541 440.006622 455.422272 470.926025 488.367737 505.413025; fj-21tet.scl, "Franck Jedrzejewski continued fractions approx. of 21-tet" 1 21 261.62558 270.346405 279.463684 288.878235 298.560944 308.584015 318.856171 329.648224 340.72168 352.188263 364. 376.086761 388.7 401.782104 415.522949 429.334259 443.625946 457.844727 473.887817 489.852112 506.188599; fj-22tet.scl, "Franck Jedrzejewski continued fractions approx. of 22-tet" 1 22 261.62558 270.065094 278.68811 287.552429 296.769287 306.293335 316.13089 326.182526 336.375732 347.404449 358.523926 370.013306 381.831909 392.438354 392.438354 419.69101 433.035431 446.943665 461.28717 475.682831 491.345581 506.9; fj-23tet.scl, "Franck Jedrzejewski continued fractions approx. of 23-tet" 1 23 261.62558 269.553619 277.977173 286.373932 295.167297 304.215759 313.479279 323.184509 332.977997 343.115509 353.679016 364.407043 375.66748 387.205841 398.979004 411.125885 423.584259 436.042603 449.995972 463.790771 477.97 492.471649 507.861389; fj-24tet.scl, "Franck Jedrzejewski continued fractions approx. of 24-tet" 1 24 261.62558 269.320435 277.198517 285.409698 293.661346 302.322876 311.122284 320.265778 329.648224 339.295654 348.834076 348.834076 370.013306 380.546265 391.994904 403.52417 415.522949 427.534454 440.006622 452.813477 466.169189 479.646881 490.547943 508.301086; fj-26tet.scl, "Franck Jedrzejewski continued fractions approx. of 26-tet" 1 26 261.62558 268.696533 275.961212 283.427704 291.058441 299. 306.973999 315.292358 323.917358 332.57486 341.566711 350.816101 360.271271 370.013306 379.98 390.221191 400.788086 411.125885 422.625916 434.187103 445.952667 457.844727 457.844727 483.001038 496.186432 509.481354; fj-30tet.scl, "Franck Jedrzejewski continued fractions approx. of 30-tet" 1 30 261.62558 267.709869 274.083923 280.31311 286.944183 293.661346 300.515839 307.52478 314.76825 322. 329.648224 337.359283 345.2 353.194519 361.518951 370.013306 378.668579 387.593445 396.526245 405.786591 415.522949 425.141541 392.438354 444.763458 455.422272 466.169189 477.081909 488.367737 499.46698 511.35907; fj-31tet.scl, "Franck Jedrzejewski continued fractions approx. of 31-tet" 1 31 261.62558 267.571594 273.517639 279.794006 286.152954 292.607544 299. 305.968872 312.813171 319.764587 327.031952 334.537598 342.125732 349.884796 357.811432 366.275787 373.750793 382.375824 391.259857 400.133209 409.209229 418.6 428.114563 437.546204 447.517426 457.844727 467.907257 478.401031 489.126068 500.501068 511.623322; fj-36tet.scl, "Franck Jedrzejewski continued fractions approx. of 36-tet" 1 36 261.62558 266.755493 271.885406 277.198517 282.555603 288.082092 293.661346 299. 305.229828 311.122284 317.121887 323.184509 329.648224 327.031952 342.604919 348.834076 355.98233 362.9 370.013306 377.22757 384.510315 391.994904 399.573578 406.973114 415.522949 423.357727 431.68219 440.006622 448.5 436.042603 466.169189 475.197449 484.491791 490.547943 503.126099 513.188599; fj-41tet.scl, "Franck Jedrzejewski continued fractions approx. of 41-tet" 1 41 261.62558 266.06 270.647125 275.216492 279.87851 284.710175 289.532288 294.328766 299.492432 304.632507 309.819763 315.139893 320.491302 325.96 331.392395 337.094482 342.819702 348.834076 354.64798 360.726166 366.275787 373.138092 379.357056 386.004944 392.438354 399.323242 405.970703 413.092987 419.977875 427.143768 434.485321 441.856506 449.45929 436.042603 465.112122 472.938507 480.825378 489.126068 497.088562 505.809418 514.530273; fj-42tet.scl, "Franck Jedrzejewski continued fractions approx. of 42-tet" 1 42 261.62558 265.985992 270.346405 274.928558 279.463684 284.050629 288.878235 293.661346 298.560944 303.485657 308.584015 313.702698 318.856171 324.188202 329.648224 335.064331 340.72168 346.377502 352.188263 358.013947 364. 