Forums > MaxMSP

Scala .scl in Max/Msp?


Mar 12 2011 | 6:37 pm

Hello,

Does anybody know of a way to get .scl or scala files into Max/MSP. I was messing around with this in Audio Paint and it was great to have nearly 4000 scales just right there already made up.

http://www.huygens-fokker.org/scala/downloads.html
http://www.nicolasfournel.com/audiopaint.htm

Mar 12 2011 | 7:16 pm

i have converted the scala library into a custom 110 format which stores the
values in a coll.

to simplify the process i have not been using the .scl files but an existing
text format from victor cerullos little application.

when i am not wrong there is also an external now since a while, you might
search the forums or maxobjects.com, i cant remember the name or who
made it.

Mar 12 2011 | 8:18 pm
Mar 12 2011 | 8:50 pm

Great I’ll look into it. I had a look at the MaxObjects but I could not find the 110 externals. I saw the yahoo group though so I’ll have a look there.

thanks

Apr 09 2016 | 9:48 am

anyone got a zip of scala scales converted to .txt files for the coll object

Apr 09 2016 | 1:32 pm

thats the complete scala library from 2008 in coll format.

the first two integer numbers after the scale name are:

– type of scale

– number of notes per octave.

i call type 1 "expandable" – which means it should be played over several octaves.

type 1 the most common format.

only very few scales are not to be expanded – or not expandable because the base set already spreads across more than one octave.