370.013306 376.086761 382.375824 388.7 395.221588 401.782104 408.503082 415.522949 422.168518 429.334259 436.042603 443.625946 451.078552 457.844727 466.169189 473.887817 481.941833 489.852112 497.932526 506.188599 514.811584; fj-43tet.scl, "Franck Jedrzejewski continued fractions approx. of 43-tet" 1 43 261.62558 265.845337 270.203461 274.706848 279.067261 283.427704 288.167297 292.864441 297.711853 302.504547 307.41 312.388733 317.439026 322.671539 327.859894 332.977997 338.574249 344.244171 348.834076 355.415863 361.116974 367.056763 372.955597 379.090118 385.170959 391.454803 397.888885 404.330414 392.438354 417.48761 424.25766 431.197693 438.222809 445.32 452.541504 459.826752 467.188507 475.056946 483.001038 490.547943 498.334412 506.9 514.811584; fj-53tet.scl, "Franck Jedrzejewski continued fractions approx. of 53-tet" 1 53 261.62558 265.067993 268.510437 272.090576 275.691467 279.302979 282.982758 286.712952 290.481323 294.328766 298.13147 302.115234 306.052551 310.074738 313.950684 318.311096 322.468719 326.764984 331.036438 335.417389 336.375732 344.244171 348.834076 353.424011 358.013947 362.9 367.521637 372.313293 377.344574 382.375824 387.205841 392.438354 397.670868 402.820313 408.135895 413.53717 418.6 424.414795 429.813416 436.042603 441.493134 447.295319 453.172852 459.078827 465.112122 470.926025 477.466644 483.760468 485.876038 496.554657 503.126099 509.834442 516.366272; fj-54tet.scl, "Franck Jedrzejewski continued fractions approx. of 54-tet" 1 54 261.62558 265.023285 268.421021 271.885406 275.395325 279.067261 282.555603 286.152954 289.909424 293.661346 297.464691 301.265808 305.229828 309.193848 313.157867 317.121887 321.294556 325.436676 329.648224 333.91684 338.198914 342.604919 346.938263 351.559357 355.98233 360.619019 365.288513 370.013306 374.760956 379.613556 384.510315 389.531403 394.51474 399.573578 404.779175 409.88 415.522949 420.652863 426.075928 431.68219 436.042603 442.750946 448.5 454.402283 460.267212 466.169189 472.20224 478.401031 484.491791 490.547943 497.088562 503.126099 510.169861 516.542786; fj-55tet.scl, "Franck Jedrzejewski continued fractions approx. of 55-tet" 1 55 261.62558 264.937286 268.333923 271.68808 275.157928 278.68811 282.145203 285.775604 289.373718 293.02063 296.769287 300.515839 304.34 308.216431 312.114716 316.13089 319.764587 324.103302 328.221161 332.335175 336.375732 340.906036 345.2 348.834076 353.963989 358.523926 363.072205 367.69 372.313293 377.048615 381.831909 386.750824 391.583374 396.526245 401.564819 406.657135 411.818024 416.965759 418.6 427.657166 433.035431 438.607574 444.155029 449.812378 455.422272 461.28717 467.188507 472.938507 479.032715 485.097412 491.345581 497.601563 503.87146 510.169861 516.71051; fj-5tet.scl, "Franck Jedrzejewski continued fractions approx. of 5-tet" 1 5 261.62558 300.515839 345.2 396.526245 455.422272; fj-60tet.scl, "Franck Jedrzejewski continued fractions approx. of 60-tet" 1 60 261.62558 264.667725 267.709869 270.859406 274.083923 277.198517 280.31311 283.690369 286.944183 290.296875 293.661346 297.1 300.515839 304.051331 307.52478 311.122284 314.76825 318.5 322. 