05-19.scl, "5 out of 19-tET" 1 5 261.62558 302.729614 350.291534 405.325928 469.006775;
05-22.scl, "Pentatonic "generator" of 09-22.scl" 1 5 261.62558 306.264099 358.51886 394.059265 461.29361;
05-24.scl, "5 out of 24-tET symmetrical" 1 5 261.62558 277.182617 359.461395 380.83609 493.883301;
06-41.scl, "Hexatonic scale in 41-tET" 1 6 261.62558 315.097046 325.933289 392.548096 406.047882 505.854706;
07-19.scl, "7 out of 19-tET major" 1 7 261.62558 291.884644 325.643402 350.291534 390.805542 436.00528 486.432739;
07-37.scl, "Miller’s Porcupine-7" 1 7 261.62558 287.316071 315.529266 346.512878 380.53894 417.906219 458.94278;
08-11.scl, "8 out of 11-tET" 1 8 261.62558 296.765167 316.067078 336.62442 381.837311 406.672424 433.122833 491.296661;
08-13.scl, "8 out of 13-tET" 1 8 261.62558 275.953766 307.007263 341.555237 360.260864 400.801575 422.751892 470.324799;
08-19.scl, "8 out of 19-tET" 1 8 261.62558 281.428162 313.977539 337.742706 363.306641 405.325928 436.00528 469.006775;
08-19a.scl, "Kleismic generator is 6/5 in 19-tET" 1 8 261.62558 271.346283 313.977539 325.643402 376.805328 390.805542 452.205078 469.006775;
08-37.scl, "Miller’s Porcupine-8" 1 8 261.62558 287.316071 315.529266 346.512878 380.53894 417.906219 458.94278 504.009003;
09-15.scl, "Charyan scale of Andal 1/1=a. Boudewijn Rempt 1999.0000" 1 9 261.62558 286.957458 314.742096 329.627563 361.543732 396.550201 415.304688 455.516571 499.621948;
09-19.scl, "9 out of 19-tET" 1 9 261.62558 281.428162 302.729614 337.742706 363.306641 390.805542 420.385834 452.205078 486.432739;
09-22.scl, "Three interval "Tryhill" scale in 22-tET TL 05-12-2000" 1 9 261.62558 278.641968 306.264099 326.183838 358.51886 394.059265 419.689301 461.29361 476.058838;
09-23.scl, "9 out of 23-tET Dan Stearns" 1 9 261.62558 286.3815 304.173584 332.955566 353.641144 387.103912 411.153595 450.058411 478.019257;
09-29.scl, "Cycle of g=124.138 in 29-tET" 1 9 261.62558 281.074341 301.968933 324.416748 348.533325 374.442688 402.278107 432.182739 464.310455;
10-13.scl, "Carl Lumma 10 out of 13-tET MOS TL 21-12-1999" 1 10 261.62558 291.066681 307.007263 323.820831 360.260864 379.990967 400.801575 445.904358 470.324799 496.082642;
10-19.scl, "10 out of 19-tET. For 9 out of 19 discard degree 3" 1 10 261.62558 281.428162 302.729614 313.977539 337.742706 363.306641 390.805542 420.385834 452.205078 486.432739;
10-29.scl, "10 out of 29-tET chain of 124.1380 cents intervals Keenan" 1 10 261.62558 281.074341 301.968933 324.416748 340.301575 365.598999 392.776978 421.975342 453.344238 487.045044;
10-48.scl, "Chain of 10 g=125 generators in 48-tET" 1 10 261.62558 281.214355 302.269806 324.901764 339.286377 364.68988 391.995422 421.345428 452.893005 486.802582;
10-72.scl, "Chain of 10 Miracle generators g=116.667 in 72-tET" 1 10 261.62558 279.863953 299.37381 320.243713 342.568481 366.449554 391.995422 419.322174 448.553894 479.823395;
11-19-gould.scl, "11 out of 19-tET Mark Gould 2002" 1 11 261.62558 281.428162 302.729614 313.977539 337.742706 363.306641 390.805542 405.325928 436.00528 469.006775 504.506195;
11-19-krantz.scl, "11 out of 19-tET Richard Krantz" 1 11 261.62558 281.428162 302.729614 325.643402 350.291534 376.805328 390.805542 420.385834 436.00528 469.006775 504.506195;
11-19-mandel.scl, "11 out of 19-tET Joel Mandelbaum" 1 11 261.62558 281.428162 291.884644 313.977539 337.742706 363.306641 376.805328 405.325928 436.00528 469.006775 486.432739;
11-19-mclaren.scl, "11 out of 19-tET Brian McLaren. Asc: 311313313 Desc: 313131313" 1 11 261.62558 291.884644 302.729614 313.977539 350.291534 363.306641 376.805328 390.805542 405.325928 452.205078 469.006775;
11-23.scl, "11 out of 23-tET Dan Stearns" 1 11 261.62558 277.879639 295.143494 313.48 332.955566 353.641144 387.103912 411.153595 436.697418 463.828186 492.644531;
11-31.scl, "Jon Wild 11 out of 31-tET chain of "7/6"s. TL 9-9-99" 1 11 261.62558 279.777069 299.187927 327.18 349.879547 357.790833 382.614258 409.16 447.440887 478.484192 511.681274;
12-19.scl, "12 out of 19-tET scale from Mandelbaum’s dissertation" 1 12 261.62558 271.346283 291.884644 302.729614 325.643402 350.291534 363.306641 390.805542 405.325928 436.00528 452.205078 486.432739;
12-22.scl, "Hexachordal 12-tone scale in 22-tET" 1 12 261.62558 278.641968 296.765167 316.067078 336.62442 347.3992 369.994415 394.059265 419.689301 446.986359 476.058838 507.022217;
12-22a.scl, "12 out of 22-tET Pythagorean. Paul Erlich TL 4-4-2000" 1 12 261.62558 270. 296.765167 306.264099 316.067078 347.3992 358.51886 394.059265 406.672424 419.689301 461.29361 476.058838;
12-31.scl, "12 out of 31-tET meantone Eb-G#" 1 12 261.62558 273.59079 292.572449 312.871033 327.18 349.879547 365.881012 391.265717 409.16 437.547302 467.904205 489.303406;
12-43.scl, "12 out of 43-tET (1/5-comma meantone)" 1 12 261.62558 274.58844 292.876862 312.383331 327.861145 349.697662 367.024323 391.469208 410.86554 438.230408 467.417847 490.57724;
12-46.scl, "12 out of 46-tET diaschismic" 1 12 261.62558 277.879639 295.143494 308.791687 327.976044 348.352264 369.994415 392.98114 417.395935 436.697418 463.828186 492.644531;
12-50.scl, "12 out of 50-tET meantone Eb-G#" 1 12 261.62558 272.735687 292.310883 313.291046 326.595184 350.036041 364.9 391.09079 407.698761 436.960693 468.322876 488.210571;
12-55.scl, "12 out of 55-tET (1/6-comma meantone)" 1 12 261.62558 275.152374 293.048584 312.108795 328.245728 349.595184 367.670288 391.583984 411.83 438.615875 467.143951 491.296661;
12-70.scl, "Mix of 7-tET and 5-tET shifted 120 cents" 1 12 261.62558 280.403351 288.858032 318.92514 322.098846 352.121887 369.994415 388.774109 425.011993 429.241394 473.920929 488.210571;
12-91.scl, "12 out of 91-tET (1/7-comma meantone)" 1 12 261.62558 275.953766 293.292206 311.72 328.791687 349.45 368.587982 391.746704 413.201111 439.162933 466.75592 492.318329;
13-19.scl, "13 out of 19-tET" 1 13 261.62558 281.428162 291.884644 313.977539 325.643402 350.291534 363.306641 390.805542 405.325928 436.00528 452.205078 486.432739 504.506195;
13-31.scl, "13 out of 31-tET" 1 13 261.62558 286.103241 292.572449 319.945496 327.18 357.790833 365.881012 400.112793 409.16 447.440887 457.558167 500.367249 511.681274;
14-19.scl, "14 out of 19-tET" 1 14 261.62558 271.346283 291.884644 302.729614 313.977539 337.742706 350.291534 363.306641 390.805542 405.325928 420.385834 452.205078 469.006775 504.506195;
14-26.scl, "Two interlaced diatonic in 26-tET tetrachordal. Paul Erlich (1996)" 1 14 261.62558 275.953766 291.066681 307.007263 323.820831 341.555237 350.783386 369.994415 390.257568 411.630432 434.173828 457.951813 483.032043 509.485809;
14-26a.scl, "Two interlaced diatonic in 26-tET maximally even. Paul Erlich (1996)" 1 14 261.62558 275.953766 291.066681 307.007263 323.820831 341.555237 360.260864 369.994415 390.257568 411.630432 434.173828 457.951813 483.032043 509.485809;
15-27-gram.scl, "15 out of 27-ET Gram tuning" 2 16 261.62558 275.36795 289.832214 297.346802 312.965515 329.404633 346.707275 364.918762 374.380127 394.045197 414.743195 436.528381 459.457886 471.370422 496.13 522.190308;
15-27.scl, "15 out of 27-tET" 1 15 261.62558 275.409363 289.919373 297.458557 313.130219 329.627563 346.994049 365.275513 374.774292 394.519379 415.304688 437.18512 460.218292 472.186035 497.063263;
15-37.scl, "Miller’s Porcupine-15" 1 15 261.62558 276.750244 287.316071 303.925934 315.529266 333.770142 346.512878 366.544922 380.53894 402.538055 417.906219 442.065552 458.94278 485.474457 504.009003;
16-139.scl, "g=9 steps of 139-tET. Gene Ward Smith "Quartaminorthirds" 7-limit temperament" 1 16 261.62558 273.634796 286.195282 299.332336 313.072388 327.443176 342.473602 358.193939 374.635895 391.832581 409.818634 428.63028 448.30542 468.883698 490.406586 512.917419;
17-31.scl, "17 out of 31 with split C#/Db D#/Eb F#/Gb G#/Ab and A#/Bb" 1 17 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 349.879547 365.881012 374.154083 391.265717 409.16 418.411621 437.547302 457.558167 467.904205 489.303406;
17-53.scl, "17 out of 53-tET Arabic Pythagorean scale" 1 17 261.62558 275.6763 290.481628 294.305573 310.111389 326.766083 331.067688 348.847839 367.582886 387.324097 392.422882 413.498138 435.705261 441.440948 465.148773 490.129822 516.452454;
19-31.scl, "19 out of 31-tET meantone Gb-B#" 1 19 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 342.143219 349.879547 365.881012 374.154083 391.265717 409.16 418.411621 437.547302 457.558167 467.904205 489.303406 511.681274;
19-31a.scl, "Septimal interpretation of 19 out of 31-tET OdC" 1 19 261.62558 275.933228 280.31311 294.328766 305.229828 315.352234 327.031952 343.383545 348.834076 367.91095 373.750793 392.438354 406.973114 420.469666 436.042603 457.844727 465.112122 490.547943 515.075317;
19-31ji.scl, "A septimal interpretation of 19 out of 31 tones after Wilson XH7+8" 1 19 261.62558 272.526642 279.067261 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 457.844727 465.112122 490.547943 504.563599;
19-36.scl, "19 out of 36-tET Tomasz Liese Tuning List 1997" 1 19 261.62558 271.89679 282.571228 293.664764 305.193817 317.175507 329.627563 342.568481 349.228241 362.93866 377.187347 391.995422 407.384888 423.378479 440. 457.274048 475.226288 493.883301 503.484711;
19-50.scl, "19 out of 50-tET meantone Gb-B#" 1 19 261.62558 272.735687 280.403351 292.310883 304.724091 313.291046 326.595184 340.464294 350.036041 364.9 375.159363 391.09079 407.698761 419.160706 436.960693 455.516571 468.322876 488.210571 508.94281;
19-53.scl, "19 out of 53-tET by Larry H. Hanson 1978" 1 19 261.62558 272.094421 282.982147 294.305573 302.105133 314.193756 326.766083 339.841492 348.847839 362.806824 377.324402 392.422882 408.125519 418.941498 435.705261 453.139832 471.272064 490.129822 503.119019;
19-55.scl, "19 out of 55-tET meantone Gb-B#" 1 19 261.62558 275.152374 278.641968 293.048584 308.2 312.108795 328.245728 345.21701 349.595184 367.670288 372.333252 391.583984 411.83 417.053009 438.615875 461.29361 467.143951 491.296661 516.69812;
19-any.scl, "2 out of 1/7 1/5 1/3 1 3 5 7 CPS" 1 19 261.62558 279.067261 286.152954 299. 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 436.042603 448.5 457.844727 478.401031 490.547943;
20-31.scl, "20 out of 31-tET" 1 20 261.62558 273.59079 279.777069 292.572449 305.953003 312.871033 327.18 334.577911 349.879547 365.881012 374.154083 391.265717 400.112793 409.16 427.872498 437.547302 457.558167 467.904205 489.303406 511.681274;
20-55.scl, "20 out of 55-tET J. Chesnut: Mozart’s teaching of intonation JAMS 30/2 (1977)" 1 20 261.62558 275.152374 278.641968 293.048584 296.765167 308.2 312.108795 328.245728 332.408691 349.595184 367.670288 372.333252 391.583984 411.83 417.053009 438.615875 444.178589 461.29361 467.143951 491.296661;
21-any.scl, "1.3.5.7.9.11.13 2)7 21-any 1.3000 tonic" 1 21 261.62558 269.801361 283.427704 294.328766 299.779297 305.229828 318.856171 327.031952 343.383545 354.284607 359.735138 381.537292 389.713074 392.438354 419.69101 425.141541 436.042603 457.844727 479.646881 490.547943 495.998474;
22-41.scl, "22 out of 41 by Stephen Soderberg TL 17-11-98" 1 22 261.62558 270.622925 279.93 289.556519 299.514435 309.814789 320.46936 325.933289 337.142181 348.736572 360.729675 373.135254 385.967438 399.240936 406.047882 420.011932 434.456238 449.397247 464.852112 480.83847 497.374573 514.47937;
22-46.scl, "22 shrutis out of 46-tET by Graham Breed" 1 22 261.62558 273.723816 277.879639 290.729492 295.143494 308.791687 313.48 327.976044 332.955566 348.352264 353.641144 369.994415 375.611877 392.98114 411.153595 417.395935 436.697418 443.327576 463.828186 470.87027 492.644531 500.124115;
22-53.scl, "22 shrutis out of 53-tET" 1 22 261.62558 275.6763 279.305328 290.481628 294.305573 310.111389 314.193756 326.766083 331.067688 348.847839 353.440125 367.582886 372.421783 392.422882 413.498138 418.941498 435.705261 441.440948 465.148773 471.272064 490.129822 496.58194;
24-36.scl, "12 and 18-tET mixed" 1 24 261.62558 271.89682 277.182617 282.571198 293.664764 305.193878 311.126984 317.175446 329.627563 342.568542 349.228241 356.017395 369.994415 384.520203 391.995422 399.615997 415.304688 431.609314 440. 448.553802 466.163757 484.465088 493.883301 503.484619;
24-41.scl, "24 out of 41-tET neutral third generator 22 neutral triads Op de Coul 2001" 1 24 261.62558 266.086212 275.236969 284.702423 289.556519 299.514435 309.814789 320.46936 325.933289 337.142181 348.736572 354.682434 366.88 379.497101 392.548096 399.240936 412.970886 427.173035 434.456238 449.397247 464.852112 480.83847 489.036621 505.854706;
24-60.scl, "12 and 15-tET mixed" 1 24 261.62558 273.998932 277.182617 286.957458 293.664764 300.52887 311.126984 314.742096 329.627563 345.21701 349.228241 361.543732 369.994415 378.642639 391.995422 396.550201 415.304688 434.946167 440. 455.516571 466.163757 477.059814 493.883301 499.621948;
24-94.scl, "24 tone schismic temperament in 94-et Gene Ward Smith 2002" 1 24 261.62558 265.512573 275.484589 279.577484 290.077759 294.387482 309.981995 314.587433 326.402588 331.251984 348.8 353.981445 367.276154 372.732819 386.731781 392.477478 413.268097 419.408051 435.16 441.625244 465.019348 471.928192 489.65271 496.927521;
28-any.scl, "6)8 28-any from 1.3.5.7.9.11.13.15 only 26 tones" 1 26 261.62558 265.71347 280.31311 283.427704 289.869232 303.672546 309.193848 318.856171 327.031952 331.279114 340.11322 354.284607 356.762146 364.407043 377.903595 386.49231 392.438354 404.896698 425.141541 436.042603 455.508789 463.790771 472.379486 485.876038 490.547943 515.323059;
30-29-min3.scl, "30/29 x 29/28 x 28/27 plus 6/5" 1 9 261.62558 270.647125 280.31311 290.695068 348.834076 392.438354 405.970703 420.469666 436.042603;
56-any.scl, "3)8 56-any from 1.3.5.7.9.11.13.15 1.3.5 tonic only 48 notes" 1 48 261.62558 265.71347 269.801361 272.8 274.706848 283.427704 286.152954 287.788116 292.284821 294.328766 297.6 305.229828 311.770477 314.76825 318.856171 323.761627 327.031952 335.752808 340.11322 343.383545 350.74176 359.735138 366.275787 367.91095 371.99884 377.721924 382.62738 389.713074 392.438354 396.798767 404.702057 412.060272 419.69101 425.141541 431.68219 441.493134 446.398621 449.668945 457.844727 467.655701 470.926025 478.284241 479.646881 490.547943 495.998474 503.629211 510.169861 515.075317;
70-any.scl, "1.3.5.7.11.13.17.19 4)8 70-any tonic 1.3.5.7" 3 71 220. 222.0625 222.373505 224.714279 226.416672 232.636902 233.75 238.333328 238.758926 239.479172 240.567703 242. 242.589279 244.880951 253.229172 253.785721 257.125 261.25 262.166656 266.848206 267.142853 273.690491 274.934509 278.552094 280.892853 283.020844 286. 287.375 289.404755 290.796143 293.857147 296.083344 298.571442 302.5 303.875 311.322906 311.666656 317.232147 318.345245 323.452393 327.708344 328.428558 339.625 342.833344 343.668152 345.714294 347.285706 348.333344 348.955353 355.797607 357.5 367.321442 370.104156 374. 374.523804 378.034973 383.166656 388.142853 393.25 397.931549 403.333344 405.166656 407.114594 408.571442 410.535706 412.401794 418. 422.976196 428.541656 434.107147 440.;
abell1.scl, "Ross Abell’s French Baroque Meantone 1 a’=520" 1 12 261.62558 273.682556 292.648773 305.958679 327.161621 342.041229 365.955994 391.316742 409.350555 437.718536 457.626373 489.339874;
abell2.scl, "Ross Abell’s French Baroque Meantone 2 a’=520" 1 12 261.62558 275.904724 294.684296 308.8 330.008575 348.02 369.140533 392.902191 412.674286 441.527557 463.211212 493.598114;
abell3.scl, "Ross Abell’s French Baroque Meantone 3 a’ = 520" 1 12 261.62558 275.90506 293.495758 308.086823 329.246979 350.036316 368.714966 392.448944 412.283264 440.254669 462.142944 492.744019;
abell4.scl, "Ross Abell’s French Baroque Meantone 4 a’=520" 1 12 261.62558 274.950165 292.98703 308.264801 328.10788 346.015533 367.43869 391.542847 411.484161 438.477722 461.875336 491.038757;
abell5.scl, "Ross Abell’s French Baroque Meantone 5 a’=520" 1 12 261.62558 277.984314 295.878235 311.666595 331.154297 349.43 371.278961 395.63504 416.26535 442.293335 466.702606 495.884277;
abell6.scl, "Ross Abell’s French Baroque Meantone 6 a’=520" 1 12 261.62558 277.022583 293.325714 311.666595 330.008575 349.43 369.994415 391.769073 414.825195 440.763123 466.702606 494.168671;
abell7.scl, "Ross Abell’s French Baroque Meantone 7 a’=520" 1 12 261.62558 277.503021 294.344055 310.050568 328.866821 348.825012 369.994415 392.448547 416.26535 438.477722 465.087952 493.31308;
abell8.scl, "Ross Abell’s French Baroque Meantone 8 a’=520" 1 12 261.62558 277.823792 294.684296 311.486633 329.627563 350.036041 371.278961 392.448547 415.304688 441.017792 467.782166 494.454193;
abell9.scl, "Ross Abell’s French Baroque Meantone 9 a’=520" 1 12 261.62558 276.064148 293.325714 309.692596 330.2 348.623596 369.140533 391.995422 412.674286 440. 464.550964 493.883301;
ad-dik.scl, "Amin Ad-Dik d’Erlanger vol 5 p.42" 1 24 261.62558 269.034882 275.622009 285.409698 294.328766 300.460602 310.074738 321.085907 327.031952 336.375732 348.834076 358.8 367.496002 378.422699 392.438354 400.614136 413.432983 428.114563 441.493134 453.484314 470.926025 479.646881 490.547943 508.71637;
adjeng.scl, "Soeroepan adjeng" 1 5 261.62558 285.304688 305.782013 383.042236 417.710541;
AEOLIC.SCL, "Ancient Greek Aeolic also tritriadic scale of the 54:64:81 triad" 1 7 261.62558 294.328766 310.074738 348.834076 392.438354 413.432983 465.112122;
agricola.scl, "Agricola’s Monochord Rudimenta musices (1539)" 1 12 261.62558 275.933228 294.328766 310.424866 331.119843 348.834076 367.91095 392.438354 413.9 441.493134 465.112122 496.679779;
al-din.scl, "Safi al-Din’s complete lute tuning on 5 strings 4/3 apart" 2 36 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659 516.208374 523.25116 551.244019 580.734436 588.657532 620.149475 653.326233 688.277832 697.668152 734.992004 774.312561 784.876709 826.865967 871.101624 917.703735 930.224243 979.989319 1032.416748 1046.502319 1102.488037;
al-din_19.scl, "Arabic scale by Safi al-Din" 1 19 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 344.138916 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 458.851868 465.112122 489.994659 516.208374;
al-farabi.scl, "Al-Farabi Syn Chrom" 1 7 261.62558 279.067261 299. 348.834076 392.438354 418.6 448.5;
al-farabi_19.scl, "Arabic scale by Al Farabi" 1 19 261.62558 275.622009 285.409698 294.328766 310.074738 326.663116 331.119843 336.871338 348.834076 367.496002 380.546265 392.438354 413.432983 435.550812 441.493134 455.289795 465.112122 489.994659 507.39505;
al-farabi_blue.scl, "Another tuning from Al Farabi c700 AD" 1 7 261.62558 294.328766 367.91095 380.810547 392.438354 490.547943 506.9;
al-farabi_chrom.scl, "Al Farabi’s Chromatic c700 AD" 1 7 261.62558 294.328766 353.194519 372.509827 392.438354 470.926025 497.088562;
al-farabi_chrom2.scl, "Al-Farabi’s Chromatic permuted" 1 7 261.62558 279.067261 325.578491 348.834076 392.438354 418.6 488.367737;
al-farabi_diat.scl, "Al-Farabi’s Diatonic" 1 7 261.62558 299. 341.715027 348.834076 392.438354 448.5 512.57251;
AL-FARABI_DIAT2.scl, "Old Phrygian permuted form of Al-Farabi’s reduplicated 10/9 diatonic genus same as ptolemy_diat.scl" 1 7 261.62558 290.695068 313.950684 348.834076 392.438354 436.042603 470.926025;
al-farabi_div.scl, "Al Farabi’s 10 intervals for the division of the tetrachord" 2 11 261.62558 275.622009 277.015289 284.451965 288.322052 294.328766 310.074738 311.642212 321.085907 331.119843 348.834076;
al-farabi_div2.scl, "Al-Farabi’s tetrachord division incl. extra 2187/2048 & 19683/16384" 2 13 261.62558 275.622009 277.015289 279.382385 284.451965 288.322052 294.328766 310.074738 311.642212 314.305176 321.085907 331.119843 348.834076;
al-farabi_divo.scl, "Al Farabi’s theoretical octave division with identical tetrachords 10th c." 1 24 261.62558 275.622009 277.015289 284.451965 288.322052 294.328766 310.074738 311.642212 321.085907 331.119843 348.834076 367.496002 369.353729 379.269287 392.438354 413.432983 415.522949 426.677948 432.483063 441.493134 465.112122 467.463318 481.628876 496.679779;
AL-FARABI_dor.scl, "Dorian mode of Al-Farabi’s 10/9 Diatonic" 1 7 261.62558 282.555603 313.950684 348.834076 392.438354 423.833405 470.926025;
AL-FARABI_DOR2.scl, "Dorian mode of Al-Farabi’s Diatonic" 1 7 261.62558 267.076111 305.229828 348.834076 392.438354 400.614136 457.844727;
al-farabi_g1.scl, "Al-Farabi’s Greek genus conjunctum medium Land" 1 7 261.62558 294.328766 331.119843 367.91095 392.438354 441.493134 490.547943;
al-farabi_g10.scl, "Al-Farabi’s Greek genus chromaticum forte" 1 7 261.62558 294.328766 343.383545 367.91095 392.438354 457.844727 490.547943;
al-farabi_g11.scl, "Al-Farabi’s Greek genus chromaticum mollissimum" 1 7 261.62558 294.328766 353.194519 372.509827 392.438354 470.926025 496.679779;
al-farabi_g12.scl, "Al-Farabi’s Greek genus mollissimum ordinantium" 1 7 261.62558 294.328766 367.91095 380.174652 392.438354 490.547943 506.9;
al-farabi_g3.scl, "Al-Farabi’s Greek genus conjunctum primum" 1 7 261.62558 294.328766 336.375732 378.422699 392.438354 448.5 504.563599;
al-farabi_g4.scl, "Al-Farabi’s Greek genus forte duplicatum primum" 1 7 261.62558 294.328766 336.375732 384.429413 392.438354 448.5 512.57251;
al-farabi_g5.scl, "Al-Farabi’s Greek genus conjunctum tertium or forte aequatum" 1 7 261.62558 294.328766 327.031952 359.735138 392.438354 436.042603 479.646881;
al-farabi_g6.scl, "Al-Farabi’s Greek genus forte disjunctum primum" 1 7 261.62558 294.328766 336.375732 373.750793 392.438354 448.5 498.334412;
al-farabi_g7.scl, "Al-Farabi’s Greek genus non continuum acre" 1 7 261.62558 294.328766 343.383545 374.6 392.438354 457.844727 499.46698;
al-farabi_g8.scl, "Al-Farabi’s Greek genus non continuum mediocre" 1 7 261.62558 294.328766 353.194519 378.422699 392.438354 470.926025 504.563599;
al-farabi_g9.scl, "Al-Farabi’s Greek genus non continuum laxum" 1 7 261.62558 294.328766 367.91095 383.717499 392.438354 490.547943 511.623322;
Al-Hwarizmi.scl, "Al-Hwarizmi’s tetrachord division" 2 7 261.62558 294.328766 302.738159 311.642212 321.085907 331.119843 348.834076;
al-kindi.scl, "Al-Kindi’s tetrachord division" 2 7 261.62558 275.622009 279.382385 294.328766 310.074738 331.119843 348.834076;
al-kindi2.scl, "Arabic mode by al-Kindi" 1 14 261.62558 275.622009 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659;
al-mausili.scl, "Arabic mode by Ishaq al-Mausili ? – 850 AD" 1 11 261.62558 275.622009 294.328766 310.074738 331.119843 348.834076 367.496002 392.438354 413.432983 441.493134 465.112122;
albion.scl, "Terry Riley’s Harp of New Albion scale inverse Malcolm’s Monochord 1/1 on C#" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 465.112122 490.547943;
alembert.scl, "Jean-Le Rond d’Alembert modified meantone (1752)" 1 12 261.62558 273.706116 292.506287 307.83252 327.031952 347.991211 365.928619 391.221466 409.451599 437.398895 462.867188 489.224609;
alembert2.scl, "d’Alembert (?)" 1 12 261.62558 275. 292.577515 309.287903 327.031952 348.538757 367.080963 391.316742 412.034454 437.505432 464.324951 489.994293;
alves.scl, "Bill Alves tuning for "Instantaneous Motion" 1/1 vol. 6/3" 1 13 261.62558 267.076111 294.328766 305.229828 327.031952 336.375732 348.834076 359.735138 392.438354 425.141541 448.5 457.844727 504.563599;
angklung.scl, "Scale of an anklung set from Tasikmalaya. 1/1=174 Hz" 2 9 261.62558 294.704712 326.28 372.139709 421.006561 533.776306 589.409424 672.107056 757.812134;
appunn.scl, "Probable tuning of A. Appunn’s 36-tone harmonium w. 3 manuals 80/81 apart 1887" 1 36 261.62558 272.526642 275.933228 279.382385 287.106232 290.695068 294.328766 302.465851 306.246674 310.074738 322.994537 327.031952 331.119843 340.274078 344.527496 348.834076 363.368835 367.91095 372.509827 382.808319 387.593445 392.438354 408.79 413.9 419.073578 430.659363 436.042603 441.493134 453.698761 459.37 465.112122 484.491791 490.547943 496.679779 510.411102 516.79126;
arabic.scl, "Arabic 17-tone Pythagorean mode Safi al-Din" 1 17 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 387.156281 392.438354 413.432983 435.550812 441.493134 465.112122 489.994659 516.208374;
arabic_s.scl, "Schimatically altered Arabic 17-tone Pythagorean mode" 1 17 261.62558 275.622009 290.695068 294.328766 310.074738 327.031952 331.119843 348.834076 367.91095 387.593445 392.438354 413.432983 436.042603 441.493134 465.112122 490.547943 516.79126;
ARCH_CHROM.SCL, "Archytas’ Chromatic" 1 7 261.62558 271.315399 294.328766 348.834076 392.438354 406.973114 441.493134;
ARCH_CHROMc2.scl, "Product set of 2 of Archytas’ Chromatic" 1 14 261.62558 271.315399 294.328766 305.229828 331.119843 343.383545 348.834076 361.753876 392.438354 406.973114 422.046173 441.493134 457.844727 496.679779;
ARCH_DOR.SCL, "Dorian mode of Archytas’ Chromatic with added 16/9" 1 8 261.62558 271.315399 294.328766 348.834076 392.438354 406.973114 465.112122 441.493134;
arch_enh.scl, "Archytas’ Enharmonic" 1 7 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 418.6;
ARCH_ENH2.SCL, "Archytas’ Enharmonic with added 16/9" 1 8 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 465.112122 418.6;
arch_enh3.scl, "Complex 9 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 336.375732 348.834076 358.8 448.5;
ARCH_ENHp.scl, "Permutation of Archytas’s Enharmonic with the 36/35 first" 1 7 261.62558 269.1 279.067261 348.834076 392.438354 403.650879 418.6;
arch_enht.scl, "Complex 6 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 269.1 271.315399 279.067261 336.375732 348.834076 504.563599;
ARCH_ENHt2.scl, "Complex 5 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 327.031952 348.834076 490.547943 508.71637;
ARCH_ENHT3.scl, "Complex 1 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 281.364105 289.403107 348.834076 361.753876;
arch_enht4.scl, "Complex 8 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 327.031952 339.144257 348.834076 436.042603;
ARCH_ENHT5.scl, "Complex 10 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 263.77887 271.315399 279.067261 339.144257 348.834076 508.71637;
arch_enht6.scl, "Complex 2 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 289.403107 297.671753 348.834076 372.089691;
arch_enht7.scl, "Complex 11 of p. 113 based on Archytas’s Enharmonic" 1 7 261.62558 269.1 271.315399 279.067261 287.040619 348.834076 358.8;
arch_mult.scl, "Multiple Archytas" 1 12 261.62558 271.315399 279.067261 327.031952 336.375732 348.834076 361.753876 392.438354 406.973114 418.6 490.547943 504.563599;
arch_ptol.scl, "Archytas/Ptolemy Hybrid 1" 1 12 261.62558 271.315399 279.067261 290.695068 310.074738 348.834076 361.753876 392.438354 406.973114 418.6 436.042603 465.112122;
arch_ptol2.scl, "Archytas/Ptolemy Hybrid 2" 1 12 261.62558 271.315399 279.067261 294.328766 313.950684 348.834076 361.753876 392.438354 406.973114 418.6 441.493134 470.926025;
arch_sept.scl, "Archytas Septimal" 1 12 261.62558 271.315399 279.067261 294.328766 310.074738 348.834076 361.753876 392.438354 406.973114 418.6 441.493134 465.112122;
ariel1.scl, "Ariel 1" 1 12 261.62558 282.555603 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 470.926025 490.547943;
ariel2.scl, "Ariel 2" 1 12 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 470.926025 490.547943;
ariel3.scl, "Ariel’s 12-tone JI scale" 1 12 261.62558 279.067261 290.695068 310.074738 322.994537 348.834076 363.368835 392.438354 418.6 436.042603 465.112122 484.491791;
ariel_19.scl, "Ariel 19-tone scale" 1 19 261.62558 272.526642 279.067261 290.695068 302.807373 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 452.088989 470.926025 490.547943 502.321075;
ariel_31.scl, "Ariel’s 31-tone system" 1 31 261.62558 267.904572 272.526642 279.067261 283.881897 294.328766 301.392639 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 357.206116 363.368835 376.740814 383.24057 392.438354 401.856873 408.79 418.6 428.647339 436.042603 446.507629 454.21106 465.112122 482.228241 490.547943 502.321075 510.987427;
arist_archenh.scl, "PsAristo Arch. Enharmonic 4 + 3 + 23 parts similar to Archytas’ enharmonic" 1 7 261.62558 271.89679 279.863953 349.228241 391.995422 407.384888 419.322174;
arist_chrom.scl, "Dorian Neo-Chromatic 6+18+6 parts = Athanasopoulos’ Byzant.liturg. 2nd chromatic" 1 7 261.62558 277.182617 329.627563 349.228241 391.995422 415.304688 493.883301;
arist_chrom2.scl, "Dorian Mode a 1:2 Chromatic 8 + 18 + 4 parts" 1 7 261.62558 282.571228 336.035736 349.228241 391.995422 423.378479 503.484711;
arist_chrom3.scl, "PsAristo 3 Chromatic 7 + 7 + 16 parts" 1 7 261.62558 279.863892 299.372528 349.228699 391.994904 419.323883 448.556244;
ARIST_CHROM4.scl, "PsAristo Chromatic 5.5000 + 5.5000 + 19 parts" 1 7 261.62558 275.851654 290.851166 349.228241 391.995422 413.310516 435.784332;
arist_chromenh.scl, "Aristoxenos’ Chromatic/Enharmonic 3 + 9 + 18 parts" 1 7 261.62558 269.291779 293.664764 349.228241 391.995422 403.481781 440.;
ARIST_CHROMINV.scl, "Aristoxenos’ Inverted Chromatic Dorian mode 18 + 6 + 6 parts" 1 7 261.62558 311.126984 329.627563 349.228241 391.995422 466.163757 493.883301;
arist_chromrej.scl, "Aristoxenos Rejected Chromatic 6 + 3 + 21 parts" 1 7 261.62558 277.182617 285.304688 349.228241 391.995422 415.304688 427.47406;
ARIST_CHROMunm.scl, "Unmelodic Chromatic genus of Aristoxenos Dorian Mode 4.5000 + 3.5000 + 22 parts" 1 7 261.62558 273.20871 282.571198 349.228241 391.995422 409.350555 423.378418;
arist_diat.scl, "Phrygian octave species on E 12 + 6 + 12 parts" 1 7 261.62558 293.664764 311.126984 349.228241 391.995422 440. 466.163757;
arist_diat2.scl, "PsAristo 2 Diatonic 7 + 11 + 12 parts" 1 7 261.62558 279.863953 311.126984 349.228241 391.995422 419.322174 466.163757;
arist_diat3.scl, "PsAristo Diat 3 9.5000 + 9.5000 + 11 parts" 1 7 261.62558 286.681335 314.136688 349.228241 391.995422 429.536682 470.673218;
arist_diat4.scl, "PsAristo Diatonic 8 + 8 + 14 parts" 1 7 261.62558 282.571228 305.193817 349.228241 391.995422 423.378479 457.274048;
arist_diatdor.scl, "PsAristo Redup. Diatonic 14 + 2 + 14 parts" 1 7 261.62558 299.37381 305.193817 349.228241 391.995422 448.553894 457.274048;
arist_diatinv.scl, "Lydian octave species on E major mode 12 + 12 + 6 parts" 1 7 261.62558 293.664764 329.627563 349.228241 391.995422 440. 493.883301;
arist_diatred.scl, "Aristo Redup. Diatonic Dorian Mode 14 + 14 + 2 parts" 1 7 261.62558 299.37381 342.568481 349.228241 391.995422 448.553894 513.272766;
arist_diatred2.scl, "PsAristo 2 Redup. Diatonic 2 4 + 13 + 13 parts" 1 7 261.62558 271.89679 308.146118 349.228241 391.995422 407.384888 461.69751;
arist_diatred3.scl, "PsAristo 3 Redup. Diatonic 8 + 11 + 11 parts" 1 7 261.62558 282.571228 314.136688 349.228241 391.995422 423.378479 470.673218;
arist_enh.scl, "Aristoxenos’ Enharmonion Dorian mode" 1 7 261.62558 269.291779 277.182617 349.228241 391.995422 403.481781 415.304688;
arist_enh2.scl, "PsAristo 2 Enharmonic 3.5000 + 3.5000 + 23 parts" 1 7 261.62558 270.591095 279.864014 349.228241 391.995422 405.428558 419.322235;
arist_enh3.scl, "PsAristo Enharmonic 2.5000 + 2.5000 + 25 parts" 1 7 261.62558 267.998718 274.526947 349.228241 391.995422 401.544342 411.325653;
arist_hemchrom.scl, "Aristoxenos’s Chromatic Hemiolion Dorian Mode" 1 7 261.62558 273.20871 285.304688 349.228241 391.995422 409.350555 427.47406;
arist_hemchrom2.scl, "PsAristo C/H Chromatic 4.5000 + 7.5000 + 18 parts" 1 7 261.62558 273.20871 293.664764 349.228241 391.995422 409.350555 440.;
ARIST_HEMCHROM3.scl, "Dorian mode of Aristoxenos’ Hemiolic Chromatic according to Ptolemy’s interpret" 1 7 261.62558 271.818756 282.83844 348.834076 392.438354 407.728149 424.25766;
arist_hypenh2.scl, "PsAristo 2nd Hyperenharmonic 37.5000 + 37.5000 + 425 cents" 1 7 261.62558 267.354431 273.20871 349.228241 391.995422 400.57901 409.350555;
arist_hypenh3.scl, "PsAristo 3 Hyperenharmonic 1.5000 + 1.5000 + 27 parts" 1 7 261.62558 265.431 269.291779 349.228241 391.995422 397.697144 403.481781;
arist_hypenh4.scl, "PsAristo 4 Hyperenharmonic 2 + 2 + 26 parts" 1 7 261.62558 266.71167 271.89682 349.228241 391.995422 399.615997 407.384949;
ARIST_HYPENH5.scl, "PsAristo Hyperenharmonic 23 + 23 + 454 cents" 1 7 261.62558 265.124542 268.670288 349.228241 391.995422 397.237976 402.550629;
arist_intdiat.scl, "Dorian mode of Aristoxenos’s Intense Diatonic according to Ptolemy" 1 7 261.62558 275.395325 307.794769 348.834076 392.438354 413.092987 461.692169;
ARIST_PENH2.SCL, "Permuted Aristoxenos’s Enharmonion 3 + 24 + 3 parts" 1 7 261.62558 269.291779 339.286377 349.228241 391.995422 403.481781 508.355194;
arist_penh3.scl, "Permuted Aristoxenos’s Enharmonion 24 + 3 + 3 parts" 1 7 261.62558 329.627563 339.286377 349.228241 391.995422 493.883301 508.355194;
arist_pschrom2.scl, "PsAristo 2 Chromatic 6.5000 + 6.5000 + 17 parts" 1 7 261.62558 278.52 296.505615 349.228241 391.995422 417.308502 444.256439;
arist_softchrom.scl, "Aristoxenos’s Chromatic Malakon Dorian Mode" 1 7 261.62558 271.89679 282.571228 349.228241 391.995422 407.384888 423.378479;
ARIST_SOFTCHROM2.scl, "Aristoxenos’ Soft Chromatic 6 + 16.5000 + 9.5000 parts" 1 7 261.62558 277.182617 324.901764 349.228241 391.995422 415.304688 486.802582;
arist_SOFTCHROM3.scl, "Aristoxenos’s Chromatic Malakon 9.5000 + 16.5000 + 6 parts" 1 7 261.62558 281.214355 329.627563 349.228241 391.995422 421.345428 493.883301;
ARIST_SOFTCHROM4.scl, "PsAristo S. Chromatic 6 + 7.5000 + 16.5000 parts" 1 7 261.62558 277.182617 297.936218 349.228241 391.995422 415.304688 446.4;
ARIST_SOFTCHROM5.scl, "Dorian mode of Aristoxenos’ Soft Chromatic according to Ptolemy’s interpretati" 1 7 261.62558 270.647125 280.31311 348.834076 392.438354 405.970703 420.469666;
arist_softdiat.scl, "Aristoxenos’s Diatonon Malakon Dorian Mode" 1 7 261.62558 277.182617 302.269806 349.228241 391.995422 415.304688 452.893005;
ARIST_SOFTDIAT2.SCL, "Dorian Mode 6 + 15 + 9 parts" 1 7 261.62558 277.182617 320.243713 349.228241 391.995422 415.304688 479.823395;
arist_SOFTDIAT3.scl, "Dorian Mode 9 + 15 + 6 parts" 1 7 261.62558 285.304688 329.627563 349.228241 391.995422 427.47406 466.163757;
arist_softdiat4.scl, "Dorian Mode 9 + 6 + 15 parts" 1 7 261.62558 285.304688 302.269806 349.228241 391.995422 427.47406 452.893005;
arist_softdiat5.scl, "Dorian Mode 15 + 6 + 9 parts" 1 7 261.62558 302.269806 320.243713 349.228241 391.995422 452.893005 479.823395;
arist_softdiat6.scl, "Dorian Mode 15 + 9 + 6 parts" 1 7 261.62558 302.269806 329.627563 349.228241 391.995422 452.893005 493.883301;
ARIST_SOFTDIAT7.scl, "Dorian mode of Aristoxenos’s Soft Diatonic according to Ptolemy" 1 7 261.62558 275.395325 299. 348.834076 392.438354 413.092987 448.5;
arist_synchrom.scl, "Aristoxenos’s Chromatic Syntonon Dorian Mode" 1 7 261.62558 277.182617 293.664764 349.228241 391.995422 415.304688 440.;
arist_syndiat.scl, "Aristoxenos’s Diatonon Syntonon Dorian Mode" 1 7 261.62558 277.182617 311.126984 349.228241 391.995422 415.304688 466.163757;
arist_unchrom.scl, "Aristoxenos’s Unnamed Chromatic Dorian Mode 4 + 8 + 18 parts" 1 7 261.62558 271.89679 293.664764 349.228241 391.995422 407.384888 440.;
arist_unchrom2.scl, "Dorian Mode a 1:2 Chromatic 8 + 4 + 18 parts" 1 7 261.62558 282.571228 293.664764 349.228241 391.995422 423.378479 440.;
arist_unchrom3.scl, "Dorian Mode a 1:2 Chromatic 18 + 4 + 8 parts" 1 7 261.62558 311.126984 323.341583 349.228241 391.995422 466.163757 484.464996;
arist_unchrom4.scl, "Dorian Mode a 1:2 Chromatic 18 + 8 + 4 parts" 1 7 261.62558 311.126984 336.035736 349.228241 391.995422 466.163757 503.484711;
arith13.scl, "The first 13 terms of the arithmetic series octave reduced" 1 12 261.62558 269.801361 294.328766 318.856171 327.031952 343.383545 367.91095 371.99884 392.438354 449.668945 457.844727 490.547943;
arith22.scl, "The first 22 terms of the arithmetic series octave reduced" 1 19 261.62558 269.801361 277.977173 294.328766 312.724304 318.856171 327.031952 343.383545 349.515411 367.91095 371.99884 388.350433 392.438354 429.229431 449.668945 457.844727 472.152374 490.547943 517.119263;
aron-neidhardt.scl, "Aron-Neidhardt equal beating well temperament" 1 12 261.62558 275.622009 292.535187 310.074738 327.04 348.834076 367.496002 391.421326 413.432983 437.438568 465.112122 489.994659;
artusi.scl, "Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals" 1 12 261.62558 276.635284 292.506287 309.287689 327.031952 349.91922 369.994415 391.221375 413.666382 437.398834 462.493103 489.026794;
art_nam.scl, "Artificial Nam System" 1 9 261.62558 287.788116 317.688171 324.77655 348.834076 353.194519 392.438354 431.68219 473.417694;
ATHAN_CHROM.SCL, "Athanasopoulos’s Byzantine Liturgical mode Chromatic" 1 7 261.62558 285.304688 329.627563 349.228241 391.995422 427.47406 493.883301;
auftetf.scl, "5/4 C.I. again" 2 9 261.62558 264.295227 269.801361 287.788116 359.735138 380.546265 384.429413 392.438354 418.6;
augmented.scl, "Augmented temperament g=91.2 oct=1/3 5-limit" 1 6 261.62558 312.712128 329.627563 393.992584 415.304688 496.4;
augteta.scl, "Linear Division of the 11/8 duplicated on the 16/11" 2 9 261.62558 280.76889 302.934875 328.9 359.735138 380.546265 408.391113 440.632538 478.401031;
AUGTETA2.scl, "Linear Division of the 7/5 duplicated on the 10/7" 2 9 261.62558 281.75061 305.229828 332.977997 366.275787 373.750793 402.5 436.042603 475.682831;
augtetb.scl, "Harmonic mean division of 11/8" 2 9 261.62558 270.859406 280.76889 302.934875 359.735138 380.546265 295.483002 408.391113 440.632538;
augtetc.scl, "11/10 C.I." 2 9 261.62558 280.31311 301.875641 327.031952 359.735138 380.546265 407.728149 439.091858 475.682831;
augtetd.scl, "11/9 C.I." 2 9 261.62558 271.68808 282.555603 294.328766 359.735138 380.546265 395.182678 410.99 428.114563;
augtete.scl, "5/4 C.I." 2 9 261.62558 269.801361 278.504639 287.788116 359.735138 380.546265 392.438354 405.097656 418.6;
augtetg.scl, "9/8 C.I." 2 9 261.62558 278.504639 297.711853 319.764587 359.735138 380.546265 405.097656 433.035431 465.112122;
augteth.scl, "9/8 C.I. A gapped version of this scale is called AugTetI" 2 9 261.62558 278.504639 287.788116 319.764587 359.735138 380.546265 405.097656 418.6 465.112122;
augtetj.scl, "9/8 C.I. comprised of 11:10:9:8 subharmonic series on 1 and 8:9:10:11 on 16/11" 2 7 261.62558 287.788116 319.764587 359.735138 380.546265 428.114563 475.682831;
augtetk.scl, "9/8 C.I. This is the converse form of AugTetJ" 2 7 261.62558 294.328766 327.031952 359.735138 380.546265 418.6 465.112122;
augtetl.scl, "9/8 C.I. This is the harmonic form of AugTetI" 2 7 261.62558 294.328766 327.031952 359.735138 380.546265 428.114563 475.682831;
avg_bac.scl, "Average Bac System" 1 7 261.62558 290.695068 307.794769 348.834076 392.438354 436.042603 461.692169;
avicenna.scl, "Soft diatonic of Avicenna (Ibn Sina)" 1 7 261.62558 290.695068 299. 348.834076 392.438354 436.042603 448.5;
avicenna_19.scl, "Arabic scale by Ibn Sina" 1 19 261.62558 275.622009 283.496918 294.328766 310.074738 326.663116 331.119843 348.834076 358.8 372.509827 377.99588 392.438354 413.432983 425.245361 441.493134 465.112122 478.401031 496.679779 503.456116;
AVICENNA_chrom.scl, "Dorian mode a chromatic genus of Avicenna" 1 7 261.62558 269.1 299. 348.834076 392.438354 403.650879 448.5;
AVICENNA_CHROM2.SCL, "Dorian Mode a 1:2 Chromatic 4 + 18 + 8 parts" 1 7 261.62558 271.89682 323.341644 349.228241 391.995422 407.384949 484.465088;
AVICENNA_CHROM3.scl, "Avicenna’s Chromatic permuted" 1 7 261.62558 290.695068 339.144257 348.834076 392.438354 436.042603 508.71637;
AVICENNA_diat.scl, "Dorian mode a soft diatonic genus of Avicenna" 1 7 261.62558 281.75061 305.229828 348.834076 392.438354 422.625916 457.844727;
avicenna_diff.scl, "Difference tones of Avicenna’s Soft diatonic reduced by 2/1" 1 12 261.62558 269.801361 286.152954 294.328766 310.680359 343.383545 367.91095 392.438354 400.614136 441.493134 457.844727 515.075317;
AVICENNA_enh.scl, "Dorian mode of Avicenna’s (Ibn Sina) Enharmonic genus" 1 7 261.62558 268.333923 279.067261 348.834076 392.438354 402.5 418.6;
awad.scl, "d’Erlanger vol.5 p.37 after Mans.ur ‘Awad" 1 24 261.62558 268.333923 275.395325 282.83844 290.695068 299. 307.794769 317.121887 327.031952 337.58136 348.834076 358.8 369.353729 380.546265 392.438354 402.5 413.092987 424.25766 436.042603 448.5 461.692169 475.682831 490.547943 506.37207;
awraamoff.scl, "Awraamoff Septimal Just" 1 12 261.62558 294.328766 299. 313.950684 327.031952 343.383545 348.834076 392.438354 418.6 448.5 457.844727 490.547943;
ayers.scl, "Lydia Ayers algorithmic composition." 2 37 261.62558 268.892944 276.575592 284.710175 293.337769 302.504547 312.262756 322.671539 333.798126 345.719482 358.523926 372.313293 387.205841 403.339417 420.875916 440.006622 460.95932 484.007294 509.481354 537.785889 569.420349 605.009094 645.343079 691.438965 744.626587 806.678833 880.013245 968.014587 1075.571777 1210.018188 1382.87793 1613.357666 1936.029175 2420.036377 3226.715332 4840.072754 9680.145508;
ayers_19.scl, "Scale for NINETEEN for 19 for the 90’s CD. Repeats at 37/19 (or 2/1)" 1 19 261.62558 268.892944 276.575592 284.710175 293.337769 302.504547 312.262756 322.671539 333.798126 345.719482 358.523926 372.313293 387.205841 403.339417 420.875916 440.006622 460.95932 484.007294 509.481354;
ayers_ap.scl, "Lydia Ayers’ Appetizer ICMC 96 Balinese Slendro from Singaraja" 1 5 261.62558 299. 336.375732 388.7 448.5;
ayers_me.scl, "Scale for Merapi (1996) Lydia Ayers. Slendro 0 2 4 5 7 9 Pelog 0 1 3 6 8 9" 1 9 261.62558 280.31311 299. 308.344421 336.375732 392.438354 420.469666 448.5 504.563599;
b10_13.scl, "10-tET approximation with minimal order 13 beats" 1 10 261.62558 281.75061 299. 322. 348.834076 370.63623 392.438354 425.141541 457.844727 485.876038;
b12_17.scl, "12-tET approximation with minimal order 17 beats" 1 12 261.62558 277.015289 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 415.522949 436.042603 465.112122 494.18161;
b14_19.scl, "14-tET approximation with minimal order 19 beats" 1 14 261.62558 275.395325 289.1651 305.229828 319.764587 336.375732 348.834076 370.63623 392.438354 408.79 429.813416 450.577362 474.19635 497.088562;
b15_21.scl, "15-tET approximation with minimal order 21 beats" 1 15 261.62558 274.083923 287.788116 300.869415 313.950684 327.031952 348.834076 361.29245 377.903595 392.438354 415.522949 436.042603 457.844727 477.081909 499.46698;
b8_11.scl, "8-tET approximation with minimal order 11 beats" 1 8 261.62558 285.409698 313.950684 340.11322 366.275787 404.330414 436.042603 479.646881;
bach2.scl, "Well-temperament for Bach from Jacob Breetvelt’s Tuner" 1 12 261.62558 275.933411 293.664764 310.42511 327.771637 349.228241 367.911224 391.995422 413.9 438.759583 465.637634 491.10257;
badings1.scl, "Henk Badings harmonic scale Lydomixolydisch" 2 10 261.62558 294.328766 327.031952 359.735138 392.438354 425.141541 457.844727 523.25116 588.657532 654.063904;
badings2.scl, "Henk Badings subharmonic scale Dorophrygisch" 2 10 261.62558 290.695068 327.031952 373.750793 402.5 436.042603 475.682831 523.25116 581.390137 654.063904;
bagpipe2.scl, "Highland Bagpipe from Acustica4: 231 (1954) J.M.A Lenihan and S. McNeill" 1 9 261.62558 232.556061 261.62558 294.328766 327.031952 353.194519 392.438354 436.042603 470.926025;
bagpipe3.scl, "Highland Bagpipe Allan Chatto 1991.0000 From Australian Pipe Band College" 1 9 261.62558 235.463013 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 470.926025;
bagpipe4.scl, "Highland Bagpipe Ewan Macpherson in ‘NZ Pipeband’ Winter 1998" 2 10 261.62558 228.922363 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 457.844727 520.237427;
balafon.scl, "Observed balafon tuning from Patna" 2 8 261.62558 291.467865 321.355499 354.512573 385.706512 428.95813 462.142212 529.942871;
balafon2.scl, "Observed balafon tuning from West-Africa" 1 7 261.62558 285.634491 308.8 355.948914 397.467499 437.46579 476.784332;