325.797882 329.648224 333.444336 337.359283 341.250732 345.2 348.834076 353.194519 357.342224 361.518951 365.741852 370.013306 374.325806 378.668579 383.094574 387.593445 391.994904 396.526245 401.15921 405.786591 410.481476 415.522949 420.186523 425.141541 429.813416 434.91 440.006622 444.763458 450.239349 455.422272 460.95932 466.169189 470.926025 477.081909 482.553833 488.367737 490.547943 499.46698 505.413025 511.35907 517.305115; fj-66tet.scl, "Franck Jedrzejewski continued fractions approx. of 66-tet" 1 66 261.62558 264.379517 267.192078 270.065094 272.838104 275.767487 278.68811 281.58 284.575165 287.552429 290.695068 293.661346 296.769287 299.912231 302.934875 306.293335 309.483887 312.813171 316.13089 319.387054 322.78479 326.182526 329.648224 332.977997 336.375732 340.11322 343.850739 347.404449 351.129059 354.746521 358.523926 362.250793 366.275787 370.013306 373.750793 377.903595 381.831909 385.897705 389.970184 392.438354 398.125854 402.5 406.657135 411.125885 415.522949 419.69101 424.013855 428.620605 433.035431 437.719696 442.27179 446.943665 451.898712 456.453125 461.28717 466.169189 470.926025 475.682831 481.053467 485.876038 491.345581 496.417725 501.449005 506.9 512.35 517.8; fj-6tet.scl, "Franck Jedrzejewski continued fractions approx. of 6-tet" 1 6 261.62558 293.661346 329.648224 370.013306 415.522949 466.169189; fj-72tet.scl, "Franck Jedrzejewski continued fractions approx. of 72-tet" 3 73 195.997711 197.9 199.840805 201.76236 203.683899 205.67662 207.664246 209.671982 211.677536 213.815689 215.817719 217.775238 219.997437 222.130753 223.997391 226.486252 228.664001 230.841751 233.078369 235.197266 237.572998 239.928238 242.114822 244.563522 246.957123 249.451645 251.740189 254.18454 256.663666 259.115631 261.330292 264.170837 266.685425 269.283813 271.867798 274.39682 277.196777 279.996735 282.601349 285.087585 288.057251 290.835327 293.664368 296.509369 299.34198 302.301575 304.885345 307.996399 311.290497 313.596344 317.16 320.28894 323.39624 326.467834 329.632538 332.826324 335.996094 339.226807 342.554565 345.878326 349.2323 352.795898 355.99585 359.329163 362.95874 366.430511 367.495728 373.620636 376.918701 380.795563 384.457062 388.226257 391.995422; fj-78tet.scl, "Franck Jedrzejewski continued fractions approx. of 78-tet" 3 79 138.591309 139.828735 141.066162 142.337021 143.6 144.890915 146.185364 147.475372 148.78186 150.140594 151.483536 152.805817 154.182846 155.561676 156.958832 158.39 159.764984 161.218475 162.613815 164.121292 165.539627 167.020309 168.557007 170.005341 171.589249 173.066772 174.625061 176.1754 177.758423 179.35347 180.93866 182.534897 184.155579 185.838348 187.50589 188.988159 190.847061 192.487946 194.027847 196.007721 197.74614 199.571487 201.287384 203.107956 204.874115 206.712463 207.886978 210.453476 212.310104 214.186584 216.10849 217.786346 220.115616 221.746109 223.878281 225.964096 228.005066 230.002609 232.059875 234.171539 236.235199 238.37706 240.413513 242.534805 244.746368 246.944519 249.134384 251.398193 253.592621 255.860886 258.160278 260.551666 262.845612 265.131226 267.513458 269.888336 272.232941 274.707794 277.182617; fj-7tet.scl, "Franck Jedrzejewski