balafon3.scl, "Pitt-River’s balafon tuning from West-Africa" 2 8 261.62558 292.817841 309.156403 351.860504 388.838257 414.346252 468.322876 525.978394;
balafon4.scl, "Mandinka balafon scale from Gambia" 2 8 261.62558 285.469543 319.320129 354.512573 383.042236 430.198822 472.944275 505.719299;
bamboo.scl, "Pythagorean scale with fifth average from Chinese bamboo tubes" 1 23 261.62558 268.980865 277.503021 286.295197 294.344055 303.66983 313.291046 323.217102 332.303955 342.832428 353.694427 363.638153 375.159363 387.045593 397.926941 410.534515 423.541565 435.448914 449.245331 463.478851 478.16333 491.606354 507.182007;
bapere.scl, "African Bapere Horns Aerophone made of reed one note each" 2 6 261.62558 369.780762 418.434998 469.135132 528.414551 625.858643;
BARBOUR_chrom1.scl, "Barbour’s #1 Chromatic" 1 7 261.62558 266.47049 290.695068 348.834076 392.438354 399.705719 436.042603;
barbour_chrom2.scl, "Barbour’s #2 Chromatic" 1 7 261.62558 268.333923 290.695068 348.834076 392.438354 402.5 436.042603;
BARBOUR_CHROM3.SCL, "Barbour’s #3 Chromatic" 1 7 261.62558 265.778351 299. 348.834076 392.438354 398.667542 448.5;
BARBOUR_CHROM3p.scl, "permuted Barbour’s #3 Chromatic" 1 7 261.62558 294.328766 299. 348.834076 392.438354 441.493134 448.5;
BARBOUR_CHROM3P2.scl, "permuted Barbour’s #3 Chromatic" 1 7 261.62558 305.229828 310.074738 348.834076 392.438354 457.844727 465.112122;
BARBOUR_CHROM4.SCL, "Barbour’s #4 Chromatic" 1 7 261.62558 264.895874 294.328766 348.834076 392.438354 397.343842 441.493134;
BARBOUR_CHROM4p.scl, "permuted Barbour’s #4 Chromatic" 1 7 261.62558 290.695068 294.328766 348.834076 392.438354 436.042603 441.493134;
BARBOUR_CHROM4P2.scl, "permuted Barbour’s #4 Chromatic" 1 7 261.62558 310.074738 313.950684 348.834076 392.438354 465.112122 470.926025;
barca.scl, Barca 1 12 261.62558 275.933411 293.222931 310.42511 328.389099 348.834076 367.911224 391.553009 413.9 438.842163 465.112122 491.472412;
barca_a.scl, "Barca A" 1 12 261.62558 275.933411 293.664764 310.42511 329.131622 348.834076 368.604309 392.438354 413.9 439.834412 465.637634 492.583679;
barkechli.scl, "Mehdi Barkechli 27-tone pyth. Arabic scale" 1 27 261.62558 265.195007 275.622009 279.382385 290.367218 294.328766 298.34436 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 397.79248 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779 516.208374;
barnes.scl, "John Barnes’ temperament (1979) made after analysis of Wohltemperierte Klavier" 1 12 261.62558 276.245178 293.002258 310.775848 328.141998 349.622833 368.326935 391.553009 414.367798 438.511902 466.163757 492.212982;
beardsley_8.scl, "David Beardsley’s scale used in "Sonic Bloom" 1999" 1 8 261.62558 294.328766 305.229828 336.375732 359.735138 392.438354 425.141541 457.844727;
becket.scl, "Quasi-equal temperament by the Becket and Co. plan (1840)" 1 12 261.62558 277.211761 293.631805 311.16629 329.638824 349.365112 370.146698 392.0401 415.419403 440.049438 466.351166 494.06;
belet.scl, "Belet Brian 1992 Proceedings of the ICMC pp.158-161." 1 13 261.62558 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 359.735138 392.438354 418.6 425.141541 457.844727 490.547943;
bellingwolde.scl, "Current 1/6-P. comma mod.mean of Freytag organ in Bellingwolde. Ortgies 2002" 1 12 261.62558 275.622009 293.002258 311.478516 328.141998 349.622833 367.496002 391.553009 414.367798 438.511902 466.163757 491.10257;
bellingwolde_org.scl, "Original tuning of the Freytag organ in Bellingwolde" 1 12 261.62558 275.622009 293.002258 311.478516 328.141998 349.622833 367.496002 392.438354 414.367798 438.511902 466.163757 492.212982;
bemetzrieder2.scl, "Anton Bemetzrieder temperament 2 (1808) is Vallotti in F#." 1 12 261.62558 278.12326 294.328766 311.478516 331.119843 348.834076 371.669464 392.438354 416.243713 441.493134 466.163757 496.679779;
bendeler.scl, "J. Ph. Bendeler well temperament" 1 12 261.62558 275.622009 292.75528 310.074738 328.193176 348.834076 367.496002 392.438354 413.432983 437.590881 465.112122 492.289734;
bermudo.scl, "Irregular temperament of Fr.J. Bermudo (1555)" 1 12 261.62558 277.2 293.7 310.074738 329.705933 348.834076 369.598816 392.438354 415.798645 440.54953 465.112122 494.558899;
bethisy.scl, "Bethisy temperament ordinaire see Pierre-Yves Asselin: Musique et temperament" 1 12 261.62558 275.077881 292.506287 309.11319 327.031952 348.473206 367.184937 391.221375 412.150909 437.398834 464.150238 489.994385;
bey-r.scl, "Idris Ragib Bey vol.5 d’Erlanger p 40.0000 Idris Rag’ib Bey" 1 24 261.62558 269.995422 281.015656 288.12 294.328766 303.494476 311.459015 323.777679 335.777039 341.994202 348.834076 360.365784 371.064545 381.378387 392.438354 407.463318 417.228241 432.796631 450.284515 458.155334 465.112122 476.509033 487.198456 503.126099;
bey_24.scl, "Yekta Bey 24-tone pyth. Arabic scale" 1 24 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779 516.208374;
biezen.scl, "Jan van Biezen modified meantone (1974)" 1 12 261.62558 275.077606 292.506287 311.039215 327.031952 349.919128 366.770142 391.221466 412.616394 437.398895 466.558838 490.547943;
biggulp.scl, "Big Gulp" 1 12 261.62558 269.801361 294.328766 305.229828 327.031952 343.383545 359.735138 392.438354 404.702057 441.493134 457.844727 490.547943;
billeter.scl, "Organ well temperament of Otto Bernhard Billeter" 1 12 261.62558 276.089264 293.333344 310.6 328.141998 349.425476 368.119019 391.77417 414.133881 438.759583 465.9 491.657471;
blackjack.scl, "21 note MOS of "MIRACLE" temperament Erlich & Keenan miracle1.scl TL 2-5-2001" 1 21 261.62558 274.526978 279.863953 293.664764 299.37381 314.136688 320.243713 326.469452 342.568481 349.228241 366.449554 373.573578 391.995422 399.616089 419.322174 427.47406 448.553894 457.274048 479.823395 489.151489 513.272766;
blackjack_r.scl, "Rational "Wilson/Grady"-style version Paul Erlich TL 28-11-2001" 1 21 261.62558 274.706848 280.31311 294.328766 299. 313.950684 319.764587 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 428.114563 448.5 457.844727 479.646881 490.547943 515.075317;
blackwood_6.scl, "Easley Blackwood whole tone scale arrangement of 4:5:7:9:11:13 1/1=G p.114" 1 6 261.62558 294.328766 327.031952 359.735138 425.141541 457.844727;
blackwood_9.scl, "Blackwood scale with pure triads on I II III IV VI and dom.7th on V. page 83" 1 9 261.62558 290.695068 294.328766 327.031952 343.383545 348.834076 392.438354 436.042603 490.547943;
blasquinten.scl, "Blasquintenzirkel. 23 fifths in 2 oct. C. Sachs Vergleichende Musikwiss. p. 28" 2 24 261.62558 286.295197 313.291046 342.832428 375.159363 387.045593 410.534515 423.541565 449.245331 463.478851 491.606354 507.182007 537.961731 555.006042 588.68811 607.339661 644.197693 664.60791 704.941467 727.276306 795.853882 870.897827 953.018066 1042.881592;
boeth_chrom.scl, "Boethius’s Chromatic. The CI is 19/16" 1 7 261.62558 275.622009 293.755035 348.834076 392.438354 413.432983 440.632538;
boeth_enh.scl, "Boethius’s Enharmonic with a CI of 81/64 and added 16/9" 1 8 261.62558 268.441467 275.622009 348.834076 392.438354 402.662201 465.112122 413.432983;
bohlen-eg.scl, "Bohlen-Pierce with two tones altered by minor BP diesis slightly more equal" 2 14 261.62558 284.881165 311.459015 336.375732 366.275787 400.447296 436.042603 470.926025 512.786133 560.626221 610.459656 659.296448 720.805115 784.876709;
bohlen-p.scl, "See Bohlen H. 13-Tonstufen in der Duodezime Acustica 39: 76-86 (1978)" 2 14 261.62558 282.555603 311.459015 336.375732 366.275787 400.447296 436.042603 470.926025 512.786133 560.626221 610.459656 659.296448 726.737671 784.876709;
BOHLEN-P_9.scl, "Bohlen-Pierce subscale by J.R. Pierce with 3:5:7 triads" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 721.273193 784.876709;
bohlen-p_9a.scl, "Pierce’s 9 of 313 see Mathews et al. J. Acoust. Soc. Am. 84 1214-1222" 2 10 261.62558 284.881165 336.375732 366.275787 432.483063 470.926025 560.626221 610.459656 720.805115 784.876709;
BOHLEN-P_EB.scl, "Bohlen-Pierce scale with equal beating 5/3 and 7/3" 2 14 261.62558 285.647156 310.525391 337.570374 366.970825 400.664886 435.560486 473.4953 514.734009 561.995239 610.941772 664.151306 721.995056 784.876709;
bohlen-p_ebt.scl, "Bohlen-Pierce scale with equal beating 7/3 tenth" 2 14 261.62558 284.532043 309.68 337.288574 366.739746 399.072723 434.56955 472.435364 514.006348 559.645142 608.329712 661.778137 720.456543 784.876709;
bohlen-p_ebt2.scl, "Bohlen-Pierce scale with equal beating 7/5 tritone" 2 14 261.62558 284.595398 309.708221 337.163879 367.18103 399.338837 434.496735 472.934692 514.95874 559.98 609.2 663.013855 721.847473 784.876709;
bohlen-p_et.scl, "13-tone equal division of 3/1. Bohlen-Pierce equal approximation" 2 14 261.62558 284.696289 309.801453 337.120453 366.84848 399.197998 434.4 472.706543 514.390869 559.751038 609.111145 662.823914 721.273193 784.876709;
bohlen5.scl, "5-limit version of Bohlen-Pierce" 2 14 261.62558 282.555603 313.950684 339.066742 363.368835 406.88 436.042603 470.926025 504.678955 565.111206 605.614746 654.063904 726.737671 784.876709;
bohlen_11.scl, "11-tone scale by Bohlen generated from the 1/1 3/2 5/2 triad" 2 12 261.62558 290.695068 313.950684 348.834076 392.438354 436.042603 470.926025 523.25116 588.657532 654.063904 706.389038 784.876709;
bohlen_12.scl, "12-tone scale by Bohlen generated from the 4:7:10 triad Acustica 39/2 1978" 2 13 261.62558 287.788116 313.950684 341.250732 373.750793 411.125885 457.844727 499.46698 549.413696 601.738831 654.063904 719.470276 784.876709;
bohlen_8.scl, "See Bohlen H. 13-Tonstufen in der Duodezime Acustica 39: 76-86 (1978)" 1 8 261.62558 290.695068 313.950684 336.375732 366.275787 406.973114 436.042603 470.926025;
bohlen_coh.scl, "Differentially coherent Bohlen-Pierce interval=2" 2 14 261.62558 283.776886 309.951904 336.216278 367.189392 398.34549 434.937134 471.954407 515.137329 559.162903 609.729614 662.480225 721.801697 784.876709;
bohlen_delta.scl, "Bohlen’s delta scale a mode B-P see Acustica 39: 76-86 (1978)" 2 10 261.62558 309.801453 337.120453 399.197998 434.4 472.706543 559.751038 609.111145 721.273193 784.876709;
BOHLEN_D_JI.scl, "Bohlen’s delta scale just version. "Dur" form "moll" is inversion." 2 10 261.62558 311.459015 336.375732 400.447296 436.042603 470.926025 560.626221 610.459656 726.737671 784.876709;
bohlen_enh.scl, "Bohlen-Pierce scale all enharmonic tones" 2 50 261.62558 282.555603 284.881165 286.033783 288.38797 305.16 307.671661 308.916473 311.459015 332.2854 335.020264 336.375732 339.144257 363.285797 366.275787 367.757721 370.784546 395.57785 398.833649 400.447296 403.743164 427.224091 430.740326 432.483063 436.042603 470.926025 474.801941 476.722961 480.646606 508.6 512.786133 514.860779 519.098328 553.809021 558.367065 560.626221 565.240417 605.476318 610.459656 612.929504 617.974243 659.296448 664.722717 667.41217 672.905273 712.040161 717.9 720.805115 726.737671 784.876709;
bohlen_eq.scl, "Most equal selection from all enharmonic Bohlen-Pierce tones" 2 14 261.62558 284.881165 308.916473 336.375732 366.275787 398.833649 436.042603 470.926025 514.860779 560.626221 610.459656 664.722717 720.805115 784.876709;
bohlen_gamma.scl, "Bohlen’s gamma scale a mode of the Bohlen-Pierce scale" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 514.390869 609.111145 721.273193 784.876709;
BOHLEN_G_JI.scl, "Bohlen’s gamma scale just version" 2 10 261.62558 282.555603 336.375732 366.275787 436.042603 470.926025 512.786133 610.459656 726.737671 784.876709;
bohlen_harm.scl, "Bohlen’s harmonic scale inverse of lambda" 2 10 261.62558 284.696289 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 662.823914 784.876709;
bohlen_h_ji.scl, "Bohlen’s harmonic scale just version" 2 10 261.62558 282.555603 336.375732 366.275787 436.042603 470.926025 560.626221 610.459656 659.296448 784.876709;
bohlen_lambda.scl, "Bohlen’s lambda scale a mode of the Bohlen-Pierce scale" 2 10 261.62558 309.801453 337.120453 366.84848 434.4 472.706543 559.751038 609.111145 721.273193 784.876709;
bohlen_lambda_pyth.scl, "Dave Benson’s BP-Pythagorean scale lambda mode of bohlen_pyth.scl" 2 10 261.62558 306.394714 336.375732 369.290405 432.483063 474.801941 556.049683 610.459656 714.921021 784.876709;
bohlen_l_ji.scl, "Bohlen’s lambda scale just version" 2 10 261.62558 311.459015 336.375732 366.275787 436.042603 470.926025 560.626221 610.459656 726.737671 784.876709;
bohlen_mean.scl, "1/3 minor BP diesis (245/243) tempered 7/3 meantone scale" 2 14 261.62558 284.103851 310.609344 337.296051 366.275787 400.447296 434.852844 472.214478 512.786133 560.626221 608.794006 661.1 722.777222 784.876709;
bohlen_pyth.scl, "Cycle of 13 7/3 BP tenths" 2 14 261.62558 287.225861 306.394714 336.375732 369.290405 393.936066 432.483063 474.801941 521.26178 556.049683 610.459656 670.193726 714.921021 784.876709;
bohlen_t.scl, "Bohlen scale based on the twelfth" 2 9 261.62558 311.126984 349.228241 391.995422 440. 523.25116 587.329529 659.255127 783.990845;
bohlen_t_ji.scl, "Bohlen scale based on twelfth just version" 2 9 261.62558 313.950684 348.834076 392.438354 436.042603 523.25116 588.657532 654.063904 784.876709;
bolivia.scl, "Observed scale from pan-pipe from La Paz. 1/1=171 Hz." 2 8 261.62558 315.834808 401.621613 478.716064 581.254578 714.369324 884.075867 1042.881592;
Boomsliter.scl, "Boomsliter & Creel basic set of their referential tuning." 1 12 261.62558 294.328766 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025;
bossard.scl, "Ferdinand Bossard’s Modified meantone (1743/44) organ in Klosterkirche Muri" 1 12 261.62558 274.07016 292.836884 312.1828 327.401703 349.622833 366.253113 391.77417 410.409454 437.769745 466.427032 489.718079;
boulliau.scl, "Monsieur Boulliau’s irregular temp. (1373) reported by Mersenne in 1636.0000" 1 12 261.62558 277.015289 294.328766 311.642212 331.119843 348.834076 369.353729 392.438354 415.522949 441.493134 465.112122 492.471649;
bps_temp17.scl, "Bohlen-Pierce-Stearn temperament. Highest 7-limit error 8.4000 cents 2001" 2 18 261.62558 268.970764 290.206238 313.118256 337.839233 347.324127 374.745697 404.332184 436.254547 448.502502 483.91217 522.117432 563.33905 579.154968 624.8797 674.214539 727.444336 784.876709;
breed-blues1.scl, "Graham Breed’s blues scale in 22-tET" 1 7 261.62558 296.765167 326.183838 336.62442 394.059265 433.122833 446.986359;
breed-blues2.scl, "Graham Breed’s blues scale in 29-tET" 1 8 261.62558 294.836945 301.968933 324.416748 340.301575 392.776978 432.182739 453.344238;
breed-dias13.scl, "13-limit Diaschismic temperament g=103.897 oct=1/2 13-limit" 1 46 261.62558 265.182831 268.788452 272.443085 277.80722 281.584503 285.413147 289.293823 294.99 299. 303.066071 307.186798 313.234985 317.493988 321.810852 326.186432 332.608734 337.131134 341.715027 346.361237 353.180756 357.982849 362.85025 369.994415 375.025146 380.124268 385.292725 392.878754 398.220642 403.635132 409.12326 417.178497 422.850769 428.6 434.427734 442.981171 449.004303 455.109283 461.297302 470.379791 476.775421 483.258026 489.828766 499.472992 506.264221 513.147766;
breed-ht.scl, "Hemithird temperament g=193.202 5-limit" 1 19 261.62558 279.05069 285.703033 292.513947 311.996338 319.434052 327.049072 348.831665 357.147491 365.66156 390.015869 399.313477 408.832764 436.062408 446.457733 457.1 487.545349 499.167999 511.067719;
breed-kleismic.scl, "Kleismic temperament g=317.080 5-limit" 1 7 261.62558 272.156372 314.211639 326.8591 377.367371 392.556946 453.217224;
breed-magic.scl, "Graham Breed’s Magic temperament g=380.384 9-limit close to 41-tET" 1 13 261.62558 294.316376 304.492889 315.021271 325.913696 366.637482 379.314636 392.43 406. 456.729736 472.521973 488.86026 505.763458;
breed-mult29.scl, "Multiple-29 temperament g=15.563 oct=1/29 15-limit" 1 58 261.62558 263.988037 267.954163 270.373779 274.435852 276.914001 281.074341 283.612427 287.873413 290.4729 294.836945 297.5 301.968933 304.695679 309.273407 312.066132 316.754608 319.614868 324.416748 327.346222 332.264252 335.264587 340.301575 343.374481 348.533325 351.680573 356.964203 360.187561 365.598999 368.9 374.442688 377.823883 383.5 386.963257 392.776978 396.32373 402.278107 405.910645 412.009033 415.729431 421.975342 425.785767 432.182739 436.085327 442.637054 446.634033 453.344238 457.437927 464.310455 468.503143 475.541901 479.836029 487.045044 491.443054 498.826477 503.330841 510.892853 515.506165;
breed.scl, "Graham Breed’s fourth based 12-tone keyboard scale. Tuning List 23-10-97" 2 13 261.62558 265.195007 268.81311 279.382385 283.194061 294.328766 298.34436 310.074738 314.305176 318.593323 331.119843 335.637421 348.834076;
breed4-3.scl, "Graham Breed’s neutral third chain subset of 7+3 scale in 24-tET" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 427.47406 479.823395;
breed7-3.scl, "Graham Breed’s 7 + 3 scale in 24-tET" 1 10 261.62558 285.304688 293.664764 320.243713 349.228241 380.83609 391.995422 427.47406 466.163757 479.823395;
breedt1.scl, "Graham Breed’s 1/4 P temperament TL 10-06-99" 1 12 261.62558 275.622009 292.341278 310.074738 326.663116 348.834076 367.496002 391.111115 413.432983 437.028839 465.112122 489.994659;
breedt2.scl, "Graham Breed’s 1/5 P temperament TL 10-06-99" 1 12 261.62558 276.37 293.532135 310.91626 328.438568 349.780792 368.493347 392.438354 414.554993 439.106537 466.37439 492.657837;
breedt3.scl, "Graham Breed’s other 1/4 P temperament TL 10-06-99" 1 12 261.62558 276.557312 293.333344 311.126984 328.883942 350.017853 368.743103 392.438354 414.835968 438.511902 466.69046 491.657471;
brown.scl, "Tuning of Colin Brown’s Voice Harmonium Glasgow. Helmholtz/Ellis p. 470-473" 1 45 261.62558 272.526642 275.622009 275.933228 279.382385 287.106232 290.695068 291.023315 294.328766 306.246674 306.592468 310.074738 310.424866 322.994537 327.031952 331.119843 344.527496 344.916504 348.834076 349.227966 363.368835 367.496002 367.91095 372.509827 382.808319 387.593445 388.031067 392.438354 408.79 413.432983 413.9 430.659363 436.042603 436.534973 441.493134 459.37 459.888702 465.112122 465.637299 484.491791 489.994659 490.547943 496.679779 516.79126 517.374756;
bulgaria.scl, "Bulgarian bagpipe tuning" 1 12 261.62558 271.792114 294.004211 314.015747 329.437225 351.048462 378.642639 393.356354 416.024994 442.548889 469.135132 491.606354;
burma.scl, "Observed patala tuning from Burma" 2 8 261.62558 289.621796 320.243713 355.948914 393.583618 439.745911 480.655579 537.340576;
burma2.scl, "Observed balafon tuning from Burma" 2 8 261.62558 279.433228 320.243713 359.461395 389.062927 424.521271 474.860413 522.043579;
burma3.scl, "Burmese scale von Hornbostel" 1 7 261.62558 287.710297 317.688263 350.391479 389.3237 429.813324 476.143097;
burt-forks.scl, "Warren Burt 19-tone Forks. Interval 5(3): pp. 13+23 Winter 1986-87" 1 19 261.62558 271.315399 279.067261 290.695068 294.328766 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 465.112122 470.926025 490.547943 504.563599;
burt1.scl, "W. Burt’s 13diatsub #1" 1 12 261.62558 272.090576 283.427704 295.750641 309.193848 340.11322 358.013947 377.903595 415.522949 425.141541 453.484314 485.876038;
burt10.scl, "W. Burt’s 19enhsub #10" 1 12 261.62558 265.113892 268.696533 272.377289 276.160309 355.063263 368.213745 382.375824 386.088226 389.873383 393.733521 397.670868;
burt11.scl, "W. Burt’s 19enhharm #11" 1 12 261.62558 344.244171 347.686615 351.129059 354.571503 358.013947 371.783691 385.553467 495.711609 502.596466 509.481354 516.366272;
burt12.scl, "W. Burt’s 19diatharm #12" 1 12 261.62558 302.934875 316.70462 330.474396 344.244171 358.013947 371.783691 385.553467 440.632538 468.172058 495.711609 509.481354;
burt13.scl, "W. Burt’s 23diatsub #13" 1 12 261.62558 273.517639 286.542297 293.531128 300.869415 334.3 353.963989 376.086761 401.15921 429.813416 445.732452 462.876007;
burt14.scl, "W. Burt’s 23enhsub #14" 1 12 261.62558 264.5 267.439453 270.444397 273.517639 334.3 353.963989 376.086761 382.056366 388.218567 394.582825 401.15921;
burt15.scl, "W. Burt’s 23enhharm #15" 1 12 261.62558 341.250732 346.938263 352.625763 358.313263 364. 386.750824 409.5 500.501068 506.188599 511.876099 517.563599;
burt16.scl, "W. Burt’s 23diatharm #16" 1 12 261.62558 295.750641 307.125671 318.5 341.250732 364. 386.750824 409.5 455. 466.376007 477.751038 500.501068;
burt17.scl, "W. Burt’s "2 out of 3 5 11 17 31 dekany" CPS with 1/1=3/1. 1/1 vol. 10(1) ’98" 1 36 261.62558 262.277618 262.775299 280.510803 281.043091 281.335846 286.121033 286.66394 306.911835 308.56189 309.1474 336.612976 337.251709 337.602997 338.422729 339.418091 363.013977 369.188416 370.274261 396.015259 398.144379 399.315399 403.935577 406.107269 434.339325 434.791748 435.616791 437.958801 475.218323 476.868378 477.773254 478.270935 479.178467 521.207153 521.750122 522.740173;
burt18.scl, "W. Burt’s "2 out of 1 3 5 7 11 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) ’98" 1 36 261.62558 268.268402 269.801361 270.503967 275.422241 281.043091 286.152954 295.095245 300.460602 306.592468 309.1474 314.76825 321.922089 324.604767 337.251709 343.383545 344.277771 354.114288 357.691193 367.91095 370.976868 375.575775 393.460327 404.702057 413.133331 421.564636 429.229431 432.806366 449.668945 463.7211 472.152374 490.547943 491.825409 500.76767 505.877563 515.075317;
burt19.scl, "W. Burt’s "2 out of 2 3 4 5 7 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) ’98" 1 20 261.62558 268.268402 286.152954 294.328766 300.460602 306.592468 321.922089 327.031952 343.383545 357.691193 367.91095 375.575775 392.438354 400.614136 408.79 429.229431 457.844727 490.547943 500.76767 515.075317;
burt2.scl, "W. Burt’s 13enhsub #2" 1 12 261.62558 264.165619 266.755493 269.396606 272.090576 340.11322 344.418457 348.834076 353.36441 358.013947 412.258453 485.876038;
burt20.scl, "Warren Burt tuning for "Commas" (1993) 1/1=263. XH 16" 1 12 261.62558 269.1 279.067261 279.382385 294.328766 298.007874 330.746399 335.25885 367.91095 376.740814 412.060272 418.6;
burt3.scl, "W. Burt’s 13enhharm #3" 1 12 261.62558 281.75061 332.063232 382.375824 387.407074 392.438354 397.469604 402.5 503.126099 508.157349 513.188599 518.219849;
burt4.scl, "W. Burt’s 13diatharm #4 see his post 3/30/94 in Tuning Digest #57" 1 12 261.62558 281.75061 301.875641 322. 342.125732 362.250793 382.375824 402.5 442.750946 462.876007 483.001038 503.126099;
burt5.scl, "W. Burt’s 17diatsub #5" 1 12 261.62558 277.977173 296.508972 317.688171 342.125732 277.977173 386.750824 404.330414 423.584259 444.763458 468.172058 494.18161;
burt6.scl, "W. Burt’s 17enhsub #6" 1 12 261.62558 265.530426 269.553619 273.7 277.977173 370.63623 386.750824 404.330414 408.977905 413.733459 418.6 423.584259;
burt7.scl, "W. Burt’s 17enhharm #7" 1 12 261.62558 323.184509 327.031952 330.879395 334.726837 338.574249 353.963989 369.353729 492.471649 500.166534 507.861389 515.556274;
burt8.scl, "W. Burt’s 17diatharm #8" 1 12 261.62558 277.015289 292.405029 307.794769 323.184509 338.574249 353.963989 369.353729 400.133209 430.912689 461.692169 492.471649;
burt9.scl, "W. Burt’s 19diatsub #9" 1 12 261.62558 268.696533 276.160309 292.405029 310.680359 355.063263 368.213745 382.375824 397.670868 414.240479 432.250946 451.898712;
bushmen.scl, "Observed scale of South-African bushmen almost (4 notes) equal pentatonic" 1 4 261.62558 347.016327 394.266235 453.940613;
cairo.scl, "P.42 of d’Erlanger vol.5. Congress of Arabic Music Cairo 1932" 1 26 261.62558 269.38382 276.034576 285.150482 293.631378 300.857361 309.8 312.202332 320.031281 327.933777 337.668518 348.834076 357.411987 367.916687 380.214447 392.438354 401.020172 414.620544 417.265656 427.772339 440.447083 451.935669 468.863007 480.046906 491.777374 510.987427;
canright.scl, "David Canright’s piano tuning for "Fibonacci Suite" (2001)" 1 9 261.62558 286.484253 306.034424 335.112701 357.981354 391.995422 418.74588 458.533569 489.824677;
carlos_alpha.scl, "Wendy Carlos’ Alpha scale with perfect fifth divided in nine" 2 19 261.62558 273.682556 286.295197 299.489105 313.291046 327.729034 342.832428 358.631836 375.159363 392.448547 410.534515 429.453979 449.245331 469.948792 491.606354 514.261963 537.961731 562.753662 588.68811;
carlos_alpha2.scl, "Wendy Carlos’ Alpha prime scale with perfect fifth divided by eightteen" 2 37 261.62558 267.586151 273.682556 279.917847 286.295197 292.817841 299.489105 306.312347 313.291046 320.428741 327.729034 335.195679 342.832428 350.643158 358.631836 366.802521 375.159363 383.706573 392.448547 401.389679 410.534515 419.887695 429.453979 439.23819 449.245331 459.480469 469.948792 480.655579 491.606354 502.80658 514.261963 525.978394 537.961731 550.218079 562.753662 575.574829 588.68811;
carlos_beta.scl, "Wendy Carlos’ Beta scale with perfect fifth divided by eleven" 2 23 261.62558 271.44693 281.636993 292.209595 303.179077 314.560364 326.368896 338.620697 351.332458 364.521393 378.205475 392.403229 407.133942 422.417664 438.275146 454.727905 471.798279 489.509491 507.88559 526.951477 546.733154 567.257385 588.552124;
carlos_beta2.scl, "Wendy Carlos’ Beta prime scale with perfect fifth divided by twentytwo" 2 45 261.62558 266.490997 271.44693 276.495026 281.636993 286.874603 292.209595 297.643799 303.179077 308.817291 314.560364 320.410217 326.368896 332.438354 338.620697 344.91803 351.332458 357.86618 364.521393 371.3 378.205475 385.238922 392.403229 399.7 407.133942 414.705414 422.417664 430.273346 438.275146 446.42572 454.727905 463.184448 471.798279 480.572296 489.509491 498.612885 507.88559 517.330688 526.951477 536.751221 546.733154 556.9 567.257385 577.806641 588.552124;
carlos_Gamma.scl, "Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty" 2 36 261.62558 266.983887 272.451965 278.032013 283.726349 289.537323 295.467316 301.518738 307.694122 313.995972 320.42688 326.989502 333.686554 340.520752 347.494904 354.611908 361.874695 369.286194 376.849518 384.567719 392.444 400.481628 408.683838 417.054047 425.595673 434.312256 443.207367 452.284637 461.547852 471. 480.647278 490.491364 500.537048 510.788483 521.249878 531.925537;
carlos_harm.scl, "Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977) & David Beardsley’s scale of ‘Science Friction'" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 425.141541 441.493134 457.844727 490.547943;
carlos_super.scl, "Carlos Super Just" 1 12 261.62558 277.977173 294.328766 313.950684 327.031952 348.834076 359.735138 392.438354 425.141541 436.042603 457.844727 490.547943;
carlson.scl, "Brian Carlson’s guitar scale (or 7 is 21/16 instead) fretted by Mark Rankin" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 457.844727 470.926025 490.547943 508.71637;
cassandra1.scl, "Cassandra temperament (Erv Wilson) 13-limit g=497.866" 1 41 261.62558 265.523132 271.43631 275.48 279.583984 283.749084 290.068146 294.389435 298.775085 305.428772 309.978912 314.596802 319.283508 326.393921 331.256378 336.191254 343.678192 348.798157 353.994354 359.267975 367.268829 372.740234 378.293121 386.717682 392.47879 398.325745 407.196411 413.262604 419.419189 425.66748 435.147034 441.629639 448.208832 458.190369 465.016266 471.943848 478.97464 489.641327 496.93576 504.338867 515.570435;
cassandra2.scl, "Cassandra temperament schismic variant 13-limit g=497.395" 1 41 261.62558 265.345947 270.181305 275.104797 279.016846 284.101349 289.278473 293.39209 298.738556 304.182434 309.725494 314.129883 319.854218 325.682892 330.314178 336.333466 342.462433 348.703064 353.661713 360.106445 366.66864 371.882721 378.659515 385.559784 392.585785 398.168457 405.424225 412.812225 418.682526 426.312134 434.08075 440.253479 448.276184 456.445068 464.762817 471.371826 479.961609 488.707886 495.65741 504.689728 513.886658;
catler.scl, "Catler 24-tone JI from "Over and Under the 13 Limit" 1/1 3(3)" 1 24 261.62558 269.801361 279.067261 294.328766 299. 305.229828 313.950684 318.934021 322. 327.031952 343.383545 348.834076 359.735138 367.91095 380.546265 392.438354 418.6 425.141541 436.042603 441.493134 457.844727 465.112122 483.001038 490.547943;
ceb88f.scl, "88 cents steps with equal beating fifths" 2 14 261.62558 275.302795 289.608521 304.803101 320.695831 337.318848 354.974731 373.441864 393.056488 413.572327 435.030884 457.822754 481.661896 506.596405;
ceb88s.scl, "88 cents steps with equal beating sevenths" 2 15 261.62558 275.277496 289.607117 304.748779 320.64209 337.32428 354.951904 373.454529 392.87558 413.397247 434.937592 457.54715 481.438049 506.514862 533.012817;
ceb88t.scl, "88 cents steps with equal beating 7/6 thirds" 2 15 261.62558 275.203857 289.6091 304.541016 320.382324 337.188477 354.609009 373.090576 392.697723 413.021698 434.583496 457.458527 481.16983 506.325287 533.012817;
cet105.scl, "Equal temperament with very good 6/5 and 13/8" 2 14 261.62558 277.984375 295.366058 313.834595 333.457886 354.308197 376.46225 400.001495 425.012634 451.587616 479.82431 509.826538 541.704773 575.576233;
cet105a.scl, "18th root of 3" 2 19 261.62558 278.091003 295.592651 314.195801 333.97 354.988159 377.329346 401.076599 426.31839 453.148773 481.667725 511.981506 544.203125 578.452576 614.857544 653.55365 694.685059 738.40509 784.876709;
cet111.scl, "25th root of 5 Karlheinz Stockhausen in "Studie II" (1954)" 2 26 261.62558 279.022339 297.575928 317.36322 338.466248 360.972565 384.975403 410.57431 437.875427 466.991943 498.044525 531.161987 566.481567 604.149719 644.322632 687.166809 732.86 781.591431 833.563293 888.991028 948.104431 1011.148621 1078.384888 1150.092041 1226.567261 1308.127808;
cet111a.scl, "17th root of 3.0000 McLaren ‘Microtonal Music’ volume 1 track 8" 2 18 261.62558 279.091187 297.722809 317.598206 338.8 361.418152 385.545746 411.284058 438.740601 468.03 499.274902 532.605591 568.161316 606.090698 646.552185 689.714783 735.75885 784.876709;
cet112.scl, "53rd root of 31.0000 McLaren ‘Microtonal Music’ volume 4 track 16" 2 54 261.62558 279.138062 297.822815 317.75827 339.028168 361.721802 385.934479 411.767883 439.330536 468.738129 500.114197 533.590515 569.307617 607.415527 648.07428 691.45459 737.738708 787.120972 839.808716 896.023254 956. 1019.992737 1088.268311 1161.114014 1238.835938 1321.760254 1410.235229 1504.63269 1605.348633 1712.806396 1827.457031 1949.782104 2080.295166 2219.544678 2368.11499 2526.630127 2695.755859 2876.202637 3068.727783 3274.140137 3493.302246 3727.134521 3976.618896 4242.803223 4526.804688 4829.816895 5153.111816 5498.047363 5866.071777 6258.730957 6677.67334 7124.658691 7601.564453 8110.392578;
cet114.scl, "21st root of 4" 2 22 261.62558 279.47934 298.551483 318.92514 340.689117 363.938324 388.774109 415.304688 443.645782 473.920929 506.262085 540.810303 577.716064 617.140381 659.255127 704.243774 752.302612 803.640991 858.482788 917.067139 979.649353 1046.502319;
cet117.scl, "72nd root of 128 step = generator of Miracle" 2 37 261.62558 279.863953 299.37381 320.243713 342.568481 366.449554 391.995422 419.322174 448.553894 479.823395 513.272766 549.053955 587.329529 628.273376 672.071472 718.922791 769.040222 822.651428 880. 941.346436 1006.969421 1077.167114 1152.258423 1232.584473 1318.510254 1410.426025 1508.74939 1613.927124 1726.437012 1846.79 1975.533203 2113.251221 2260.569824 2418.158447 2586.732666 2767.058594 2959.955322;
cet118.scl, "16th root of 3.0000 McLaren ‘Microtonal Music’ volume 1 track 7" 2 17 261.62558 280.220734 300.137543 321.47 344.318604 368.791229 395.003235 423.078278 453.148773 485.356537 519.853516 556.802307 596.377319 638.765137 684.165649 732.793091 784.876709;
cet126.scl, "15th root of 3.0000 McLaren ‘Microtonal Music’ volume 1 track 6" 2 16 261.62558 281.506409 302.897949 325.91507 350.681213 377.329346 406.002472 436.854462 470.050842 505.769836 544.203125 585.556885 630.053162 677.930664 729.44635 784.876709;
cet126a.scl, "19th root of 4" 2 20 261.62558 281.428162 302.729614 325.643402 350.291534 376.805328 405.325928 436.00528 469.006775 504.506195 542.692566 583.769287 627.955078 675.485413 726.613281 781.611084 840.771667 904.410156 972.865479 1046.502319;
cet133.scl, "13th root of e" 2 14 261.62558 282.544891 305.136902 329.535339 355.884644 384.34082 415.072327 448.261108 484.103607 522.812073 564.615601 609.761658 658.517639 711.171997;
cet140.scl, "24th root of 7" 2 25 261.62558 283.721741 307.684082 333.670197 361.851074 392.411987 425.554016 461.495117 500.47171 542.740112 588.57843 638.288147 692.196167 750.657166 814.055542 882.808411 957.36792 1038.224487 1125.91 1221.001343 1324.123657 1435.955444 1557.232178 1688.751709 1831.378906;
cet141.scl, "17th root of 4" 2 18 261.62558 283.854309 307.97168 334.138153 362.527832 393.32962 426.748444 463.006653 502.34552 545.026733 591.334351 641.576416 696.08728 755.229614 819.396851 889.015991 964.550293 1046.502319;
cet146.scl, "13th root of 3 Bohlen-Pierce approximation" 2 14 261.62558 284.696289 309.801453 337.120453 366.84848 399.197998 434.4 472.706543 514.390869 559.751038 609.111145 662.823914 721.273193 784.876709;
cet148.scl, "21th root of 6 Moreno’s C-21" 2 22 261.62558 284.927917 310.305756 337.943939 368.043762 400.824524 436.524994 475.405212 517.748352 563.862976 614.084839 668.78 728.346497 793.218567 863.868591 940.811218 1024.607056 1115.866211 1215.253784 1323.493408 1441.373779 1569.753418;
cet152.scl, "13th root of pi" 2 14 261.62558 285.708069 312.007385 340.727325 372.091125 406.341949 443.745575 484.592133 529.198364 577.910828 631.107239 689.2 752.640991 821.921265;
cet158.scl, "12th root of 3 Moreno’s A-12 see dissertation "Embedding Equal Pitch Spaces." 2 13 261.62558 286.708313 314.195801 344.318604 377.329346 413.504944 453.148773 496.593353 544.203125 596.377319 653.55365 716.211548 784.876709;
cet159.scl, "4e-th root of e. e-th root of e is highest x-th root of x" 2 9 261.62558 286.82843 314.459106 344.751526 377.962036 414.371796 454.288971 498.051453 546.029602;
cet160.scl, "15th root of 4 Rudolf Escher in "The Long Christmas Dinner" (1960)" 2 16 261.62558 286.957458 314.742096 345.21701 378.642639 415.304688 455.516571 499.621948 547.997864 601.057739 659.255127 723.087463 793.1 869.892334 954.119629 1046.502319;
cet160a.scl, "37th root of 31.0000 McLaren ‘Microtonal Music’ volume 2 track 7" 2 38 261.62558 287.069641 314.98822 345.622009 379.235046 416.117096 456.586029 500.990723 549.713928 603.17572 661.836792 726.202881 796.828857 874.323425 959.354675 1052.655518 1155.030151 1267.361206 1390.616821 1525.859497 1674.255127 1837.082764 2015.74585 2211.784668 2426.88916 2662.913086 2921.891357 3206.056396 3517.857422 3859.982178 4235.379883 4647.286621 5099.252441 5595.173828 6139.325195 6736.397949 7391.537598 8110.392578;
cet163.scl, "9th root of 7/3. Jeff Scott in "Quiet Moonlight" (2001)" 2 10 261.62558 287.452759 315.82959 347.00769 381.263672 418.901306 460.254486 505.69 555.610779 610.459656;
cet163a.scl, "5th root of 8/5" 2 9 261.62558 287.41153 315.738953 346.858368 381.044922 418.6 459.858429 505.182343 554.973389;
cet166.scl, "3rd root of 4/3" 2 4 261.62558 287.956207 316.936798 348.834076;
cet173.scl, "11th root of 3 Moreno’s A-11" 2 12 261.62558 289.104492 319.469574 353.023926 390.10257 431.075623 476.352173 526.384155 581.671082 642.764832 710.275391 784.876709;
cet175.scl, "28th root of 7.0000 McLaren ‘Microtonal Music’ volume 6 track 3" 2 29 261.62558 289.484161 320.309174 354.416565 392.155762 433.913544 480.117798 531.242004 587.81 650.401611 719.658081 796.289185 881.0802 974.9 1078.709839 1193.57373 1320.668579 1461.296875 1616.9 1789.071411 1979.576416 2190.366943 2423.603027 2681.674561 2967.226318 3283.18457 3632.786621 4019.615234 4447.634766;
cet175a.scl, "4th root of 3/2" 2 8 261.62558 289.536285 320.424561 354.608063 392.438354 434.304413 480.636841 531.912109;
cet178.scl, "27th root of 16" 2 28 261.62558 289.919373 321.27301 356.017456 394.519379 437.18512 484.464996 536.858032 594.917114 659.255127 730.551025 809.557251 897.107788 994.126526 1101.637451 1220.775269 1352.797363 1499.097168 1661.21875 1840.873169 2039.956543 2260.569824 2505.041748 2775.952393 3076.160889 3408.835938 3777.488281 4186.009277;
cet181.scl, "6.6250 tET. The 16/3 is the so-called Kidjel Ratio promoted by Kidjel in 60’s" 2 17 261.62558 290.480927 322.518799 358.09021 397.584869 441.435516 490.122559 544.179443 604.198364 670.836914 744.825256 826.973877 918.182983 1019.45166 1131.889648 1256.728516 1395.336304;
cet182.scl, "17th root of 6 Moreno’s C-17" 2 18 261.62558 290.705872 323.018494 358.92276 398.817841 443.1474 492.404266 547.136108 607.951599 675.526855 750.61322 834.045654 926.75177 1029.762329 1144.2229 1271.405884 1412.725586 1569.753418;
cet195.scl, "7th root of 11/5" 2 8 261.62558 292.817963 327.729279 366.802887 410.535095 459.481262 514.263062 575.576233;
cet21k.scl, "scale of syntonic comma’s almost 56-tET" 2 57 261.62558 264.895874 268.207092 271.559662 274.954163 278.391083 281.870972 285.394379 288.961792 292.573822 296.230988 299.933899 303.683044 307.479095 311.322571 315.214111 319.154297 323.143707 327.183014 331.272797 335.413727 339.606384 343.851471 348.149597 352.501495 356.907745 361.36911 365.8862 370.459778 375.090546 379.779175 384.526398 389.332977 394.2 399.127136 404.116241 409.167694 414.282288 419.460815 424.704071 430.012878 435.388031 440.830383 446.340759 451.92 457.569031 463.288635 469.079742 474.943237 480.88 486.891022 492.977173 499.139374 505.378632 511.695862 518.092041 524.568237;
cet222.scl, "14th root of 6 Moreno’s C-14" 2 15 261.62558 297.346222 337.943939 384.084595 436.524994 496.125275 563.862976 640.849121 728.346497 827.790161 940.811218 1069.263428 1215.253784 1381.176514 1569.753418;
cet233.scl, "21st root of 17.0000 McLaren ‘Microtonal Music’ volume 2 track 15" 2 22 261.62558 299.414612 342.661865 392.155762 448.798492 513.622681 587.81 672.713013 769.879272 881.0802 1008.342896 1153.987305 1320.668579 1511.425171 1729.734497 1979.576416 2265.505127 2592.733398 2967.226318 3395.810791 3886.3 4447.634766;
cet24.scl, "least squares fit primes 2-13" 2 51 261.62558 265.341095 269.109406 272.931244 276.807343 280.738495 284.725464 288.769073 292.87 297.029358 301.247681 305.52594 309.864929 314.265564 318.728668 323.255188 327.845978 332.501953 337.22406 342.013245 346.870422 351.7966 356.792725 361.859802 366.99884 372.210876 377.496918 382.858032 388.295288 393.809753 399.402557 405.074768 410.827515 416.661987 422.579315 428.580688 434.667297 440.840332 447.101013 453.450653 459.890442 466.421692 473.045685 479.763763 486.57724 493.487488 500.49588 507.60379 514.812683 522.123901 529.53894;
cet258.scl, "12th root of 6 Moreno’s C-12" 2 13 261.62558 303.756866 352.672882 409.466125 475.405212 551.962891 640.849121 744.049377 863.868591 1002.983093 1164.5 1352.027344 1569.753418;
cet29.scl, "95th root of 5" 3 96 51.913086 52.8 53.702194 54.619736 55.552956 56.502121 57.467503 58.449379 59.448032 60.463749 61.496819 62.547539 63.616211 64.70314 65.808647 66.933037 68.076645 69.239784 70.422798 71.626022 72.849815 74.094505 75.360466 76.648064 77.957649 79.289619 80.644341 82.022217 83.42363 84.848984 86.298691 87.773178 89.27285 90.798141 92.349495 93.927361 95.532181 97.164421 98.824554 100.513046 102.230392 103.977074 105.753601 107.560486 109.398239 111.267395 113.16848 115.102051 117.068657 119.068871 121.103249 123.172394 125.276894 127.417343 129.59436 131.808578 134.060638 136.351166 138.680832 141.050293 143.460251 145.911377 148.404388 150.94 153.518921 156.141907 158.809723 161.523102 164.282852 167.089752 169.944611 172.848236 175.801483 178.805191 181.860214 184.967438 188.127747 191.342056 194.611282 197.936371 201.318268 204.757935 208.256393 211.814606 215.433624 219.114471 222.858215 226.665924 230.538681 234.477615 238.483841 242.558533 246.70282 250.917938 255.205063 259.56543;
cet39.scl, "49th root of 3" 2 50 261.62558 267.557648 273.624207 279.828339 286.173126 292.661774 299.297577 306.083801 313.023926 320.121399 327.379791 334.802765 342.394043 350.15744 358.096893 366.216339 374.519867 383.011688 391.696075 400.577332 409.66 418.948578 428.447784 438.162354 448.097198 458.257294 468.647766 479.273834 490.140839 501.254242 512.619629 524.242737 536.129333 548.285461 560.717224 573.430908 586.4328 599.729492 613.327698 627.234253 641.456055 656. 670.874451 686.085815 701.642029 717.550964 733.820679 750.459229 767.475037 784.876709;
cet39a.scl, "31-tET with least squares octave equal weight to 5/4 3/2 7/4 and 2/1" 2 32 261.62558 267.55 273.608429 279.804199 286.140289 292.61969 299.245972 306.022308 312.951904 320.038635 327.285797 334.696899 342.276001 350.026764 357.952789 366.058533 374.347809 382.824585 391.493561 400.358795 409.424561 418.695862 428.177124 437.872803 447.7883 457.928345 468.297729 478.902191 489.746796 500.83667 512.177979 523.776062;
cet39b.scl, "31-tET with l.s. 8/7 5/4 4/3 3/2 8/5 7/4 2/1 equal weights" 2 32 261.62558 267.544434 273.597382 279.787079 286.117004 292.59 299.209503 305.978668 312.901123 319.98 327.219086 334.622101 342.192383 349.934174 357.850891 365.946899 374.225891 382.692169 391.350189 400.203888 409.258118 418.516937 427.985474 437.667999 447.569794 457.695374 468.05 478.639191 489.467651 500.541382 511.865356 523.445801;
cet39c.scl, "10th root of 5/4" 2 32 261.62558 267.529205 273.56604 279.739105 286.051483 292.506287 299.10672 305.85614 312.757843 319.815277 327.031952 334.411499 341.95755 349.673889 357.564331 365.632843 373.883423 382.32016 390.947296 399.769073 408.79 418.014374 427.44693 437.092346 446.955414 457.041046 467.354279 477.9 488.684113 499.711365 510.987427 522.517944;
cet39d.scl, "31-tET with l.s. 5/4 3/2 7/4" 2 32 261.62558 267.557861 273.624664 279.829071 286.174103 292.663055 299.3 306.085663 313.026093 320.123871 327.382599 334.805939 342.397583 350.161377 358.101196 366.221069 374.525055 383.017303 391.702148 400.583893 409.667053 418.956146 428.455902 438.171021 448.106445 458.267181 468.658264 479.285004 490.152679 501.266785 512.632874 524.256714;
cet39e.scl, "15th root of 7/5 X.J. Scott" 2 16 261.62558 267.560516 273.630127 279.837433 286.185516 292.677612 299.317017 306.106995 313.051025 320.152588 327.415222 334.842621 342.438507 350.206726 358.151154 366.275787;
cet44.scl, "least maximum error of 10.0911 cents to a set of 11-limit consonances" 2 29 261.62558 268.365112 275.27829 282.369537 289.643463 297.104767 304.758301 312.608948 320.661865 328.922211 337.395355 346.086761 355.002075 364.147034 373.527557 383.14975 393.019806 403.144135 413.529236 424.181885 435.108948 446.317505 457.814758 469.608215 481.705475 494.114349 506.842896 519.9 533.292114;
cet45.scl, "11th root of 4/3" 2 12 261.62558 268.558136 275.674377 282.979034 290.477417 298.1745 306.075531 314.185913 322.51123 331.056946 339.829285 348.834076;
cet45a.scl, "13th root of 7/5 X.J. Scott" 2 14 261.62558 268.485474 275.525269 282.749634 290.163422 297.771606 305.579254 313.591675 321.814148 330.252228 338.91153 347.797913 356.917297 366.275787;
cet49.scl, "least squares fit primes 3-13" 2 26 261.62558 269.108826 276.806152 284.723633 292.867584 301.244476 309.860962 318.723907 327.840363 337.21759 346.863007 356.784332 366.989441 377.48642 388.283661 399.38974 410.813477 422.563965 434.650574 447.082886 459.870789 473.024445 486.554382 500.471283 514.786255 529.510681;
cet49a.scl, "least squares fit primes 5-13" 2 26 261.62558 269.109406 276.807312 284.725403 292.87 301.24762 309.864838 318.728546 327.845825 337.223907 346.870239 356.792511 366.998596 377.496643 388.295013 399.402191 410.827148 422.578918 434.66684 447.1 459.889893 473.045105 486.57663 500.495209 514.811951 529.538208;
cet49b.scl, "least squares fit primes 3-11" 2 26 261.62558 269.110901 276.810364 284.730164 292.876526 301.255951 309.875153 318.740936 327.860382 337.240723 346.889465 356.81427 367.02301 377.523834 388.325104 399.435425 410.863586 422.618744 434.710236 447.147644 459.940918 473.1 486.635986 500.559052 514.880432 529.611633;