continued fractions approx. of 7-tet" 1 7 261.62558 288.878235 318.856171 352.188263 388.7 429.334259 473.887817; fj-84tet.scl, "Franck Jedrzejewski continued fractions approx. of 84-tet" 3 85 97.998856 98.815514 99.632172 100.44883 101.265488 102.12513 102.98185 103.832123 104.680603 105.537231 106.398758 107.332085 108.207077 109.093071 109.998718 110.893448 111.833992 112.765808 113.678673 114.640175 115.588394 116.539185 117.505737 118.476234 119.436111 120.456932 121.433372 122.498573 123.478561 124.485039 125.507309 126.581856 127.626419 128.623505 129.744965 130.665146 131.921539 132.998459 134.103699 135.170837 136.346237 137.19841 138.598389 139.73912 140.873367 142.098343 143.229095 144.419373 145.598312 146.832184 148.040833 149.259796 150.498245 151.740173 153.015762 154.296082 155.645248 156.798172 158.134521 159.455765 160.818634 162.075043 163.331436 164.816269 166.171982 167.546432 168.963547 170.331345 171.498001 173.207291 174.61615 176.034988 177.50737 178.954437 180.524216 181.997879 183.487228 183.747864 186.513962 188.051865 189.606491 191.217285 192.836472 194.36441 195.997711; fj-8tet.scl, "Franck Jedrzejewski continued fractions approx. of 8-tet" 1 8 261.62558 285.409698 311.122284 339.295654 370.013306 403.52417 440.006622 479.646881; fj-90tet.scl, "Franck Jedrzejewski continued fractions approx. of 90-tet" 3 91 69.295654 69.832832 70.378403 70.907188 71.461143 72.013138 72.595451 73.145416 73.695381 74.245346 74.83931 75.41 76.001686 76.59 77.190102 77.780838 78.383614 78.997047 79.596367 80.237076 80.844933 81.452789 82.088699 82.707718 83.371338 83.994736 84.694695 85.286964 85.977943 86.619576 87.312531 87.952179 88.657677 89.354927 90.084358 90.744316 91.43177 92.140381 92.856178 93.549141 94.287537 95.034042 95.753998 96.518951 97.257065 98.00386 98.746315 99.501457 100.296349 101.056168 101.84362 102.660233 103.426353 103.943489 105.02623 105.833366 106.608704 107.478981 108.274467 109.140663 110.057808 110.873055 111.721573 112.605446 113.392891 114.337837 115.19278 116.11705 116.936424 117.80262 118.792557 119.692497 120.625778 121.594269 122.522758 123.47226 124.417206 125.392143 126.362671 127.354179 128.325287 129.351898 130.275833 131.297043 132.291718 133.26088 134.391571 135.441513 136.49144 137.525223 138.591309; fj-96tet.scl, "Franck Jedrzejewski continued fractions approx. of 96-tet" 3 97 49. 49.35709 49.709568 50.064636 50.44059 50.814224 51.177181 51.533882 51.916061 52.26606 52.674385 53.048969 53.453922 53.819046 54.212135 54.6 55. 55.390659 55.804905 56.205227 56.621563 57.017517 57.447605 57.854748 58.269592 58.691624 59.110424 59.54361 59.982059 60.410255 60.85413 61.249287 61.739281 62.191582 62.610382 63.095158 63.546135 64. 64.472931 64.924248 65.332573 65.895782 66.353394 66.817406 67.320953 67.845367 68.302238 68.787659 69.3 69.787064 70.303528 70.776955 71.271896 71.865829 72.368385 72.901588 73.416092 73.944595 74.479134 75.030373 75.575394 76.105499 76.6604 77.21122 77.822624 78.345245 78.943527 79.487961 80.072235 80.644897 81.235893 81.665718 82.408134 83. 