cet51.scl, "47nd root of 4" 2 48 261.62558 269.457306 277.523499 285.831146 294.387482 303.2 312.276215 321.624176 331.251984 341.167969 351.380829 361.9 372.732819 383.890533 395.382263 407.218018 419.408051 431.963013 444.893799 458.21167 471.928192 486.055328 500.605347 515.590942 531.025146 546.921326 563.293396 580.155518 597.522461 615.409241 633.831482 652.805176 672.346863 692.473511 713.202637 734.552307 756.541077 779.18811 802.513 826.536194 851.278503 876.761475 903.007263 930.038696 957.879333 986.553406 1016.085815 1046.502319;
cet53.scl, "5th root of 7/6 X.J. Scott" 2 6 261.62558 269.817139 278.265198 286.977753 295.963135 305.229828;
cet54.scl, "62nd root of 7" 2 63 261.62558 269.967072 278.574524 287.456421 296.62149 306.078796 315.837616 325.907593 336.298615 347.020966 358.085144 369.502106 381.283081 393.439667 405.983856 418.928009 432.284821 446.067535 460.289673 474.96524 490.108734 505.735077 521.859619 538.49823 555.667358 573.383911 591.665344 610.529602 629.995361 650.081726 670.808533 692.196167 714.265747 737.03894 760.538208 784.786743 809.808411 835.627808 862.270447 889.762512 918.131165 947.404236 977.610718 1008.780212 1040.943604 1074.132324 1108.379272 1143.71814 1180.183716 1217.812012 1256.639893 1296.705811 1338.049194 1380.710693 1424.732422 1470.157715 1517.03125 1565.4 1615.30957 1666.811035 1719.95459 1774.792603 1831.378906;
cet54a.scl, "101st root of 24" 3 102 36.708096 37.881512 39.092438 40.342075 41.631657 42.96246 44.335804 45.753052 47.215603 48.724903 50.282452 51.88979 53.548504 55.260246 57.026703 58.849628 60.730824 62.672157 64.675545 66.742973 68.876488 71.078209 73.350304 75.695038 78.114716 80.61174 83.188591 85.847809 88.592033 91.423981 94.346458 97.36235 100.474655 103.68644 107.0009 110.42131 113.95105 117.593628 121.352646 125.231827 129.235001 133.36615 137.629364 142.028839 146.568954 151.254211 156.089218 161.078796 166.227875 171.541534 177.025055 182.683868 188.523575 194.55 200.768967 207.186783 213.809753 220.644424 227.697586 234.976196 242.487488 250.238876 258.238068 266.49295 275.011688 283.802765 292.874847 302.236938 311.898285 321.868469 332.157379 342.775177 353.732391 365.039856 376.708771 388.750702 401.177582 414.001678 427.235748 440.892822 454.986481 469.53064 484.539734 500.028625 516.012634 532.507568 549.529785 567.09613 585.223999 603.931396 623.236755 643.159241 663.718567 684.93512 706.829895 729.4245 752.741394 776.80365 801.635132 827.260315 853.704651 880.994324;
cet54b.scl, "35th root of 3 or shrunk 22-tET" 2 36 261.62558 269.967957 278.576355 287.459259 296.625397 306.083801 315.843842 325.91507 336.307434 347.031189 358.096893 369.515442 381.298065 393.456421 406.002472 418.948578 432.307495 446.092377 460.316803 474.994812 490.140839 505.769836 521.897217 538.538818 555.71106 573.430908 591.715698 610.583618 630.053162 650.143494 670.874451 692.266479 714.340576 737.118591 760.622925 784.876709;
cet55.scl, "51th root of 5" 2 52 261.62558 270.013489 278.670349 287.604767 296.825592 306.342072 316.163666 326.3 336.761566 347.558441 358.701447 370.201691 382.070679 394.32019 406.962402 420.01 433.47583 447.373413 461.716583 476.519592 491.797211 507.564636 523.837585 540.632263 557.965393 575.854187 594.316528 613.37085 633.036011 653.331665 674.278015 695.895935 718.206909 741.233215 764.997803 789.524231 814.837036 840.961426 867.92334 895.749695 924.46814 954.107361 984.696838 1016.267029 1048.849365 1082.476318 1117.181396 1153. 1189.965332 1228.116577 1267.490967 1308.127808;
cet55a.scl, "9th root of 4/3" 2 10 261.62558 270.123444 278.897308 287.956207 297.309296 306.966217 316.936798 327.231232 337.86 348.834076;
cet63.scl, "30th root of 3 or stretched 19-tET" 2 31 261.62558 271.384003 281.506409 292.006348 302.897949 314.195801 325.91507 338.071442 350.681213 363.761353 377.329346 391.403442 406.002472 421.146057 436.854462 453.148773 470.050842 487.583374 505.769836 524.634644 544.203125 564.501465 585.556885 607.397705 630.053162 653.55365 677.930664 703.216919 729.44635 756.654114 784.876709;
cet63a.scl, "44th root of 5" 2 45 261.62558 271.372528 281.482605 291.96933 302.846741 314.129395 325.832397 337.971405 350.562653 363.622986 377.169891 391.221466 405.79657 420.914642 436.596008 452.861511 469.733032 487.233093 505.385132 524.21344 543.743164 564. 585.012573 606.807373 629.414185 652.863281 677.185913 702.414673 728.583374 755.727051 783.881897 813.085693 843.377502 874.797791 907.388672 941.193787 976.258301 1012.629089 1050.35498 1089.486328 1130.075439 1172.17688 1215.84668 1261.143433 1308.127808;
cet67.scl, "14th root of 12/7 X.J. Scott" 2 15 261.62558 271.894501 282.566467 293.657349 305.183533 317.16214 329.610901 342.548279 355.993469 369.96637 384.487701 399.579041 415.262695 431.561951 448.5;
cet70.scl, "27th root of 3" 2 28 261.62558 272.490479 283.80661 295.592651 307.868195 320.653473 333.97 347.83902 362.284241 377.329346 393. 409.32 426.31839 444.022766 462.462341 481.667725 501.670654 522.504272 544.203125 566.80304 590.341553 614.857544 640.391602 666.986145 694.685059 723.534302 753.581604 784.876709;
cet78.scl, "9th root of 3/2" 2 10 261.62558 273.681763 286.293549 299.486511 313.287415 327.724304 342.826477 358.624573 375.150696 392.438354;
cet79.scl, "24th root of 3 James Hefferman (1906)." 2 25 261.62558 273.88 286.708313 300.137543 314.195801 328.912537 344.318604 360.446289 377.329346 395.003235 413.504944 432.87326 453.148773 474.373993 496.593353 519.853516 544.203125 569.693237 596.377319 624.311279 653.55365 684.165649 716.211548 749.758484 784.876709;
cet80.scl, "35th root of 5" 2 36 261.62558 273.937042 286.827881 300.325287 314.457886 329.255524 344.749512 360.972595 377.959106 395.744965 414.367798 433.866943 454.283691 475.661194 498.044403 521.481201 546.020813 571.715271 598.618835 626.788391 656.283569 687.166748 719.503174 753.361267 788.812622 825.932312 864.798706 905.49408 948.104492 992.72 1039.435059 1088.348389 1139.563477 1193.188599 1249.337158 1308.127808;
cet84.scl, "33rd root of 5" 2 34 261.62558 274.701538 288.43103 302.846741 317.982941 333.875641 350.562653 368.083679 386.480377 405.79657 426.078156 447.373413 469.733032 493.210144 517.860657 543.743164 570.919312 599.453674 629.414185 660.872131 693.902344 728.583374 764.997803 803.232178 843.377502 885.529236 929.78772 976.258301 1025.051392 1076.283203 1130.075439 1186.556396 1245.860107 1308.127808;
cet87.scl, "Least-squares stretched ET to telephone dial tones. 1/1=697 Hz" 2 18 261.62558 275.058197 289.180481 304.027863 319.637543 336.048676 353.302399 371.441986 390.512909 410.562988 431.642487 453.80426 477.103912 501.596924 527.350403 554.426086 582.892029 612.819336;
cet88.scl, "88 cents steps by Gary Morrison" 2 15 261.62558 275.268005 289.621796 304.724091 320.613861 337.332245 354.922363 373.429749 392.902191 413.39 434.946167 457.626373 481.489227 506.596405 533.012817;
cet88b.scl, "87.9745 cents steps. Least squares of 7/6 11/9 10/7 3/2 7/4." 2 15 261.62558 275.263855 289.613281 304.710541 320.595001 337.307281 354.891022 373.391144 392.855896 413.335083 434.882111 457.552094 481.404144 506.5 532.902893;
cet88bis.scl, "Bistep approximation of 2212121 mode in 7/4 to 11/9 9/7 10/7 3/2" 2 8 261.62558 289.532715 320.416687 337.263062 373.238342 392.861908 434.767822 457.626373;
cet88bm.scl, "87.7541 cents steps. Minimal highest deviation for 7/6 11/9 10/7 3/2 7/4." 2 15 261.62558 275.228912 289.539551 304.594269 320.431793 337.092773 354.62 373.058685 392.456024 412.861938 434.328857 456.911987 480.669312 505.661926 531.954041;
cet88c.scl, "38th root of 7.0000 McLaren ‘Microtonal Music’ volume 3 track 7" 2 39 261.62558 275.371887 289.840485 305.069244 321.098206 337.96933 355.726898 374.41748 394.090118 414.796387 436.590607 459.53 483.674561 509.087769 535.836243 563.990112 593.623291 624.813416 657.642334 692.196167 728.565552 766.845825 807.13739 849.545959 894.1828 941.164917 990.615601 1042.664429 1097.44812 1155.110229 1215.802002 1279.682617 1346.92 1417.689453 1492.177612 1570.57959 1653.1 1739.95813 1831.378906;
cet88_appr.scl, "88 cents scale approximated" 2 23 261.62558 275.622009 290.695068 305.229828 320.491302 336.375732 354.371124 373.750793 392.438354 413.432983 436.042603 457.844727 482.338501 504.563599 531.556702 560.626221 588.657532 620.149475 654.063904 686.76709 723.507751 763.074585 801.228271;
cet89.scl, "31st root of 5.0000 McLaren ‘Microtonal Music’ volume 2 track 22" 2 32 261.62558 275.567261 290.251862 305.718994 322.010376 339.169891 357.243805 376.280853 396.332367 417.452393 439.697876 463.128815 487.808319 513.802979 541.182861 570.02179 600.397522 632.391907 666.091248 701.586365 738.973022 778.351929 819.829224 863.516846 909.532532 958. 1009.050903 1062.821899 1119.458252 1179.112793 1241.946167 1308.127808;
cet90.scl, "Scale with limma steps" 2 18 261.62558 275.622009 290.367218 305.901245 322.266327 339.506927 357.669861 376.804443 396.962708 418.2 440.572205 464.141907 488.972565 515.131592 542.69 571.722839 602.308838 634.531128;
cet93.scl, "Tuning used in John Chowning’s STRIA 9th root of Phi" 2 10 261.62558 275.994873 291.153412 307.144501 324.013855 341.809723 360.583008 380.38739 401.27951 423.319061;
cet98.scl, "8th root of 11/7 X.J. Scott" 2 9 261.62558 276.832458 292.923248 309.94931 327.964996 347.027863 367.19873 388.542023 411.125885;
cet99.scl, "Scale with 18/17 steps" 1 12 261.62558 277.015289 293.310333 310.563873 328.832336 348.175415 368.656311 390.34198 413.303345 437.615143 463.35733 494.18161;
chahargah.scl, "Chahargah in C" 1 12 261.62558 277.182617 283.661469 311.126984 326.972687 348.825012 367.863403 392.448547 415.304688 425.011993 466.163757 493.883301;
Chahargah2.scl, "Dastgah Chahargah in C Mohammad Reza Gharib" 1 7 261.62558 283.661469 327.729034 348.825012 392.448547 425.011993 493.883301;
chalmers.scl, "Chalmers’ 19-tone with more hexanies than Perrett’s Tierce-Tone" 1 19 261.62558 274.706848 279.067261 294.328766 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 412.060272 418.6 436.042603 457.844727 470.926025 488.367737 515.075317;
CHALMERS_17.scl, "7-limit figurative scale Chalmers ’96 Adnexed S&H decads" 1 17 261.62558 269.1 286.152954 294.328766 313.950684 327.031952 336.375732 343.383545 376.740814 384.429413 392.438354 400.614136 408.79 448.5 457.844727 470.926025 490.547943;
chalmers_19.scl, "7-limit figurative scale. Reversed S&H decads" 1 19 261.62558 269.1 290.695068 294.328766 305.229828 313.950684 336.375732 348.834076 356.101471 363.368835 376.740814 384.429413 392.438354 406.973114 436.042603 448.5 465.112122 470.926025 508.71637;
chalmers_csurd.scl, "Combined Surd Scale combination of Surd and Inverted Surd JHC 26-6-97" 1 15 261.62558 273.351074 287.046661 303.38 315.80838 323.386353 348.834076 357.388031 383.046661 392.438354 423.316895 433.477661 451.235718 476.91156 500.80603;
chalmers_isurd.scl, "Inverted Surd Scale of the form 4/(SQRT(N)+1 JHC 26-6-97" 1 8 261.62558 273.351074 287.046661 303.38 323.386353 348.834076 383.046661 433.477661;
chalmers_ji1.scl, "Based loosely on Wronski’s and similar JI scales May 2 1997.0000" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 466.020538 490.547943;
chalmers_ji2.scl, "Based loosely on Wronski’s and similar JI scales May 2 1997.0000" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 416.965759 441.493134 466.020538 490.547943;
chalmers_ji3.scl, "15 16 17 18 19 20 21 on 1/1 15-20 on 3/2 May 2 1997.0000 See other scales" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 366.275787 392.438354 418.6 444.763458 470.926025 497.088562;
chalmers_ji4.scl, "15 16 17 18 19 20 on 1/1 same on 4/3 + 16/15 on 16/9" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 372.089691 395.345306 418.6 441.856506 465.112122 496.119598;
chalmers_surd.scl, "Surd Scale Surds of the form (SQRT(N)+1)/2 JHC 26-6-97" 1 8 261.62558 315.80838 357.388031 392.438354 423.316895 451.235718 476.91156 500.80603;
CHALMERS_SURD2.scl, "Surd Scale Surds of the form (SQRT(N)+1)/4" 1 40 261.62558 272.239563 282.334839 291.980774 301.232483 310.134705 318.724243 327.031952 335.083862 342.902222 350.506256 357.912659 365.136139 372.189575 379.084412 385.830963 392.438354 398.914856 405.267975 411.504486 417.630585 423.651947 429.573761 435.4 441.137512 446.787903 452.355804 457.844727 463.257935 468.59848 473.869171 479.072723 484.211639 489.288239 494.304779 499.263306 504.165802 509.01413 513.81 518.555176;
chalung.scl, "Tuning of chalung from Tasikmalaya. "slendroid". 1/1=185 Hz" 2 12 261.62558 328.092529 362.033173 390.317139 479.411163 527.493591 647.7 728.309204 823.06 961.650513 1054.987183 1301.056641;
chaumont.scl, "Lambert Chaumont organ temperament (1695) 1st interpretation" 1 12 261.62558 273.374298 292.506287 309.497498 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 465.401093 489.026825;
chaumont2.scl, "Lambert Chaumont organ temperament (1695) 2nd interpretation" 1 12 261.62558 274.565491 292.869873 309.305328 327.84549 349.701843 366.998016 391.464539 410.826294 438.214691 465.112122 490.547943;
chimes.scl, "Heavenly Chimes" 2 4 261.62558 288.690277 130.81279 144.345139;
chimes_peck.scl, "Kris Peck 9-tone windchime tuning. TL 7-3-2001" 2 9 261.62558 327.031952 392.438354 457.844727 588.657532 719.470276 850.283081 981.095886 1046.502319;
chin_12.scl, "Chinese scale 4th cent." 1 12 261.62558 277.054565 293.58 310.534485 329.246979 347.79895 368.97 391.769073 413.127441 439.01 462.115509 491.436005;
chin_5.scl, "Chinese pentatonic from Zhou period" 1 5 261.62558 294.328766 348.834076 392.438354 441.493134;
chin_60.scl, "Chinese scale of fifths (the 60 lu")" 1 60 261.62558 262.172455 265.195007 268.81311 272.480591 276.19812 279.382385 283.194061 287.05777 290.974152 294.328766 294.944 298.34436 302.414764 306.54068 310.7229 314.305176 318.593323 322.94 327.345947 331.119843 331.812012 335.637421 340.216614 344.858276 349.563263 353.593323 358.41748 363.307465 368.26416 372.509827 373.288513 377.592102 382.743683 387.965546 392.438354 393.258667 397.79248 403.219666 408.720917 414.297211 419.073578 424.791107 430.586639 436.461243 441.493134 442.416016 447.516541 453.622131 459.811035 466.084351 471.457764 477.89 484.41 491.01889 496.679779 497.717987 503.456116 510.32489 517.287415;
chin_7.scl, "Chinese heptatonic scale and tritriadic of 64:81:96 triad" 1 7 261.62558 294.328766 331.119843 348.834076 392.438354 441.493134 496.679779;
chin_bianzhong.scl, "Pitches of Bianzhong bells (Xinyang). 1/1=b Liang Mingyue 1975.0000" 2 13 261.62558 277.823792 312.568024 375.159363 420.13031 469.406189 506.596405 563.729675 627.668823 764.758118 849.533142 949.172424 1225.957275;
chin_bianzhong2a.scl, "A-tones (GU) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=d#=619 Hz" 2 13 261.62558 284.81073 312.568024 372.567932 413.39 447.95 491.606354 562.753662 652.059448 695.638062 863.883545 960.756042 1173.302856;
CHIN_BIANZHONG2B.scl, "B-tones (SUI) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=b+=506.6 Hz" 2 13 261.62558 279.592316 312.747375 375.375366 418.430481 468.860291 505.129456 562.086975 624.420593 762.98 849.534241 936.088623 1215.376221;
chin_bianzhong3.scl, "A and B-tones of 13 Xinyang bells (Ma Cheng-Yuan) abs. pitches wrt middle-C" 2 27 261.62558 508.355194 542.329712 608.041687 619.027527 673.885498 729.801208 739.561523 812.576416 881.526245 911.033142 978.114624 982.077515 1059.885742 1092.203857 1163.180908 1213.276855 1331.52124 1483.401123 1542.82605 1645.936646 1649.743896 1818.911621 2044.019165 2273.227539 2362.92749 2776.130615;
CHIN_BRONZE.scl, "Scale found on ancient Chinese bronze instrument 3rd c.BC & "Scholar’s Lute"" 1 7 261.62558 299. 313.950684 327.031952 348.834076 392.438354 436.042603;
chin_chime.scl, "Pitches of 12 stone chimes F. Kuttner 1951 ROMA Toronto. %1=b4" 2 13 261.62558 248.659271 341.744995 392.56192 548.789734 648.865845 714.369324 785.577454 889.71106 886.888977 992.628235 1044.087158 1326.148315;
chin_ching.scl, "Scale of Ching Fang c.45 BC. Pyth.steps 0 1 2 3 4 5 47 48 49 50 51 52 53" 2 13 261.62558 276.19812 294.328766 310.7229 331.119843 349.563263 368.26416 392.438354 414.297211 441.493134 466.084351 496.679779 524.34491;
chin_di.scl, "Chinese di scale" 2 7 261.62558 298.70636 316.56 360.50766 409.94873 433.753662 527.371216;
chin_huang.scl, "Huang Zhong qin tuning" 2 7 261.62558 331.119843 392.438354 441.493134 523.25116 588.657532 662.239685;
chin_liu-an.scl, "Scale of Liu An in: "Huai Nan Tzu" c.122 BC 1st known corr. to Pyth. scale" 2 12 261.62558 278.837769 294.328766 311.642212 331.119843 353.194519 371.783691 392.438354 415.522949 441.493134 470.926025 492.829559;
chin_lu.scl, "Chinese Lu" scale by Huai Nan zi Han era. Père Amiot 1780 Kurt Reinhard" 1 12 261.62558 277.015289 294.328766 313.950684 328.55304 348.834076 371.783691 392.438354 415.522949 441.493134 470.926025 495.711609;
chin_lu2.scl, "Chinese Lu" (Lushi chunqiu by Lu Buwei). Mingyue: Music of the billion p.67" 1 12 261.62558 279.382385 294.328766 314.305176 331.119843 353.593323 372.509827 392.438354 419.073578 441.493134 471.457764 496.679779;
chin_lu3.scl, "Chinese Lu" scale by Ho Ch’êng-T’ien reported in Sung Shu (500 AD)" 1 12 261.62558 277.342773 293.664764 310.588318 329.246979 347.819031 369.140533 391.769073 413.151306 439.23819 462.142212 491.606354;
chin_lu3a.scl, "Chinese Lu" scale by Ho Ch’êng-T’ien calc. basis is "big number" 177147" 1 12 261.62558 277.060333 293.588287 310.537811 329.251434 347.79483 368.745789 391.78067 413.13681 439. 462.107208 491.179077;
chin_lu4.scl, "Chinese Lu" "749-Temperament"" 1 12 261.62558 276.785217 293.544403 310.553558 329.357422 348.441711 369.539673 391.9151 414.624268 439.729523 465.209259 493.377411;
chin_lu5.scl, "Chinese Lu" scale by Ch’ien Lo-Chih c.450 AD Pyth.steps 0 154 255 103 204 etc" 2 13 261.62558 277.354034 293.414703 311.372406 329.402985 349.206116 369.805359 392.037384 415.163208 440.12207 466.084351 494.104492 522.716431;
chin_lusheng.scl, "Observed tuning of a small Lusheng 1/1=d OdC ’97" 2 6 261.62558 316.382599 348.825012 389.28772 466.97226 520.538025;
chin_pan.scl, "Pan Huai-su pure system in: Sin-Yan Shen 1991" 1 23 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 326.663116 331.119843 344.138916 348.834076 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 458.851868 465.112122 489.994659 496.679779 516.208374;
chin_pipa.scl, "Observed tuning from Chinese balloon guitar (p’i-p’a) Ellis" 2 6 261.62558 284.481903 320.428741 380.176727 433.441376 521.742126;
chin_sheng.scl, "Observed tuning from Chinese sheng or mouth organ" 2 8 261.62558 295.365936 318.031616 348.825012 395.406586 442.037933 477.059814 522.948975;
chin_sientsu.scl, "Observed tuning from Chinese tamboura (sien-tsu) Ellis" 1 5 261.62558 291.804779 326.972687 392.448547 438.224518;
chin_sona.scl, "Observed tuning from Chinese oboe (so-na) Ellis" 2 8 261.62558 284.481903 310.588318 337.332245 377.987061 418.434998 469.948792 528.109436;
chin_titsu.scl, "Observed tuning from Chinese flute (ti-tsu) Ellis" 2 8 261.62558 289.956573 318.215363 338.894653 383.485016 436.960693 494.739868 522.043579;
chin_wang-po.scl, "Scale of Wang Po 958 AD. H. Pischner: Musik in China Berlin 1955 p.20" 2 8 261.62558 294.328766 330.242645 371.979462 392.438354 440.941956 495.711609 517.501099;
chin_yangqin.scl, "Observed tuning from Chinese dulcimer (yang-chin) Ellis" 2 8 261.62558 288.453125 306.489319 347.41745 383.26358 434.444 465.087952 522.646973;
chin_yunlo.scl, "Observed tuning from Chinese gong-chime (yu"n-lo) Ellis" 2 8 261.62558 288.453125 323.403839 367.014435 386.152374 409.350555 483.160828 525.674683;
choquel.scl, Choquel/Barbour/Marpurg? 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 475.682831 490.547943;
chordal.scl, "Chordal Notes S&H" 2 41 261.62558 392.438354 327.031952 457.844727 588.657532 719.470276 850.283081 981.095886 981.095886 490.547943 555.954346 621.360718 310.680359 523.25116 348.834076 418.6 299. 465.112122 380.546265 322. 279.067261 610.459656 915.689453 872.085205 697.668152 654.063904 627.901367 448.5 319.764587 377.903595 444.763458 889.526917 336.375732 294.328766 465.112122 411.125885 305.229828 366.275787 373.750793 313.950684 470.926025;
CHROM15.scl, "Tonos-15 Chromatic" 1 7 261.62558 280.31311 301.875641 356.762146 392.438354 413.092987 436.042603;
chrom15_inv.scl, "Inverted Chromatic Tonos-15 Harmonia" 1 7 261.62558 313.950684 331.392395 348.834076 383.717499 453.484314 488.367737;
CHROM15_INV2.scl, "A harmonic form of the Chromatic Tonos-15 inverted" 1 7 261.62558 279.067261 296.508972 348.834076 383.717499 401.15921 418.6;
chrom17.scl, "Tonos-17 Chromatic" 1 7 261.62558 277.977173 296.508972 370.63623 404.330414 423.584259 444.763458;
chrom17_con.scl, "Conjunct Tonos-17 Chromatic" 1 7 261.62558 277.977173 296.508972 370.63623 386.750824 404.330414 494.18161;
chrom19.scl, "Tonos-19 Chromatic" 1 7 261.62558 276.160309 292.405029 355.063263 382.375824 397.670868 414.240479;
chrom19_con.scl, "Conjunct Tonos-19 Chromatic" 1 7 261.62558 276.160309 292.405029 355.063263 368.213745 382.375824 451.898712;
chrom21.scl, "Tonos-21 Chromatic" 1 7 261.62558 274.706848 289.1651 343.383545 392.438354 406.973114 422.625916;
chrom21_inv.scl, "Inverted Chromatic Tonos-21 Harmonia" 1 7 261.62558 323.917358 336.375732 348.834076 398.667542 473.417694 498.334412;
CHROM21_INV2.scl, "Inverted harmonic form of the Chromatic Tonos-21" 1 7 261.62558 279.067261 299. 348.834076 398.667542 423.584259 448.5;
chrom23.scl, "Tonos-23 Chromatic" 1 7 261.62558 273.517639 286.542297 334.3 376.086761 401.15921 429.813416;
chrom23_con.scl, "Conjunct Tonos-23 Chromatic" 1 7 261.62558 273.517639 286.542297 334.3 353.963989 376.086761 462.876007;
chrom25.scl, "Tonos-25 Chromatic" 1 7 261.62558 278.325073 297.301788 363.368835 408.79 436.042603 467.188507;
chrom25_con.scl, "Conjunct Tonos-25 Chromatic" 1 7 261.62558 278.325073 297.301788 363.368835 384.743469 408.79 503.126099;
chrom27.scl, "Tonos-27 Chromatic" 1 7 261.62558 277.015289 294.328766 353.194519 392.438354 415.522949 441.493134;
chrom27_inv.scl, "Inverted Chromatic Tonos-27 Harmonia" 1 7 261.62558 310.074738 329.454407 348.834076 387.593445 465.112122 494.18161;
chrom27_inv2.scl, "Inverted harmonic form of the Chromatic Tonos-27" 1 7 261.62558 271.315399 281.005249 348.834076 387.593445 406.973114 436.042603;
chrom29.scl, "Tonos-29 Chromatic" 1 7 261.62558 270.96933 281.005249 344.87 379.357056 399.323242 421.507843;
chrom29_con.scl, "Conjunct Tonos-29 Chromatic" 1 7 261.62558 270.96933 281.005249 344.87 361.29245 379.357056 474.19635;
chrom31.scl, "Tonos-31 Chromatic. Tone 24 alternates with 23 as MESE or A" 1 8 261.62558 279.668701 300.384918 337.933014 352.625763 368.654205 386.209167 405.519623;
chrom31_con.scl, "Conjunct Tonos-31 Chromatic" 1 8 261.62558 279.668701 300.384918 337.933014 352.625763 368.654205 386.209167 450.577362;
chrom33.scl, "Tonos-33 Chromatic. A variant is 66 63 60 48" 1 7 261.62558 278.504639 297.711853 359.735138 392.438354 411.125885 431.68219;
chrom33_con.scl, "Conjunct Tonos-33 Chromatic" 1 7 261.62558 278.504639 297.711853 359.735138 375.375824 392.438354 479.646881;
chrom_new.scl, "New Chromatic genus 4.5000 + 9 + 16.5000" 1 7 261.62558 273.20871 297.936218 349.228241 391.995422 409.350555 446.4;
chrom_new2.scl, "New Chromatic genus 14/3 + 28/3 + 16 parts" 1 7 261.62558 273.647461 299.373749 349.228241 391.995422 410.007935 448.553802;
chrom_soft.scl, "100/81 Chromatic. This genus is a good approximation to the soft chromatic" 1 7 261.62558 271.68808 282.555603 348.834076 392.438354 407.532135 423.833405;
CHROM_SOFT2.scl, "1:2 Soft Chromatic" 1 7 261.62558 268.428925 282.571198 349.228241 391.995422 402.188965 423.378418;
chrom_soft3.scl, "Soft chromatic genus is from K. Schlesinger’s modified Mixolydian Harmonia" 1 7 261.62558 271.315399 281.75061 348.834076 392.438354 406.973114 422.625916;
cifariello.scl, "F. Cifariello Ciardi ICMC 86 Proc. 15-tone 5-limit tuning" 1 15 261.62558 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 465.112122 470.926025 490.547943;
ckring1.scl, "Double-tie circular mirroring with common pivot of 4:5:6:7 = square 1 3 5 7" 1 13 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727;
ckring2.scl, "Double-tie circular mirroring with common pivot of 3:5:7:9" 1 13 261.62558 290.695068 305.229828 313.950684 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 436.042603 448.5 470.926025;
clampitt-phi.scl, "David Clampitt phi+1 mod 3phi+2 from "Pairwise Well-Formed Scales" 1997" 1 7 261.62558 289.467529 320.27243 340.928589 377.2099 444.269623 491.548431;
cluster.scl, "13-tone 5-limit Tritriadic Cluster" 1 13 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 376.740814 392.438354 408.79 418.6 436.042603 470.926025 490.547943;
cluster6a.scl, "Six-Tone Triadic Cluster 4:5:6" 1 6 261.62558 327.031952 348.834076 392.438354 436.042603 490.547943;
cluster6b.scl, "Six-Tone Triadic Cluster 4:6:5" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 490.547943;
cluster6c.scl, "Six-Tone Triadic Cluster 3:4:5" 1 6 261.62558 290.695068 313.950684 348.834076 418.6 436.042603;
cluster6d.scl, "Six-Tone Triadic Cluster 3:5:4" 1 6 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603;
CLUSTER6e.scl, "Six-Tone Triadic Cluster 5:6:8" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 502.321075;
CLUSTER6f.scl, "Six-Tone Triadic Cluster 5:8:6" 1 6 261.62558 313.950684 348.834076 418.6 436.042603 502.321075;
CLUSTER6g.scl, "Six-Tone Triadic Cluster 4:5:7" 1 6 261.62558 286.152954 299. 327.031952 373.750793 457.844727;
CLUSTER6h.scl, "Six-Tone Triadic Cluster 4:7:5" 1 6 261.62558 286.152954 327.031952 366.275787 418.6 457.844727;
CLUSTER6i.scl, "Six-Tone Triadic Cluster 5:6:7" 1 6 261.62558 313.950684 366.275787 373.750793 439.530945 448.5;
CLUSTER6j.scl, "Six-Tone Triadic Cluster 5:7:6" 1 6 261.62558 305.229828 313.950684 366.275787 436.042603 439.530945;
cluster8a.scl, "Eight-Tone Triadic Cluster 4:5:6" 1 8 261.62558 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 490.547943;
cluster8b.scl, "Eight-Tone Triadic Cluster 4:6:5" 1 8 261.62558 306.592468 313.950684 327.031952 392.438354 408.79 418.6 490.547943;
cluster8c.scl, "Eight-Tone Triadic Cluster 3:4:5" 1 8 261.62558 290.695068 313.950684 348.834076 363.368835 418.6 436.042603 484.491791;
cluster8d.scl, "Eight-Tone Triadic Cluster 3:5:4" 1 8 261.62558 290.695068 327.031952 348.834076 387.593445 392.438354 436.042603 465.112122;
cluster8e.scl, "Eight-Tone Triadic Cluster 5:6:8" 1 8 261.62558 313.950684 327.031952 334.880737 392.438354 401.856873 418.6 502.321075;
CLUSTER8f.scl, "Eight-Tone Triadic Cluster 5:8:6" 1 8 261.62558 301.392639 313.950684 348.834076 376.740814 418.6 436.042603 502.321075;
CLUSTER8g.scl, "Eight-Tone Triadic Cluster 4:5:7" 1 8 261.62558 286.152954 299. 327.031952 373.750793 400.614136 457.844727 500.76767;
CLUSTER8h.scl, "Eight-Tone Triadic Cluster 4:7:5" 1 8 261.62558 286.152954 327.031952 357.691193 366.275787 408.79 418.6 457.844727;
CLUSTER8i.scl, "Eight-Tone Triadic Cluster 5:6:7" 1 8 261.62558 307.671661 313.950684 366.275787 373.750793 439.530945 448.5 512.786133;
CLUSTER8j.scl, "Eight-Tone Triadic Cluster 5:7:6" 1 8 261.62558 263.718567 305.229828 313.950684 366.275787 376.740814 436.042603 439.530945;
cohenf_11.scl, "Flynn Cohen 7-limit scale of "Rameau’s nephew" 1996" 1 11 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727;
coleman.scl, "Jim Coleman’s ModX piano temperament. TL 16 Mar 1999" 1 12 261.62558 276.702728 293.156342 310.588318 328.487122 349.43 368.927368 391.769073 414.585663 438.984558 465.894562 491.890381;
collengettes.scl, "R.P. Collengettes from p.23 of d’Erlanger vol 5.0000 24 tone Arabic system" 1 24 261.62558 269.1 275.622009 285.409698 294.328766 302.738159 310.074738 321.085907 331.119843 340.580414 348.834076 358.8 367.496002 380.546265 392.438354 403.650879 413.432983 428.114563 441.493134 454.107239 465.112122 478.401031 496.679779 507.39505;
colonna1.scl, "Colonna 1" 1 12 261.62558 272.526642 290.695068 308.863525 327.031952 348.834076 363.368835 392.438354 399.705719 436.042603 463.295258 490.547943;
colonna2.scl, "Colonna 2" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 470.926025 479.646881;
concertina.scl, "English Concertina see Helmholtz p 470.0000 from Ellis" 1 14 261.62558 272.526642 290.695068 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 441.493134 465.112122 490.547943;
cons11.scl, "Set of intervals with num + den <= 11 not exceeding 2/1" 1 7 261.62558 313.950684 327.031952 348.834076 392.438354 436.042603 457.844727;
cons12.scl, "Set of intervals with num + den <= 12 not exceeding 2/1" 1 8 261.62558 313.950684 327.031952 348.834076 366.275787 392.438354 436.042603 457.844727;
cons13.scl, "Set of intervals with num + den <= 13 not exceeding 2/1" 1 10 261.62558 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727;
cons14.scl, "Set of intervals with num + den <= 14 not exceeding 2/1" 1 11 261.62558 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025;
cons15.scl, "Set of intervals with num + den <= 15 not exceeding 2/1" 1 12 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025;
cons16.scl, "Set of intervals with num + den <= 16 not exceeding 2/1" 1 13 261.62558 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025;
cons17.scl, "Set of intervals with num + den <= 17 not exceeding 2/1" 1 16 261.62558 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 457.844727 470.926025 479.646881;
cons18.scl, "Set of intervals with num + den <= 18 not exceeding 2/1" 1 17 261.62558 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 411.125885 418.6 436.042603 457.844727 470.926025 479.646881;
cons19.scl, "Set of intervals with num + den <= 19 not exceeding 2/1" 1 20 261.62558 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 436.042603 448.5 457.844727 470.926025 479.646881;
cons20.scl, "Set of intervals with num + den <= 20 not exceeding 2/1" 1 22 261.62558 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 436.042603 448.5 457.844727 470.926025 479.646881 485.876038;
cons21.scl, "Set of intervals with num + den <= 21 not exceeding 2/1" 1 24 261.62558 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 425.141541 436.042603 448.5 457.844727 470.926025 479.646881 485.876038;
cons8.scl, "Set of intervals with num + den <= 8 not exceeding 2/1" 1 4 261.62558 348.834076 392.438354 436.042603;
cons9.scl, "Set of intervals with num + den <= 9 not exceeding 2/1" 1 5 261.62558 327.031952 348.834076 392.438354 436.042603;
cons_5.scl, "Set of consonant 5-limit intervals within the octave" 1 8 261.62558 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025;
cons_7.scl, "Set of consonant 7-limit intervals of tetrad 4:5:6:7 and inverse" 2 11 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727;
cons_7a.scl, "Set of consonant 7-limit intervals harmonic entropy minima" 2 12 261.62558 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 457.844727;
cont_frac1.scl, "Continued fraction scale 1 see McLaren in Xenharmonikon 15 pp.33-38" 2 15 261.62558 264.296722 267.018585 284.4 288.643127 304.516815 328.363251 342.472382 368.247589 390.362457 408.236969 419.803314 448.303314 488.426056 498.2;
cont_frac2.scl, "Continued fraction scale 2 see McLaren in Xenharmonikon 15 pp.33-38" 2 16 261.62558 268.670776 283.001587 287.788239 303.560394 306.30899 329.632874 333.856018 352.97052 380.09613 393.101044 426.457947 432.83316 472.910126 483.946533 519.430298;
cordier.scl, "Serge Cordier piano tuning 1975 (Piano bien tempéré et justesse orchestrale)" 2 13 261.62558 277.227356 293.759521 311.277588 329.840332 349.51 370.352722 392.438354 415.841034 440.639313 466.916382 494.760498 524.265076;
corner11.scl, "Quadratic Corner 11-limit. Chalmers ’96" 1 15 261.62558 269.801361 286.152954 294.328766 314.76825 327.031952 343.383545 359.735138 392.438354 400.614136 408.79 449.668945 457.844727 490.547943 494.635834;
corner13.scl, "Quadratic Corner 13-limit. Chalmers ’96" 1 21 261.62558 265.71347 269.801361 286.152954 292.284821 294.328766 314.76825 318.856171 327.031952 343.383545 345.42749 359.735138 371.99884 392.438354 400.614136 408.79 425.141541 449.668945 457.844727 490.547943 494.635834;
corner17.scl, "Quadratic Corner 17-limit." 1 28 261.62558 265.71347 269.801361 277.977173 286.152954 292.284821 294.328766 295.350739 314.76825 318.856171 327.031952 343.383545 345.42749 347.471466 359.735138 371.99884 382.218597 392.438354 400.614136 408.79 416.965759 425.141541 449.668945 451.712891 457.844727 486.46 490.547943 494.635834;
CORNER17a.scl, "Quadratic Corner 17 odd limit." 1 42 261.62558 265.71347 269.801361 275.933228 277.977173 286.152954 292.284821 294.328766 295.350739 306.592468 312.724304 314.76825 318.856171 327.031952 331.119843 337.251709 343.383545 345.42749 347.471466 359.735138 367.91095 371.99884 382.218597 392.438354 398.57019 400.614136 404.702057 408.79 416.965759 425.141541 429.229431 441.493134 449.668945 451.712891 457.844727 459.888702 478.284241 486.46 490.547943 494.635834 515.075317 521.207153;
corner7.scl, "Quadratic corner 7-limit. Chalmers ’96" 1 10 261.62558 286.152954 294.328766 327.031952 343.383545 392.438354 400.614136 408.79 457.844727 490.547943;
corner9.scl, "First 9 harmonics of 5th through 9th harmonics" 1 14 261.62558 286.152954 294.328766 327.031952 331.119843 343.383545 367.91095 392.438354 400.614136 408.79 441.493134 457.844727 490.547943 515.075317;
corners11.scl, "Quadratic Corners 11-limit. Chalmers ’96" 1 29 261.62558 269.801361 276.760925 279.067261 286.152954 294.328766 299. 304.437012 314.76825 327.031952 334.880737 341.715027 343.383545 348.834076 359.735138 380.546265 392.438354 398.667542 400.614136 408.79 418.6 434.91 449.668945 457.844727 465.112122 478.401031 490.547943 494.635834 507.39505;
corners13.scl, "Quadratic Corners 13-limit. Chalmers ’96" 1 41 261.62558 265.71347 269.801361 276.760925 279.067261 286.152954 292.284821 294.328766 299. 304.437012 314.76825 318.856171 322. 327.031952 334.880737 341.715027 343.383545 345.42749 348.834076 359.735138 368. 371.99884 380.546265 392.438354 396.308563 398.667542 400.614136 408.79 418.6 425.141541 429.334259 434.91 449.668945 457.844727 465.112122 468.364655 478.401031 490.547943 494.635834 507.39505 515.201111;
corners7.scl, "Quadratic Corners 7-limit. Chalmers ’96" 1 19 261.62558 279.067261 286.152954 294.328766 299. 327.031952 334.880737 341.715027 343.383545 348.834076 392.438354 398.667542 400.614136 408.79 418.6 457.844727 465.112122 478.401031 490.547943;
corrette.scl, "Corrette temperament" 1 12 261.62558 273.374298 292.506287 309.113251 327.031952 349.919128 365.632843 391.221466 411.337036 437.398895 465.112122 489.026825;
coul1.scl, "Well-temperament Op de Coul 1998.0000 Fifths 5/14 4/14 and 5/14 Pyth comma flat" 1 12 261.62558 276.959137 294.328766 311.579041 329.52121 348.834076 370.711365 392.438354 415.438721 439.361633 467.368561 494.28183;
coul_12.scl, "Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 340.658295 363.368835 392.438354 408.79 436.042603 470.926025 490.547943;
coul_12a.scl, "Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 376.740814 392.438354 408.79 436.042603 470.926025 490.547943;
coul_13.scl, "Symmetrical 13-tone 5-limit just system" 1 13 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 465.112122 490.547943;
coul_20.scl, "Tuning for a 3-row symmetrical keyboard Op de Coul 1989" 1 20 261.62558 277.182617 282.236786 293.664764 305.555481 311.126984 329.627563 335.638 349.228241 363.368835 369.994415 391.995422 399.143097 415.304688 432.120697 440. 466.163757 474.663788 493.883301 513.881042;
coul_27.scl, "Symmetrical 27-tone 5-limit just system" 1 27 261.62558 275.622009 275.933228 279.067261 293.996796 294.328766 310.074738 310.424866 327.031952 330.746399 331.119843 348.834076 367.496002 367.91095 372.089691 372.509827 392.438354 413.432983 413.9 418.6 440.995178 441.493134 465.112122 465.637299 490.547943 496.119598 496.679779;
COUL_31.scl, "Op de Coul’s 31-tone 5-limit just system" 1 31 261.62558 266.139282 272.526642 279.067261 287.43042 294.328766 299.406708 306.592468 313.950684 319.367157 327.031952 332.674103 340.658295 348.834076 359.288025 367.91095 376.740814 383.24057 392.438354 399.208923 408.79 418.6 425.822845 436.042603 449.11 459.888702 470.926025 479.05072 490.547943 499.011169 510.987427;
cross13.scl, "13-limit harmonic/subharmonic cross" 1 19 261.62558 281.75061 285.409698 290.695068 299. 305.229828 322. 332.977997 336.375732 366.275787 373.750793 406.973114 411.125885 425.141541 448.5 457.844727 470.926025 479.646881 485.876038;
cross2.scl, "Pusey’s double 5-7 cross reduced by 3/1" 2 10 261.62558 282.555603 339.144257 366.275787 436.042603 470.926025 560.626221 605.476318 726.737671 784.876709;
cross2_5.scl, "double 3-5 cross reduced by 2/1" 1 9 261.62558 279.067261 294.328766 313.950684 348.834076 392.438354 436.042603 465.112122 490.547943;
cross2_7.scl, "longer 3-5-7 cross reduced by 2/1" 1 13 261.62558 294.328766 299. 327.031952 334.880737 341.715027 348.834076 392.438354 400.614136 408.79 418.6 457.844727 465.112122;
cross3.scl, "Pusey’s triple 5-7 cross reduced by 3/1" 2 14 261.62558 282.555603 311.459015 336.375732 363.285797 403.743164 436.042603 470.926025 508.6 565.240417 610.459656 659.296448 726.737671 784.876709;
cross_7.scl, "3-5-7 cross reduced by 2/1 quasi diatonic similar to Zalzal’s Flynn Cohen" 1 7 261.62558 299. 327.031952 348.834076 392.438354 418.6 457.844727;
cross_72.scl, "double 3-5-7 cross reduced by 2/1" 1 13 261.62558 279.067261 294.328766 305.229828 313.950684 343.383545 348.834076 392.438354 398.667542 436.042603 448.5 465.112122 490.547943;
cross_7a.scl, "2-5-7 cross reduced by 3/1" 2 8 261.62558 336.375732 392.438354 436.042603 470.926025 523.25116 610.459656 784.876709;
cruciform.scl, "Cruciform Lattice" 1 12 261.62558 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 418.6 436.042603 490.547943;
DANIELOU5_53.scl, "Danielou’s Harmonic Division in 5-limit symmetrized" 1 53 261.62558 264.895874 267.904572 272.526642 275.622009 279.067261 282.555603 285.764893 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 317.875061 322.994537 327.031952 331.119843 334.880737 340.658295 344.527496 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 397.343842 401.856873 408.79 413.432983 418.6 423.833405 430.659363 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 479.05072 484.491791 490.547943 496.679779 502.321075 510.987427 516.79126;
danielou_53.scl, "Danielou’s Harmonic Division of the Octave see p. 153" 1 53 261.62558 264.895874 267.439453 272.526642 275.622009 279.067261 282.555603 287.788116 290.695068 294.328766 297.671753 301.875641 306.592468 310.074738 313.950684 318.934021 322.994537 327.031952 331.119843 334.880737 340.658295 344.527496 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 397.343842 401.856873 408.79 413.432983 418.6 423.833405 430.659363 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 479.646881 484.491791 490.547943 496.679779 502.321075 510.987427 516.79126;
dan_semantic.scl, "The Semantic Scale from Alain Danie’lou: "Se’mantique Musicale" 1967.0000" 1 35 261.62558 272.526642 275.622009 279.067261 290.695068 294.328766 297.671753 306.592468 310.074738 313.950684 322.994537 327.031952 331.119843 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 387.593445 392.438354 397.343842 408.79 413.432983 418.6 430.659363 436.042603 441.493134 459.888702 465.112122 470.926025 484.491791 490.547943 496.679779 516.79126;
darreg.scl, "This set of 19 ratios in 5-limit JI is for his megalyra family" 1 19 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 372.089691 392.438354 408.79 418.6 436.042603 441.493134 459.888702 470.926025 490.547943;
darreg_ennea.scl, "Ivor Darreg’s Mixed Enneatonic a mixture of chromatic and enharmonic" 1 9 261.62558 269.291779 277.182617 293.664764 349.228241 391.995422 403.481781 415.304688 440.;
darreg_genus.scl, "Ivor Darreg’s Mixed JI Genus (Archytas Enh Ptolemy Soft Chrom Didymos Chrom" 1 9 261.62558 271.315399 279.067261 290.695068 348.834076 392.438354 406.973114 418.6 436.042603;
DARREG_GENUS2.scl, "Darreg’s Mixed JI Genus 2 (Archytas Enharmonic and Chromatic Genera)" 1 9 261.62558 271.315399 279.067261 294.328766 348.834076 392.438354 406.973114 418.6 441.493134;
david11.scl, "11-limit system from Gary David 1967" 1 22 261.62558 269.801361 274.706848 285.409698 294.328766 305.229828 314.76825 327.031952 332.977997 343.383545 359.735138 366.275787 374.6 392.438354 406.973114 419.69101 428.114563 441.493134 457.844727 479.646881 490.547943 499.46698;
david7.scl, "Gary David’s Constant Structure 1967.0000 A mode of Fokker’s 7-limit scale" 1 12 261.62558 279.067261 294.328766 313.950684 336.375732 348.834076 366.275787 392.438354 418.6 448.5 470.926025 488.367737;
degung1.scl, "Gamelan Degung Kabupaten Sukabumi. 1/1=363 Hz" 1 5 261.62558 286.130371 319.28418 390.636536 420.907349;
degung2.scl, "Gamelan Degung Kabupaten Bandung. 1/1=252 Hz" 1 5 261.62558 276.679382 325.993774 390.36203 415.278778;
degung3.scl, "Gamelan Degung Kabupaten Sumedang. 1/1=388.5 Hz" 1 5 261.62558 282.838501 320.550171 393.280243 426.951385;
degung4.scl, "Gamelan Degung Kasepuhan Cheribon. 1/1=250 Hz" 1 5 261.62558 284.64856 319.183105 379.880371 415.461365;
degung5.scl, "Gamelan Degung Kanoman Cheribon. 1/1=428 Hz" 1 5 261.62558 284.242737 317.862823 388.77066 430.337494;
degung6.scl, "Gamelan Degung Kacherbonan Cheribon. 1/1=426 Hz" 1 5 261.62558 273.294281 298.474152 379.54129 409.020142;
dekany.scl, "2)5 Dekany 1.3.5.7.11 (1.3 tonic)" 1 10 261.62558 299.779297 305.229828 327.031952 359.735138 381.537292 419.69101 436.042603 457.844727 479.646881;
dekany2.scl, "3)5 Dekany 1.3.5.7.9 (1.3.5.7.9 tonic)" 1 10 261.62558 279.067261 299. 313.950684 348.834076 358.8 398.667542 418.6 448.5 465.112122;
dekany3.scl, "2)5 Dekany 1.3.5.7.9 and 3)5 Dekany 1 1/3 1/5 1/7 1/9" 1 10 261.62558 294.328766 305.229828 327.031952 343.383545 381.537292 392.438354 436.042603 457.844727 490.547943;
dekany4.scl, "2)5 Dekany 1.7.13.19.29 (1.7 tonic)" 1 10 261.62558 270.96933 288.488892 310.680359 321.776093 355.063263 425.141541 440.325165 474.19635 485.876038;
dekany_union.scl, "Union of 2)5 and 3)5 [ 1 3 5 7 9] dekanies" 1 14 261.62558 274.706848 294.328766 305.229828 327.031952 343.383545 366.275787 381.537292 392.438354 412.060272 436.042603 457.844727 470.926025 490.547943;
de_caus.scl, "De Caus (a mode of Ellis’s duodene) (1615)" 1 12 261.62558 272.526642 290.695068 306.592468 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943;
diacycle13.scl, "Diacycle on 20/13 13/10 there are also nodes at 3/2 4/3 13/9 18/13" 1 23 261.62558 268.333923 275.395325 282.83844 290.695068 299. 307.794769 317.121887 327.031952 337.58136 348.834076 360.862854 373.750793 387.593445 402.5 413.092987 424.25766 436.042603 448.5 461.692169 475.682831 490.547943 506.37207;
diamond11a.scl, "11-limit Diamond with added 16/15 & 15/8 Zoomoozophone tuning: 1/1 = 392 Hz" 1 31 261.62558 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943;
diamond11ak.scl, "microtempered version of diamond11a Dave Keenan TL 11-1-2000 225/224&385/384" 1 31 261.62558 279.723297 285.633179 287.788116 290.695068 293.868378 299.074921 305.392944 314.196503 319.764587 326.520447 333.416809 335.933014 349.107208 359.172485 366.758484 373.258911 381.142426 392.131317 407.50943 410.584808 419.256683 428.114563 435.701447 448.261383 457.731049 465.840759 470.926025 475.682831 479.271606 489.397461;