83.587265 84.217766 84.806702 85.434906 86.047775 86.691299 87.308075 87.947693 88.57589 89.204086 89.832291 90.460487 91.161728 91.873932 92.493301 93.098915 93.828697 94.498901 95.198891 95.91378 96.598877 97.288719 97.998856; fj-9tet.scl, "Franck Jedrzejewski continued fractions approx. of 9-tet" 1 9 261.62558 282.555603 305.229828 329.648224 355.98233 384.510315 415.522949 448.5 484.491791; flavel.scl, "Bill Flavel's just tuning. Tuning List 6-5-98" 1 12 261.62558 272.526642 290.695068 294.328766 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943; fogliano.scl, "Fogliano's Monochord with D-/D and Bb-/Bb" 1 14 261.62558 272.526642 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 470.926025 490.547943; fogliano1.scl, "Fogliano's Monochord no.1 Musica theorica (1529)" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943; fogliano2.scl, "Fogliano's Monochord no.2" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 470.926025 490.547943; fokker-h.scl, "Fokker-H 5-limit per.bl. synt.comma&small diesis KNAW B71 1968" 1 19 261.62558 272.526642 279.067261 290.695068 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 446.507629 470.926025 490.547943 502.321075; fokker-ht.scl, "Tempered version of Fokker-H per.bl. with better 6 tetrads OdC" 1 19 261.62558 272.311401 279.672424 290.891205 305.670746 313.921844 326.667328 335.594299 349.222931 363.365967 376.743805 392.001373 407.920746 419.068146 436.082642 447.854034 470.60849 489.486481 502.718109; fokker-k.scl, "Fokker-K 5-limit per.bl. of 225/224 & 81/80 & 10976/10935 KNAW B71 1968" 1 19 261.62558 272.526642 282.555603 290.695068 302.807373 313.950684 327.031952 339.066742 348.834076 363.368835 376.740814 392.438354 403.743164 418.6 436.042603 452.088989 470.926025 484.491791 502.321075; Fokker-L.scl, "Fokker-L 7-limit periodicity block 10976/10935 & 225/224 & 15625/15552 1969" 1 19 261.62558 271.315399 282.620209 291.992828 301.392639 313.950684 325.578491 339.144257 350.391388 363.368835 376.740814 390.694183 403.650879 420.469666 436.042603 454.21106 468.833008 484.381042 504.563599; fokker-lt.scl, "Tempered version of Fokker-L per.bl. with more triads" 1 19 261.62558 272.072968 282.577332 291.772339 302.209259 313.901398 326.421509 339.587982 349.940338 363.147156 376.970825 391.197754 403.123444 419.383759 436.111053 452.983734 469.187286 484.454529 503.158661; fokker-m.scl, "Fokker-M 7-limit periodicity block 81/80 & 225/224 & 1029/1024 KNAW B72 1969" 1 31 261.62558 265.778351 274.706848 279.067261 286.152954 294.328766 299. 305.229828 313.950684 318.934021 327.031952 336.375732 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 406.973114 418.6 429.229431 436.042603 448.5 457.844727 465.112122 478.401031 490.547943 498.334412 515.075317; fokker-n.scl, "Fokker-N 7-limit periodicity block 81/80 & 2100875/2097152 & 1029/1024 1969" 1 31 261.62558 265.778351 273.372009 277.711243 286.152954 290.695068 299. 303.746674 313.950684 318.934021 328.628784 333.845123 343.383545 348.834076 358.8 364.496033 375.575775 381.537292 392.438354 398.667542 410.058014 416.566895 429.229431 436.042603 450.690918 457.844727 470.926025 478.401031 492.943176 500.76767 515.075317; fokker-n2.scl, "Fokker-N different block shape" 1 31 261.62558 265.778351 272.526642 279.067261 286.152954 290.695068 299. 305.229828 313.950684 318.934021 327.031952 334.880737 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 408.79 418.6 429.229431 436.042603 448.5 457.844727 470.926025 478.401031 490.547943 502.321075 515.075317; fokker-p.scl, "Fokker-P 7-limit periodicity block 65625/65536 & 6144/6125 & 2401/2400 1969" 1 31 261.62558 267.904572 273.372009 280.31311 286.152954 290.695068 299. 