diamond11at.scl, "microtempered version of diamond11a OdC" 1 31 261.62558 279.837036 285.335754 287.982697 290.849487 293.821198 299.273895 305.223816 314.190796 320.239807 326.485168 332.71524 336.027191 349.112213 359.536804 366.523315 373.498413 380.756226 392.125702 407.395233 411.450562 419.301941 427.479248 435.709381 448.509827 457.426727 465.915558 470.675995 475.361481 479.77121 489.198547;
diamond15.scl, "15-limit Diamond + 2nd ratios. See Novaro 1927 Sistema Natural…" 1 59 261.62558 269.801361 279.067261 280.31311 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 301.875641 305.229828 309.193848 310.074738 313.950684 318.856171 319.764587 322. 327.031952 332.977997 336.375732 340.11322 343.383545 348.834076 356.762146 359.735138 362.250793 366.275787 367.91095 372.089691 373.750793 377.903595 380.546265 383.717499 392.438354 398.667542 402.5 406.973114 411.125885 418.6 425.141541 428.114563 429.334259 436.042603 441.493134 442.750946 448.5 453.484314 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 488.367737 490.547943 507.39505;
diamond17.scl, "17-limit Diamond" 1 43 261.62558 277.977173 281.75061 283.427704 285.409698 287.788116 299. 305.229828 307.794769 309.193848 313.950684 317.688171 322. 327.031952 332.977997 338.574249 340.11322 342.125732 348.834076 359.735138 366.275787 369.353729 370.63623 373.750793 380.546265 392.438354 400.133209 402.5 404.330414 411.125885 418.6 425.141541 430.912689 436.042603 442.750946 444.763458 448.5 457.844727 475.682831 479.646881 483.001038 485.876038 492.471649;
DIAMOND17A.scl, "17-limit +9 Diamond" 1 55 261.62558 277.015289 277.977173 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 305.229828 307.794769 309.193848 313.950684 317.688171 319.764587 322. 327.031952 332.977997 336.375732 338.574249 340.11322 342.125732 348.834076 359.735138 362.250793 366.275787 369.353729 370.63623 373.750793 377.903595 380.546265 392.438354 400.133209 402.5 404.330414 406.973114 411.125885 418.6 425.141541 428.114563 430.912689 436.042603 442.750946 444.763458 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 492.471649 494.18161;
diamond19.scl, "19-limit Diamond" 1 57 261.62558 275.395325 277.977173 281.75061 283.427704 285.409698 287.788116 292.405029 299. 302.934875 305.229828 307.794769 309.193848 310.680359 313.950684 317.688171 322. 327.031952 330.474396 332.977997 338.574249 340.11322 342.125732 348.834076 355.063263 358.013947 359.735138 366.275787 369.353729 370.63623 373.750793 380.546265 382.375824 385.553467 392.438354 400.133209 402.5 404.330414 411.125885 414.240479 418.6 425.141541 430.912689 436.042603 440.632538 442.750946 444.763458 448.5 451.898712 457.844727 468.172058 475.682831 479.646881 483.001038 485.876038 492.471649 497.088562;
diamond7.scl, "7-limit Diamond also double-tie circular mirroring of 4:5:6:7" 1 13 261.62558 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727;
diamond9.scl, "9-limit Diamond" 1 19 261.62558 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025;
diamond_chess.scl, "9-limit chessboard pattern diamond. OdC" 1 11 261.62558 299. 313.950684 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 436.042603 457.844727;
DIAMOND_CHESS11.scl, "11-limit chessboard pattern diamond. OdC" 1 17 261.62558 287.788116 299. 313.950684 319.764587 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 428.114563 436.042603 457.844727 475.682831;
diamond_mod.scl, "13-tone Octave Modular Diamond based on Archytas’s Enharmonic" 1 13 261.62558 269.1 271.315399 279.067261 327.031952 336.375732 348.834076 392.438354 406.973114 418.6 490.547943 504.563599 508.71637;
diamond_tetr.scl, "Tetrachord Modular Diamond based on Archytas’s Enharmonic" 1 8 261.62558 271.315399 279.067261 327.031952 336.375732 339.144257 348.834076 358.8;
diaphonic_10.scl, "10-tone Diaphonic Cycle" 1 10 261.62558 277.015289 294.328766 313.950684 336.375732 362.250793 392.438354 418.6 448.5 483.001038;
diaphonic_12.scl, "12-tone Diaphonic Cycle conjunctive form on 3/2 and 4/3" 1 12 261.62558 274.706848 289.1651 305.229828 323.184509 343.383545 366.275787 392.438354 413.092987 436.042603 461.692169 490.547943;
DIAPHONIC_12a.scl, "2nd 12-tone Diaphonic Cycle conjunctive form on 10/7 and 7/5" 1 12 261.62558 274.706848 289.1651 305.229828 323.184509 343.383545 366.275787 385.553467 406.973114 430.912689 457.844727 488.367737;
diaphonic_5.scl, "D5-tone Diaphonic Cycle" 1 5 261.62558 299. 348.834076 392.438354 448.5;
diaphonic_7.scl, "7-tone Diaphonic Cycle disjunctive form on 4/3 and 3/2" 1 7 261.62558 285.409698 313.950684 348.834076 380.546265 418.6 465.112122;
diat13.scl, "This genus is from K.S’s diatonic Hypodorian harmonia" 1 7 261.62558 279.067261 322. 348.834076 392.438354 418.6 483.001038;
diat15.scl, "Tonos-15 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 301.875641 327.031952 356.762146 373.750793 392.438354 436.042603 490.547943;
diat15_inv.scl, "Inverted Tonos-15 Harmonia a harmonic series from 15 from 30.0000" 1 8 261.62558 279.067261 313.950684 348.834076 366.275787 383.717499 418.6 453.484314;
diat17.scl, "Tonos-17 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 296.508972 342.125732 370.63623 386.750824 404.330414 444.763458 494.18161;
diat19.scl, "Tonos-19 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 276.160309 310.680359 355.063263 368.213745 382.375824 414.240479 451.898712;
diat21.scl, "Tonos-21 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 289.1651 305.229828 343.383545 366.275787 392.438354 422.625916 457.844727;
diat21_inv.scl, "Inverted Tonos-21 Harmonia a harmonic series from 21 from 42.0000" 1 8 261.62558 299. 323.917358 348.834076 373.750793 398.667542 448.5 473.417694;
diat23.scl, "Tonos-23 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 286.542297 300.869415 334.3 353.963989 376.086761 429.813416 462.876007;
diat25.scl, "Tonos-25 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 297.301788 327.031952 363.368835 384.743469 408.79 467.188507 503.126099;
diat27.scl, "Tonos-27 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 294.328766 336.375732 353.194519 371.783691 392.438354 441.493134 504.563599;
diat27_inv.scl, "Inverted Tonos-27 Harmonia a harmonic series from 27 from 54" 1 8 261.62558 271.315399 310.074738 348.834076 377.903595 387.593445 406.973114 465.112122;
diat29.scl, "Tonos-29 Diatonic and its own trite synemmenon Bb" 1 8 261.62558 291.813141 316.13089 344.87 361.29245 379.357056 421.507843 474.19635;
diat31.scl, "Tonos-31 Diatonic. The disjunctive and conjunctive diatonic forms are the same" 1 8 261.62558 289.656891 311.938171 337.933014 352.625763 368.654205 405.519623 450.577362;
diat33.scl, "Tonos-33 Diatonic. The conjunctive form is 23 (Bb instead of B) 20 18 33/2" 1 8 261.62558 287.788116 319.764587 359.735138 375.375824 392.438354 431.68219 479.646881;
diat_chrom.scl, "Diatonic- Chromatic on the border between the chromatic and diatonic genera" 1 7 261.62558 280.31311 301.875641 348.834076 392.438354 420.469666 452.813477;
diat_dies2.scl, "Dorian Diatonic 2 part Diesis" 1 7 261.62558 266.71167 311.126984 349.228241 391.995422 399.615997 466.163757;
diat_dies5.scl, "Dorian Diatonic 5 part Diesis" 1 7 261.62558 274.526947 311.126984 349.228241 391.995422 411.325653 466.163757;
diat_enh.scl, "Diat. + Enharm. Diesis Dorian Mode" 1 7 261.62558 269.291779 311.126984 349.228241 391.995422 403.481781 466.163757;
DIAT_ENH2.scl, "Diat. + Enharm. Diesis Dorian Mode 3 + 12 + 15 parts" 1 7 261.62558 269.291779 302.269806 349.228241 391.995422 403.481781 452.893005;
diat_enh3.scl, "Diat. + Enharm. Diesis Dorian Mode 15 + 3 + 12 parts" 1 7 261.62558 302.269806 311.126984 349.228241 391.995422 452.893005 466.163757;
diat_enh4.scl, "Diat. + Enharm. Diesis Dorian Mode 15 + 12 + 3 parts" 1 7 261.62558 302.269806 339.286377 349.228241 391.995422 452.893005 508.355194;
DIAT_ENH5.scl, "Dorian Mode 12 + 15 + 3 parts" 1 7 261.62558 293.664764 339.286377 349.228241 391.995422 440. 508.355194;
DIAT_ENH6.scl, "Dorian Mode 12 + 3 + 15 parts" 1 7 261.62558 293.664764 302.269806 349.228241 391.995422 440. 452.893005;
diat_eq.scl, "Equal Diatonic Islamic form similar to 11/10 x 11/10 x 400/363" 1 7 261.62558 288.064667 317.175446 349.228241 391.995422 431.609314 475.226196;
diat_eq2.scl, "Equal Diatonic 11/10 x 400/363 x 11/10" 1 7 261.62558 287.788116 317.121887 348.834076 392.438354 431.68219 475.682831;
diat_gold.scl, "Diatonic scale with ratio between whole and half tone the Golden Section" 1 7 261.62558 292.383331 326.75708 349.992584 391.139343 437.12326 488.51297;
diat_hemchrom.scl, "Diat. + Hem. Chrom. Diesis Another genus of Aristoxenos Dorian Mode" 1 7 261.62558 273.20871 311.126984 349.228241 391.995422 409.350555 466.163757;
diat_smal.scl, ""Smallest number" diatonic scale" 1 7 261.62558 299. 327.031952 348.834076 392.438354 436.042603 457.844727;
diat_sofchrom.scl, "Diat. + Soft Chrom. Diesis Another genus of Aristoxenos Dorian Mode" 1 7 261.62558 271.89682 311.126984 349.228241 391.995422 407.384949 466.163757;
diat_soft.scl, "Soft Diatonic genus 5 + 10 + 15 parts" 1 7 261.62558 274.526947 302.269806 349.228241 391.995422 411.325653 452.893005;
diat_soft2.scl, "Soft Diatonic genus with equally divided Pyknon Dorian Mode" 1 7 261.62558 281.214355 302.269806 349.228241 391.995422 421.345428 452.893005;
diat_soft3.scl, "New Soft Diatonic genus with equally divided Pyknon Dorian Mode 1:1 pyknon" 1 7 261.62558 281.214355 324.901764 349.228241 391.995422 421.345428 486.802582;
diat_soft4.scl, "New Soft Diatonic genus with equally divided Pyknon Dorian Mode 1:1 pyknon" 1 7 261.62558 302.269806 324.901764 349.228241 391.995422 452.893005 486.802582;
didy_chrom.scl, "Didymus Chromatic" 1 7 261.62558 279.067261 290.695068 348.834076 392.438354 418.6 436.042603;
didy_chrom1.scl, "Permuted Didymus Chromatic" 1 7 261.62558 279.067261 334.880737 348.834076 392.438354 418.6 502.321075;
DIDY_CHROM2.scl, "Didymos’s Chromatic 6/5 x 25/24 x 16/15" 1 7 261.62558 313.950684 327.031952 348.834076 392.438354 470.926025 490.547943;
DIDY_CHROM3.scl, "Didymos’s Chromatic 25/24 x 16/15 x 6/5" 1 7 261.62558 272.526642 290.695068 348.834076 392.438354 408.79 436.042603;
didy_diat.scl, "Didymus Diatonic" 1 7 261.62558 279.067261 310.074738 348.834076 392.438354 418.6 465.112122;
didy_diatinv.scl, "Inverse Didymus Diatonic variant of Ptolemy with 2 identical triads" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 441.493134 490.547943;
didy_enh.scl, "Dorian mode of Didymos’s Enharmonic" 1 7 261.62558 270.065094 279.067261 348.834076 392.438354 405.097656 418.6;
didy_enh2.scl, "Permuted Didymus Enharmonic" 1 7 261.62558 275.622009 279.067261 348.834076 392.438354 413.432983 418.6;
diesic-m.scl, "Minimal Diesic temperament g=176.021 5-limit" 1 7 261.62558 289.625244 320.621521 354.935089 392.920959 434.972137 481.523712;
diesic-t.scl, "Tiny Diesic temperament g=443.017 5-limit" 1 19 261.62558 272.922394 281.873047 294.044159 303.6875 316.8 327.190186 337.920563 352.51178 364.072601 379.79303 392.248566 409.185608 422.605103 436.464661 455.310944 470.243134 490.547943 506.635742;
dimteta.scl, "A heptatonic form on the 9/7" 1 7 261.62558 282.555603 307.125671 336.375732 406.973114 439.530945 477.751038;
dimtetb.scl, "A pentatonic form on the 9/7" 1 5 261.62558 294.328766 336.375732 406.973114 457.844727;
div_fifth1.scl, "Divided Fifth #1 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 273. 285.409698 348.834076 392.438354;
div_fifth2.scl, "Divided Fifth #2 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 279.067261 299. 348.834076 392.438354;
div_fifth3.scl, "Divided Fifth #3 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 271.315399 305.229828 348.834076 392.438354;
div_fifth4.scl, "Divided Fifth #4 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 274.706848 305.229828 343.383545 392.438354;
div_fifth5.scl, "Divided Fifth #5 From Schlesinger see Chapter 8 p. 160" 1 5 261.62558 287.788116 319.764587 359.735138 411.125885;
dkring1.scl, "Double-tie circular mirroring of 4:5:6:7" 1 12 261.62558 274.706848 305.229828 313.950684 320.491302 327.031952 366.275787 392.438354 439.530945 448.5 457.844727 470.926025;
dkring2.scl, "Double-tie circular mirroring of 3:5:7:9" 1 12 261.62558 274.706848 305.229828 329.648224 336.375732 353.194519 366.275787 392.438354 406.973114 427.321747 436.042603 470.926025;
dkring3.scl, "Double-tie circular mirroring of 6:7:8:9" 1 12 261.62558 294.328766 299. 305.229828 336.375732 348.834076 384.429413 392.438354 398.667542 448.5 465.112122 504.563599;
dkring4.scl, "Double-tie circular mirroring of 7:8:9:10" 1 12 261.62558 290.695068 294.328766 299. 327.031952 336.375732 367.91095 373.750793 378.422699 420.469666 467.188507 470.926025;
dodeceny.scl, "Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15" 1 12 261.62558 275.933228 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 490.547943;
dorian_chrom.scl, "Dorian Chromatic Tonos" 2 25 261.62558 279.067261 299. 310.074738 315.925201 322. 348.834076 380.546265 398.667542 408.391113 418.6 465.112122 523.25116 558.134521 598.001282 620.149475 631.850403 644.001404 697.668152 761.092529 797.335083 816.782227 837.201782 930.224243 1046.502319;
dorian_chrom2.scl, "Schlesinger’s Dorian Harmonia in the chromatic genus" 1 7 261.62558 274.083923 287.788116 359.735138 411.125885 426.352783 442.750946;
dorian_chrominv.scl, "A harmonic form of Schlesinger’s Chromatic Dorian inverted" 1 7 261.62558 273. 285.409698 332.977997 380.546265 404.330414 428.114563;
DORIAN_DIAT.SCL, "Dorian Diatonic Tonos" 2 25 261.62558 279.067261 299. 322. 334.880737 348.834076 364. 380.546265 418.6 440.632538 465.112122 492.471649 523.25116 558.134521 598.001282 644.001404 669.761475 697.668152 728.001587 761.092529 837.201782 881.265076 930.224243 984.943298 1046.502319;
dorian_diat2.scl, "Schlesinger’s Dorian Harmonia a subharmonic series through 13 from 22" 1 8 261.62558 287.788116 319.764587 359.735138 383.717499 411.125885 442.750946 479.646881;
DORIAN_DIAT2INV.scl, "Inverted Schlesinger’s Dorian Harmonia a harmonic series from 11 from 22" 1 8 261.62558 285.409698 309.193848 332.977997 356.762146 380.546265 428.114563 475.682831;
dorian_diatcon.scl, "A Dorian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 287.788116 319.764587 359.735138 383.717499 411.125885 479.646881;
dorian_diatred11.scl, "Dorian mode of a diatonic genus with reduplicated 11/10" 1 7 261.62558 287.788116 316.566925 348.834076 392.438354 431.68219 474.850403;
DORIAN_ENH.SCL, "Dorian Enharmonic Tonos" 2 25 261.62558 279.067261 299. 304.437012 307.23 310.074738 348.834076 380.546265 389.396179 393.977325 398.667542 465.112122 523.25116 558.134521 598.001282 608.874023 614.46 620.149475 697.668152 761.092529 778.792358 787.954651 797.335083 930.224243 1046.502319;
dorian_enh2.scl, "Schlesinger’s Dorian Harmonia in the enharmonic genus" 1 7 261.62558 267.709869 274.083923 359.735138 411.125885 426.352783 442.750946;
DORIAN_ENHinv.scl, "A harmonic form of Schlesinger’s Dorian enharmonic inverted" 1 7 261.62558 267.192078 273. 332.977997 380.546265 392.438354 404.330414;
DORIAN_PENT.scl, "Schlesinger’s Dorian Harmonia in the pentachromatic genus" 1 7 261.62558 271.49823 287.788116 359.735138 411.125885 423.217834 442.750946;
dorian_pis.scl, "Diatonic Perfect Immutable System in the Dorian Tonos a non-rep. 16 tone gamut" 2 16 261.62558 299. 322. 348.834076 380.546265 418.6 465.112122 523.25116 558.134521 598.001282 644.001404 697.668152 761.092529 837.201782 930.224243 1046.502319;
dorian_schl.scl, "Schlesinger’s Dorian Piano Tuning (Sub 22)" 1 12 261.62558 274.083923 287.788116 302.934875 319.764587 338.574249 359.735138 383.717499 411.125885 442.750946 460.460999 479.646881;
dorian_tri1.scl, "Schlesinger’s Dorian Harmonia in the first trichromatic genus" 1 7 261.62558 269.801361 278.504639 359.735138 411.125885 421.153351 431.68219;
dorian_tri2.scl, "Schlesinger’s Dorian Harmonia in the second trichromatic genus" 1 7 261.62558 269.801361 287.788116 359.735138 411.125885 421.153351 442.750946;
dowland_12.scl, "subset of Dowland’s lute tuning lowest octave" 1 12 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 392.438354 417.756958 441.493134 462.516632 492.471649;
dow_high.scl, "Highest octave of Dowlands lute tuning strings 5 6.0000 1/1=G (1610)" 2 15 261.62558 277.015289 278.504639 294.328766 308.344421 313.317719 327.341949 331.119843 346.887482 348.834076 369.353729 392.438354 417.756958 441.493134 462.516632;
dow_lmh.scl, "All three octaves of Dowland’s lute tuning" 2 56 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 371.339508 392.438354 411.125885 417.756958 436.455933 441.493134 462.516632 465.112122 492.471649 495.119354 523.25116 548.167847 557.009277 581.941223 588.657532 616.688843 620.149475 626.635437 656.628845 662.239685 693.774963 697.668152 736.519348 742.679016 784.876709 822.25177 831.045898 835.513916 882.986267 925.033264 939.953125 982.025818 993.359558 1040.662354 1046.502319 1108.061157 1114.018555 1177.315063 1233.377686 1253.270874 1309.367798 1324.47937 1387.55 1395.336304 1477.414917 1569.753418 1671.027832 1765.972534 1850.066528;
dow_low.scl, "Lowest octave of Dowlands lute tuning strings 1 2 3.0000 1/1=G. (1610)" 1 17 261.62558 278.504639 294.328766 308.344421 327.341949 348.834076 369.353729 371.339508 392.438354 411.125885 417.756958 436.455933 441.493134 462.516632 465.112122 492.471649 495.119354;
dow_middle.scl, "Middle octave of Dowlands lute tuning strings 3 4 5.0000 1/1=G (1610)" 1 24 261.62558 274.083923 278.504639 290.970612 294.328766 308.344421 310.074738 313.317719 328.314423 331.119843 346.887482 348.834076 368.259674 371.339508 392.438354 411.125885 415.522949 417.756958 441.493134 462.516632 469.976563 491.012909 496.679779 520.331177;
druri.scl, "Scale of druri dana of Siwoli south Nias Jaap Kunst" 1 4 261.62558 285.8 326.972687 357.184662;
dudon_a.scl, "Dudon Tetrachord A" 1 7 261.62558 285.850159 319.764587 348.834076 392.438354 428.775238 479.646881;
dudon_b.scl, "Dudon Tetrachord B" 1 7 261.62558 283.427704 321.581421 348.834076 392.438354 425.141541 482.372131;
dudon_c12.scl, "Differentially coherent scale in interval class 1 and 2" 1 7 261.62558 302.504547 327.031952 343.383545 392.438354 425.141541 474.19635;
dudon_diat.scl, "Dudon Neutral Diatonic" 1 7 261.62558 294.328766 321.085907 350.816101 392.438354 428.114563 481.628876;
dudon_mohajira.scl, "Dudon’s Mohajira two 3 + 4 + 3 tetrachords neutral diatonic" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 479.823395;
dudon_mohajira_r.scl, "Jacques Dudon JI Mohajira Lumières audibles" 1 7 261.62558 283.427704 321.581421 348.834076 392.438354 425.141541 479.646881;
dudon_moha_baya.scl, "Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 466.163757;
dudon_thai.scl, "Dudon coherent Thai heptatonic scale 1/1 vol. 11/2 2003" 1 7 261.62558 288.261475 317.635193 350.437531 386.470215 426.174622 469.979309;
dudon_thai2.scl, "Slightly better version 3.6850 cents deviation" 1 7 261.62558 288.028137 314.430725 347.133911 383.137451 422.441284 475.358948;
dudon_thai3.scl, "Dudon Thai scale with two 704/703 = 2.4600 c. deviations and simpler numbers" 1 7 261.62558 291.603485 321.581421 354.284607 394.4823 434.68 478.965546;
duncan.scl, "Dudley Duncan’s Superparticular Scale" 1 12 261.62558 277.977173 294.328766 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 490.547943;
duoden12.scl, "Almost equal 12-tone subset of Duodenarium" 1 12 261.62558 275.933228 294.328766 310.424866 330.746399 348.834076 372.089691 392.438354 413.9 440.995178 465.637299 496.119598;
duodenarium.scl, "Ellis’s Duodenarium : genus [3^12 5^8]" 3 118 14.56762 14.73308 14.749719 14.91724 14.987267 15.00419 15.10371 15.174608 15.19174 15.34696 15.36429 15.538798 15.55634 15.715288 15.73303 15.80688 15.911729 15.93 16.004463 16.186241 16.204519 16.388578 16.574718 16.59343 16.781898 16.860668 16.879707 16.991669 17.071426 17.265327 17.284822 17.48114 17.679693 17.7 17.78274 17.9 17.984716 18.00502 18.209522 18.416349 18.437141 18.646551 18.734077 18.858339 18.879642 18.968252 18.98967 19.183702 19.20536 19.423492 19.445421 19.644102 19.666286 19.889654 19.912111 20.00559 20.138275 20.232801 20.25565 20.485712 20.71839 20.741783 20.977369 21.075836 21.215631 21.23959 21.339291 21.581657 21.60603 21.851427 22.1 22.124578 22.37586 22.480892 22.506275 22.65556 22.761909 23.020433 23.046432 23.308187 23.572927 23.6 23.71032 23.867584 23.98 24.006702 24.279367 24.30678 24.555128 24.582855 24.862068 24.890142 25.144451 25.17285 25.291002 25.319559 25.487503 25.60714 25.898006 25.927238 26.221712 26.519548 26.549482 26.67411 26.851032 26.97707 27.00753 27.314283 27.624519 27.655712 27.97 28.101114 28.28751 28.319448 28.452377 28.775541 28.808044 29.135242;
duodene.scl, "Ellis’s Duodene : genus [33355]" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 470.926025 490.547943;
duodene14-18-21.scl, "14-18-21 Duodene" 1 12 261.62558 271.315399 294.328766 305.229828 336.375732 348.834076 378.422699 392.438354 406.973114 448.5 457.844727 504.563599;
duodene3-11_9.scl, "3-11/9 Duodene" 1 12 261.62558 285.409698 294.328766 319.764587 321.085907 348.834076 359.735138 392.438354 426.352783 428.114563 479.646881 481.628876;
DUODENE3-7.SCL, "3-7 Duodene" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 398.667542 448.5 457.844727 515.075317;
DUODENE6-7-9.scl, "6-7-9 Duodene" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 406.973114 448.5 457.844727 504.563599;
DUODENE_MIN.scl, "Minor Duodene" 1 12 261.62558 290.695068 294.328766 313.950684 327.031952 348.834076 353.194519 392.438354 418.6 436.042603 470.926025 490.547943;
duodene_r-45.scl, "Ellis’s Duodene rotated -45 degrees" 1 12 261.62558 279.067261 294.328766 313.950684 334.880737 353.194519 376.740814 401.856873 408.79 436.042603 465.112122 490.547943;
duodene_r45.scl, "Ellis’s Duodene rotated 45 degrees" 1 12 261.62558 275.933228 279.067261 294.328766 313.950684 334.880737 383.24057 408.79 436.042603 459.888702 465.112122 490.547943;
duodene_r90.scl, "Ellis’s Duodene rotated 90 degrees: genus [33555]" 1 12 261.62558 272.526642 279.067261 306.592468 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 490.547943;
duodene_skew.scl, "Rotated 6/5×3/2 duodene" 1 12 261.62558 282.555603 290.695068 313.950684 327.031952 348.834076 376.740814 392.438354 418.6 436.042603 470.926025 502.321075;
duodene_t.scl, "Duodene with equal tempered fifths" 1 12 261.62558 279.382599 293.664764 313.596344 327.031952 349.228241 367.080963 391.995422 418.6 436.535278 469.863617 489.994293;
efg333.scl, "Genus primum [333]" 1 4 261.62558 294.328766 348.834076 392.438354;
efg333333333337.scl, "Genus [333333333337]" 1 24 261.62558 275.017029 279.382385 289.729889 294.328766 309.394165 314.305176 325.946106 331.119843 343.383545 353.593323 366.689362 372.509827 386.306488 392.438354 412.525543 419.073578 434.594818 441.493134 457.844727 471.457764 488.919159 496.679779 515.075317;
efg333333355.scl, "Genus [333333355]" 1 24 261.62558 264.895874 275.933228 279.067261 290.695068 294.328766 310.424866 313.950684 327.031952 331.119843 348.834076 353.194519 367.91095 372.089691 392.438354 397.343842 413.9 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.679779;
efg33335.scl, "Genus [33335]" 1 10 261.62558 275.933228 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 490.547943;
efg3333555.scl, "Genus [3333555]" 1 20 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 363.368835 367.91095 372.089691 392.438354 408.79 418.6 436.042603 459.888702 465.112122 470.926025 490.547943;
efg33335555.scl, "Genus bis-ultra-chromaticum [33335555]" 1 25 261.62558 272.526642 279.067261 290.695068 294.328766 297.671753 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 367.91095 372.089691 376.740814 392.438354 408.79 418.6 436.042603 446.507629 459.888702 465.112122 470.926025 490.547943 502.321075;
efg333355577.scl, "Genus [333355577]" 1 60 261.62558 267.076111 268.268402 272.526642 274.706848 278.204254 279.067261 281.681824 284.881165 286.152954 290.695068 294.328766 300.460602 305.229828 306.592468 312.98 313.950684 317.947723 320.491302 321.922089 325.578491 327.031952 333.845123 343.383545 348.834076 352.102264 356.101471 357.691193 360.552734 363.368835 366.275787 367.91095 372.089691 375.575775 381.537292 392.438354 400.614136 402.402588 406.973114 408.79 412.060272 417.306396 418.6 427.321747 429.229431 436.042603 445.126831 450.690918 457.844727 459.888702 465.112122 469.469696 470.926025 476.9216 480.736969 488.367737 490.547943 500.76767 508.71637 515.075317;
efg33337.scl, "Genus [33337]" 1 10 261.62558 294.328766 305.229828 343.383545 348.834076 386.306488 392.438354 441.493134 457.844727 515.075317;
efg3335.scl, "Genus diatonicum veterum correctum [3335]" 1 8 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603 465.112122 490.547943;
efg33355.scl, "Genus diatonico-chromaticum hodiernum correctum [33355]" 1 12 261.62558 272.526642 290.695068 310.074738 327.031952 348.834076 363.368835 387.593445 408.79 436.042603 465.112122 484.491791;
efg333555.scl, "Genus diatonico-hyperchromaticum [333555]" 1 16 261.62558 272.526642 279.067261 290.695068 306.592468 313.950684 327.031952 348.834076 363.368835 372.089691 392.438354 408.79 418.6 436.042603 465.112122 490.547943;
efg33355555.scl, "Genus [33355555]" 1 24 261.62558 272.526642 279.067261 287.43042 294.328766 306.592468 313.950684 319.367157 327.031952 340.658295 348.834076 359.288025 367.91095 383.24057 392.438354 408.79 418.6 425.822845 436.042603 459.888702 470.926025 479.05072 490.547943 510.987427;
efg333555777.scl, "Genus [333555777]" 1 64 261.62558 262.793549 267.076111 268.268402 269.1 272.526642 274.706848 279.067261 280.31311 281.681824 286.152954 294.328766 299. 300.460602 305.229828 306.592468 311.459015 312.98 313.950684 318.934021 320.491302 321.922089 327.031952 333.845123 336.375732 343.383545 348.834076 350.391388 352.102264 357.691193 358.8 360.552734 366.275787 367.91095 373.750793 375.575775 381.537292 392.438354 398.667542 400.614136 402.402588 408.79 412.060272 417.306396 418.6 420.469666 427.321747 429.229431 436.042603 448.5 450.690918 457.844727 459.888702 467.188507 469.469696 470.926025 476.9216 478.401031 480.736969 488.367737 490.547943 498.334412 500.76767 515.075317;
efg333557.scl, "Genus diatonico-enharmonicum [333557]" 1 24 261.62558 265.778351 279.067261 280.31311 290.695068 299. 313.950684 318.934021 327.031952 332.222931 348.834076 358.8 372.089691 373.750793 392.438354 398.667542 418.6 425.245361 436.042603 448.5 465.112122 478.401031 490.547943 498.334412;
efg33357.scl, "Genus diatonico-enharmonicum [33357]" 1 16 261.62558 274.706848 279.067261 305.229828 313.950684 325.578491 343.383545 348.834076 366.275787 372.089691 392.438354 406.973114 418.6 457.844727 465.112122 488.367737;
EFG3335711.SCL, "Genus [3 3 3 5 7 11] expanded hexany 1 3 5 7 9 11" 1 32 261.62558 265.585724 269.801361 275.933228 286.152954 294.328766 295.095245 303.52652 314.76825 321.922089 327.031952 331.982147 337.251709 343.383545 354.114288 359.735138 367.91095 379.408173 386.306488 392.438354 393.460327 404.702057 429.229431 441.493134 442.642853 449.668945 457.844727 472.152374 482.883118 490.547943 505.877563 515.075317;
efg333577.scl, "Genus [333577]" 1 24 261.62558 267.076111 281.681824 286.152954 294.328766 300.460602 305.229828 321.922089 327.031952 333.845123 343.383545 348.834076 367.91095 375.575775 381.537292 392.438354 400.614136 429.229431 436.042603 450.690918 457.844727 490.547943 500.76767 515.075317;
efg3337.scl, "Genus [3337]" 1 8 261.62558 294.328766 305.229828 343.383545 348.834076 392.438354 457.844727 515.075317;
efg33377.scl, "Genus [33377] Bi-enharmonicum simplex" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 348.834076 392.438354 398.667542 448.5 457.844727 515.075317;
efg335.scl, "Genus secundum [335]" 1 6 261.62558 327.031952 348.834076 392.438354 436.042603 490.547943;
efg3355.scl, "Genus chromaticum veterum correctum [3355]" 1 9 261.62558 279.067261 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 490.547943;
efg33555.scl, "Genus bichromaticum [33555]" 1 12 261.62558 294.328766 306.592468 313.950684 327.031952 367.91095 392.438354 408.79 418.6 459.888702 470.926025 490.547943;
efg335555577.scl, "Genus [335555577]" 1 45 261.62558 267.076111 268.268402 272.526642 274.706848 279.067261 286.152954 293.02063 300.460602 305.229828 306.592468 312.98 313.950684 320.491302 327.031952 333.845123 334.880737 341.857391 343.383545 348.834076 357.691193 366.275787 375.575775 381.537292 384.589569 390.694183 392.438354 400.614136 408.79 417.306396 418.6 427.321747 429.229431 436.042603 439.530945 446.507629 457.844727 469.469696 476.9216 480.736969 488.367737 490.547943 500.76767 502.321075 512.786133;
efg33557.scl, "Genus chromatico-enharmonicum [33557]" 1 18 261.62558 274.706848 279.067261 286.152954 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 418.6 429.229431 436.042603 457.844727 488.367737 490.547943;
efg335577.scl, "Genus chromaticum septimis triplex [335577]" 1 27 261.62558 274.706848 279.067261 280.31311 286.152954 299. 305.229828 313.950684 318.934021 327.031952 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 418.6 429.229431 436.042603 448.5 457.844727 478.401031 488.367737 490.547943 498.334412;
efg3357.scl, "Genus enharmonicum vocale [3357]" 1 12 261.62558 286.152954 305.229828 327.031952 343.383545 348.834076 381.537292 392.438354 429.229431 436.042603 457.844727 490.547943;
efg33577.scl, "Genus [33577]" 1 18 261.62558 280.31311 286.152954 299. 305.229828 327.031952 343.383545 348.834076 373.750793 381.537292 392.438354 398.667542 429.229431 436.042603 448.5 457.844727 490.547943 498.334412;
efg337.scl, "Genus quintum [337]" 1 6 261.62558 294.328766 343.383545 392.438354 457.844727 515.075317;
efg3377.scl, "Genus [3377]" 1 9 261.62558 299. 305.229828 343.383545 348.834076 392.438354 398.667542 448.5 457.844727;
efg33777.scl, "Genus [33777]" 1 12 261.62558 267.076111 299. 300.460602 305.229828 343.383545 348.834076 392.438354 398.667542 400.614136 448.5 457.844727;
efg33777a.scl, "Genus [33777] with comma discarded which disappears in 31-tET" 1 10 261.62558 267.076111 299. 305.229828 343.383545 348.834076 392.438354 398.667542 448.5 457.844727;
efg355.scl, "Genus tertium [355]" 1 6 261.62558 313.950684 327.031952 392.438354 418.6 490.547943;
efg3555.scl, "Genus enharmonicum veterum correctum [3555]" 1 8 261.62558 306.592468 327.031952 383.24057 392.438354 408.79 490.547943 510.987427;
efg35557.scl, "Genus [35557]" 1 16 261.62558 268.268402 274.706848 286.152954 306.592468 313.950684 327.031952 343.383545 357.691193 366.275787 392.438354 408.79 418.6 429.229431 457.844727 490.547943;
efg3557.scl, "Genus enharmonicum instrumentale [3557]" 1 12 261.62558 274.706848 286.152954 313.950684 327.031952 343.383545 366.275787 392.438354 418.6 429.229431 457.844727 490.547943;
efg35577.scl, "Genus [35577]" 1 18 261.62558 274.706848 280.31311 286.152954 299. 313.950684 327.031952 343.383545 358.8 366.275787 373.750793 392.438354 418.6 429.229431 448.5 457.844727 478.401031 490.547943;
efg357.scl, "Genus sextum [357] & 7-limit Octony see ch.6 p.118" 1 8 261.62558 286.152954 327.031952 343.383545 392.438354 429.229431 457.844727 490.547943;
EFG35711.scl, "Genus [3 5 7 11]" 1 16 261.62558 269.801361 286.152954 295.095245 314.76825 327.031952 337.251709 343.383545 359.735138 392.438354 393.460327 429.229431 449.668945 457.844727 472.152374 490.547943;
efg3571113.scl, "Genus [3 5 7 11 13]" 1 32 261.62558 265.71347 269.801361 274.016998 279. 286.152954 292.284821 295.095245 314.76825 318.856171 319.686523 327.031952 337.251709 343.383545 348.748932 359.735138 365.356018 371.99884 383.62381 392.438354 393.460327 398.57019 425.141541 429.229431 438.427216 449.668945 457.844727 464.998566 472.152374 479.529755 490.547943 511.498413;
efg3577.scl, "Genus [3577]" 1 12 261.62558 280.31311 286.152954 299. 327.031952 343.383545 373.750793 392.438354 429.229431 448.5 457.844727 490.547943;
efg35777.scl, "Genus [35777]" 1 16 261.62558 280.31311 286.152954 299. 300.460602 327.031952 343.383545 373.750793 375.575775 392.438354 400.614136 429.229431 448.5 457.844727 490.547943 500.76767;
efg35777a.scl, "Genus [35777] with comma discarded which disappears in 31-tET" 1 14 261.62558 280.31311 286.152954 299. 327.031952 343.383545 373.750793 392.438354 400.614136 429.229431 448.5 457.844727 490.547943 500.76767;
efg377.scl, "Genus octavum [377]" 1 6 261.62558 300.460602 343.383545 392.438354 400.614136 457.844727;
efg3777.scl, "Genus [3777]" 1 8 261.62558 262.903046 300.460602 343.383545 350.537384 392.438354 400.614136 457.844727;
efg37777.scl, "Genus [37777]" 1 10 261.62558 262.903046 299. 300.460602 343.383545 350.537384 392.438354 400.614136 448.5 457.844727;
efg37777a.scl, "Genus [37777] with comma discarded that disappears in 31-tET" 1 8 261.62558 299. 343.383545 350.537384 392.438354 400.614136 448.5 457.844727;
efg555.scl, "Genus quartum [555]" 1 4 261.62558 327.031952 408.79 510.987427;
efg55557.scl, "Genus [55557]" 1 10 261.62558 286.152954 327.031952 357.691193 366.275787 408.79 418.6 447.114014 457.844727 510.987427;
efg5557.scl, "Genus [5557]" 1 8 261.62558 286.152954 327.031952 357.691193 408.79 447.114014 457.844727 510.987427;
efg55577.scl, "Genus [55577]" 1 12 261.62558 286.152954 291.992828 299. 327.031952 357.691193 373.750793 408.79 447.114014 457.844727 467.188507 510.987427;
efg557.scl, "Genus septimum [557]" 1 6 261.62558 286.152954 327.031952 366.275787 418.6 457.844727;
efg5577.scl, "Genus [5577]" 1 9 261.62558 293.02063 320.491302 334.880737 366.275787 400.614136 418.6 457.844727 512.786133;
efg55777.scl, "Genus [55777]" 1 12 261.62558 286.152954 299. 320.491302 327.031952 366.275787 373.750793 400.614136 418.6 457.844727 478.401031 500.76767;
efg577.scl, "Genus nonum [577]" 1 6 261.62558 286.152954 327.031952 400.614136 457.844727 500.76767;
efg5777.scl, "Genus [5777]" 1 8 261.62558 286.152954 299. 327.031952 373.750793 400.614136 457.844727 500.76767;
efg57777.scl, "Genus [57777]" 1 10 261.62558 286.152954 299. 327.031952 350.537384 373.750793 400.614136 438.171722 457.844727 500.76767;
efg777.scl, "Genus decimum [777]" 1 4 261.62558 350.537384 400.614136 457.844727;
efg77777.scl, "Genus [77777]" 1 6 261.62558 299. 341.715027 350.537384 400.614136 457.844727;
Eikosany.scl, "3)6 1.3.5.7.9.11 Eikosany (1.3.5 tonic)" 1 20 261.62558 269.801361 274.706848 287.788116 294.328766 305.229828 323.761627 335.752808 343.383545 359.735138 366.275787 377.721924 392.438354 412.060272 419.69101 431.68219 457.844727 470.926025 479.646881 503.629211;
ekring1.scl, "Single-tie circular mirroring of 3:4:5" 1 12 261.62558 294.328766 313.950684 327.031952 353.194519 367.91095 376.740814 408.79 418.6 436.042603 470.926025 490.547943;
ekring2.scl, "Single-tie circular mirroring of 6:7:8" 1 12 261.62558 294.328766 299. 305.229828 336.375732 343.383545 384.429413 400.614136 448.5 457.844727 504.563599 515.075317;
ekring3.scl, "Single-tie circular mirroring of 4:5:7" 1 12 261.62558 266.964874 299. 305.102692 327.031952 333.706085 341.715027 408.79 418.6 427.143768 457.844727 467.188507;
EKRING4.SCL, "Single-tie circular mirroring of 4:5:6" 1 12 261.62558 279.067261 313.950684 334.880737 348.834076 376.740814 392.438354 401.856873 436.042603 446.507629 465.112122 502.321075;
ekring5.scl, "Single-tie circular mirroring of 3:5:7" 1 12 261.62558 263.718567 269.1 305.229828 322.920685 366.275787 373.750793 376.740814 384.429413 439.530945 448.5 512.786133;
ekring5bp.scl, "Single-tie BP circular mirroring of 3:5:7" 2 13 261.62558 282.555603 336.375732 363.285797 366.275787 395.57785 432.483063 512.786133 560.626221 605.476318 610.459656 659.296448 784.876709;
ekring6.scl, "Single-tie circular mirroring of 6:7:9" 1 12 261.62558 288.322052 299. 336.375732 348.834076 384.429413 392.438354 406.973114 432.483063 465.112122 494.266388 512.57251;
ekring7.scl, "Single-tie circular mirroring of 5:7:9" 1 12 261.62558 266.964874 290.695068 296.627625 322.994537 336.375732 343.24054 406.973114 415.278687 432.483063 470.926025 480.536743;
ekring7bp.scl, "Single-tie BP circular mirroring of 5:7:9" 2 13 261.62558 311.459015 336.375732 400.447296 432.483063 436.042603 470.926025 514.860779 610.459656 667.41217 720.805115 726.737671 784.876709;
ellis.scl, "Alexander John Ellis’ imitation equal temperament (1875)" 1 12 261.62558 277.1 293.578766 310.987671 329.526093 349.111115 369.966858 391.938354 415.150238 439.868134 465.981506 493.789154;
ellis_24.scl, "Ellis from p.421 of Helmholtz 24 tones of JI for 1 manual harmonium" 1 24 261.62558 264.895874 272.526642 275.933228 294.328766 298.007874 306.592468 310.424866 327.031952 331.119843 348.834076 353.194519 367.91095 372.509827 392.438354 397.343842 408.79 413.9 436.042603 441.493134 459.888702 465.637299 490.547943 496.679779;
ellis_eb.scl, "Ellis’ new equal beating temperament for pianofortes (1885)" 1 12 261.62558 277.215881 293.653748 311.192871 329.685486 349.21698 370.021179 391.938354 415.323822 439.980652 466.289276 494.028229;
ellis_harm.scl, "Ellis’s Just Harmonium" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 353.194519 392.438354 418.6 436.042603 470.926025 490.547943;
ellis_mteb.scl, "Ellis’ equal beating meantone tuning (1885)" 1 12 261.62558 273.319214 292.344635 313.055878 326.934937 350.188477 365.786926 391.15 408.783478 437.238434 468.272369 489.170319;
enh14.scl, "14/11 Enharmonic" 1 7 261.62558 267.709869 274.083923 348.834076 392.438354 401.564819 411.125885;
enh15.scl, "Tonos-15 Enharmonic" 1 7 261.62558 270.647125 280.31311 356.762146 392.438354 402.5 413.092987;
enh15_inv.scl, "Inverted Enharmonic Tonos-15 Harmonia" 1 7 261.62558 331.392395 340.11322 348.834076 383.717499 488.367737 505.809418;
ENH15_INV2.scl, "Inverted harmonic form of the enharmonic Tonos-15" 1 7 261.62558 270.346405 279.067261 348.834076 383.717499 392.438354 401.15921;
enh17.scl, "Tonos-17 Enharmonic" 1 7 261.62558 269.553619 277.977173 370.63623 404.330414 413.733459 423.584259;
enh17_con.scl, "Conjunct Tonos-17 Enharmonic" 1 7 261.62558 269.553619 277.977173 370.63623 378.522095 386.750824 494.18161;
enh19.scl, "Tonos-19 Enharmonic" 1 7 261.62558 268.696533 276.160309 355.063263 382.375824 389.873383 397.670868;
enh19_con.scl, "Conjunct Tonos-19 Enharmonic" 1 7 261.62558 268.696533 276.160309 355.063263 361.518951 368.213745 451.898712;
enh2.scl, "1:2 Enharmonic. New genus 2 + 4 + 24 parts" 1 7 261.62558 266.71167 277.182617 349.228241 391.995422 399.615997 415.304688;
enh21.scl, "Tonos-21 Enharmonic" 1 7 261.62558 268.006683 274.706848 343.383545 392.438354 399.573578 406.973114;
enh21_inv.scl, "Inverted Enharmonic Tonos-21 Harmonia" 1 7 261.62558 336.375732 342.604919 348.834076 398.667542 498.334412 510.792755;
enh21_inv2.scl, "Inverted harmonic form of the enharmonic Tonos-21" 1 7 261.62558 270.065094 279.067261 348.834076 398.667542 411.125885 423.584259;
enh23.scl, "Tonos-23 Enharmonic" 1 7 261.62558 267.439453 273.517639 334.3 376.086761 388.218567 401.15921;
enh23_con.scl, "Conjunct Tonos-23 Enharmonic" 1 7 261.62558 267.439453 273.517639 334.3 343.850739 353.963989 462.876007;
enh25.scl, "Tonos-25 Enharmonic" 1 7 261.62558 269.717072 278.325073 363.368835 408.79 421.976715 436.042603;
enh25_con.scl, "Conjunct Tonos-25 Enharmonic" 1 7 261.62558 269.717072 278.325073 363.368835 373.750793 384.743469 503.126099;
enh27.scl, "Tonos-27 Enharmonic" 1 7 261.62558 269.1 277.015289 353.194519 392.438354 403.650879 415.522949;
enh27_inv.scl, "Inverted Enharmonic Tonos-27 Harmonia" 1 7 261.62558 329.454407 339.144257 348.834076 387.593445 494.18161 508.71637;
enh27_inv2.scl, "Inverted harmonic form of the enharmonic Tonos-27" 1 7 261.62558 266.382385 271.315399 348.834076 387.593445 397.283264 406.973114;
enh29.scl, "Tonos-29 Enharmonic" 1 7 261.62558 266.215485 270.96933 344.87 379.357056 389.084167 399.323242;
enh29_con.scl, "Conjunct Tonos-29 Enharmonic" 1 7 261.62558 266.215485 270.96933 344.87 352.890289 361.29245 474.19635;
enh31.scl, "Tonos-31 Enharmonic. Tone 24 alternates with 23 as MESE or A" 1 8 261.62558 270.346405 279.668701 337.933014 352.625763 368.654205 377.22757 386.209167;
enh31_con.scl, "Conjunct Tonos-31 Enharmonic" 1 8 261.62558 270.346405 279.668701 337.933014 352.625763 360.461884 368.654205 450.577362;
enh33.scl, "Tonos-33 Enharmonic" 1 7 261.62558 269.801361 278.504639 359.735138 392.438354 401.564819 411.125885;
enh33_con.scl, "Conjunct Tonos-33 Enharmonic" 1 7 261.62558 269.801361 278.504639 359.735138 367.389099 375.375824 479.646881;
enh_invcon.scl, "Inverted Enharmonic Conjunct Phrygian Harmonia" 1 7 261.62558 283.427704 370.63623 381.537292 392.438354 501.449005 512.35;
enh_mod.scl, "Enharmonic After Wilson’s Purvi Modulations See page 111" 1 7 261.62558 294.328766 305.229828 348.834076 392.438354 406.973114 418.6;
enh_perm.scl, "Permuted Enharmonic After Wilson’s Marwa Permutations See page 110.0000" 1 7 261.62558 271.315399 279.067261 348.834076 392.438354 406.973114 465.112122;
ennea45.scl, "Ennealimmal-45 in a 7-limit least-squares tuning g=48.999 G.W. Smith" 1 45 261.62558 267.020294 269.136139 274.68573 276.862335 282.571228 288.397858 290.683105 296.677002 299.027863 305.193817 311.486938 313.955109 320.428894 322.967957 329.627563 336.424469 339.090302 346.082336 348.824677 356.017456 363.358551 366.237762 373.789612 376.751495 384.520111 392.448944 395.558655 403.715088 406.914124 415.304688 423.868286 427.22702 436.036438 439.491547 448.553864 457.803101 461.430695 470.945404 474.677124 484.464996 494.454681 498.372681 508.649139 512.679688;
epimore_enh.scl, "New Epimoric Enharmonic Dorian mode of the 4th new Enharmonic on Hofmann’s list" 1 7 261.62558 265.113892 279.067261 348.834076 392.438354 397.670868 418.6;
eratos_chrom.scl, "Dorian mode of Eratosthenes’s Chromatic. same as Ptol. Intense Chromatic" 1 7 261.62558 275.395325 290.695068 348.834076 392.438354 413.092987 436.042603;
ERATOS_DIAT.SCL, "Dorian mode of Eratosthenes’s Diatonic Pythagorean" 1 7 261.62558 275.622009 310.074738 348.834076 392.438354 413.432983 465.112122;
eratos_enh.scl, "Dorian mode of Eratosthenes’s Enharmonic" 1 7 261.62558 268.333923 275.395325 348.834076 392.438354 402.5 413.092987;
erlangen.scl, "Anonymus: Pro clavichordiis faciendis Erlangen 15th century" 1 12 261.62558 275.622009 293.996796 310.074738 327.031952 348.834076 367.496002 392.438354 413.432983 440.995178 465.112122 490.547943;
erlangen2.scl, "Revised Erlangen" 1 12 261.62558 275.933228 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.9 441.493134 465.112122 490.547943;
erlich1.scl, "Asymmetrical Major decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 326.183807 347.4 369.994415 394.059296 433.122772 461.293579 491.296631;
erlich10.scl, "Canonical JI interpretation of the Pentachordal decatonic mode of 22-tET" 1 10 261.62558 274.706848 299. 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025;
erlich10s1.scl, "Superparticular version of erlich10 using 50/49 decatonic comma" 1 10 261.62558 280.31311 299. 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025;
erlich10s2.scl, "Other superparticular version of erlich10 using 50/49 decatonic comma" 1 10 261.62558 274.706848 293.02063 313.950684 348.834076 366.275787 392.438354 418.6 448.5 470.926025;
erlich11.scl, "Canonical JI interpretation of the Symmetrical decatonic mode of 22-tET" 1 10 261.62558 280.31311 305.229828 327.031952 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943;
erlich11s1.scl, "Superparticular version of erlich11 using 50/49 decatonic comma" 1 10 261.62558 274.706848 305.229828 327.031952 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943;