306.176666 312.98 320.357849 327.031952 334.880737 341.857391 350.391388 357.691193 366.275787 373.750793 382.720825 390.694183 400.447296 408.79 418.6 427.321747 437.395233 447.114014 457.844727 470.926025 478.401031 488.367737 500.76767 510.987427; fokker-q.scl, "Fokker-Q 7-limit per.bl. 225/224 & 4000/3969 & 6144/6125 KNAW B72 1969" 1 53 261.62558 265.778351 269.1 272.526642 274.706848 279.067261 284.762512 286.152954 290.695068 294.328766 299. 301.392639 305.229828 311.459015 313.950684 318.934021 321.922089 327.031952 332.222931 334.880737 340.658295 343.383545 348.834076 353.194519 358.8 363.368835 366.275787 373.750793 376.740814 381.537292 387.593445 392.438354 398.667542 401.856873 408.79 412.060272 418.6 425.245361 429.229431 436.042603 439.530945 448.5 454.21106 457.844727 465.112122 470.926025 478.401031 480.736969 490.547943 498.334412 502.321075 508.71637 515.075317; fokker-r.scl, "Fokker-R 7-limit per.bl. 4375/4374 & 65625/65536 & 6144/6125 1969" 1 53 261.62558 264.956451 268.268402 272.526642 275.55899 279.067261 282.620209 287.040619 290.695068 294.328766 298.075989 301.801941 306.176666 310.074738 313.950684 317.947723 322.920685 327.031952 331.195557 334.880737 340.196289 344.44873 348.834076 353.194519 357.691193 363.368835 367.91095 372.089691 376.740814 382.720825 387.593445 392.438354 397.434662 402.402588 408.79 413.338501 418.6 423.930328 430.560944 436.042603 441.493134 447.114014 453.595062 459.264984 465.112122 470.926025 476.9216 484.381042 490.547943 496.793335 502.321075 510.294434 516.673096; fokker-s.scl, "Fokker-S 7-limit per.bl. 4375/4374 & 323/322 & 64827/65536 1969" 1 53 261.62558 265.778351 269.1 273.372009 273.85733 278.204254 282.555603 286.152954 290.695068 295.241791 299. 303.746674 304.285919 309.045197 313.950684 317.947723 322.920685 328.046417 332.222931 333.845123 338.018188 343.383545 348.834076 353.194519 358.8 364.496033 369.136597 370.854248 375.575775 381.537292 387.593445 392.438354 398.667542 404.995575 410.058014 412.060272 417.306396 423.930328 430.560944 436.042603 442.963928 449.892242 450.690918 457.844727 463.673767 470.926025 478.401031 484.491791 492.069641 499.880249 500.76767 508.71637 515.075317; fokker_12.scl, "Fokker's 7-limit 12-tone just scale" 1 12 261.62558 280.31311 294.328766 305.229828 327.031952 348.834076 367.91095 392.438354 420.469666 436.042603 457.844727 490.547943; fokker_12a.scl, "Fokker's 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224" 1 12 261.62558 274.706848 293.02063 309.045197 327.031952 348.834076 367.91095 390.694183 412.060272 439.530945 465.112122 490.547943; fokker_12b.scl, "Fokker's 7-limit semitone scale KNAW B72 1969" 1 12 261.62558 275.933228 293.02063 309.045197 332.222931 348.834076 367.91095 392.438354 412.060272 439.530945 467.188507 496.119598; fokker_12c.scl, "Fokker's 7-limit complementary semitone scale KNAW B72 1969" 1 12 261.62558 275.933228 293.02063 311.459015 332.222931 348.834076 372.089691 392.438354 412.060272 442.963928 467.188507 496.119598; fokker_12t.scl, "Tempered version of fokker_12.scl with egalised 225/224 see also lumma.scl" 1 12 261.62558 279.531799 293.535431 305.443939 326.66156 349.083527 366.634094 391.818848 419.060577 436.034149 457.881653 489.219574; fokker_12t2.scl, "Another tempered version of fokker_12.scl with