erlich11s2.scl, "Other superparticular version of erlich11 using 50/49 decatonic comma" 1 10 261.62558 280.31311 305.229828 311.459015 348.834076 373.750793 392.438354 436.042603 457.844727 490.547943;
erlich12.scl, "Two 9-tET scales 3/2 shifted Paul Erlich TL 5-12-2001" 1 18 261.62558 267.013092 282.571228 288.39 305.193817 311.478516 329.627563 336.415405 356.017456 363.348755 384.520111 392.438354 415.304688 423.856873 448.553894 457.790741 484.464996 494.441345;
erlich13.scl, "Just scale by Paul Erlich (2002)" 1 10 261.62558 269.801361 294.328766 327.031952 343.383545 359.735138 392.438354 441.493134 457.844727 490.547943;
erlich2.scl, "Asymmetrical Minor decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 316.067139 347.4 369.994415 394.059296 419.689362 446.98642 476.058929;
erlich3.scl, "Symmetrical Major decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 326.183807 347.4 369.994415 394.059296 419.689362 461.293579 491.296631;
erlich4.scl, "Symmetrical Minor decatonic mode of 22-tET Paul Erlich" 1 10 261.62558 278.641998 296.765198 316.067139 347.4 369.994415 394.059296 419.689362 446.98642 491.296631;
erlich5.scl, "Unequal 22-note compromise between decatonic & Indian srutis Paul Erlich" 1 22 261.62558 269.330658 278.104767 287.164734 295.621979 306.179688 315.19693 326.453735 335.050507 348.070251 357.236267 368.874115 380.891083 393.3 406.112244 419.342346 433.003448 444.406067 461.675293 473.832947 490.755188 505.208374;
erlich6.scl, "Scale of consonant tones against 1/1-3/2 drone. TL 23-9-1998" 1 22 261.62558 274.706848 280.31311 285.409698 294.328766 299. 305.229828 313.950684 327.031952 336.375732 343.383545 348.834076 359.735138 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727 470.926025 490.547943;
erlich7.scl, "Meantone-like circle of sinuoidally varying fifths TL 08-12-99" 1 26 261.62558 272.641174 277.984314 281.848572 292.479767 303.511993 307.731079 313.761902 326.972687 337.05957 340.857849 350.056274 365.132538 373.602356 378.14 391.181152 406.945862 413.628876 420.421631 437.364716 452.448486 457.943695 468.566406 488.746674 501.936035 507.592316;
erlich8.scl, "Two 12-tET scales 15 cents shifted Paul Erlich" 1 24 261.62558 263.902222 277.182617 279.594666 293.664764 296.220245 311.126984 313.834412 329.627563 332.496002 349.228241 352.267212 369.994415 373.214111 391.995422 395.406586 415.304688 418.918671 440. 443.828888 466.163757 470.220306 493.883301 498.181061;
erlich9.scl, "11-limit periodicity block u.v.: 9801/9800 243/242 126/125 100/99" 1 20 261.62558 271.315399 280.31311 290.695068 302.707275 308.344421 319.764587 332.977997 345.345734 356.762146 369.975555 383.717499 396.402374 411.125885 428.114563 436.042603 452.238464 470.926025 488.367737 504.563599;
erlich_bp.scl, "Erlich’s Triple Bohlen-Pierce scale" 2 23 261.62558 282.555603 301.875641 309.193848 311.459015 319.764587 336.375732 356.762146 366.275787 377.903595 400.447296 411.125885 436.042603 470.926025 485.876038 512.786133 560.626221 575.576233 610.459656 659.296448 680.22644 726.737671 784.876709;
erlich_bpf.scl, "Erlich’s 39-tone Triple Bohlen-Pierce scale" 2 40 261.62558 269.931152 277.481659 282.555603 293.661346 301.875641 311.459015 319.764587 328.709045 336.375732 347.054321 356.762146 366.275787 377.903595 388.474335 400.447296 411.125885 422.625916 436.042603 447.67041 458.694183 470.926025 485.876038 499.46698 512.786133 528.590454 543.37616 560.626221 575.576233 591.67627 610.459656 624.697754 642.171814 659.296448 680.22644 699.253784 726.737671 740.026611 760.726624 784.876709;
erlich_bpp.scl, "Periodicity block for erlich_bpf 1625/1617 1331/1323 275/273 245/243" 2 40 261.62558 268.602234 277.481659 282.555603 293.661346 299.680206 311.459015 319.764587 323.654602 336.375732 345.345734 356.762146 366.275787 380.672119 385.303101 400.447296 411.125885 419.552277 436.042603 447.67041 458.694183 470.926025 489.435577 499.46698 512.786133 528.590454 539.424377 560.626221 575.576233 594.603577 610.459656 629.274292 642.171814 659.296448 685.209839 699.253784 720.805115 740.026611 764.490295 784.876709;
erlich_bpp2.scl, "Improved shape for erlich_bpp" 2 40 261.62558 268.602234 277.481659 282.555603 293.925018 299.680206 311.459015 319.764587 326.025696 336.375732 345.345734 356.762146 366.275787 377.903595 385.303101 400.447296 411.125885 422.625916 436.042603 447.67041 458.694183 470.926025 485.876038 499.46698 512.786133 528.590454 543.37616 560.626221 575.576233 594.603577 610.459656 629.839294 642.171814 659.296448 685.209839 698.626526 726.737671 740.026611 764.490295 784.876709;
erlich_bppe.scl, "LS optimal 3:5:7:11:13 tempering virtually equal g=780.2702 cents" 2 40 261.62558 269.035278 276.773254 284.611969 292.797943 301.090515 309.750458 318.523132 327.684509 337.109344 346.65686 356.627411 366.727722 377.275543 387.960632 399.119141 410.598602 422.227478 434.371582 446.673737 459.520966 472.5354 486.126465 499.894409 514.272339 529.063843 544.047852 559.69574 575.547302 592.101196 608.870544 626.382874 644.398865 662.649353 681.708435 701.015625 721.178223 741.603271 762.933228 784.876709;
ERLICH_BPPM.scl, "MM optimal 3:5:7:11:13 tempering g=780.352 cents" 2 40 261.62558 269.31485 276.838593 284.975006 292.936218 301.545746 309.97 319.08 327.99408 337.157104 347.066284 356.762146 367.247528 377.507172 388.602264 399.458496 410.617981 422.686249 434.494629 447.264648 459.759674 473.272217 486.493805 500.792084 514.782532 529.163757 544.716125 559.933594 576.39032 592.492676 609.906311 626.945007 644.459717 663.4 681.933777 701.976135 721.586975 742.794739 763.545837 784.876709;
erlich_paj.scl, "Erlich’s Pajara or Twintone with RMS optimal generator" 1 22 261.62558 269.741058 278.597412 287.23938 296.67041 305.872986 315.915649 325.71521 336.409332 346.844574 358.232666 369.994415 381.471466 393.996246 406.217804 419.555298 432.569733 446.772186 460.630859 475.754639 490.512329 506.617493;
erlich_paj2.scl, "Erlich’s Pajara or Twintone with minimax optimal generator" 1 22 261.62558 270.254486 278.68576 287.877533 296.858459 306.649597 316.216156 326.645752 336.836121 347.945831 358.8 369.994415 382.19754 394.121216 407.1203 419.821259 433.667999 447.197174 461.946838 476.358215 492.069702 507.420807;
et-mix6.scl, "Mix of equal temperaments from 1-6 (= 4-6)" 1 12 261.62558 293.664764 300.52887 311.126984 329.627563 345.21701 369.994415 396.550201 415.304688 440. 455.516571 466.163757;
et7a.scl, "7-tone equal temperament with pure fourth and fifth" 1 7 261.62558 288.858032 318.92514 348.834076 392.438354 429.241394 473.920929;
euler.scl, "Euler’s Monochord (a mode of Ellis’s duodene) (1739) genus [33355]" 1 12 261.62558 272.526642 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 459.888702 490.547943;
euler20.scl, "Genus [3333555] tempered by 225/224-planar" 1 20 261.62558 274.581451 285.657501 293.611023 305.454681 320.580994 326.623901 329.506897 342.798523 366.555817 381.341919 391.959564 407.770416 411.369659 427.96347 439.879181 457.623016 489.338074 509.076996 513.570435;
euler24.scl, "Genus [33333555] tempered by 225/224-planar" 1 24 261.62558 274.581451 285.657501 293.611023 305.454681 308.150818 320.580994 326.623901 329.506897 342.798523 366.555817 381.341919 384.707886 391.959564 407.770416 411.369659 427.96347 439.879181 457.623016 480.284821 489.338074 493.657288 509.076996 513.570435;
euler_diat.scl, "Euler’s genus diatonicum veterum correctum" 1 8 261.62558 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 490.547943;
euler_enh.scl, "Euler’s Old Enharmonic From Tentamen Novae Theoriae Musicae" 1 7 261.62558 267.904572 275.622009 348.834076 392.438354 401.856873 413.432983;
euler_gm.scl, "Euler’s Genus Musicum Octony based on Archytas’s Enharmonic" 1 8 261.62558 271.315399 279.067261 289.403107 348.834076 361.753876 372.089691 385.870789;
exp2.scl, "Two times expanded major triad" 1 7 261.62558 306.592468 327.031952 367.91095 392.438354 459.888702 490.547943;
exp3.scl, "Three times expanded major triad" 1 30 261.62558 269.466034 275.933228 279.067261 287.43042 294.328766 297.671753 303.149292 306.592468 313.950684 323.359222 327.031952 344.916504 348.834076 359.288025 367.91095 372.089691 378.936615 383.24057 392.438354 404.2 408.79 418.6 431.14566 436.042603 446.507629 459.888702 490.547943 505.24881 517.374756;
far12_104.scl, "Farey approximation to 12-tET with den=104" 1 12 261.62558 276.71936 294.328766 311.938171 329.547577 349.672638 369.797668 392.438354 415.07901 440.235321 465.391632 493.063568;
far12_65.scl, "Farey approximation to 12-tET with den=65" 1 12 261.62558 277.725586 293.825623 309.925659 330.05072 350.175751 370.3 390.425842 414.575897 438.725952 466.901001 495.07608;
far12_80.scl, "Farey approximation to 12-tET with den=80" 1 12 261.62558 277.977173 294.328766 310.680359 330.302277 349.924194 369.546112 392.438354 415.330597 441.493134 467.655701 493.818268;
farey3.scl, "Farey fractions between 0 and 1 until 3rd level normalised by 2/1" 1 5 261.62558 313.950684 348.834076 392.438354 418.6;
farey4.scl, "Farey fractions between 0 and 1 until 4th level normalised by 2/1" 1 9 261.62558 299. 313.950684 327.031952 348.834076 373.750793 392.438354 418.6 448.5;
farey5.scl, "Farey fractions between 0 and 1 until 5th level normalised by 2/1" 1 20 261.62558 285.409698 290.695068 299. 305.229828 313.950684 322. 327.031952 332.977997 348.834076 366.275787 373.750793 380.546265 392.438354 402.5 406.973114 418.6 436.042603 448.5 465.112122;
farnsworth.scl, "Farnsworth’s scale" 1 7 261.62558 294.328766 327.031952 343.383545 392.438354 441.493134 490.547943;
fibo_9.scl, "First 9 Fibonacci terms reduced by 2/1 B. McLaren XH 13 1991" 1 8 261.62558 277.977173 327.031952 343.383545 363.823059 392.438354 425.141541 449.668945;
finnamore.scl, "David J. Finnamore Tuning List 9 May ’97. Tetrachordal scale 17/16×19/17×64/57" 1 8 261.62558 277.977173 310.680359 348.834076 392.438354 416.965759 457.844727 466.020538;
finnamore53.scl, "David J. Finnamore tuning for "Crawlspace" 53-limit 1998.0000" 1 16 261.62558 286.152954 310.680359 327.031952 343.383545 359.735138 367.91095 376.086761 392.438354 408.79 416.965759 425.141541 433.317352 441.493134 457.844727 474.19635;
finnamore_11.scl, "David J. Finnamore 11-limit scale Tuning List 3 Sept ’98" 1 14 261.62558 287.788116 294.328766 305.229828 323.761627 331.119843 343.383545 348.834076 392.438354 431.68219 441.493134 457.844727 485.642456 515.075317;
finnamore_7.scl, "David J. Finnamore TL 1 Sept ’98. 7-tone Pyth. with 9/8 div. in 21/20 &15/14" 1 12 261.62558 274.706848 294.328766 309.045197 331.119843 348.834076 366.275787 392.438354 412.060272 441.493134 463.56781 496.679779;
finnamore_7a.scl, "David J. Finnamore TL 1 Sept ’98. 7-tone Pyth. with 9/8 div. in 15/14 &21/20" 1 12 261.62558 280.31311 294.328766 315.352234 331.119843 348.834076 373.750793 392.438354 420.469666 441.493134 473.028351 496.679779;
finnamore_jc.scl, "Chalmers’ modification of Finnamore. Tuning List 9-5-97 19/18 x 9/8 x 64/57" 1 7 261.62558 276.160309 310.680359 348.834076 392.438354 414.240479 466.020538;
fisher.scl, "Alexander Metcalf Fisher’s modified meantone temperament" 1 12 261.62558 273.374298 292.506287 310.675354 327.031952 349.718414 365.632843 391.221466 410.550629 437.398895 467.473297 489.026825;
Fisk-Vogel.scl, "Modified meantone tuning of Fisk organ in Memorial Church at Stanford" 1 12 261.62558 273.915039 292.738373 312.853424 327.549255 349.781403 366.355743 391.375519 409.598907 437.918335 467.825409 489.993256;
fj-10tet.scl, "Franck Jedrzejewski continued fractions approx. of 10-tet" 1 10 261.62558 280.31311 300.515839 322. 345.2 370.013306 396.526245 425.141541 455.422272 488.367737;
fj-11tet.scl, "Franck Jedrzejewski continued fractions approx. of 11-tet" 1 11 261.62558 278.68811 296.769287 316.13089 336.375732 358.523926 381.831909 392.438354 433.035431 461.28717 491.345581;
fj-12tet.scl, "Franck Jedrzejewski continued fractions approx. of 12-tet" 1 12 261.62558 277.198517 293.661346 311.122284 329.648224 348.834076 370.013306 391.994904 415.522949 440.006622 466.169189 490.547943;
fj-13tet.scl, "Franck Jedrzejewski continued fractions approx. of 13-tet" 1 13 261.62558 275.961212 291.058441 306.973999 323.917358 341.566711 360.271271 379.98 400.788086 422.625916 445.952667 41.62225 496.186432;
fj-14tet.scl, "Franck Jedrzejewski continued fractions approx. of 14-tet" 1 14 261.62558 274.928558 288.878235 303.485657 318.856171 335.064331 352.188263 370.013306 388.7 408.503082 429.334259 451.078552 473.887817 497.932526;
fj-15tet.scl, "Franck Jedrzejewski continued fractions approx. of 15-tet" 1 15 261.62558 274.083923 286.944183 300.515839 314.76825 329.648224 345.2 361.518951 378.668579 396.526245 415.522949 392.438354 455.422272 477.081909 499.46698;
fj-16tet.scl, "Franck Jedrzejewski continued fractions approx. of 16-tet" 1 16 261.62558 273.253357 285.409698 297.962463 311.122284 324.922058 339.295654 354.284607 370.013306 386.4 403.52417 421.507843 440.006622 459.44 479.646881 500.985138;
fj-17tet.scl, "Franck Jedrzejewski continued fractions approx. of 17-tet" 1 17 261.62558 272.526642 283.891571 295.750641 307.989594 320.702301 334.3 348.033997 362.538269 373.750793 392.438354 409.715515 426.862762 444.763458 462.876007 482.372131 502.321075;
fj-18tet.scl, "Franck Jedrzejewski continued fractions approx. of 18-tet" 1 18 261.62558 271.885406 282.555603 293.661346 305.229828 317.121887 329.648224 342.604919 355.98233 370.013306 384.510315 399.573578 415.522949 431.68219 448.5 466.169189 484.491791 503.126099;
fj-19tet.scl, "Franck Jedrzejewski continued fractions approx. of 19-tet" 1 19 261.62558 271.315399 281.445679 291.813141 302.738159 313.950684 325.697144 337.734833 350.312195 363.368835 376.740814 390.782501 405.263123 420.469666 436.042603 451.898712 468.951477 485.876038 504.563599;
fj-20tet.scl, "Franck Jedrzejewski continued fractions approx. of 20-tet" 1 20 261.62558 270.859406 280.31311 290.296875 300.515839 311.122284 322. 333.444336 345.2 357.342224 370.013306 383.094574 396.526245 410.481476 425.141541 440.006622 455.422272 470.926025 488.367737 505.413025;
fj-21tet.scl, "Franck Jedrzejewski continued fractions approx. of 21-tet" 1 21 261.62558 270.346405 279.463684 288.878235 298.560944 308.584015 318.856171 329.648224 340.72168 352.188263 364. 376.086761 388.7 401.782104 415.522949 429.334259 443.625946 457.844727 473.887817 489.852112 506.188599;
fj-22tet.scl, "Franck Jedrzejewski continued fractions approx. of 22-tet" 1 22 261.62558 270.065094 278.68811 287.552429 296.769287 306.293335 316.13089 326.182526 336.375732 347.404449 358.523926 370.013306 381.831909 392.438354 392.438354 419.69101 433.035431 446.943665 461.28717 475.682831 491.345581 506.9;
fj-23tet.scl, "Franck Jedrzejewski continued fractions approx. of 23-tet" 1 23 261.62558 269.553619 277.977173 286.373932 295.167297 304.215759 313.479279 323.184509 332.977997 343.115509 353.679016 364.407043 375.66748 387.205841 398.979004 411.125885 423.584259 436.042603 449.995972 463.790771 477.97 492.471649 507.861389;
fj-24tet.scl, "Franck Jedrzejewski continued fractions approx. of 24-tet" 1 24 261.62558 269.320435 277.198517 285.409698 293.661346 302.322876 311.122284 320.265778 329.648224 339.295654 348.834076 348.834076 370.013306 380.546265 391.994904 403.52417 415.522949 427.534454 440.006622 452.813477 466.169189 479.646881 490.547943 508.301086;
fj-26tet.scl, "Franck Jedrzejewski continued fractions approx. of 26-tet" 1 26 261.62558 268.696533 275.961212 283.427704 291.058441 299. 306.973999 315.292358 323.917358 332.57486 341.566711 350.816101 360.271271 370.013306 379.98 390.221191 400.788086 411.125885 422.625916 434.187103 445.952667 457.844727 457.844727 483.001038 496.186432 509.481354;
fj-30tet.scl, "Franck Jedrzejewski continued fractions approx. of 30-tet" 1 30 261.62558 267.709869 274.083923 280.31311 286.944183 293.661346 300.515839 307.52478 314.76825 322. 329.648224 337.359283 345.2 353.194519 361.518951 370.013306 378.668579 387.593445 396.526245 405.786591 415.522949 425.141541 392.438354 444.763458 455.422272 466.169189 477.081909 488.367737 499.46698 511.35907;
fj-31tet.scl, "Franck Jedrzejewski continued fractions approx. of 31-tet" 1 31 261.62558 267.571594 273.517639 279.794006 286.152954 292.607544 299. 305.968872 312.813171 319.764587 327.031952 334.537598 342.125732 349.884796 357.811432 366.275787 373.750793 382.375824 391.259857 400.133209 409.209229 418.6 428.114563 437.546204 447.517426 457.844727 467.907257 478.401031 489.126068 500.501068 511.623322;
fj-36tet.scl, "Franck Jedrzejewski continued fractions approx. of 36-tet" 1 36 261.62558 266.755493 271.885406 277.198517 282.555603 288.082092 293.661346 299. 305.229828 311.122284 317.121887 323.184509 329.648224 327.031952 342.604919 348.834076 355.98233 362.9 370.013306 377.22757 384.510315 391.994904 399.573578 406.973114 415.522949 423.357727 431.68219 440.006622 448.5 436.042603 466.169189 475.197449 484.491791 490.547943 503.126099 513.188599;
fj-41tet.scl, "Franck Jedrzejewski continued fractions approx. of 41-tet" 1 41 261.62558 266.06 270.647125 275.216492 279.87851 284.710175 289.532288 294.328766 299.492432 304.632507 309.819763 315.139893 320.491302 325.96 331.392395 337.094482 342.819702 348.834076 354.64798 360.726166 366.275787 373.138092 379.357056 386.004944 392.438354 399.323242 405.970703 413.092987 419.977875 427.143768 434.485321 441.856506 449.45929 436.042603 465.112122 472.938507 480.825378 489.126068 497.088562 505.809418 514.530273;
fj-42tet.scl, "Franck Jedrzejewski continued fractions approx. of 42-tet" 1 42 261.62558 265.985992 270.346405 274.928558 279.463684 284.050629 288.878235 293.661346 298.560944 303.485657 308.584015 313.702698 318.856171 324.188202 329.648224 335.064331 340.72168 346.377502 352.188263 358.013947 364. 370.013306 376.086761 382.375824 388.7 395.221588 401.782104 408.503082 415.522949 422.168518 429.334259 436.042603 443.625946 451.078552 457.844727 466.169189 473.887817 481.941833 489.852112 497.932526 506.188599 514.811584;
fj-43tet.scl, "Franck Jedrzejewski continued fractions approx. of 43-tet" 1 43 261.62558 265.845337 270.203461 274.706848 279.067261 283.427704 288.167297 292.864441 297.711853 302.504547 307.41 312.388733 317.439026 322.671539 327.859894 332.977997 338.574249 344.244171 348.834076 355.415863 361.116974 367.056763 372.955597 379.090118 385.170959 391.454803 397.888885 404.330414 392.438354 417.48761 424.25766 431.197693 438.222809 445.32 452.541504 459.826752 467.188507 475.056946 483.001038 490.547943 498.334412 506.9 514.811584;
fj-53tet.scl, "Franck Jedrzejewski continued fractions approx. of 53-tet" 1 53 261.62558 265.067993 268.510437 272.090576 275.691467 279.302979 282.982758 286.712952 290.481323 294.328766 298.13147 302.115234 306.052551 310.074738 313.950684 318.311096 322.468719 326.764984 331.036438 335.417389 336.375732 344.244171 348.834076 353.424011 358.013947 362.9 367.521637 372.313293 377.344574 382.375824 387.205841 392.438354 397.670868 402.820313 408.135895 413.53717 418.6 424.414795 429.813416 436.042603 441.493134 447.295319 453.172852 459.078827 465.112122 470.926025 477.466644 483.760468 485.876038 496.554657 503.126099 509.834442 516.366272;
fj-54tet.scl, "Franck Jedrzejewski continued fractions approx. of 54-tet" 1 54 261.62558 265.023285 268.421021 271.885406 275.395325 279.067261 282.555603 286.152954 289.909424 293.661346 297.464691 301.265808 305.229828 309.193848 313.157867 317.121887 321.294556 325.436676 329.648224 333.91684 338.198914 342.604919 346.938263 351.559357 355.98233 360.619019 365.288513 370.013306 374.760956 379.613556 384.510315 389.531403 394.51474 399.573578 404.779175 409.88 415.522949 420.652863 426.075928 431.68219 436.042603 442.750946 448.5 454.402283 460.267212 466.169189 472.20224 478.401031 484.491791 490.547943 497.088562 503.126099 510.169861 516.542786;
fj-55tet.scl, "Franck Jedrzejewski continued fractions approx. of 55-tet" 1 55 261.62558 264.937286 268.333923 271.68808 275.157928 278.68811 282.145203 285.775604 289.373718 293.02063 296.769287 300.515839 304.34 308.216431 312.114716 316.13089 319.764587 324.103302 328.221161 332.335175 336.375732 340.906036 345.2 348.834076 353.963989 358.523926 363.072205 367.69 372.313293 377.048615 381.831909 386.750824 391.583374 396.526245 401.564819 406.657135 411.818024 416.965759 418.6 427.657166 433.035431 438.607574 444.155029 449.812378 455.422272 461.28717 467.188507 472.938507 479.032715 485.097412 491.345581 497.601563 503.87146 510.169861 516.71051;
fj-5tet.scl, "Franck Jedrzejewski continued fractions approx. of 5-tet" 1 5 261.62558 300.515839 345.2 396.526245 455.422272;
fj-60tet.scl, "Franck Jedrzejewski continued fractions approx. of 60-tet" 1 60 261.62558 264.667725 267.709869 270.859406 274.083923 277.198517 280.31311 283.690369 286.944183 290.296875 293.661346 297.1 300.515839 304.051331 307.52478 311.122284 314.76825 318.5 322. 325.797882 329.648224 333.444336 337.359283 341.250732 345.2 348.834076 353.194519 357.342224 361.518951 365.741852 370.013306 374.325806 378.668579 383.094574 387.593445 391.994904 396.526245 401.15921 405.786591 410.481476 415.522949 420.186523 425.141541 429.813416 434.91 440.006622 444.763458 450.239349 455.422272 460.95932 466.169189 470.926025 477.081909 482.553833 488.367737 490.547943 499.46698 505.413025 511.35907 517.305115;
fj-66tet.scl, "Franck Jedrzejewski continued fractions approx. of 66-tet" 1 66 261.62558 264.379517 267.192078 270.065094 272.838104 275.767487 278.68811 281.58 284.575165 287.552429 290.695068 293.661346 296.769287 299.912231 302.934875 306.293335 309.483887 312.813171 316.13089 319.387054 322.78479 326.182526 329.648224 332.977997 336.375732 340.11322 343.850739 347.404449 351.129059 354.746521 358.523926 362.250793 366.275787 370.013306 373.750793 377.903595 381.831909 385.897705 389.970184 392.438354 398.125854 402.5 406.657135 411.125885 415.522949 419.69101 424.013855 428.620605 433.035431 437.719696 442.27179 446.943665 451.898712 456.453125 461.28717 466.169189 470.926025 475.682831 481.053467 485.876038 491.345581 496.417725 501.449005 506.9 512.35 517.8;
fj-6tet.scl, "Franck Jedrzejewski continued fractions approx. of 6-tet" 1 6 261.62558 293.661346 329.648224 370.013306 415.522949 466.169189;
fj-72tet.scl, "Franck Jedrzejewski continued fractions approx. of 72-tet" 3 73 195.997711 197.9 199.840805 201.76236 203.683899 205.67662 207.664246 209.671982 211.677536 213.815689 215.817719 217.775238 219.997437 222.130753 223.997391 226.486252 228.664001 230.841751 233.078369 235.197266 237.572998 239.928238 242.114822 244.563522 246.957123 249.451645 251.740189 254.18454 256.663666 259.115631 261.330292 264.170837 266.685425 269.283813 271.867798 274.39682 277.196777 279.996735 282.601349 285.087585 288.057251 290.835327 293.664368 296.509369 299.34198 302.301575 304.885345 307.996399 311.290497 313.596344 317.16 320.28894 323.39624 326.467834 329.632538 332.826324 335.996094 339.226807 342.554565 345.878326 349.2323 352.795898 355.99585 359.329163 362.95874 366.430511 367.495728 373.620636 376.918701 380.795563 384.457062 388.226257 391.995422;
fj-78tet.scl, "Franck Jedrzejewski continued fractions approx. of 78-tet" 3 79 138.591309 139.828735 141.066162 142.337021 143.6 144.890915 146.185364 147.475372 148.78186 150.140594 151.483536 152.805817 154.182846 155.561676 156.958832 158.39 159.764984 161.218475 162.613815 164.121292 165.539627 167.020309 168.557007 170.005341 171.589249 173.066772 174.625061 176.1754 177.758423 179.35347 180.93866 182.534897 184.155579 185.838348 187.50589 188.988159 190.847061 192.487946 194.027847 196.007721 197.74614 199.571487 201.287384 203.107956 204.874115 206.712463 207.886978 210.453476 212.310104 214.186584 216.10849 217.786346 220.115616 221.746109 223.878281 225.964096 228.005066 230.002609 232.059875 234.171539 236.235199 238.37706 240.413513 242.534805 244.746368 246.944519 249.134384 251.398193 253.592621 255.860886 258.160278 260.551666 262.845612 265.131226 267.513458 269.888336 272.232941 274.707794 277.182617;
fj-7tet.scl, "Franck Jedrzejewski continued fractions approx. of 7-tet" 1 7 261.62558 288.878235 318.856171 352.188263 388.7 429.334259 473.887817;
fj-84tet.scl, "Franck Jedrzejewski continued fractions approx. of 84-tet" 3 85 97.998856 98.815514 99.632172 100.44883 101.265488 102.12513 102.98185 103.832123 104.680603 105.537231 106.398758 107.332085 108.207077 109.093071 109.998718 110.893448 111.833992 112.765808 113.678673 114.640175 115.588394 116.539185 117.505737 118.476234 119.436111 120.456932 121.433372 122.498573 123.478561 124.485039 125.507309 126.581856 127.626419 128.623505 129.744965 130.665146 131.921539 132.998459 134.103699 135.170837 136.346237 137.19841 138.598389 139.73912 140.873367 142.098343 143.229095 144.419373 145.598312 146.832184 148.040833 149.259796 150.498245 151.740173 153.015762 154.296082 155.645248 156.798172 158.134521 159.455765 160.818634 162.075043 163.331436 164.816269 166.171982 167.546432 168.963547 170.331345 171.498001 173.207291 174.61615 176.034988 177.50737 178.954437 180.524216 181.997879 183.487228 183.747864 186.513962 188.051865 189.606491 191.217285 192.836472 194.36441 195.997711;
fj-8tet.scl, "Franck Jedrzejewski continued fractions approx. of 8-tet" 1 8 261.62558 285.409698 311.122284 339.295654 370.013306 403.52417 440.006622 479.646881;
fj-90tet.scl, "Franck Jedrzejewski continued fractions approx. of 90-tet" 3 91 69.295654 69.832832 70.378403 70.907188 71.461143 72.013138 72.595451 73.145416 73.695381 74.245346 74.83931 75.41 76.001686 76.59 77.190102 77.780838 78.383614 78.997047 79.596367 80.237076 80.844933 81.452789 82.088699 82.707718 83.371338 83.994736 84.694695 85.286964 85.977943 86.619576 87.312531 87.952179 88.657677 89.354927 90.084358 90.744316 91.43177 92.140381 92.856178 93.549141 94.287537 95.034042 95.753998 96.518951 97.257065 98.00386 98.746315 99.501457 100.296349 101.056168 101.84362 102.660233 103.426353 103.943489 105.02623 105.833366 106.608704 107.478981 108.274467 109.140663 110.057808 110.873055 111.721573 112.605446 113.392891 114.337837 115.19278 116.11705 116.936424 117.80262 118.792557 119.692497 120.625778 121.594269 122.522758 123.47226 124.417206 125.392143 126.362671 127.354179 128.325287 129.351898 130.275833 131.297043 132.291718 133.26088 134.391571 135.441513 136.49144 137.525223 138.591309;
fj-96tet.scl, "Franck Jedrzejewski continued fractions approx. of 96-tet" 3 97 49. 49.35709 49.709568 50.064636 50.44059 50.814224 51.177181 51.533882 51.916061 52.26606 52.674385 53.048969 53.453922 53.819046 54.212135 54.6 55. 55.390659 55.804905 56.205227 56.621563 57.017517 57.447605 57.854748 58.269592 58.691624 59.110424 59.54361 59.982059 60.410255 60.85413 61.249287 61.739281 62.191582 62.610382 63.095158 63.546135 64. 64.472931 64.924248 65.332573 65.895782 66.353394 66.817406 67.320953 67.845367 68.302238 68.787659 69.3 69.787064 70.303528 70.776955 71.271896 71.865829 72.368385 72.901588 73.416092 73.944595 74.479134 75.030373 75.575394 76.105499 76.6604 77.21122 77.822624 78.345245 78.943527 79.487961 80.072235 80.644897 81.235893 81.665718 82.408134 83. 83.587265 84.217766 84.806702 85.434906 86.047775 86.691299 87.308075 87.947693 88.57589 89.204086 89.832291 90.460487 91.161728 91.873932 92.493301 93.098915 93.828697 94.498901 95.198891 95.91378 96.598877 97.288719 97.998856;
fj-9tet.scl, "Franck Jedrzejewski continued fractions approx. of 9-tet" 1 9 261.62558 282.555603 305.229828 329.648224 355.98233 384.510315 415.522949 448.5 484.491791;
flavel.scl, "Bill Flavel’s just tuning. Tuning List 6-5-98" 1 12 261.62558 272.526642 290.695068 294.328766 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943;
fogliano.scl, "Fogliano’s Monochord with D-/D and Bb-/Bb" 1 14 261.62558 272.526642 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 470.926025 490.547943;
fogliano1.scl, "Fogliano’s Monochord no.1 Musica theorica (1529)" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943;
fogliano2.scl, "Fogliano’s Monochord no.2" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 470.926025 490.547943;
fokker-h.scl, "Fokker-H 5-limit per.bl. synt.comma&small diesis KNAW B71 1968" 1 19 261.62558 272.526642 279.067261 290.695068 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 446.507629 470.926025 490.547943 502.321075;
fokker-ht.scl, "Tempered version of Fokker-H per.bl. with better 6 tetrads OdC" 1 19 261.62558 272.311401 279.672424 290.891205 305.670746 313.921844 326.667328 335.594299 349.222931 363.365967 376.743805 392.001373 407.920746 419.068146 436.082642 447.854034 470.60849 489.486481 502.718109;
fokker-k.scl, "Fokker-K 5-limit per.bl. of 225/224 & 81/80 & 10976/10935 KNAW B71 1968" 1 19 261.62558 272.526642 282.555603 290.695068 302.807373 313.950684 327.031952 339.066742 348.834076 363.368835 376.740814 392.438354 403.743164 418.6 436.042603 452.088989 470.926025 484.491791 502.321075;
Fokker-L.scl, "Fokker-L 7-limit periodicity block 10976/10935 & 225/224 & 15625/15552 1969" 1 19 261.62558 271.315399 282.620209 291.992828 301.392639 313.950684 325.578491 339.144257 350.391388 363.368835 376.740814 390.694183 403.650879 420.469666 436.042603 454.21106 468.833008 484.381042 504.563599;
fokker-lt.scl, "Tempered version of Fokker-L per.bl. with more triads" 1 19 261.62558 272.072968 282.577332 291.772339 302.209259 313.901398 326.421509 339.587982 349.940338 363.147156 376.970825 391.197754 403.123444 419.383759 436.111053 452.983734 469.187286 484.454529 503.158661;
fokker-m.scl, "Fokker-M 7-limit periodicity block 81/80 & 225/224 & 1029/1024 KNAW B72 1969" 1 31 261.62558 265.778351 274.706848 279.067261 286.152954 294.328766 299. 305.229828 313.950684 318.934021 327.031952 336.375732 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 406.973114 418.6 429.229431 436.042603 448.5 457.844727 465.112122 478.401031 490.547943 498.334412 515.075317;
fokker-n.scl, "Fokker-N 7-limit periodicity block 81/80 & 2100875/2097152 & 1029/1024 1969" 1 31 261.62558 265.778351 273.372009 277.711243 286.152954 290.695068 299. 303.746674 313.950684 318.934021 328.628784 333.845123 343.383545 348.834076 358.8 364.496033 375.575775 381.537292 392.438354 398.667542 410.058014 416.566895 429.229431 436.042603 450.690918 457.844727 470.926025 478.401031 492.943176 500.76767 515.075317;
fokker-n2.scl, "Fokker-N different block shape" 1 31 261.62558 265.778351 272.526642 279.067261 286.152954 290.695068 299. 305.229828 313.950684 318.934021 327.031952 334.880737 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 408.79 418.6 429.229431 436.042603 448.5 457.844727 470.926025 478.401031 490.547943 502.321075 515.075317;
fokker-p.scl, "Fokker-P 7-limit periodicity block 65625/65536 & 6144/6125 & 2401/2400 1969" 1 31 261.62558 267.904572 273.372009 280.31311 286.152954 290.695068 299. 306.176666 312.98 320.357849 327.031952 334.880737 341.857391 350.391388 357.691193 366.275787 373.750793 382.720825 390.694183 400.447296 408.79 418.6 427.321747 437.395233 447.114014 457.844727 470.926025 478.401031 488.367737 500.76767 510.987427;
fokker-q.scl, "Fokker-Q 7-limit per.bl. 225/224 & 4000/3969 & 6144/6125 KNAW B72 1969" 1 53 261.62558 265.778351 269.1 272.526642 274.706848 279.067261 284.762512 286.152954 290.695068 294.328766 299. 301.392639 305.229828 311.459015 313.950684 318.934021 321.922089 327.031952 332.222931 334.880737 340.658295 343.383545 348.834076 353.194519 358.8 363.368835 366.275787 373.750793 376.740814 381.537292 387.593445 392.438354 398.667542 401.856873 408.79 412.060272 418.6 425.245361 429.229431 436.042603 439.530945 448.5 454.21106 457.844727 465.112122 470.926025 478.401031 480.736969 490.547943 498.334412 502.321075 508.71637 515.075317;
fokker-r.scl, "Fokker-R 7-limit per.bl. 4375/4374 & 65625/65536 & 6144/6125 1969" 1 53 261.62558 264.956451 268.268402 272.526642 275.55899 279.067261 282.620209 287.040619 290.695068 294.328766 298.075989 301.801941 306.176666 310.074738 313.950684 317.947723 322.920685 327.031952 331.195557 334.880737 340.196289 344.44873 348.834076 353.194519 357.691193 363.368835 367.91095 372.089691 376.740814 382.720825 387.593445 392.438354 397.434662 402.402588 408.79 413.338501 418.6 423.930328 430.560944 436.042603 441.493134 447.114014 453.595062 459.264984 465.112122 470.926025 476.9216 484.381042 490.547943 496.793335 502.321075 510.294434 516.673096;
fokker-s.scl, "Fokker-S 7-limit per.bl. 4375/4374 & 323/322 & 64827/65536 1969" 1 53 261.62558 265.778351 269.1 273.372009 273.85733 278.204254 282.555603 286.152954 290.695068 295.241791 299. 303.746674 304.285919 309.045197 313.950684 317.947723 322.920685 328.046417 332.222931 333.845123 338.018188 343.383545 348.834076 353.194519 358.8 364.496033 369.136597 370.854248 375.575775 381.537292 387.593445 392.438354 398.667542 404.995575 410.058014 412.060272 417.306396 423.930328 430.560944 436.042603 442.963928 449.892242 450.690918 457.844727 463.673767 470.926025 478.401031 484.491791 492.069641 499.880249 500.76767 508.71637 515.075317;
fokker_12.scl, "Fokker’s 7-limit 12-tone just scale" 1 12 261.62558 280.31311 294.328766 305.229828 327.031952 348.834076 367.91095 392.438354 420.469666 436.042603 457.844727 490.547943;
fokker_12a.scl, "Fokker’s 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224" 1 12 261.62558 274.706848 293.02063 309.045197 327.031952 348.834076 367.91095 390.694183 412.060272 439.530945 465.112122 490.547943;
fokker_12b.scl, "Fokker’s 7-limit semitone scale KNAW B72 1969" 1 12 261.62558 275.933228 293.02063 309.045197 332.222931 348.834076 367.91095 392.438354 412.060272 439.530945 467.188507 496.119598;
fokker_12c.scl, "Fokker’s 7-limit complementary semitone scale KNAW B72 1969" 1 12 261.62558 275.933228 293.02063 311.459015 332.222931 348.834076 372.089691 392.438354 412.060272 442.963928 467.188507 496.119598;
fokker_12t.scl, "Tempered version of fokker_12.scl with egalised 225/224 see also lumma.scl" 1 12 261.62558 279.531799 293.535431 305.443939 326.66156 349.083527 366.634094 391.818848 419.060577 436.034149 457.881653 489.219574;
fokker_12t2.scl, "Another tempered version of fokker_12.scl with egalised 225/224" 1 12 261.62558 279.530609 293.530273 305.446777 326.661926 349.104675 366.628326 391.816895 419.030945 436.042603 457.880676 489.216949;
fokker_22.scl, "Fokker’s 22-tone periodicity block of 2048/2025 & 3125/3072. KNAW B71 1968" 1 22 261.62558 272.526642 279.067261 287.43042 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 353.194519 367.91095 383.24057 392.438354 408.79 418.6 436.042603 446.507629 459.888702 470.926025 490.547943 502.321075;
fokker_22a.scl, "Fokker’s 22-tone periodicity block of 2048/2025 & 2109375/2097152 = semicomma" 1 22 261.62558 269.466034 279.067261 287.43042 297.671753 306.592468 313.950684 327.031952 334.880737 348.834076 357.206116 367.91095 383.24057 392.438354 408.79 418.6 431.14566 446.507629 459.888702 476.274811 490.547943 502.321075;
FOKKER_31.scl, "Fokker’s 31-tone just system" 1 31 261.62558 265.778351 275.933228 280.31311 286.152954 294.328766 299. 305.229828 315.352234 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 406.973114 420.469666 429.229431 436.042603 448.5 457.844727 465.112122 482.883118 490.547943 498.334412 515.075317;
FOKKER_31A.scl, "Fokker’s 31-tone first alternate septimal tuning" 1 31 261.62558 269.1 272.526642 280.31311 286.152954 294.328766 299. 305.229828 311.459015 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 412.060272 420.469666 429.229431 436.042603 448.5 457.844727 470.926025 476.9216 490.547943 498.334412 515.075317;
FOKKER_31B.SCL, "Fokker’s 31-tone second alternate septimal tuning" 1 31 261.62558 267.076111 274.706848 280.31311 286.152954 294.328766 299. 305.229828 313.950684 321.922089 327.031952 336.375732 343.383545 348.834076 357.691193 367.91095 373.750793 381.537292 392.438354 398.667542 408.79 420.469666 429.229431 436.042603 448.5 457.844727 467.188507 480.536743 490.547943 498.334412 515.075317;
fokker_31c.scl, "Fokker’s 31-tone periodicity block of 81/80 & 2109375/2097152 = semicomma" 1 31 261.62558 269.466034 272.526642 279.067261 287.43042 294.328766 297.671753 306.592468 313.950684 319.367157 327.031952 334.880737 344.916504 348.834076 359.288025 367.91095 372.089691 383.24057 392.438354 396.89566 408.79 418.6 431.14566 436.042603 446.507629 459.888702 465.112122 479.05072 490.547943 502.321075 510.987427;
fokker_31d.scl, "Fokker’s 31-tone periodicity block of 81/80 & Wurschmidt’s comma" 1 31 261.62558 266.139282 272.526642 279.067261 287.43042 294.328766 299.406708 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 359.288025 367.91095 376.740814 383.24057 392.438354 399.208923 408.79 418.6 425.822845 436.042603 443.565491 459.888702 470.926025 479.05072 490.547943 502.321075 510.987427;
fokker_41.scl, "Fokker’s 7-limit supracomma per.bl. 10976/10935 & 225/224 & 496125/262144" 1 41 261.62558 264.895874 271.315399 274.706848 280.31311 283.817017 290.695068 294.328766 300.33548 305.229828 311.459015 313.950684 321.55899 325.578491 329.648224 336.375732 341.857391 348.834076 353.194519 361.753876 366.275787 373.750793 378.422699 387.593445 392.438354 400.447296 406.973114 415.278687 420.469666 425.725525 436.042603 439.530945 448.5 455.809875 465.112122 470.926025 482.338501 488.367737 498.334412 504.563599 516.79126;
fokker_41a.scl, "Fokker’s 41-tone periodicity block of schisma & 34171875/33554432" 1 41 261.62558 264.597107 272.834351 275.933228 279.067261 287.43042 291.023315 294.328766 297.671753 306.592468 310.424866 313.950684 323.359222 327.031952 331.119843 334.880737 344.916504 348.834076 353.194519 363.779144 367.91095 372.089691 376.315887 388.031067 392.438354 396.89566 408.79 413.9 418.6 431.14566 436.042603 441.493134 446.507629 459.888702 465.112122 470.926025 485.038849 490.547943 496.119598 502.321075 517.374756;
fokker_41b.scl, "Fokker’s 41-tone periodicity block of schisma & 3125/3072" 1 41 261.62558 264.895874 272.526642 275.933228 279.067261 287.43042 290.695068 294.328766 297.671753 306.592468 310.424866 313.950684 323.359222 327.031952 331.119843 340.658295 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 383.24057 388.031067 392.438354 397.343842 408.79 413.9 418.6 431.14566 436.042603 441.493134 454.21106 459.888702 465.112122 470.926025 485.038849 490.547943 496.679779 510.987427 517.374756;
fokker_53.scl, "Fokker’s 53-tone system degree 37 has alternatives" 1 53 261.62558 263.718567 268.268402 272.526642 274.706848 279.067261 282.555603 286.152954 290.695068 294.328766 299. 300.460602 305.229828 309.045197 313.950684 317.875061 321.922089 327.031952 329.648224 334.880737 340.658295 343.383545 348.834076 353.194519 357.691193 360.552734 366.275787 373.750793 376.740814 381.537292 386.306488 392.438354 398.667542 400.614136 410.058014 412.060272 418.6 423.833405 429.229431 436.042603 439.530945 448.5 450.690918 457.844727 465.112122 470.926025 476.9216 480.736969 490.547943 498.334412 502.321075 508.71637 515.075317;
fokker_53a.scl, "Fokker’s 53-tone periodicity block of schisma & kleisma" 1 53 261.62558 264.895874 269.466034 272.526642 275.933228 279.382385 283.881897 287.43042 290.695068 294.328766 298.007874 302.807373 306.592468 310.424866 313.950684 319.367157 323.359222 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 359.288025 363.368835 367.91095 372.509827 378.509216 383.24057 388.031067 392.438354 397.343842 403.743164 408.79 413.9 418.6 425.822845 431.14566 436.042603 441.493134 447.01181 454.21106 459.888702 465.637299 470.926025 479.05072 484.491791 490.547943 496.679779 504.678955 510.987427 517.374756;
fokker_53b.scl, "Fokker’s 53-tone periodicity block of schisma & 2109375/2097152" 1 53 261.62558 264.597107 267.904572 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 317.516541 323.359222 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 388.031067 392.438354 396.89566 401.856873 408.79 413.9 418.6 423.355377 431.14566 436.042603 441.493134 446.507629 451.579071 459.888702 465.112122 470.926025 476.274811 485.038849 490.547943 496.119598 502.321075 510.987427 517.374756;
fokker_av.scl, "Fokker’s suggestion for a shrinked octave by averaging approximations" 2 32 261.62558 267.532379 273.572388 279.748932 286.064789 292.523376 299.127777 305.881104 312.787109 319.848999 327.07016 334.454559 342.005463 349.727051 357.622955 365.69693 373.9534 382.396057 391.029572 399.857971 408.885498 418.117035 427.556793 437.2099 447.080933 457.174591 467.496368 478.051208 488.844086 499.88089 511.166595 522.707397;
fokker_sr.scl, "Fokker’s 7-limit sruti scale KNAW B72 1969" 1 22 261.62558 269.1 279.067261 287.040619 296.751221 305.229828 315.352234 325.578491 336.375732 347.283722 358.8 367.91095 381.537292 392.438354 406.973114 418.6 434.104645 446.507629 461.315277 474.801941 490.547943 506.455414;
fokker_sr2.scl, "Fokker’s complementary 7-limit sruti scale KNAW B72 1969" 1 22 261.62558 270.30191 279.067261 288.322052 296.751221 306.592468 315.352234 327.031952 336.375732 348.834076 358.8 372.089691 381.537292 394.190308 406.973114 420.469666 434.104645 448.5 461.315277 476.9216 490.547943 508.71637;
fokker_sra.scl, "Two-step approximation 9-13 to Fokker’s 7-limit sruti scale" 1 22 261.62558 269.769562 278.74762 287.424591 296.371704 305.59729 315.11 325.597076 336.433075 346.905731 357.704376 368.839172 381.114288 392.977814 406.056274 419.57 433.533478 447.028717 460.944031 475.292511 490.087646 506.39798;
fokker_srb.scl, "Two-step maximally even approximation 11-11 to Fokker’s 7-limit sruti scale" 1 22 261.62558 269.315338 278.641968 286.831909 296.765167 305.487762 316.067078 325.357025 336.62442 346.518585 358.51886 369.056549 381.837311 393.060394 406.672424 418.625458 433.122833 445.853302 461.29361 474.852112 491.296661 505.737;
fokker_uv.scl, "Table of Unison Vectors Microsons and Minisons from article KNAW 1969" 3 71 220. 220.050293 220.09166 220.141983 220.156677 220.248413 220.298767 220.390564 220.525391 220.682449 220.774399 220.824875 220.982147 221.032669 221.023682 221.074219 221.282242 221.417618 221.667633 221.718323 221.76 221.810699 222.010406 222.061157 222.406097 222.447906 222.498764 222.657227 222.75 222.8 223.001511 223.052505 223.145447 223.188965 223.24 223.440979 223.492065 223.58519 223.795578 223.888824 224.185349 224.236603 224.33 224.489792 224.583328 224.794662 224.836914 224.888321 225.186172 225.28 225.331497 225.492004 225.585938 225.68 225.978821 226.030487 226.285721 226.431763 226.687439 227.082245 227.134155 227.295914 227.390625 227.442612 228.095993 228.148148 229.166672 231. 232.03125 233.623703 233.843536;
foote.scl, "Ed Foote piano temperament. TL 9 Jun 1999 almost equal to Coleman" 1 12 261.62558 276.702728 293.156342 310.588318 328.487122 349.43 368.927368 391.769073 414.585663 438.984558 465.894562 492.174591;
forster.scl, "Cris Forster’s Chrysalis tuning XH 7+8" 1 32 261.62558 279.067261 283.427704 287.788116 299. 309.193848 319.764587 327.031952 336.375732 340.11322 343.383545 353.194519 359.735138 366.275787 373.750793 377.903595 380.546265 387.593445 392.438354 398.667542 402.5 406.973114 418.6 428.114563 441.493134 442.750946 448.5 457.844727 465.112122 483.001038 490.547943 507.39505;
fortuna.scl, "11-limit scale from Clem Fortuna" 1 12 261.62558 274.706848 299. 305.229828 332.977997 343.383545 373.750793 398.667542 411.125885 448.5 457.844727 498.334412;