egalised 225/224" 1 12 261.62558 279.530609 293.530273 305.446777 326.661926 349.104675 366.628326 391.816895 419.030945 436.042603 457.880676 489.216949; fokker_22.scl, "Fokker's 22-tone periodicity block of 2048/2025 & 3125/3072. KNAW B71 1968" 1 22 261.62558 272.526642 279.067261 287.43042 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 353.194519 367.91095 383.24057 392.438354 408.79 418.6 436.042603 446.507629 459.888702 470.926025 490.547943 502.321075; fokker_22a.scl, "Fokker's 22-tone periodicity block of 2048/2025 & 2109375/2097152 = semicomma" 1 22 261.62558 269.466034 279.067261 287.43042 297.671753 306.592468 313.950684 327.031952 334.880737 348.834076 357.206116 367.91095 383.24057 392.438354 408.79 418.6 431.14566 446.507629 459.888702 476.274811 490.547943 502.321075; FOKKER_31.scl, "Fokker's 31-tone just system" 1 31 261.62558 265.778351 275.933228 280.31311 286.152954 294.328766 299. 305.229828 315.352234 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 406.973114 420.469666 429.229431 436.042603 448.5 457.844727 465.112122 482.883118 490.547943 498.334412 515.075317; FOKKER_31A.scl, "Fokker's 31-tone first alternate septimal tuning" 1 31 261.62558 269.1 272.526642 280.31311 286.152954 294.328766 299. 305.229828 311.459015 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 412.060272 420.469666 429.229431 436.042603 448.5 457.844727 470.926025 476.9216 490.547943 498.334412 515.075317; FOKKER_31B.SCL, "Fokker's 31-tone second alternate septimal tuning" 1 31 261.62558 267.076111 274.706848 280.31311 286.152954 294.328766 299. 305.229828 313.950684 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 408.79 420.469666 429.229431 436.042603 448.5 457.844727 467.188507 480.536743 490.547943 498.334412 515.075317; fokker_31c.scl, "Fokker's 31-tone periodicity block of 81/80 & 2109375/2097152 = semicomma" 1 31 261.62558 269.466034 272.526642 279.067261 287.43042 294.328766 297.671753 306.592468 313.950684 319.367157 327.031952 334.880737 344.916504 348.834076 359.288025 367.91095 372.089691 383.24057 392.438354 396.89566 408.79 418.6 431.14566 436.042603 446.507629 459.888702 465.112122 479.05072 490.547943 502.321075 510.987427; fokker_31d.scl, "Fokker's 31-tone periodicity block of 81/80 & Wurschmidt's comma" 1 31 261.62558 266.139282 272.526642 279.067261 287.43042 294.328766 299.406708 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 359.288025 367.91095 376.740814 383.24057 392.438354 399.208923 408.79 418.6 425.822845 436.042603 443.565491 459.888702 470.926025 479.05072 490.547943 502.321075 510.987427; fokker_41.scl, "Fokker's 7-limit supracomma per.bl. 10976/10935 & 225/224 & 496125/262144" 1 41 261.62558 264.895874 271.315399 274.706848 280.31311 283.817017 290.695068 294.328766 300.33548 305.229828 311.459015 313.950684 321.55899 325.578491 329.648224 336.375732 341.857391 348.834076 353.194519 361.753876 366.275787 373.750793 378.422699 387.593445 392.438354 400.447296 406.973114 415.278687 420.469666 425.725525 436.042603 439.530945 448.5 455.809875 465.112122 470.926025 482.338501 488.367737 498.334412 504.563599 516.79126; fokker_41a.scl, "Fokker's 41-tone periodicity block of schisma & 34171875/33554432" 1 41 261.62558 264.597107 272.834351 275.933228 279.067261 287.43042 291.023315 294.328766 297.671753 306.592468 310.424866 313.950684 323.359222 327.031952 