fortuna_a1.scl, "Clem Fortuna Arabic mode of 24-tET try C or G major" 1 12 261.62558 277.182617 293.664764 311.126984 320.243713 349.228241 369.994415 391.995422 415.304688 440. 466.163757 479.823395;
fortuna_a2.scl, "Clem Fortuna Arabic mode of 24-tET try C or F minor" 1 12 261.62558 277.182617 285.304688 311.126984 329.627563 349.228241 369.994415 391.995422 428.114563 440. 466.163757 493.883301;
fortuna_bag.scl, "Bagpipe tuning from Fortuna try key of G with F natural" 1 12 261.62558 266.175568 291.582703 303.423737 318.96817 348.011353 359.180847 388.552826 398.819458 432.928009 462.35553 479.646881;
fortuna_eth.scl, "Ethiopian Tunings from Fortuna" 1 12 261.62558 280.31311 288.690277 305.755188 323.917358 346.020905 368.959137 385.170959 414.240479 422.625916 469.584351 484.007294;
fortuna_sheng.scl, "Sheng scale on naturals starting on d from Fortuna" 1 12 261.62558 275.292572 286.944183 312.813171 320.265778 348.834076 367.193787 382.62738 417.82 433.74765 467.754791 484.776794;
galilei.scl, "Vincenzo Galilei’s approximation" 1 12 261.62558 277.663361 293.325714 311.306763 328.866821 348.221069 368.714325 390.413666 413.39 437.718536 463.478851 490.755188;
gamelan.scl, "from Clem Fortuna out of Helmholtz Slendro on black F A B C E F as Pelog" 1 12 261.62558 277.358795 299.316162 317.022858 331.632843 351.779205 364.184662 380.814087 415.448669 455.148346 481.711761 490.38681;
gamelan_om.scl, "Other Music gamelan (7 limit black keys)" 1 12 261.62558 280.31311 294.328766 305.229828 327.031952 348.834076 366.275787 392.438354 406.973114 436.042603 457.844727 490.547943;
gamelan_udan.scl, "Gamelan Udan Mas (approx) s6 p6 p7 s1 p1 s2 p2 p3 s3 p4 s5 p5" 1 12 261.62558 261.62558 290.695068 305.229828 334.880737 351.325745 364. 392.438354 402.5 465.112122 465.112122 501.449005;
ganassi.scl, "Sylvestro Ganassi’s temperament (1543)" 1 12 261.62558 275.395325 290.695068 307.794769 327.031952 348.834076 369.353729 392.438354 413.092987 436.042603 461.692169 490.547943;
gann_custer.scl, "Kyle Gann scale from Custer’s Ghost to Sitting Bull 1/1=G" 1 31 261.62558 269.801361 274.706848 279.067261 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 343.383545 348.834076 353.194519 359.735138 366.275787 380.546265 392.438354 406.973114 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 490.547943 507.39505;
gann_frac.scl, "Kyle Gann scale from Fractured Paradise 1/1=B" 1 16 261.62558 264.895874 294.328766 305.229828 309.045197 313.950684 348.834076 353.194519 366.275787 392.438354 397.343842 412.060272 418.6 423.833405 457.844727 470.926025;
gann_ghost.scl, "Kyle Gann scale from Ghost Town 1/1=E" 1 8 261.62558 294.328766 305.229828 343.383545 348.834076 392.438354 406.973114 457.844727;
gann_super.scl, "Kyle Gann scale from Superparticular Woman (1992) 1/1=G" 1 21 261.62558 287.788116 290.695068 294.328766 299. 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025;
gann_things.scl, "Kyle Gann scale from How Miraculous Things Happen 1/1=A" 1 24 261.62558 266.47049 272.526642 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 343.383545 348.834076 373.750793 387.593445 392.438354 406.973114 408.79 436.042603 448.5 465.112122 490.547943 498.334412 508.71637;
garcia.scl, "Linear 29-tone scale by Jose L. Garcia 1988 15/13-52/45 alternating" 1 29 261.62558 268.333923 271.68808 279.067261 286.222839 294.328766 301.875641 310.074738 313.950684 322. 331.119843 339.610107 348.834076 357.778564 362.250793 372.089691 381.630463 392.438354 402.5 407.532135 418.6 429.334259 441.493134 452.813477 465.112122 470.926025 483.001038 496.119598 509.415161;
GENOVESE.SCL, "Denny Genovese’s 65-note scale. 3/2=384 Hz" 1 65 261.62558 277.015289 277.977173 279.067261 280.31311 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 296.508972 299. 301.875641 305.229828 307.794769 309.193848 313.950684 317.688171 319.764587 322. 327.031952 332.977997 336.375732 338.574249 340.11322 342.125732 348.834076 356.762146 359.735138 362.250793 366.275787 369.353729 370.63623 373.750793 377.903595 380.546265 383.717499 392.438354 400.133209 402.5 404.330414 406.973114 411.125885 418.6 425.141541 428.114563 430.912689 436.042603 442.750946 444.763458 448.5 453.484314 457.844727 461.692169 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 488.367737 490.547943 492.471649 494.18161;
GENOVESE_38.scl, "Denny Genovese’s 38-note scale. Harm 1..16 x Subh. 1..12" 1 38 261.62558 280.31311 283.427704 285.409698 287.788116 290.695068 294.328766 299. 305.229828 309.193848 313.950684 319.764587 327.031952 332.977997 336.375732 340.11322 348.834076 356.762146 359.735138 366.275787 373.750793 377.903595 380.546265 392.438354 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 485.876038 490.547943;
gf1-2.scl, "16-note scale with all possible quadruplets of 50 & 100 c. Galois Field GF(2)" 1 16 261.62558 269.291779 277.182617 285.304688 293.664764 311.126984 320.243713 339.286377 349.228241 359.461395 380.83609 403.481781 415.304688 440. 466.163757 493.883301;
gf2-3.scl, "16-note scale with all possible quadruplets of 60 & 90 c. Galois Field GF(2)" 1 16 261.62558 270.851776 280.403351 290.291748 300.52887 316.565399 327.729034 345.21701 357.391052 369.994415 389.737701 410.534515 425.011993 447.691071 471.580322 496.744324;
gilson7.scl, "Gilson septimal" 1 12 261.62558 261.62558 299. 313.950684 327.031952 392.438354 373.750793 392.438354 408.79 408.79 467.188507 490.547943;
GILSON7a.scl, "Gilson septimal 2" 1 12 261.62558 261.62558 280.31311 299. 313.950684 336.375732 373.750793 373.750793 392.438354 418.6 470.926025 470.926025;
GILSON_10.scl, "Gilson’s 10-tone JI" 1 10 261.62558 306.592468 313.950684 327.031952 334.880737 392.438354 408.79 418.6 490.547943 502.321075;
GOLDEN_5.scl, "Golden pentatonic" 1 5 261.62558 327.031952 343.383545 392.438354 425.141541;
gradus10.scl, "Intervals > 1 with Gradus = 10" 2 20 261.62558 290.695068 299. 305.229828 490.547943 882.986267 930.224243 941.852051 1220.919312 1255.802734 1674.403564 2747.068359 3270.31958 3488.34082 5886.575195 10595.834961 10988.273438 11162.69043 13081.27832 14651.03125;
gradus3.scl, "Intervals > 1 with Gradus = 3" 2 3 261.62558 784.876709 1046.502319;
gradus4.scl, "Intervals > 1 with Gradus = 4" 2 4 261.62558 392.438354 1569.753418 2093.004639;
gradus5.scl, "Intervals > 1 with Gradus = 5" 2 6 261.62558 348.834076 1308.127808 2354.630127 3139.506836 4186.009277;
golden_10.scl, "Golden version of Rapoport’s Major 10 out of 13" 1 10 261.62558 287.587158 304.904663 323.264984 342.730865 376.740692 399.426727 423.478821 465.501404 493.532318;
gradus6.scl, "Intervals > 1 with Gradus = 6" 2 8 261.62558 654.063904 697.668152 1177.315063 2616.255615 4709.260254 6279.013672 8372.018555;
gradus7.scl, "Intervals > 1 with Gradus = 7" 2 12 261.62558 327.031952 436.042603 588.657532 1395.336304 1831.378906 3924.383545 5232.51123 7063.890137 9418.520508 12558.027344 16744.037109;
gradus8.scl, "Intervals > 1 with Gradus = 8" 2 14 261.62558 294.328766 313.950684 418.6 872.085205 915.689453 1962.191772 2790.672607 3531.945068 3662.757813 7848.76709 10465.022461 14127.780273 18837.041016;
gradus9.scl, "Intervals > 1 with Gradus = 9" 2 18 261.62558 457.844727 465.112122 470.926025 610.459656 627.901367 837.201782 981.095886 1744.17041 1765.972534 5494.136719 5581.345215 6540.63916 7325.515625 11773.150391 15697.53418 20930.044922 21191.67;
grady.scl, "Kraig Grady letter to Lou Harrison published in 1/1 7 (1) 1991 p 5.0000" 1 14 261.62558 274.706848 294.328766 305.229828 327.031952 343.383545 348.834076 366.275787 392.438354 412.060272 441.493134 457.844727 490.547943 515.075317;
grady7.scl, "Kraig Grady’s 7-limit "Centaur" scale 1987.0000 See Xenharmonikon 16" 1 12 261.62558 274.706848 294.328766 305.229828 327.031952 348.834076 366.275787 392.438354 406.973114 436.042603 457.844727 490.547943;
grady7t.scl, "Tempered version of grady7.scl with egalised 225/224" 1 12 261.62558 274.791779 293.653381 305.542511 326.688049 349.104431 366.66275 392.009766 407.7724 436.071838 457.965302 489.371796;
grammateus.scl, "H. Grammateus (1518). Wolf B-F# and Bb-F 1/2 P. Also Marpurg temp.nr.6" 1 12 261.62558 277.495819 294.328766 312.1828 331.119843 348.834076 369.994415 392.438354 416.243713 441.493134 468.2742 496.679779;
graupner.scl, "Johann Gottlieb Graupner’s temperament (1819)" 1 12 261.62558 277.083527 293.590607 310.980804 329.5513 349.115295 370.00708 392.016541 415.203491 439.964142 466.049438 493.905182;
groenewald_21.scl, "Jürgen Grönewald new meantone temperament I (2000)" 1 21 261.62558 275.933228 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 330.746399 348.834076 367.91095 372.089691 392.438354 413.9 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.119598;
groven.scl, "Eivind Groven’s 36-tone scale with 1/8-schisma temp. fifths and 5/4 (1948)" 1 36 261.62558 264.74646 272.565063 275.816467 279.106628 290.7771 294.245728 297.755737 306.549225 310.205994 313.906403 327.031952 330.933075 334.880737 344.770569 348.883301 353.045074 363.471375 367.807159 372.194672 387.757507 392.382996 397.06366 408.79 413.666351 418.6 436.104126 441.306335 446.570618 459.758972 465.243347 470.793182 484.696869 490.478729 496.32959 517.082947;
groven_ji.scl, "Untempered version of Groven’s 36-tone scale" 1 36 261.62558 264.895874 272.526642 275.933228 279.067261 290.695068 294.328766 297.671753 306.592468 310.074738 313.950684 327.031952 331.119843 334.880737 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 387.593445 392.438354 396.89566 408.79 413.9 418.6 436.042603 441.493134 446.507629 459.888702 465.112122 470.926025 484.491791 490.547943 496.119598 517.374756;
gumbeng.scl, "Scale of gumbeng ensemble Java. 1/1=440 Hz." 2 6 261.62558 305.031555 348.437775 394.816833 470.925934 525.629395;
gunkali.scl, "Indian mode Gunkali see Danielou: Intr. to the Stud. of Mus. Scales p.175" 1 7 261.62558 275.933228 282.555603 348.834076 392.438354 408.79 418.6;
gyaling.scl, "Tibetan Buddhist Gyaling tones measured from CD "The Diamond Path" Ligon 2002" 2 7 261.62558 283.497681 307.553375 339.286377 347.819031 393.583618 435.952271;
h10_27.scl, "10-tET harmonic approximation fundamental=27" 1 10 261.62558 281.005249 300.384918 319.764587 348.834076 368.213745 397.283264 426.352783 455.422272 484.491791;
h12_24.scl, "12-tET harmonic approximation fundamental=24" 1 12 261.62558 272.526642 294.328766 316.13089 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 468.745819 490.547943;
h14_27.scl, "14-tET harmonic approximation fundamental=27" 1 14 261.62558 271.315399 290.695068 300.384918 319.764587 339.144257 348.834076 368.213745 387.593445 406.973114 426.352783 455.422272 474.801941 494.18161;
h15_24.scl, "15-tET harmonic approximation fundamental=24" 1 15 261.62558 272.526642 283.427704 305.229828 316.13089 327.031952 348.834076 359.735138 381.537292 392.438354 414.240479 436.042603 457.844727 479.646881 501.449005;
hahn9.scl, "Paul Hahn’s just version of 9 out of 31 scale. TL 6-8-’98" 1 9 261.62558 286.152954 313.950684 327.031952 366.275787 392.438354 418.6 457.844727 490.547943;
hahn_7.scl, "Paul Hahn’s scale with 32 consonant 7-limit dyads. TL ’99" 1 12 261.62558 274.706848 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 488.367737;
hahn_g.scl, "fourth of sqrt(2)-1 octave "recursive" meantone Paul Hahn" 1 12 261.62558 280.501831 294.665222 309.543793 331.87735 348.634857 373.788849 392.662598 420.993164 442.250427 464.581024 498.1;
halfefg357777.scl, "Half genus [357777]" 1 10 261.62558 280.31311 299. 320.357849 341.715027 375.575775 400.614136 429.229431 457.844727 490.547943;
hamilton.scl, "Elsie Hamilton’s gamut from article The Modes of Ancient Greek Music (1953)" 1 12 261.62558 274.083923 287.788116 302.934875 319.764587 338.574249 359.735138 383.717499 411.125885 426.352783 442.750946 479.646881;
hamilton_jc.scl, "Chalmers’ permutation of Hamilton’s gamut. Diatonic notes on white" 1 12 261.62558 274.083923 287.788116 302.934875 319.764587 359.735138 338.574249 411.125885 383.717499 442.750946 426.352783 479.646881;
hamilton_jc2.scl, "EH gamut diatonic notes on white and drops 17 for 25.0000 JC Dorian Harmonia on C" 1 12 261.62558 274.083923 287.788116 302.934875 319.764587 359.735138 383.717499 411.125885 426.352783 442.750946 460.460999 479.646881;
hammond.scl, "Hammond organ pitch wheel ratios 1/1=320 Hz. Do "del 0" to get 12-tone scale" 2 14 261.62558 226.529449 240.122101 254.358185 269.435272 285.409698 302.504547 320.491302 339.406128 359.735138 381.063324 403.650879 427.657166 453.058899;
hammond12.scl, "Hammond organ scale 1/1=277.0732 Hz A=440 see hammond.scl for the ratios" 1 12 261.62558 277.324097 293.765808 311.178772 329.628113 349.37146 370.144897 391.990173 415.468781 440.101288 466.188324 493.91391;
handblue.scl, ""Handy Blues" of Pitch Palette 7-limit" 1 12 261.62558 279.067261 294.328766 305.229828 327.031952 348.834076 366.275787 392.438354 406.973114 436.042603 457.844727 490.547943;
handel.scl, "Well temperament according to Georg Friedrich Ha"ndel’s rules (c. 1780)" 1 12 261.62558 276.070557 292.896423 310.579376 328.7948 349.023224 368.493347 391.37619 414.105835 438.868591 465.616608 492.390869;
hanson_19.scl, "JI version of Hanson’s 19 out of 53-tET scale" 1 19 261.62558 272.526642 282.555603 294.328766 302.807373 313.950684 327.031952 340.658295 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 454.21106 470.926025 490.547943 502.321075;
harm-doreninv1.scl, "1st Inverted Schlesinger’s Enharmonic Dorian Harmonia" 1 7 261.62558 321.085907 327.031952 332.977997 380.546265 499.46698 511.35907;
harm-dorinv1.scl, "1st Inverted Schlesinger’s Chromatic Dorian Harmonia" 1 7 261.62558 309.193848 321.085907 332.977997 380.546265 475.682831 499.46698;
harm-lydchrinv1.scl, "1st Inverted Schlesinger’s Chromatic Lydian Harmonia" 1 7 261.62558 322. 342.125732 362.250793 402.5 483.001038 503.126099;
harm-lydeninv1.scl, "1st Inverted Schlesinger’s Enharmonic Lydian Harmonia" 1 7 261.62558 342.125732 352.188263 362.250793 402.5 503.126099 513.188599;
harm-mixochrinv1.scl, "1st Inverted Schlesinger’s Chromatic Mixolydian Harmonia" 1 7 261.62558 336.375732 355.063263 373.750793 411.125885 485.876038 504.563599;
HARM-MIXOeninv1.scl, "1st Inverted Schlesinger’s Enharmonic Mixolydian Harmonia" 1 7 261.62558 355.063263 364.407043 373.750793 411.125885 504.563599 513.907349;
harm10.scl, "6/7/8/9/10 harmonics" 1 13 261.62558 286.152954 294.328766 327.031952 331.119843 343.383545 367.91095 392.438354 400.614136 408.79 441.493134 457.844727 515.075317;
harm11s.scl, "Harm. 1/4-11/4 and subh. 4/1-4/11. Joseph Pehrson 1999" 2 20 261.62558 65.406395 95.136566 104.650223 116.27803 130.81279 149.5 174.417038 196.219177 209.3 261.62558 327.031952 348.834076 392.438354 457.844727 523.25116 588.657532 654.063904 719.470276 1046.502319;
harm12s.scl, "Harmonics 1 to 12 and subharmonics mixed" 1 11 261.62558 294.328766 299. 327.031952 348.834076 359.735138 380.546265 392.438354 418.6 457.844727 465.112122;
harm15-30.scl, "Harmonics 15 to 30" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 366.275787 383.717499 418.6 436.042603 453.484314 488.367737;
harm15.scl, "Fifth octave of the harmonic overtone series" 2 16 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
harm16-32.scl, "Harmonics 16-32 & Tom Stone’s Guitar Scale" 1 16 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
harm16.scl, "First 16 harmonics and subharmonics" 2 31 261.62558 523.25116 784.876709 1046.502319 1308.127808 1569.753418 1831.378906 2093.004639 2354.630127 2616.255615 2877.881104 3139.506836 3401.132324 3662.757813 3924.383545 4186.009277 2093.004639 1395.336304 1046.502319 837.201782 697.668152 598.001282 523.25116 465.112122 418.6 380.546265 348.834076 322. 299. 279.067261 261.62558;
Harm1C-Dorian.scl, Harm1C-Dorian 1 7 261.62558 309.193848 321.085907 332.977997 380.546265 475.682831 499.46698;
harm1c-hypod.scl, HarmC-Hypodorian 1 8 261.62558 327.031952 343.383545 359.735138 376.086761 392.438354 457.844727 490.547943;
harm1c-hypol.scl, HarmC-Hypolydian 1 8 261.62558 274.706848 287.788116 340.11322 366.275787 392.438354 418.6 444.763458;
Harm1C-Lydian.scl, Harm1C-Lydian 1 8 261.62558 271.68808 281.75061 362.250793 382.375824 402.5 422.625916 442.750946;
Harm1C-Mix.scl, "Harm1C-Con Mixolydian" 1 7 261.62558 299. 373.750793 392.438354 411.125885 485.876038 504.563599;
Harm1C-Mixolydian.scl, Harm1C-Mixolydian 1 7 261.62558 280.31311 299. 373.750793 411.125885 429.813416 448.5;
harm24.scl, "Harmonics 12 to 24" 1 12 261.62558 283.427704 305.229828 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 457.844727 479.646881 501.449005;
harm24_2.scl, "Harmonics 12 to 24 mode 9" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 425.141541 457.844727 490.547943;
harm3.scl, "Third octave of the harmonic overtone series" 2 4 261.62558 327.031952 392.438354 457.844727;
harm30-60.scl, "Harmonics 30-60" 1 30 261.62558 270.346405 279.067261 287.788116 296.508972 305.229828 313.950684 322.671539 331.392395 340.11322 348.834076 357.554932 366.275787 374.996643 383.717499 392.438354 401.15921 409.88 418.6 427.321747 436.042603 444.763458 453.484314 462.20517 470.926025 479.646881 488.367737 497.088562 505.809418 514.530273;
HARM30.scl, "First 30 harmonics and subharmonics" 2 60 261.62558 279.067261 288.690277 299. 310.074738 322. 334.880737 348.834076 364. 398.667542 418.6 440.632538 465.112122 492.471649 523.25116 558.134521 598.001282 644.001404 697.668152 761.092529 837.201782 930.224243 1046.502319 1196.002563 1395.336304 1674.403564 2093.004639 2790.672607 4186.009277 8372.018555 8633.643555 8895.269531 9156.894531 9418.520508 9680.145508 9941.771484 10203.397461 10465.022461 10726.648438 10988.273438 11249.9 11511.524414 11773.150391 12034.776367 12296.401367 12558.027344 12819.652344 13081.27832 13342.904297 13604.529297 13866.155273 14127.780273 14389.40625 14651.03125 14912.657227 15174.283203 15435.908203 15697.53418 15959.15918 16220.785156;
harm32-64.scl, "Harmonics 32-64" 1 32 261.62558 269.801361 277.977173 286.152954 294.328766 302.504547 310.680359 318.856171 327.031952 335.207764 343.383545 351.559357 359.735138 367.91095 376.086761 384.262543 392.438354 400.614136 408.79 416.965759 425.141541 433.317352 441.493134 449.668945 457.844727 466.020538 474.19635 482.372131 490.547943 498.723724 506.9 515.075317;
harm37odd.scl, "Odd harmonics until 37" 1 19 261.62558 269.801361 277.977173 286.152954 294.328766 302.504547 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
harm4.scl, "Fourth octave of the harmonic overtone series" 2 8 261.62558 294.328766 327.031952 359.735138 392.438354 425.141541 457.844727 490.547943;
harm6-12.scl, "First 12 harmonics of 6th through 12th harmonics" 1 20 261.62558 269.801361 286.152954 294.328766 314.76825 327.031952 331.119843 343.383545 359.735138 367.91095 392.438354 400.614136 404.702057 408.79 441.493134 449.668945 457.844727 490.547943 494.635834 515.075317;
harm6.scl, "Harmonics 6-12" 1 6 261.62558 294.328766 327.031952 359.735138 392.438354 457.844727;
HARM60-30.SCL, "Harmonics 60 to 30 (Perkis)" 1 12 261.62558 280.31311 290.695068 313.950684 327.031952 348.834076 373.750793 392.438354 413.092987 436.042603 448.5 490.547943;
harm7lim.scl, "7-limit harmonics" 2 41 261.62558 523.25116 784.876709 1046.502319 1308.127808 1569.753418 1831.378906 2093.004639 2354.630127 2616.255615 3139.506836 3662.757813 3924.383545 4186.009277 4709.260254 5232.51123 5494.136719 5755.762207 6279.013672 6540.63916 7325.515625 7848.76709 8372.018555 9156.894531 9418.520508 10465.022461 10988.273438 11773.150391 12558.027344 12819.652344 13081.27832 14651.03125 15697.53418 16482.410156 16744.037109 18313.789063 18837.041016 19621.917969 20930.044922 21191.67 21976.546875;
harm8.scl, "Harmonics 8-16" 1 8 261.62558 294.328766 327.031952 359.735138 392.438354 425.141541 457.844727 490.547943;
harm9.scl, "6/7/8/9 harmonics First 9 overtones of 5th through 9th harmonics" 1 10 261.62558 294.328766 305.229828 327.031952 348.834076 356.101471 392.438354 406.973114 457.844727 465.112122;
harmc-hypop.scl, HarmC-Hypophrygian 1 9 261.62558 319.764587 334.3 348.834076 363.368835 377.903595 406.973114 465.112122 494.18161;
harmd-15.scl, HarmD-15-Harmonia 1 7 261.62558 279.067261 313.950684 348.834076 383.717499 418.6 453.484314;
harmd-conmix.scl, HarmD-ConMixolydian 1 7 261.62558 299. 336.375732 392.438354 411.125885 448.5 485.876038;
harmd-hypod.scl, HarmD-Hypodorian 1 9 261.62558 294.328766 327.031952 359.735138 376.086761 392.438354 425.141541 457.844727 490.547943;
harmd-hypol.scl, HarmD-Hypolydian 1 8 261.62558 287.788116 313.950684 340.11322 366.275787 392.438354 418.6 470.926025;
HarmD-Hypop.scl, HarmD-Hypophrygian 1 9 261.62558 290.695068 319.764587 348.834076 363.368835 377.903595 406.973114 436.042603 465.112122;
harmd-lyd.scl, HarmD-Lydian 1 9 261.62558 281.75061 301.875641 322. 362.250793 382.375824 402.5 442.750946 483.001038;
harmd-mix.scl, "HarmD-Mixolydian. Harmonics 7-14" 1 7 261.62558 299. 336.375732 373.750793 411.125885 448.5 485.876038;
harmd-phr.scl, "HarmD-Phryg (with 5 extra tones)" 1 12 261.62558 272.526642 283.427704 294.328766 305.229828 348.834076 327.031952 392.438354 414.240479 436.042603 457.844727 479.646881;
harme-hypod.scl, HarmE-Hypodorian 1 8 261.62558 343.383545 351.559357 359.735138 376.086761 392.438354 490.547943 506.9;
harme-hypol.scl, HarmE-Hypolydian 1 8 261.62558 281.247498 274.706848 340.11322 366.275787 392.438354 405.519623 418.6;
harme-hypop.scl, HarmE-Hypophrygian 1 9 261.62558 334.3 341.566711 348.834076 363.368835 377.903595 406.973114 494.18161 508.71637;
harmjc-15.scl, "Rationalized JC Sub-15 Harmonia on C. MD=15 No planetary assignment." 1 12 261.62558 280.31311 301.875641 313.950684 327.031952 356.762146 373.750793 392.438354 413.092987 436.042603 461.692169 490.547943;
harmjc-17-2.scl, "Rationalized JC Sub-17 Harmonia on C. MD=17 No planetary assignment." 1 12 261.62558 277.977173 296.508972 317.688171 342.125732 370.63623 386.750824 404.330414 423.584259 444.763458 468.172058 494.18161;
harmjc-17.scl, "Rationalized JC Sub-17 Harmonia on C. MD=17 No planetary assignment." 1 12 261.62558 269.553619 277.977173 296.508972 317.688171 342.125732 355.81076 370.63623 386.750824 404.330414 423.584259 444.763458;
harmjc-19-2.scl, "Rationalized JC Sub-19 Harmonia on C. MD=19 No planetary assignment." 1 12 261.62558 276.160309 292.405029 310.680359 331.392395 355.063263 368.213745 382.375824 397.670868 414.240479 432.250946 451.898712;
harmjc-19.scl, "Rationalized JC Sub-19 Harmonia on C. MD=19 No planetary assignment." 1 12 261.62558 276.160309 292.405029 310.680359 331.392395 355.063263 382.375824 414.240479 432.250946 451.898712 473.417694 497.088562;
harmjc-21.scl, "Rationalized JC Sub-21 Harmonia on C. MD=21 No planetary assignment." 1 12 261.62558 268.006683 274.706848 289.1651 305.229828 343.383545 366.275787 392.438354 406.973114 422.625916 439.530945 457.844727;
harmjc-23-2.scl, "Rationalized JC Sub-23 Harmonia on C. MD=23 No planetary assignment." 1 12 261.62558 273.517639 286.542297 300.869415 316.70462 334.3 353.963989 376.086761 401.15921 429.813416 462.876007 501.449005;
harmjc-23.scl, "Rationalized JC Sub-23 Harmonia on C. MD=23 No planetary assignment." 1 12 261.62558 273.517639 300.869415 316.70462 334.3 376.086761 401.15921 429.813416 445.732452 462.876007 481.391052 501.449005;
harmjc-25.scl, "Rationalized JC Sub-25 Harmonia on C. MD=25 No planetary assignment." 1 12 261.62558 272.526642 297.301788 311.459015 327.031952 363.368835 384.743469 408.79 436.042603 467.188507 484.491791 503.126099;
harmjc-27.scl, "Rationalized JC Sub-27 Harmonia on C. MD=27 No planetary assignment." 1 12 261.62558 271.68808 294.328766 307.125671 321.085907 353.194519 371.783691 392.438354 415.522949 441.493134 470.926025 504.563599;
harmjc-hypod16.scl, "Rationalized JC Hypodorian Harmonia on C. Saturn Scale on C MD=16. (Steiner)" 1 12 261.62558 279.067261 299. 310.074738 322. 348.834076 364. 380.546265 398.667542 418.6 440.632538 465.112122;
harmjc-hypol20.scl, "Rationalized JC Hypolydian Harmonia on C. Mars scale on C. MD=20" 1 12 261.62558 275.395325 290.695068 307.794769 327.031952 348.834076 373.750793 402.5 418.6 436.042603 455. 575.576233;
harmjc-hypop18.scl, "Rationalized JC Hypophrygian Harmonia on C. Jupiter scale on C MD =18" 1 12 261.62558 277.015289 294.328766 313.950684 336.375732 362.250793 376.740814 392.438354 409.5 428.114563 448.5 470.926025;
harmjc-lydian13.scl, "Rationalized JC Lydian Harmonia on C. Mercury scale on C MD = 26 or 13" 1 12 261.62558 272.090576 283.427704 295.750641 309.193848 340.11322 358.013947 377.903595 400.133209 425.141541 453.484314 485.876038;
harmjc-mix14.scl, "Rationalized JC Mixolydian Harmonia on C. Moon Scale on C MD = 14" 1 12 261.62558 271.315399 281.75061 293.02063 305.229828 332.977997 348.834076 366.275787 385.553467 406.973114 430.912689 457.844727;
harmjc-phryg12.scl, "Rationalized JC Phrygian Harmonia on C. Venus scale on C MD = 24 or 12" 1 12 261.62558 273. 285.409698 299. 313.950684 348.834076 369.353729 392.438354 418.6 448.5 465.112122 483.001038;
harmonical.scl, "See pp 17 and 466-468 Helmholtz. lower 4 oct. Instr. designed & tuned by Ellis" 1 12 261.62558 290.695068 294.328766 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 457.844727 470.926025 490.547943;
harmonical_up.scl, "Upper 2 octaves of Ellis’s Harmonical" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 359.735138 457.844727 392.438354 408.79 425.141541 474.19635 490.547943;
harm_bastard.scl, "Schlesinger’s "Bastard" Hypodorian Harmonia & inverse 1)7 from 1.3.5.7.9.11.13" 1 7 261.62558 299. 322. 348.834076 380.546265 418.6 465.112122;
harm_bastinv.scl, "Inverse Schlesinger’s "Bastard" Hypodorian Harmonia & 1)7 from 1.3.5.7.9.11.13" 1 7 261.62558 294.328766 327.031952 359.735138 392.438354 425.141541 457.844727;
harm_darreg.scl, "Darreg Harmonics 4-15" 2 25 261.62558 1046.502319 1308.127808 1569.753418 1831.378906 2093.004639 2354.630127 2616.255615 2877.881104 3139.506836 3401.132324 3662.757813 3924.383545 4186.009277 5232.51123 6279.013672 7325.515625 8372.018555 9418.520508 10465.022461 11511.524414 12558.027344 13604.529297 14651.03125 15697.53418;
harm_mean.scl, "Harm. Mean 9-tonic 8/7 is HM of 1/1 and 4/3 etc." 1 9 261.62558 270.065094 279.067261 299. 348.834076 392.438354 405.097656 418.6 448.5;
harrisonj.scl, "John Harrison’s temperament (1775) almost 3/10-comma. Third = 1200/pi" 1 12 261.62558 272.177124 292.139709 313.566437 326.212799 350.13858 364.26 390.976257 406.744629 436.576935 468.59729 487.496155;
harrisonm_rev.scl, "Michael Harrison piano tuning for "Revelation" (2001) 1/1=F" 1 12 261.62558 257.537659 294.328766 289.729889 331.119843 343.383545 372.509827 392.438354 386.306488 441.493134 457.844727 496.679779;
harrison_16.scl, "Lou Harrison 16-tone superparticular "Ptolemy Duple"" 1 16 261.62558 279.067261 290.695068 299. 305.229828 313.950684 327.031952 348.834076 370.63623 392.438354 418.6 436.042603 448.5 457.844727 470.926025 490.547943;
HARRISON_5.scl, "From Lou Harrison a pelog style pentatonic" 1 5 261.62558 279.067261 313.950684 392.438354 418.6;
HARRISON_5_1.scl, "From Lou Harrison a pelog style pentatonic" 1 5 261.62558 285.409698 313.950684 392.438354 418.6;
HARRISON_5_3.scl, "From Lou Harrison a pelog style pentatonic" 1 5 261.62558 271.315399 348.834076 392.438354 406.973114;
HARRISON_5_4.scl, "From Lou Harrison a pelog style pentatonic" 1 5 261.62558 279.067261 313.950684 392.438354 490.547943;
harrison_8.scl, "Lou Harrison 8-tone tuning for "Serenade for Guitar"" 1 8 261.62558 279.067261 313.950684 327.031952 367.91095 392.438354 436.042603 465.112122;
harrison_cinna.scl, "Lou Harrison "Incidental Music for Corneille’s Cinna" (1955-56) 1/1=C" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 343.383545 367.91095 392.438354 418.6 436.042603 457.844727 490.547943;
HARRISON_DIAT.scl, "From Lou Harrison a soft diatonic" 1 7 261.62558 274.706848 313.950684 348.834076 392.438354 412.060272 470.926025;
harrison_joy.scl, "Lou Harrison’s Joyous 6" 1 6 261.62558 294.328766 327.031952 392.438354 436.042603 490.547943;
harrison_mid.scl, "Lou Harrison mid mode" 1 7 261.62558 294.328766 313.950684 348.834076 392.438354 436.042603 457.844727;
harrison_mid2.scl, "Lou Harrison mid mode 2" 1 7 261.62558 294.328766 313.950684 348.834076 392.438354 448.5 470.926025;
harrison_min.scl, "From Lou Harrison a symmetrical pentatonic with minor thirds" 1 5 261.62558 313.950684 348.834076 392.438354 436.042603;
HARRISON_MIX1.scl, "A "mixed type" pentatonic Lou Harrison" 1 5 261.62558 285.409698 313.950684 392.438354 425.141541;
HARRISON_MIX2.scl, "A "mixed type" pentatonic Lou Harrison" 1 5 261.62558 313.950684 348.834076 392.438354 490.547943;
HARRISON_MIX3.scl, "A "mixed type" pentatonic Lou Harrison" 1 5 261.62558 313.950684 336.375732 392.438354 418.6;
HARRISON_MIX4.scl, "A "mixed type" pentatonic Lou Harrison" 1 5 261.62558 280.31311 327.031952 392.438354 448.5;
hawkes.scl, "William Hawkes’ modified 1/5-comma meantone (1807)" 1 12 261.62558 274.565491 292.869873 310.249756 327.84549 349.701843 366.998016 391.464539 411.848236 438.214691 467.429016 490.547943;
hawkes2.scl, "Meantone with fifth tempered 1/6 of 53-tET step by William Hawkes (1808)" 1 12 261.62558 275.151917 293.048462 312.109009 328.245422 349.595276 367.669769 391.583893 411.829254 438.61557 467.144165 491.296082;
hbarnes.scl, "Variation on Barnes with 1/6P -> 1/8P. OdC ’99" 1 12 261.62558 276.713501 293.333344 310.951355 328.883942 349.425476 369.159729 391.77417 414.835968 439.25531 466.163757 493.047424;
hebdome1.scl, "Wilson 1.3.5.7.9.11.13.15 hebdomekontany 1.3.5.7 tonic" 1 58 261.62558 265.71347 267.231842 269.801361 273.305267 280.31311 283.427704 287.788116 289.072876 292.284821 294.328766 300.635803 303.672546 308.344421 311.770477 315.352234 318.856171 323.761627 327.031952 334.039795 336.375732 340.11322 341.631592 346.887482 350.74176 359.735138 364.407043 367.91095 370.013306 375.794769 382.62738 385.430511 389.713074 392.438354 400.847748 404.702057 409.957916 411.125885 417.549744 420.469666 425.141541 431.68219 437.288452 441.493134 445.386383 449.668945 455.508789 462.516632 467.655701 470.926025 478.284241 479.646881 485.876038 490.547943 501.059662 504.563599 510.169861 513.907349;
helmholtz.scl, "Helmholtz’s Chromatic scale and Gipsy major from Slovakia" 1 7 261.62558 279.067261 327.031952 348.834076 392.438354 418.6 490.547943;
helmholtz_24.scl, "Simplified Helmholtz 24" 1 24 261.62558 275.933228 279.067261 290.695068 294.328766 306.592468 310.074738 327.031952 331.119843 344.916504 348.834076 367.91095 372.509827 388.031067 392.438354 408.79 413.9 436.042603 441.493134 459.888702 465.637299 490.547943 496.679779 517.374756;
helmholtz_hd.scl, "Helmholtz Harmonic Decad" 1 9 261.62558 294.328766 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025;
helmholtz_pure.scl, "Helmholtz’s two-keyboard harmonium tuning untempered" 1 24 261.62558 275.933228 279.067261 290.695068 294.328766 306.592468 310.074738 327.031952 330.746399 344.916504 348.834076 367.91095 372.089691 387.593445 392.438354 408.79 413.432983 436.042603 441.493134 459.888702 465.112122 490.547943 496.119598 516.79126;
helmholtz_temp.scl, "Helmholtz’s two-keyboard harmonium tuning" 1 24 261.62558 275.816467 279.10672 290.777069 294.245819 306.549164 310.206055 327.031952 330.933044 344.77063 348.88327 367.807098 372.194733 387.757416 392.383057 408.79 413.666382 436.104156 441.306244 459.758972 465.243256 490.478882 496.32962 517.083069;
hem_chrom.scl, "Hemiolic Chromatic genus has the strong or 1:2 division of the 12/11 pyknon" 1 7 261.62558 269.553619 285.409698 348.834076 392.438354 404.330414 428.114563;
HEM_CHROM11.SCL, "11’al Hemiolic Chromatic genus with a CI of 11/9 Winnington-Ingram" 1 7 261.62558 273. 285.409698 348.834076 392.438354 409.5 428.114563;
HEM_CHROM13.scl, "13’al Hemiolic Chromatic or neutral-third genus has a CI of 16/13" 1 7 261.62558 272.090576 283.427704 348.834076 392.438354 408.135895 425.141541;
HEM_CHROM2.scl, "1:2 Hemiolic Chromatic genus 3 + 6 + 21 parts" 1 7 261.62558 269.291779 285.304688 349.228241 391.995422 403.481781 427.47406;
hept_diamond.scl, "Inverted-Prime Heptatonic Diamond based on Archytas’s Enharmonic" 1 25 261.62558 269.1 271.315399 279.067261 294.328766 305.229828 313.950684 316.534637 325.578491 327.031952 334.880737 336.375732 348.834076 392.438354 406.973114 408.79 418.6 420.469666 432.483063 436.042603 448.5 465.112122 490.547943 504.563599 508.71637;
hept_diamondi.scl, "Prime-Inverted Heptatonic Diamond based on Archytas’ Enharmonic" 1 25 261.62558 269.1 271.315399 279.067261 281.364105 289.403107 294.328766 297.671753 327.031952 336.375732 348.834076 361.753876 367.91095 372.089691 378.422699 392.438354 406.973114 418.6 459.888702 465.112122 473.028351 486.543457 490.547943 504.563599 508.71637;
HEPT_DIAMONDp.scl, "Heptatonic Diamond based on Archytas’s Enharmonic 27 tones" 1 27 261.62558 269.1 271.315399 279.067261 294.328766 305.229828 313.950684 327.031952 336.375732 339.144257 348.834076 358.8 361.753876 367.91095 372.089691 378.422699 381.537292 392.438354 403.650879 406.973114 418.6 436.042603 448.5 465.112122 490.547943 504.563599 508.71637;
herf.scl, "Sims:Reflections on This and That 1991.0000 Used by Herf in Ekmelischer Gesang" 1 14 261.62558 269.801361 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 425.141541 441.493134 457.844727 490.547943;
heun.scl, "Well temperament for organ of Jan Heun (1805) subset of 55-tET" 1 12 261.62558 275.152374 293.048584 312.108795 328.245728 349.595184 367.670288 391.583984 411.83 438.615875 467.143951 491.296661;
hexagonal13.scl, "Star hexagonal 13-tone scale" 1 13 261.62558 272.526642 279.067261 290.695068 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025 490.547943 502.321075;
hexagonal37.scl, "Star hexagonal 37-tone scale" 1 37 261.62558 272.526642 279.067261 282.555603 283.881897 290.695068 294.328766 297.671753 301.392639 306.592468 313.950684 322.994537 327.031952 334.880737 340.658295 348.834076 353.194519 363.368835 367.91095 372.089691 376.740814 387.593445 392.438354 401.856873 408.79 418.6 423.833405 436.042603 446.507629 454.21106 459.888702 465.112122 470.926025 482.228241 484.491791 490.547943 502.321075;
hexany1.scl, "Two out of 1 3 5 7 hexany" 2 7 261.62558 286.152954 327.031952 343.383545 392.438354 457.844727 490.547943;
hexany10.scl, "1.3.5.9 Hexany" 1 6 261.62558 294.328766 327.031952 392.438354 436.042603 490.547943;
hexany11.scl, "1.3.7.9 Hexany on 1.3000" 1 6 261.62558 294.328766 305.229828 343.383545 392.438354 457.844727;
hexany12.scl, "3.5.7.9 Hexany on 3.9000" 1 6 261.62558 290.695068 305.229828 339.144257 406.973114 436.042603;
hexany13.scl, "1.3.5.11 Hexany on 1.1100" 1 6 261.62558 285.409698 327.031952 356.762146 392.438354 475.682831;
hexany14.scl, "5.11.13.15 Hexany (5.15) used in The Giving by Stephen J. Taylor" 1 6 261.62558 287.788116 340.11322 383.717499 453.484314 498.832733;
hexany15.scl, "1.3.5.15 2)4 hexany (1.15 tonic) degenerate symmetrical pentatonic" 1 5 261.62558 327.031952 348.834076 392.438354 418.6;
hexany16.scl, "1.3.9.27 Hexany a degenerate pentatonic form" 1 5 261.62558 294.328766 348.834076 392.438354 465.112122;
hexany17.scl, "1.5.25.125 Hexany a degenerate pentatonic form" 1 5 261.62558 327.031952 334.880737 408.79 418.6;
hexany18.scl, "1.7.49.343 Hexany a degenerate pentatonic form" 1 5 261.62558 299. 341.715027 400.614136 457.844727;
hexany19.scl, "1.5.7.35 Hexany a degenerate pentatonic form" 1 5 261.62558 299. 327.031952 418.6 457.844727;
hexany2.scl, "Hexany Cluster 2" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 340.658295 348.834076 363.368835 392.438354 408.79 436.042603 490.547943;
hexany20.scl, "3.5.7.105 Hexany" 1 6 261.62558 279.067261 305.229828 398.667542 436.042603 465.112122;
hexany21.scl, "3.5.9.135 Hexany" 1 6 261.62558 279.067261 310.074738 392.438354 436.042603 465.112122;
hexany21a.scl, "3.5.9.135 Hexany + 4/3. Is Didymos Diatonic tetrachord on 1/1 and inv. on 3/2" 1 7 261.62558 279.067261 310.074738 348.834076 392.438354 436.042603 465.112122;
hexany22.scl, "1.11.121.1331 Hexany a degenerate pentatonic form" 1 5 261.62558 276.760925 359.735138 380.546265 494.635834;
hexany23.scl, "1.3.11.33 Hexany degenerate pentatonic form" 1 5 261.62558 348.834076 359.735138 380.546265 392.438354;
hexany24.scl, "1.5.11.55 Hexany a degenerate pentatonic form" 1 5 261.62558 327.031952 359.735138 380.546265 418.6;
hexany25.scl, "1.7.11.77 Hexany a degenerate pentatonic form" 1 5 261.62558 299. 359.735138 380.546265 457.844727;
hexany26.scl, "1.9.11.99 Hexany a degenerate pentatonic form" 1 5 261.62558 294.328766 359.735138 380.546265 465.112122;
hexany3.scl, "Hexany Cluster 3" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025 490.547943 502.321075;
hexany4.scl, "Hexany Cluster 4" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 376.740814 392.438354 418.6 436.042603 470.926025 490.547943;
hexany49.scl, "1.3.21.49 2)4 hexany (1.21 tonic)" 1 6 261.62558 299. 305.229828 392.438354 400.614136 457.844727;
hexany5.scl, "Hexany Cluster 5" 1 12 261.62558 294.328766 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 470.926025 490.547943 502.321075;
hexany6.scl, "Hexany Cluster 6" 1 12 261.62558 272.526642 290.695068 294.328766 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 490.547943;
hexany7.scl, "Hexany Cluster 7" 1 12 261.62558 272.526642 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 418.6 436.042603 470.926025 490.547943;
Hexany8.scl, "Hexany Cluster 8" 1 12 261.62558 272.526642 313.950684 327.031952 340.658295 348.834076 392.438354 408.79 418.6 436.042603 490.547943 502.321075;
hexany9.scl, "1.3.5.7 Hexany on 5.7000" 1 6 261.62558 299. 313.950684 358.8 418.6 448.5;
hexanys.scl, "Hexanys 1 3 5 7 9" 1 12 261.62558 286.152954 294.328766 327.031952 343.383545 367.91095 392.438354 429.229431 441.493134 457.844727 490.547943 515.075317;
hexanys2.scl, "Hexanys 1 3 7 11 13" 1 12 261.62558 314.76825 425.141541 457.844727 269.801361 371.99884 392.438354 472.152374 318.856171 359.735138 343.383545 292.284821;
hexany_cl.scl, "Hexany Cluster 1" 1 12 261.62558 294.328766 301.392639 313.950684 327.031952 348.834076 353.194519 376.740814 392.438354 418.6 470.926025 502.321075;
hexany_cl2.scl, "Composed of 1.3.5.45 1.3.5.75 1.3.5.9 and 1.3.5.25 hexanies" 1 11 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 392.438354 408.79 418.6 490.547943 502.321075;
hexany_flank.scl, "Hexany Flanker 7-limit from Wilson" 1 12 261.62558 267.076111 299. 305.229828 327.031952 348.834076 373.750793 381.537292 427.143768 436.042603 457.844727 498.334412;
hexany_tetr.scl, "Complex 12 of p. 115 a hexany based on Archytas’s Enharmonic" 1 6 261.62558 269.1 279.067261 336.375732 348.834076 358.8;
hexany_trans.scl, "Complex 1 of p. 115 a hexany based on Archytas’s Enharmonic" 1 6 261.62558 271.315399 279.067261 339.144257 348.834076 361.753876;
HEXANY_TRANS2.scl, "Complex 2 of p. 115 a hexany based on Archytas’s Enharmonic" 1 6 261.62558 271.315399 279.067261 348.834076 358.8 372.089691;
HEXANY_TRANS3.scl, "Complex 9 of p. 115 a hexany based on Archytas’s Enharmonic" 1 6 261.62558 271.315399 279.067261 327.031952 336.375732 348.834076;
hexany_u2.scl, "Hexany union = genus [335577] minus two corners" 1 25 261.62558 274.706848 279.067261 280.31311 286.152954 299. 305.229828 313.950684 327.031952 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 418.6 436.042603 448.5 457.844727 478.401031 488.367737 490.547943 498.334412;
hexany_union.scl, "The union of all of the pitches of the 1.3.5.7 hexany on each tone as 1/1" 1 19 261.62558 274.706848 280.31311 299. 305.229828 313.950684 327.031952 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 418.6 436.042603 448.5 457.844727 488.367737 498.334412;
hexany_urot.scl, "Aggregate rotations of 1.3.5.7 hexany 1.3000 = 1/1" 1 24 261.62558 267.076111 280.31311 286.152954 290.695068 299. 305.229828 327.031952 333.845123 343.383545 348.834076 356.101471 373.750793 381.537292 392.438354 400.614136 406.973114 436.042603 445.126831 448.5 457.844727 490.547943 498.334412 508.71637;
higgs.scl, "From Greg Higgs announcement of the formation of an Internet Tuning list" 1 7 261.62558 392.438354 418.6 422.625916 423.584259 425.141541 436.042603;
Hinsz_gr.scl, "Reconstructed Hinsz temperament organ Pelstergasthuiskerk Groningen. Ortgies 2002" 1 12 261.62558 274.689819 292.341278 310.074738 326.663116 348.834076 366.253113 391.111115 412.03476 437.028839 465.112122 489.994659;
hipkins.scl, "Hipkins’ Chromatic" 1 7 261.62558 275.622009 299. 348.834076 392.438354 413.432983 448.5;
hirajoshi.scl, "Observed Japanese pentatonic koto scale" 1 5 261.62558 291.131348 317.847961 388.165039 412.91272;
hirajoshi2.scl, "Another Japanese pentatonic koto scale" 1 5 261.62558 294.328766 313.950684 392.438354 418.6;
hochgartz.scl, "Michael Hochgartz modified 1/5-comma meantone temperament" 1 12 261.62558 274.565491 292.869873 309.864594 327.84549 349.701843 366.998016 391.464539 412.5 438.214691 465.53241 490.547943;
hofmann1.scl, "Hofmann’s Enharmonic #1 Dorian mode" 1 7 261.62558 262.65155 279.067261 348.834076 392.438354 393.977325 418.6;
hofmann2.scl, "Hofmann’s Enharmonic #2 Dorian mode" 1 7 261.62558 263.563538 279.067261 348.834076 392.438354 395.345306 418.6;
hofmann_chrom.scl, "Hofmann’s Chromatic" 1 7 261.62558 264.26825 290.695068 348.834076 392.438354 396.402374 436.042603;
holder.scl, "William Holder’s equal beating meantone temperament (1694). 3/2 beats 2.8000 Hz" 1 12 261.62558 274.232147 292.578796 312.4599 327.401154 349.767456 366.576294 391.038361 409.948273 437.468048 467.289856 489.701538;
holder2.scl, "Holder’s irregular e.b. temperament with improved Eb and G#" 1 12 261.62558 274.232147 292.578796 312.4599 327.401154 349.767456 366.576294 391.038361 410.648132 437.468048 467.461548 489.701538;
HO_MAI_NHI.scl, "Ho Mai Nhi (Nam Hue) dan tranh scale Vietnam" 1 5 261.62558 287.788116 348.834076 392.438354 431.68219;
hummel.scl, "Johann Nepomuk Hummel’s quasi-equal temperament (1829)" 1 12 261.62558 277.170349 293.546753 311.034668 329.458099 349.131989 369.858368 391.991486 415.308685 439.873291 466.105133 493.740326;
hummel2.scl, "Johann Nepomuk Hummel’s temperament according to the second bearing plan" 1 12 261.62558 277.2276 293.664307 311.216614 329.707916 349.188446 369.99118 391.906799 415.309845 439.964905 466.293365 494.030304;
husmann.scl, "Tetrachord division according to Husmann" 2 7 261.62558 275.622009 294.328766 310.074738 314.305176 331.119843 348.834076;
hwerck3.scl, "Variation on Werckmeister III with 1/4P -> 1/6P and 0P -> 1/24P. OdC ’99" 1 12 261.62558 276.401215 293.002258 310.6 328.698273 349.031097 368.743103 391.553009 414.367798 438.511902 465.637634 492.769135;
HYPER_ENH.SCL, "13/10 HyperEnharmonic. This genus is at the limit of usable tunings" 1 7 261.62558 264.937286 268.333923 348.834076 392.438354 397.405914 402.5;
hyper_enh2.scl, "Hyperenharmonic genus from Kathleen Schlesinger’s enharmonic Phrygian Harmonia" 1 7 261.62558 267.192078 273. 348.834076 392.438354 400.788086 409.5;
hypodorian_pis.scl, "Diatonic Perfect Immutable System in the Hypodorian Tonos" 2 16 261.62558 285.409698 313.950684 348.834076 392.438354 418.6 483.001038 523.25116 546.00116 570.819397 627.901367 697.668152 784.876709 897.001953 966.002075 1046.502319;
hypod_chrom.scl, "Hypodorian Chromatic Tonos" 1 12 261.62558 279.067261 288.690277 299. 322. 348.834076 364. 380.546265 398.667542 408.391113 418.6 465.112122;
hypod_chrom2.scl, "Schlesinger’s Chromatic Hypodorian Harmonia" 1 7 261.62558 279.067261 299. 348.834076 380.546265 398.667542 418.6;