331.119843 334.880737 344.916504 348.834076 353.194519 363.779144 367.91095 372.089691 376.315887 388.031067 392.438354 396.89566 408.79 413.9 418.6 431.14566 436.042603 441.493134 446.507629 459.888702 465.112122 470.926025 485.038849 490.547943 496.119598 502.321075 517.374756; fokker_41b.scl, "Fokker's 41-tone periodicity block of schisma & 3125/3072" 1 41 261.62558 264.895874 272.526642 275.933228 279.067261 287.43042 290.695068 294.328766 297.671753 306.592468 310.424866 313.950684 323.359222 327.031952 331.119843 340.658295 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 383.24057 388.031067 392.438354 397.343842 408.79 413.9 418.6 431.14566 436.042603 441.493134 454.21106 459.888702 465.112122 470.926025 485.038849 490.547943 496.679779 510.987427 517.374756; fokker_53.scl, "Fokker's 53-tone system degree 37 has alternatives" 1 53 261.62558 263.718567 268.268402 272.526642 274.706848 279.067261 282.555603 286.152954 290.695068 294.328766 299. 300.460602 305.229828 309.045197 313.950684 317.875061 321.922089 327.031952 329.648224 334.880737 340.658295 343.383545 348.834076 353.194519 357.691193 360.552734 366.275787 373.750793 376.740814 381.537292 386.306488 392.438354 398.667542 400.614136 410.058014 412.060272 418.6 423.833405 429.229431 436.042603 439.530945 448.5 450.690918 457.844727 465.112122 470.926025 476.9216 480.736969 490.547943 498.334412 502.321075 508.71637 515.075317; fokker_53a.scl, "Fokker's 53-tone periodicity block of schisma & kleisma" 1 53 261.62558 264.895874 269.466034 272.526642 275.933228 279.382385 283.881897 287.43042 290.695068 294.328766 298.007874 302.807373 306.592468 310.424866 313.950684 319.367157 323.359222 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 359.288025 363.368835 367.91095 372.509827 378.509216 383.24057 388.031067 392.438354 397.343842 403.743164 408.79 413.9 418.6 425.822845 431.14566 436.042603 441.493134 447.01181 454.21106 459.888702 465.637299 470.926025 479.05072 484.491791 490.547943 496.679779 504.678955 510.987427 517.374756; fokker_53b.scl, "Fokker's 53-tone periodicity block of schisma & 2109375/2097152" 1 53 261.62558 264.597107 267.904572 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 317.516541 323.359222 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 388.031067 392.438354 396.89566 401.856873 408.79 413.9 418.6 423.355377 431.14566 436.042603 441.493134 446.507629 451.579071 459.888702 465.112122 470.926025 476.274811 485.038849 490.547943 496.119598 502.321075 510.987427 517.374756; fokker_av.scl, "Fokker's suggestion for a shrinked octave by averaging approximations" 2 32 261.62558 267.532379 273.572388 279.748932 286.064789 292.523376 299.127777 305.881104 312.787109 319.848999 327.07016 334.454559 342.005463 349.727051 357.622955 365.69693 373.9534 382.396057 391.029572 399.857971 408.885498 418.117035 427.556793 437.2099 447.080933 457.174591 467.496368 478.051208 488.844086 499.88089 511.166595 522.707397; fokker_sr.scl, "Fokker's 7-limit sruti scale KNAW B72 1969" 1 22 261.62558 269.1 279.067261 287.040619 296.751221 305.229828 315.352234 325.578491 336.375732 347.283722 358.8 367.91095 381.537292 392.438354 406.973114 418.6 434.104645 446.507629 461.315277 474.801941 490.547943 506.455414; fokker_sr2.scl, "Fokker's complementary 7-limit sruti scale KNAW B72 1969" 1 22 261.62558 270.30191 279.0