HYPOD_CHROM2INV.scl, "Inverted Schlesinger’s Chromatic Hypodorian Harmonia" 1 7 261.62558 327.031952 343.383545 359.735138 392.438354 457.844727 490.547943;
hypod_chromenh.scl, "Schlesinger’s Hypodorian Harmonia in a mixed chromatic-enharmonic genus" 1 7 261.62558 270.065094 279.067261 348.834076 380.546265 398.667542 418.6;
HYPOD_CHROMinv.scl, "A harmonic form of Schlesinger’s Chromatic Hypodorian Inverted" 1 7 261.62558 277.977173 294.328766 359.735138 392.438354 408.79 425.141541;
hypod_diat.scl, "Hypodorian Diatonic Tonos" 1 12 261.62558 279.067261 299. 322. 334.880737 348.834076 364. 380.546265 418.6 440.632538 465.112122 492.471649;
hypod_diat2.scl, "Schlesinger’s Hypodorian Harmonia a subharmonic series through 13 from 16" 1 8 261.62558 279.067261 322. 348.834076 364. 380.546265 418.6 465.112122;
hypod_diatcon.scl, "A Hypodorian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 279.067261 322. 348.834076 364. 418.6 465.112122;
hypod_diatinv.scl, "Inverted Schlesinger’s Hypodorian Harmonia a harmonic series from 8 from 16" 1 9 261.62558 294.328766 327.031952 359.735138 376.086761 392.438354 425.141541 457.844727 490.547943;
hypod_enh.scl, "Hypodorian Enharmonic Tonos" 1 12 261.62558 270.065094 274.492401 279.067261 310.074738 348.834076 364. 380.546265 389.396179 393.977325 398.667542 452.541504;
HYPOD_enhinv.scl, "Inverted Schlesinger’s Enharmonic Hypodorian Harmonia" 1 7 261.62558 343.383545 351.559357 359.735138 392.438354 490.547943 506.9;
HYPOD_ENHINV2.scl, "A harmonic form of Schlesinger’s Hypodorian enharmonic inverted" 1 7 261.62558 269.801361 277.977173 359.735138 392.438354 400.614136 408.79;
hypolydian_pis.scl, "The Diatonic Perfect Immutable System in the Hypolydian Tonos" 2 16 261.62558 281.75061 305.229828 332.977997 366.275787 406.973114 457.844727 488.367737 523.25116 563.501221 610.459656 665.955994 732.551575 813.946228 915.689453 1046.502319;
hypol_chrom.scl, "Schlesinger’s Hypolydian Harmonia in the chromatic genus" 1 8 261.62558 275.395325 290.695068 348.834076 373.750793 402.5 418.6 436.042603;
HYPOL_CHROMINV.SCL, "Inverted Schlesinger’s Chromatic Hypolydian Harmonia" 1 8 261.62558 313.950684 327.031952 340.11322 366.275787 392.438354 470.926025 497.088562;
HYPOL_CHROMINV2.scl, "harmonic form of Schlesinger’s Chromatic Hypolydian inverted" 1 7 261.62558 274.706848 287.788116 340.11322 366.275787 392.438354 418.6;
HYPOL_CHROMINV3.SCL, "A harmonic form of Schlesinger’s Chromatic Hypolydian inverted" 1 7 261.62558 274.706848 287.788116 340.11322 392.438354 418.6 444.763458;
hypol_diat.scl, "Schlesinger’s Hypolydian Harmonia a subharmonic series through 13 from 20" 1 8 261.62558 290.695068 327.031952 348.834076 373.750793 402.5 436.042603 475.682831;
hypol_diatcon.scl, "A Hypolydian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 290.695068 327.031952 348.834076 402.5 436.042603 475.682831;
hypol_diatinv.scl, "Inverted Schlesinger’s Hypolydian Harmonia a harmonic series from 10 from 20" 1 8 261.62558 287.788116 313.950684 340.11322 366.275787 392.438354 418.6 470.926025;
hypol_enh.scl, "Schlesinger’s Hypolydian Harmonia in the enharmonic genus" 1 8 261.62558 268.333923 275.395325 348.834076 373.750793 402.5 418.6 436.042603;
hypol_enhinv.scl, "Inverted Schlesinger’s Enharmonic Hypolydian Harmonia" 1 8 261.62558 327.031952 333.572601 340.11322 366.275787 392.438354 497.088562 510.169861;
HYPOL_ENHINV2.scl, "A harmonic form of Schlesinger’s Hypolydian enharmonic inverted" 1 7 261.62558 268.166199 274.706848 340.11322 366.275787 379.357056 392.438354;
HYPOL_ENHINV3.SCL, "A harmonic form of Schlesinger’s Hypolydian enharmonic inverted" 1 7 261.62558 268.166199 274.706848 340.11322 392.438354 405.519623 418.6;
hypol_pent.scl, "Schlesinger’s Hypolydian Harmonia in the pentachromatic genus" 1 8 261.62558 272.526642 290.695068 348.834076 373.750793 402.5 415.278687 436.042603;
hypol_tri.scl, "Schlesinger’s Hypolydian Harmonia in the first trichromatic genus" 1 8 261.62558 270.647125 280.31311 348.834076 373.750793 402.5 413.092987 424.25766;
hypol_tri2.scl, "Schlesinger’s Hypolydian Harmonia in the second trichromatic genus" 2 9 261.62558 270.647125 290.695068 348.834076 373.750793 402.5 413.092987 436.042603 2093.004639;
hypophryg_pis.scl, "The Diatonic Perfect Immutable System in the Hypophrygian Tonos" 2 16 261.62558 283.427704 309.193848 340.11322 377.903595 425.141541 453.484314 523.25116 544.181152 566.855408 618.387695 680.22644 755.80719 850.283081 971.752075 1046.502319;
hypop_chrom.scl, "Hypophrygian Chromatic Tonos" 1 12 261.62558 277.015289 285.409698 294.328766 336.375732 362.250793 376.740814 392.438354 409.5 418.6 428.114563 470.926025;
hypop_chromenh.scl, "Schlesinger’s Hypophrygian Harmonia in a mixed chromatic-enharmonic genus" 1 7 261.62558 269.1 277.015289 362.250793 392.438354 409.5 428.114563;
hypop_chrominv.scl, "Inverted Schlesinger’s Chromatic Hypophrygian Harmonia" 1 7 261.62558 319.764587 334.3 348.834076 377.903595 465.112122 494.18161;
HYPOP_CHROMINV2.scl, "A harmonic form of Schlesinger’s Chromatic Hypophrygian inverted" 1 7 261.62558 276.160309 290.695068 348.834076 377.903595 406.973114 436.042603;
hypop_diat.scl, "Hypophrygian Diatonic Tonos" 1 12 261.62558 294.328766 303.823242 313.950684 336.375732 362.250793 376.740814 392.438354 428.114563 448.5 470.926025 495.711609;
hypop_diat2.scl, "Schlesinger’s Hypophrygian Harmonia" 1 8 261.62558 294.328766 313.950684 362.250793 376.740814 392.438354 428.114563 470.926025;
HYPOP_DIAT2INV.scl, "Inverted Schlesinger’s Hypophrygian Harmonia a harmonic series from 9 from 18" 1 8 261.62558 290.695068 319.764587 348.834076 363.368835 377.903595 436.042603 465.112122;
hypop_diatcon.scl, "A Hypophrygian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 294.328766 313.950684 362.250793 376.740814 428.114563 470.926025;
hypop_enh.scl, "Hypophrygian Enharmonic Tonos" 1 12 261.62558 269.1 273. 277.015289 313.950684 362.250793 376.740814 392.438354 400.788086 405.097656 409.5 470.926025;
hypop_enhinv.scl, "Inverted Schlesinger’s Enharmonic Hypophrygian Harmonia" 1 7 261.62558 334.3 341.566711 348.834076 377.903595 494.18161 508.71637;
HYPOP_ENHINV2.scl, "A harmonic form of Schlesinger’s Hypophrygian enharmonic inverted" 1 7 261.62558 268.892944 276.160309 348.834076 377.903595 392.438354 406.973114;
hypo_chrom.scl, "Hypolydian Chromatic Tonos" 1 12 261.62558 275.395325 282.83844 290.695068 348.834076 373.750793 387.593445 402.5 418.6 427.143768 436.042603 455.;
hypo_diat.scl, "Hypolydian Diatonic Tonos" 1 12 261.62558 290.695068 307.794769 327.031952 348.834076 373.750793 387.593445 402.5 436.042603 455. 475.682831 498.334412;
hypo_enh.scl, "Hypolydian Enharmonic Tonos" 1 12 261.62558 268.333923 271.818756 275.395325 348.834076 373.750793 387.593445 402.5 410.393036 414.456329 418.6 465.112122;
IIVV17.SCL, "17-limit IIVV" 1 21 261.62558 269.801361 277.977173 283.427704 294.328766 305.229828 318.856171 327.031952 343.383545 348.834076 359.735138 367.91095 370.63623 392.438354 416.965759 425.141541 436.042603 441.493134 457.844727 479.646881 490.547943;
indian-ayyar.scl, "Carnatic sruti system C.Subrahmanya Ayyar 1976.0000 alt:21/20 25/16 63/40 40/21" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 441.493134 457.844727 470.926025 490.547943 502.321075;
indian-dk.scl, "Raga Darbari Kanada" 1 9 261.62558 294.328766 305.229828 313.950684 348.834076 392.438354 406.973114 418.6 465.112122;
indian-ellis.scl, "Ellis’s Indian Chromatic theoretical #74 of App.XX p.517 of Helmholtz" 1 22 261.62558 269.1 277.015289 285.409698 294.328766 303.823242 313.950684 324.77655 336.375732 348.834076 358.013947 367.69 377.903595 388.7 400.133209 412.258453 425.141541 438.855774 453.484314 469.121704 485.876038 503.87146;
indian-hahn.scl, "Indian shrutis Paul Hahn proposal" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 353.194519 367.91095 376.740814 392.438354 408.79 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 502.321075;
INDIAN-HRDAYA1.SCL, "From Hrdayakautaka of Hrdaya Narayana (17th c) Bhatkande’s interpretation" 1 12 261.62558 282.555603 294.328766 313.950684 328.55304 348.834076 375.073822 392.438354 428.114563 441.493134 470.926025 492.829559;
INDIAN-HRDAYA2.SCL, "From Hrdayakautaka of Hrdaya Narayana (17th c) Levy’s interpretation" 1 12 261.62558 282.555603 294.328766 313.950684 330.474396 348.834076 376.740814 392.438354 428.114563 448.5 470.926025 495.711609;
indian-invrot.scl, "Inverted and rotated North Indian gamut" 1 12 261.62558 267.904572 279.067261 313.950684 327.031952 334.880737 348.834076 392.438354 418.6 446.507629 490.547943 502.321075;
INDIAN-MAGRAMA.SCL, "Indian mode Ma-grama (Sa Ri Ga Ma Pa Dha Ni Sa)" 1 7 261.62558 294.328766 327.031952 367.91095 392.438354 441.493134 490.547943;
indian-newbengali.scl, "Modern Bengali scale S.M. Tagore: The mus. scales of the Hindus Calcutta 1884" 1 22 261.62558 269.136261 277.022583 285.469543 294.328766 303.845276 313.950684 324.714142 336.359375 348.834076 358.010895 367.91095 377.987061 388.613739 400.232086 412.197815 425.257538 438.984558 453.416504 469.135132 485.398682 503.97;
indian-old2ellis.scl, "Ellis Old Indian Chrom2 Helmholtz p. 517.0000 This is a 4 cent appr. to #73" 1 22 261.62558 270.065094 277.977173 285.409698 294.328766 305.229828 316.13089 327.031952 337.933014 348.834076 359.735138 370.63623 380.546265 392.438354 404.330414 415.522949 428.114563 441.493134 457.844727 474.19635 490.547943 505.809418;
indian-oldellis.scl, "Ellis Old Indian Chromatic Helmholtz p. 517.0000 This is a 0.5000 cent appr. to #73" 1 22 261.62558 269.447388 277.481659 285.8 294.328766 304.841522 315.713165 327.031952 337.722168 348.834076 359.253815 369.994415 381.056122 392.438354 404.18158 416.222504 428.710419 441.493134 457.274139 473.582031 490.547943 506.596405;
INDIAN-raja.scl, "A folk scale from Rajasthan India" 1 6 261.62558 294.328766 327.031952 348.834076 392.438354 490.547943;
INDIAN-SAGRAMA.scl, "Indian mode Sa-grama (Sa Ri Ga Ma Pa Dha Ni Sa) inverse of Didymus’ diatonic" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 441.493134 490.547943;
indian-srutiharm.scl, "B. Chaitanya Deva’s sruti harmonium. The Music of India 1981 p. 109" 1 22 261.62558 275.042267 278.87561 292.292297 294.208984 310.5 313.375671 327.750702 332.542389 351.709106 354.584106 369.91748 374.709137 393.875854 414.959229 421.667572 437.95929 441.792633 467.667664 473.417694 493.542725 499.292755;
INDIAN-SRUTIVINA.scl, "Raja S.M. Tagore’s sruti vina measured by Ellis and Hipkins 1886.0000 1/1=241.2" 2 23 261.62558 268.567596 278.980499 288.525757 297.528625 305.338287 314.015747 327.574219 336.577271 350.352631 358.270721 366.405884 378.771271 394.824585 403.285126 416.952148 428.77533 444.286194 453.94 469.559418 487.348114 504.377655 529.325195;
indian-srutivina2.scl, "S. Ramanathan’s sruti vina 1973.0000 In B.C. Deva The Music of India p. 110" 1 22 261.62558 275.042267 278.87561 292.292297 294.208984 310.5 313.375671 327.750702 332.542389 351.709106 354.584106 369.91748 374.709137 393.875854 414.959229 421.667572 437.95929 441.792633 467.667664 473.417694 493.542725 499.292755;
indian-vina.scl, "Observed South Indian tuning of a vina Ellis" 2 13 261.62558 276.702728 292.817841 313.291046 329.056854 352.267212 369.140533 390.188202 411.009064 435.7 465.356659 491.606354 525.371094;
indian-vina2.scl, "Observed tuning of old vina in Tanjore Palace Ellis and Hipkins. 1/1=210.7 Hz" 2 25 261.62558 277.022583 292.817841 308.977875 326.218109 344.81842 363.848236 386.375488 409.114166 432.191345 455.25354 480.933319 507.76825 539.829407 571.6 602.448059 637.902893 678.572754 715.195129 756.41095 799.54 846.105103 890.739441 943.160645 1001.555298;
indian-vina3.scl, "Tuning of K.S. Subramanian’s vina (1983)" 1 12 261.62558 275.622009 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.432983 441.493134 465.112122 490.547943;
indian-vinarat.scl, "S.M. Tagore’s sruti vina rationalised OdC. 1/1=241.2 Hz" 2 23 261.62558 269.1 279.067261 288.322052 297.671753 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 378.422699 392.438354 403.650879 418.6 429.229431 441.493134 454.107239 470.926025 488.367737 504.563599 529.194214;
indian.scl, "Indian shruti scale" 1 22 261.62558 275.622009 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 331.119843 348.834076 353.194519 367.91095 372.509827 392.438354 413.432983 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.679779;
indian2.scl, "Indian shruti scale with tritone 64/45 schisma lower (Mr.Devarajan Madurai)" 1 22 261.62558 275.622009 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 331.119843 348.834076 353.194519 367.91095 372.089691 392.438354 413.432983 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.679779;
indian3.scl, "Indian shruti scale with 32/31 and 31/16 and tritone schisma lower" 1 22 261.62558 270.065094 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 331.119843 348.834076 353.194519 367.91095 372.089691 392.438354 413.432983 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 506.9;
indian4.scl, "Indian shruti scale according to Firoze Framjee: Text book of Indian music" 1 22 261.62558 275.933228 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 330.746399 348.834076 367.91095 372.089691 387.593445 392.438354 413.9 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.119598;
INDIAN_12.scl, "North Indian Gamut modern Hindustani gamut out of 22 or more shrutis" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 441.493134 470.926025 490.547943;
indian_12c.scl, "Carnatic gamut. Kuppuswami: Carnatic music and the Tamils p. v" 1 12 261.62558 277.015289 294.328766 313.950684 328.55304 348.834076 369.353729 392.438354 415.522949 441.493134 470.926025 492.829559;
indian_a.scl, "One observed indian mode" 1 7 261.62558 290.795227 318.767273 355.948914 388.613739 432.690918 486.521484;
indian_b.scl, "Observed Indian mode" 1 7 261.62558 290.795227 305.958679 356.154572 388.838257 432.940918 461.608643;
indian_c.scl, "Observed Indian mode" 1 7 261.62558 278.949402 313.653168 356.154572 388.838257 422.076202 470.763855;
indian_cmp.scl, "Shruti scale with a more compact lattice OdC" 1 22 261.62558 275.933228 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 334.880737 348.834076 353.194519 367.91095 372.089691 392.438354 408.79 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.119598;
INDIAN_D.SCL, "Indian D (Ellis correct)" 1 7 261.62558 289.287415 320.243713 344.619293 391.316742 442.037933 485.398682;
INDIAN_E.SCL, "Observed Indian mode" 1 7 261.62558 275.586182 323.217102 347.819031 393.583618 410.771729 488.210571;
indian_rat.scl, "Indian Raga From Fortuna after Helmholtz ratios by JC" 1 22 261.62558 269.553619 277.481659 285.409698 294.328766 302.934875 315.755005 327.031952 337.58136 348.834076 359.735138 370.63623 380.546265 392.438354 404.330414 416.222504 428.775238 441.493134 457.844727 473.417694 490.547943 506.37207;
indian_rot.scl, "Rotated North Indian Gamut" 1 12 261.62558 272.526642 279.067261 306.592468 327.031952 348.834076 392.438354 408.79 418.6 436.042603 490.547943 510.987427;
ionic.scl, "Ancient greek Ionic" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 470.926025;
iran_diat.scl, "Iranian Diatonic from Dariush Anooshfar Safi-a-ddin Armavi’s scale from 125 ET" 1 7 261.62558 297.214294 337.644135 347.136597 394.357361 448.001495 460.596527;
iraq.scl, "Iraq 8-tone scale Ellis" 1 8 261.62558 290.367523 326.663116 348.834076 387.156128 435.5513 465.112122 516.207336;
isfahan_5.scl, "Isfahan (IG #2 DF #8) from Rouanet" 1 5 261.62558 283.427704 305.229828 327.031952 348.834076;
islamic.scl, "Islamic Genus (DF#7) from Rouanet" 1 5 261.62558 283.427704 305.229828 330.665649 348.834076;
italian.scl, "Italian organ temperament G.C. Klop 1974.0000" 1 12 261.62558 274.689819 292.341278 309.026062 326.663116 348.440399 366.666931 391.111115 411.569733 437.028839 464.062836 489.44165;
iter1.scl, "McLaren style IE= 2.4142 PD=5 SD=0" 2 7 261.62558 264.438751 268.510437 278.546631 304.34 376.918182 631.62;
iter10.scl, "Iterated 5/2 Scale IE=5/2 PD=4 SD=3" 2 18 261.62558 277.060699 293.383575 297.6 301.91391 310.680359 328.974731 338.515533 348.352264 368.892059 413.651245 438.070709 463.890717 520.136536 535.28 550.790649 583.296326 654.063904;
iter11.scl, "Binary 5/3 Scale #2" 2 11 261.62558 278.876099 297.264038 306.907806 316.86441 337.757141 360.027466 383.766205 396.216248 409.07019 436.042603;
iter12.scl, "Binary 5/3 Scale #4" 2 10 261.62558 297.264038 306.907806 316.86441 337.757141 360.027466 383.766205 396.216248 409.07019 436.042603;
iter13.scl, "Binary 5/3 Scale #6" 2 6 261.62558 297.264038 337.757141 383.766205 409.07019 436.042603;
iter14.scl, "Binary Divided 3/1 Scale #2" 2 12 261.62558 280.220734 300.137543 344.318604 368.791229 395.003235 453.148773 519.853516 596.377319 638.765137 684.165649 784.876709;
iter15.scl, "Binary Division Scale" 1 10 261.62558 285.304688 311.126984 324.901764 339.286377 369.994415 403.481781 440. 459.480469 479.823395;
iter16.scl, "Binary Division Scale 4+2" 1 11 261.62558 273.20871 285.304688 311.126984 324.901764 339.286377 369.994415 403.481781 440. 459.480469 479.823395;
iter17.scl, "Binary E Scale #2" 2 18 261.62558 278.498993 296.460602 301.129181 305.871277 315.580658 335.933868 346.597565 357.6 380.662964 431.347626 459.167175 488.780914 553.861328 571.442749 589.582336 627.607117 711.171997;
iter18.scl, "Binary E Scale #4" 2 11 261.62558 296.460602 335.933868 357.6 380.662964 431.347626 488.780914 553.861328 589.582336 627.607117 711.171997;
iter19.scl, "Binary Kidjel Ratio Scale#2" 2 17 261.62558 322.518799 331.065857 339.839417 358.09021 397.584869 418.936859 441.435516 490.122559 604.198364 670.836914 744.825256 918.182983 967.493225 1019.45166 1131.889648 1395.336304;
iter2.scl, "Iterated 1 + SQR(2) Scale IE=2.414214 PD=5 SD=1" 2 9 261.62558 264.438751 268.510437 278.546631 304.34 376.918182 466.763794 529.065002 631.638855;
iter20.scl, "Binary PHI Scale #2" 2 12 261.62558 269.613678 277.845673 295.071381 304.080658 313.365051 332.792847 353.42514 375.336609 386.7966 398.606476 423.319061;
iter21.scl, "Binary PHI Scale 5+2 #2" 2 13 261.62558 265.5896 269.613678 277.845673 295.071381 304.080658 313.365051 332.792847 353.42514 375.336609 386.7966 398.606476 423.319061;
iter22.scl, "Binary PI Scale #2" 2 17 261.62558 301.872742 307.32074 312.867065 324.26178 348.311371 360.996979 374.144623 401.89386 463.719238 498.111969 535.055542 617.365845 639.850525 663.154114 712.338318 821.920959;
iter23.scl, "Binary SQR(3) Scale #2" 2 17 261.62558 280.220734 282.6362 285.072479 290.008209 300.137543 305.334137 310.620697 321.47 344.318604 356.344879 368.791229 395.003235 401.842316 408.8 423.078278 453.148773;
iter24.scl, "Binary SQR(5) Scale #2" 2 17 261.62558 289.311584 292.97226 296.679291 304.234619 319.927399 328.074768 336.429626 353.783081 391.221466 411.401154 432.621704 478.403046 490.586212 503.079651 529.029114 585.012573;
iter25.scl, "Binary SQR(7) Scale #2" 2 17 261.62558 295.46 299.986115 304.581451 313.984436 333.670197 343.971222 354.59021 376.821838 425.554016 452.234833 480.58844 542.740112 559.495483 576.768127 612.929565 692.196167;
iter26.scl, "E Scale" 2 18 261.62558 266.56189 275.042267 276.160309 278.325073 283.891571 299.680206 302.934875 309.193848 326.135986 377.903595 389.873383 411.921112 477.081909 486.745239 503.126099 552.320618 711.294495;
iter27.scl, "Iterated Kidjel Ratio Scale IE=16/3 PD=3 SD=3" 2 17 261.62558 264.532501 264.598572 264.98 266.910919 277.481659 277.936371 279.98526 291.058441 358.1 361.333038 375.619568 462.091919 465.489655 480.439667 568.532471 1395.336304;
iter28.scl, "McLaren 3-Division Scale" 2 6 261.62558 265.209473 272.47641 295.602905 377.344574 784.876709;
iter29.scl, "Iterated Binary Division of the Octave IE=2 PD=6 SD=0" 1 7 261.62558 264.46933 267.354584 273.201904 285.290192 311.122284 370.013306;
iter3.scl, "Iterated 27/16 Scale analog of Hexachord IE=27/16 PD=3 SD=2" 2 11 261.62558 291.724091 314.409668 328.653595 338.826538 356.713287 384.47583 404.779175 417.303589 426.152985 441.493134;
iter30.scl, "Iterated E-scale IE= 2.7183 PD=5 SD=0" 2 7 261.62558 263.405334 266.47049 274.973816 299.542328 377.981934 711.179382;
iter31.scl, "Iterated Kidjel Ratio Scale IE=16/3 PD=3 SD=0" 2 5 261.62558 264.532501 277.481659 358.1 1395.336304;
iter32.scl, "Iterated PHI scale IE= 1.6180 PD=8 SD=0" 2 10 261.62558 264.322723 265.985992 268.744629 273.216583 280.652893 293.1 314.430725 352.254028 423.304291;
iter33.scl, "Iterated PI Scale IE= 3.1416 PD=4 SD=0" 2 6 261.62558 264.703522 271.461121 293.792633 376.625824 821.874268;
iter34.scl, "Iterated SQR3 Scale IE= 1.7320 PD=8 SD=0" 2 10 261.62558 263.417511 264.703522 267.001434 271.017242 278.105927 290.810883 314.213623 359.24704 453.172852;
iter35.scl, "Iterated SQR 5 Scale IE= 2.2361 PD=6 SD=0" 2 8 261.62558 263.324432 265.417236 270.175415 281.149872 307.306213 374.941101 585.023804;
iter36.scl, "Iterated SQR 7 Scale IE= 2.6458 PD=5 SD=0" 2 7 261.62558 263.607574 266.858063 275.725159 300.639893 377.903595 692.217651;
iter4.scl, "Iterated 5/2 Scale IE=5/2 PD=4 SD=3" 2 18 261.62558 267.825226 277.41333 278.978271 281.37088 287.359222 302.934875 307.23 313.767731 330.790955 377.427032 390.968536 412.149872 470.263672 480.297668 495.7966 536.6 654.063904;
iter5.scl, "Iterated 5/3 Scale analog of Hexachord IE=5/3 PD=3 SD=2" 2 11 261.62558 292.14856 314.453796 328.627228 338.433075 355.469513 382.592224 401.843201 413.812988 422.03833 436.042603;
iter6.scl, "Iterated Binary 1+SQR(2) Scale IE= 2.4142 G=2 PD=4 SD=2" 2 12 261.62558 276.43457 292.106201 326.135986 344.58 364.118042 406.525879 453.840271 506.692535 535.419739 565.737305 631.638855;
iter7.scl, "Iterated 27/16 Scale analog of Hexachord IE=27/16 PD=3 SD=2" 2 11 261.62558 279.302979 298.196869 308.098541 318.341583 339.843506 362.820374 387.341736 400.248077 413.53717 441.493134;
iter8.scl, "Iterated 27/16 Scale analog of Hexachord IE=27/16 PD=2 SD=2" 2 10 261.62558 298.196869 308.098541 318.341583 339.843506 362.820374 387.341736 400.248077 413.53717 441.493134;
iter9.scl, "Iterated 27/16 Scale analog of Hexachord IE=27/16 PD=2 SD=12" 2 6 261.62558 298.196869 339.843506 387.341736 413.53717 441.493134;
iter_fifth.scl, "Iterated 3/2 Scale IE=3/2 PD=3 SD=2" 2 11 261.62558 295.022705 313.287415 326.087921 332.682892 342.826477 364.05069 375.150696 382.737915 386.589111 392.438354;
ives.scl, "Charles Ives’ stretched major scale "Scrapbook" pp. 108-110" 2 8 261.62558 302.269806 349.228241 375.376129 433.691803 501.066986 578.909119 622.253967;
ives2a.scl, "Speculation by Joe Monzo for Ives’ other stretched scale" 2 8 261.62558 303.728302 352.606506 379.920593 441.060242 512.03894 594.44 640.487427;
ives2b.scl, "Alt. speculation by Joe Monzo for Ives’ other stretched scale" 2 8 261.62558 300.818329 345.882324 370.885986 426.446472 490.33017 563.783936 604.539612;
janke1.scl, "Rainer Janke Temperatur I" 1 12 261.62558 276.38324 293.325714 310.588318 328.866821 349.026581 368.714325 391.769073 414.346252 439.23819 465.625549 492.458954;
janke2.scl, "Rainer Janke Temperatur II" 1 12 261.62558 276.38324 292.98703 310.588318 328.487122 349.026581 368.714325 391.542847 414.346252 438.731049 465.625549 491.890381;
janke3.scl, "Rainer Janke Temperatur III" 1 12 261.62558 276.223663 292.98703 310.408966 328.297455 349.026581 368.501434 391.542847 414.106995 438.477722 465.625549 491.606354;
janke4.scl, "Rainer Janke Temperatur IV" 1 12 261.62558 275.904724 292.98703 310.767761 328.10788 349.228241 368.075958 391.542847 413.867859 438.477722 465.894562 491.322449;
janke5.scl, "Rainer Janke Temperatur V" 1 12 261.62558 275.586182 292.98703 310.050568 328.10788 348.825012 367.43869 391.542847 413.39 438.477722 465.087952 491.038757;
janke6.scl, "Rainer Janke Temperatur VI" 1 12 261.62558 275.745422 292.98703 310.588318 328.10788 349.43 367.651001 391.542847 413.867859 438.477722 465.894562 491.038757;
janke7.scl, "Rainer Janke Temperatur VII" 1 12 261.62558 275.427032 292.817841 311.126984 327.918396 349.631897 367.014435 391.542847 413.628876 438.224518 467.242065 490.755188;
jemblung1.scl, "Scale of bamboo gamelan jemblung from Kalijering slendro-like. 1/1=590 Hz." 1 5 261.62558 298.873901 337.896027 388.447418 452.30188;
jemblung2.scl, "Bamboo gamelan jemblung at Royal Batavia Society. 1/1=504 Hz." 1 5 261.62558 300.038849 355.063232 391.4 451.61557;
ji_10coh.scl, "Differentially coherent 10-tone scale" 1 10 261.62558 283.427704 299.779297 327.031952 348.834076 370.63623 392.438354 436.042603 457.844727 485.097412;
ji_10coh2.scl, "Other diff. coherent 10-tone scale" 1 10 261.62558 305.229828 313.950684 348.834076 366.275787 392.438354 418.6 436.042603 470.926025 479.646881;
ji_11.scl, "3 and 7 prime rational interpretation of 11-tET. OdC 2000" 1 11 261.62558 276.967804 294.328766 316.534637 336.375732 356.101471 384.429413 406.973114 432.483063 465.112122 494.266388;
ji_12.scl, "Basic JI with 7-limit tritone" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 470.926025 490.547943;
ji_12a.scl, "7-limit 12-tone scale" 1 12 261.62558 279.067261 294.328766 305.229828 327.031952 348.834076 366.275787 392.438354 418.6 448.5 457.844727 490.547943;
ji_12b.scl, "alternate 7-limit 12-tone scale" 1 12 261.62558 272.526642 290.695068 305.229828 327.031952 343.383545 366.275787 392.438354 418.6 448.5 457.844727 490.547943;
ji_12c.scl, "Kurzweil "Just with natural b7th" is Sauveur Just with 7/4" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 457.844727 490.547943;
ji_13.scl, "5-limit 12-tone symmetrical scale with two tritones" 1 13 261.62558 279.067261 294.328766 310.074738 327.031952 348.834076 367.91095 372.089691 392.438354 418.6 441.493134 465.112122 490.547943;
ji_13a.scl, "7-limit rational 13-equal Barlow On the Quantification of Harmony and Metre" 1 13 261.62558 275.933228 294.328766 305.229828 327.031952 343.383545 358.8 378.422699 397.343842 418.6 448.5 470.926025 496.679779;
ji_13b.scl, "5 and 11 prime rational interpretation of 13-tET. OdC 2000" 1 13 261.62558 276.760925 287.788116 304.437012 327.031952 345.951172 359.735138 380.546265 395.708679 418.6 449.668945 475.682831 494.635834;
ji_17.scl, "3 and 7 prime rational interpretation of 17-tET. OdC" 1 17 261.62558 271.315399 283.817017 294.328766 310.074738 321.55899 336.375732 348.834076 361.753876 378.422699 392.438354 406.973114 425.725525 441.493134 465.112122 482.338501 504.563599;
ji_17A.scl, "3 5 and 11 prime rational interpretation of 17-tET OdC" 1 17 261.62558 272.526642 282.555603 294.328766 310.074738 321.085907 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 426.352783 441.493134 465.112122 484.491791 502.321075;
ji_17b.scl, "3 and 11 prime rational interpretation of 17-tET OdC" 1 17 261.62558 275.622009 285.409698 294.328766 310.074738 321.085907 331.119843 348.834076 359.735138 380.546265 392.438354 413.432983 426.352783 441.493134 465.112122 479.646881 496.679779;
ji_17c.scl, "Alt. 3 5 and 11 prime rational interpretation of 17-tET OdC" 1 17 261.62558 272.526642 285.409698 294.328766 310.074738 319.764587 334.880737 348.834076 359.735138 380.546265 392.438354 408.79 428.114563 441.493134 465.112122 479.646881 502.321075;
ji_17d.scl, "3 7 and 11 prime rational interpretation of 17-tET OdC" 1 17 261.62558 274.083923 285.409698 294.328766 305.229828 319.764587 332.977997 348.834076 359.735138 380.546265 392.438354 411.125885 428.114563 448.5 465.112122 479.646881 499.46698;
ji_17e.scl, "11-limit rational 17-equal Barlow On the Quantification of Harmony and Metre" 1 17 261.62558 272.526642 282.555603 294.328766 310.074738 319.764587 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 428.114563 441.493134 465.112122 484.491791 502.321075;
ji_17_12.scl, "12-tone Pythagorean subset of ji_17.scl" 1 12 261.62558 283.817017 294.328766 310.074738 336.375732 348.834076 378.422699 392.438354 425.725525 441.493134 465.112122 504.563599;
ji_19.scl, "5-limit 19-tone scale" 1 19 261.62558 272.526642 275.933228 279.067261 294.328766 306.592468 313.950684 327.031952 348.834076 353.194519 367.91095 392.438354 408.79 418.6 436.042603 441.493134 459.888702 470.926025 490.547943;
ji_19a.scl, "7-limit 19-tone scale" 1 19 261.62558 271.315399 282.555603 290.695068 302.738159 313.950684 327.031952 336.375732 348.834076 363.368835 376.740814 392.438354 406.973114 418.6 436.042603 452.192322 467.188507 484.491791 504.563599;
ji_19b.scl, "7-limit symmetrical 19-tone scale. OdC 2000" 1 19 261.62558 272.526642 280.31311 290.695068 305.229828 313.950684 327.031952 336.375732 348.834076 363.368835 376.740814 392.438354 406.973114 418.6 436.042603 448.5 470.926025 488.367737 502.321075;
ji_20.scl, "3 and 7 prime rational interpretation of 20-tET. OdC" 1 20 261.62558 271.315399 279.382385 288.322052 299. 310.074738 321.55899 331.119843 348.834076 356.101471 372.509827 384.429413 392.438354 413.432983 425.725525 441.493134 457.844727 474.801941 489.994659 504.563599;
ji_21.scl, "7-limit 21-tone just scale Op de Coul 2001" 1 21 261.62558 271.315399 279.067261 290.695068 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 490.547943 504.563599;
ji_22.scl, "5-limit 22-tone scale (Zarlino?)" 1 22 261.62558 272.526642 279.067261 282.555603 294.328766 306.592468 313.950684 327.031952 334.880737 340.658295 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 454.21106 470.926025 490.547943 502.321075 510.987427;
ji_22a.scl, "11-limit rational interpretation of 22-tET Bill Alves tuning list 9-1-98" 1 22 261.62558 269.801361 279.067261 287.788116 297.301788 305.229828 317.121887 327.031952 336.375732 348.834076 359.735138 370.013306 380.546265 392.438354 406.973114 418.6 431.68219 448.5 460.460999 475.682831 490.547943 507.39505;
ji_22b.scl, "3 5 11-prime rational interpretation of 22-tET" 1 22 261.62558 269.801361 279.067261 287.788116 297.301788 306.592468 317.121887 327.031952 334.880737 348.834076 359.735138 367.91095 380.546265 392.438354 408.79 418.6 431.68219 446.507629 460.460999 475.682831 490.547943 507.39505;
ji_22c.scl, "31-limit rational interpretation of 22-tET Marion McCoskey" 1 22 261.62558 270.065094 279.067261 287.788116 299. 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 382.375824 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 490.547943 506.9;
ji_22d.scl, "7-limit rational interpretation of 22-tET OdC" 1 22 261.62558 271.315399 279.067261 286.152954 299. 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 367.91095 381.537292 392.438354 406.973114 418.6 436.042603 448.5 457.844727 478.401031 490.547943 504.563599;
ji_24.scl, "3 5 and 11 prime rational interpretation of 24-tET" 1 24 261.62558 269.801361 279.067261 285.409698 294.328766 303.52652 310.074738 319.764587 331.119843 338.263367 348.834076 359.735138 367.91095 380.546265 392.438354 404.702057 413.432983 428.114563 441.493134 451.017822 465.112122 479.646881 490.547943 507.39505;
ji_26.scl, "7-limit rational interpretation of 26-tET OdC" 1 26 261.62558 269.1 275.933228 282.555603 290.695068 299. 306.592468 313.950684 322.994537 331.119843 341.715027 348.834076 358.8 367.91095 381.537292 392.438354 400.614136 413.432983 423.833405 436.042603 446.507629 457.844727 470.926025 484.491791 496.119598 508.71637;
ji_27.scl, "7-limit rational interpretation of 27-tET OdC" 1 27 261.62558 267.904572 275.622009 282.555603 290.695068 299. 305.229828 313.950684 320.491302 331.119843 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 413.432983 427.143768 436.042603 448.5 457.844727 470.926025 484.491791 496.679779 510.987427;
ji_29.scl, "3 5 11-prime rational interpretation of 29-tET OdC" 1 29 261.62558 267.904572 275.622009 282.555603 287.788116 294.328766 301.392639 310.074738 317.121887 323.761627 331.119843 340.658295 348.834076 356.762146 367.91095 372.089691 383.717499 392.438354 401.856873 413.432983 422.829193 431.68219 441.493134 454.21106 465.112122 475.682831 484.491791 496.679779 510.987427;
ji_30.scl, "11-limit rational interpretation of 30-tET" 1 30 261.62558 267.571594 274.706848 280.31311 286.152954 294.328766 299.779297 308.344421 313.950684 321.922089 329.648224 336.375732 344.916504 353.194519 360.81424 370.013306 379.408173 387.593445 396.89566 406.973114 415.278687 425.245361 436.042603 443.970642 456.655518 465.112122 478.401031 488.367737 498.334412 511.623322;
ji_31.scl, "A just 11-limit 31-tone scale optimized for Mann complexity" 1 31 261.62558 267.571594 274.083923 280.31311 285.409698 293.02063 299. 305.229828 313.950684 319.764587 327.031952 334.880737 343.383545 348.834076 356.762146 366.275787 373.750793 383.717499 392.438354 398.667542 408.79 418.6 428.114563 436.042603 448.5 457.844727 467.188507 479.646881 490.547943 499.46698 512.786133;
ji_31a.scl, "A just 7-limit 31-tone scale" 1 31 261.62558 267.904572 272.526642 279.067261 286.152954 294.328766 299. 305.229828 313.950684 318.934021 327.031952 334.880737 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 398.667542 408.79 418.6 429.229431 436.042603 448.5 457.844727 465.112122 478.401031 490.547943 502.321075 510.987427;
ji_31b.scl, "A just 5-limit 31-tone scale" 1 31 261.62558 267.904572 275.933228 282.555603 287.43042 294.328766 301.392639 306.592468 313.950684 319.367157 327.031952 334.880737 344.916504 353.194519 359.288025 367.91095 376.740814 383.24057 392.438354 401.856873 408.79 418.6 431.14566 441.493134 452.088989 459.888702 470.926025 479.05072 490.547943 502.321075 510.987427;
ji_31c.scl, "A just 11-limit 31-tone scale" 1 31 261.62558 267.571594 272.526642 279.067261 285.409698 294.328766 299. 305.229828 313.950684 319.764587 327.031952 334.880737 343.383545 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 398.667542 408.79 418.6 428.114563 436.042603 448.5 457.844727 465.112122 479.646881 490.547943 502.321075 511.623322;
ji_5coh.scl, "Differential fully coherent pentatonic scale" 1 5 261.62558 305.229828 348.834076 381.537292 446.943665;
ji_6coh.scl, "Differential coherent 6-tone scale OdC 2003" 1 6 261.62558 294.328766 330.746399 372.089691 418.6 465.112122;
ji_7.scl, "7-limit rational interpretation of 7-tET. OdC" 1 7 261.62558 290.695068 318.934021 348.834076 392.438354 429.229431 470.926025;
ji_7a.scl, "Superparticular approximation to 7-tET. Op de Coul 1998" 1 7 261.62558 287.788116 319.764587 348.834076 392.438354 428.114563 470.926025;
ji_8coh.scl, "Differential coherent 8-tone scale OdC 2003" 1 8 261.62558 286.990417 312.355255 339.96225 370.009491 405.837646 441.711456 480.755859;
ji_8coh3.scl, "Differential fully coherent 8-tone scale OdC 2003" 1 8 261.62558 277.977173 302.504547 327.031952 359.735138 392.438354 425.141541 466.020538;
ji_9coh.scl, "Differentially coherent 9-tone scale" 1 9 261.62558 287.788116 313.950684 327.031952 366.275787 392.438354 418.6 470.926025 497.088562;
ji_ri24a.scl, "M. Schulter just/rational intonation system – with circulating 24-note set" 1 24 261.62558 269.1 277.015289 285.409698 294.328766 301.875641 310.680359 319.764587 329.875702 340.11322 348.834076 359.735138 370.63623 380.546265 392.438354 402.5 414.992279 428.114563 440.632538 453.484314 465.112122 479.646881 494.18161 508.71637;
johnston.scl, "Ben Johnston’s combined otonal-utonal scale" 1 12 261.62558 275.933228 294.328766 315.352234 327.031952 359.735138 367.91095 392.438354 401.357391 441.493134 457.844727 490.547943;
JOHNSTON_21.scl, "Johnston 21-note just enharmonic scale" 1 21 261.62558 272.526642 282.555603 294.328766 306.592468 313.950684 327.031952 334.880737 340.658295 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 454.21106 470.926025 490.547943 502.321075 510.987427;
johnston_22.scl, "Johnston 22-note scale from end of string quartet nr. 4" 1 22 261.62558 271.315399 279.067261 290.695068 299. 305.229828 313.950684 327.031952 336.375732 343.383545 353.194519 367.91095 378.422699 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 490.547943 504.563599;
johnston_25.scl, "Johnston 25-note just enharmonic scale" 1 25 261.62558 272.526642 275.933228 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 331.119843 334.880737 348.834076 353.194519 367.91095 376.740814 392.438354 408.79 418.6 436.042603 441.493134 459.888702 465.112122 470.926025 490.547943 502.321075;
johnston_6-qt.scl, "11-limit complete system from Ben Johnston’s _6th Quartet_" 1 61 261.62558 262.793549 266.47049 267.571594 271.315399 272.526642 277.481659 280.31311 284.235168 290.695068 294.328766 297.301788 299.779297 300.33548 305.229828 306.592468 310.074738 311.459015 316.534637 317.121887 319.764587 322.994537 327.031952 334.464508 339.144257 342.604919 348.834076 350.391388 355.294006 356.762146 361.753876 363.368835 367.91095 373.750793 381.537292 382.245148 387.593445 390.823364 392.438354 396.402374 399.705719 406.973114 408.79 413.432983 420.469666 426.352783 436.042603 445.952667 452.192322 459.888702 465.112122 467.188507 475.682831 479.646881 484.491791 486.493805 490.547943 248.70578 498.334412 508.71637 516.79126;
johnston_6-qt_row.scl, "11-limit ‘prime row’ from Ben Johnston’s "6th Quartet"" 2 13 261.62558 272.526642 290.695068 306.592468 327.031952 350.391388 363.368835 399.705719 408.79 436.042603 445.952667 490.547943 508.71637;
johnston_81.scl, "Johnston 81-note 5-limit scale of Sonata for Microtonal Piano" 3 82 116.540939 117.997704 119.337921 119.898087 120.829643 121.396812 122.775642 122.914276 124.310333 124.450699 125.864212 127.437515 127.891296 128.035706 129.49 131.108551 132.747421 134.255157 134.885345 135.93335 136.571411 138.122589 138.278564 139.849121 141.597244 142.261887 143.877701 145.676178 147.497131 149.172409 151.037064 151.746017 153.469559 155.387924 157.330276 159.117233 159.29689 161.106201 161.862411 163.7 163.885696 165.747116 165.934265 167.818954 169.916687 170.714264 172.653244 174.811417 176.996552 179.006882 179.847137 181.244476 182.095215 184.163467 184.371414 186.4655 188.796326 189.682526 191.156281 191.836945 194.234894 196.662842 198.896545 199.121124 199.830139 201.382751 202.328018 204.626068 204.857117 207.183899 207.417831 209.773697 212.395859 213.392838 215.816559 218.514267 221.245697 223.758606 226.555588 227.619019 230.20433 233.081879;
jorgensen.scl, "Jorgensen’s 5&7 temperament" 1 12 261.62558 269.51416 288.858124 309.590454 318.92511 352.121948 355.626068 388.774017 408.50705 429.241425 469.251404 473.920807;
jousse.scl, "Temperament of Jean Jousse (1832)" 1 12 261.62558 276.902008 293.15567 311.51474 328.627014 349.280975 369.202637 391.768005 415.352966 439.063141 466.601776 492.270203;
jousse2.scl, "Jean Jousse’s quasi-equal temperament" 1 12 261.62558 277.211761 293.631805 311.16629 329.638824 349.365112 370.146698 392.0401 415.419403 440.049438 466.351166 494.06;
KANZELMEYER_11.scl, "Bruce Kanzelmeyer 11 harmonics from 16 to 32.0000 Base 388.3615 Hz" 1 11 261.62558 277.977173 310.680359 327.031952 359.735138 376.086761 392.438354 425.141541 457.844727 474.19635 506.9;
KANZELMEYER_18.scl, "Bruce Kanzelmeyer 18 harmonics from 32 to 64.0000 Base 388.3615 Hz" 1 18 261.62558 277.977173 302.504547 310.680359 327.031952 335.207764 351.559357 359.735138 376.086761 384.262543 392.438354 425.141541 433.317352 457.844727 474.19635 482.372131 498.723724 506.9;
Kayolonian.scl, "19-tone 5-limit scale of the Kayenian Imperium on Kayolonia (reeks van Sjauriek)" 1 19 261.62558 267.904572 279.067261 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 357.206116 372.089691 392.438354 408.79 418.6 436.042603 446.507629 465.112122 490.547943 510.987427;
kayoloniana.scl, "Amendment by Rasch of Kayolonian scale’s note 9" 1 19 261.62558 267.904572 279.067261 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 367.91095 372.089691 392.438354 408.79 418.6 436.042603 446.507629 465.112122 490.547943 510.987427;
kayolonian_12.scl, "See Barnard: De Keiaanse Muziek p. 11.0000 (uitgebreide reeks)" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 465.112122 490.547943;
kayolonian_40.scl, "See Barnard: De Keiaanse Muziek" 1 40 261.62558 267.904572 272.526642 275.933228 279.067261 290.695068 294.328766 297.671753 306.592468 310.074738 313.950684 319.367157 327.031952 331.119843 334.880737 340.658295 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 401.856873 408.79 413.432983 418.6 436.042603 441.493134 446.507629 459.888702 465.112122 470.926025 490.547943 496.119598 502.321075 510.987427;
kayolonian_f.scl, "Kayolonian scale F and periodicity block (128/125 16875/16384)" 1 9 261.62558 279.067261 306.592468 327.031952 348.834076 392.438354 418.6 446.507629 490.547943;
[-]Kayolonian_p.scl, "Kayolonian scale P" 1 9 261.62558 279.067261 306.592468 327.031952 348.834076 392.438354 418.6 459.888702 490.547943;
[-]kayolonian_s.scl, "Kayolonian scale S" 1 9 261.62558 287.43042 306.592468 327.031952 359.288025 392.438354 418.6 459.888702 490.547943;
[-]Kayolonian_T.scl, "Kayolonian scale T" 1 9 261.62558 279.067261 297.671753 317.516541 348.834076 381.019836 418.6 446.507629 476.274811;
[-]Kayolonian_Z.scl, "Kayolonian scale Z" 1 9 261.62558 279.067261 297.671753 327.031952 348.834076 392.438354 418.6 446.507629 476.274811;
keenan.scl, "Dave Keenan 31-ET mode has 3 4:5:6:7 tetrads + 3 inv. is Fokker’s 12-tone mode" 1 12 261.62558 279.777069 292.572449 305.953003 327.18 349.879547 365.881012 391.265717 418.411621 437.547302 457.558167 489.303406;
keenan2.scl, "Dave Keenan strange 9-limit temperament TL 19-11-98" 1 12 261.62558 278.144928 295.707367 306.843597 326.218109 346.815948 369.994415 393.356354 418.193359 433.942383 461.342072 490.471802;
keenan3.scl, "Chain of 1/6 kleisma tempered 6/5s 10 tetrads Dave Keenan 30-Jun-99 TD235" 1 11 261.62558 272.101563 282.997009 314.195801 326.776825 339.861572 377.329346 392.438354 408.152344 453.148773 471.293701;
keenan3eb.scl, "Chain of 11 equal beating minor thirds 6/5=3/2 same" 1 11 261.62558 272.526245 283.881134 314.318329 327.41449 341.056305 377.623718 393.357513 409.746826 453.679138 472.581787;
keenan3eb2.scl, "Chain of 11 equal beating minor thirds 6/5=3/2 opposite" 1 11 261.62558 271.88913 282.555328 314.13446 326.457947 339.264893 377.182037 391.978882 407.356171 452.883423 470.65;
keenan3j.scl, "Chain of 11 nearly just 19-tET minor thirds Dave Keenan 1-Jul-99" 1 31 261.62558 279.749512 285.505432 288.045959 290.513306 293.972595 299.128967 305.283661 314.337341 319.850952 326.431976 333.148438 336.112885 349.045349 359.396881 366.791595 373.22522 380.90448 392.2 407.291382 410.915558 419.3703 427.998962 435.506226 448.421906 457.648315 465.675629 471.220673 475.25705 479.486023 489.351624;
keenan7.scl, "Dave Keenan 22 out of 72-tET periodicity block. TL 29-04-2001" 1 22 261.62558 269.291779 279.863953 288.064606 296.505554 305.193817 314.136688 326.469452 336.035736 349.228241 359.461395 369.994415 380.83609 391.995422 407.384888 419.322174 435.784424 448.553894 461.69751 475.226288 489.151489 508.355194;
keenanmt.scl, "Dave Keenan 1/4-comma tempered version of keenan.scl with 6 7-limit tetrads" 1 12 261.62558 279.935303 292.506287 305.641785 327.031952 349.919128 365.632843 391.221466 418.6 437.398895 457.041046 489.026825;
kelletat.scl, "Herbert Kelletat’s Bach-tuning (1967)" 1 12 261.62558 275.586182 292.98703 310.050568 327.142731 348.825012 367.43869 391.995422 413.39 437.971466 465.087952 489.905518;
kellner.scl, "Herbert Anton Kellner’s Bach tuning. 5 1/5 Pyth. comma and 7 pure fifths" 1 12 261.62558 275.622009 292.737701 310.074738 327.549622 348.834076 367.496002 391.37619 413.432983 437.918091 465.112122 491.324432;
kellners.scl, "Kellner’s temperament with 1/5 synt. comma instead of 1/5 Pyth. comma" 1 12 261.62558 275.844269 292.869873 310.224762 327.84549 348.89032 367.851654 391.464539 413.7 438.214691 465.262115 491.688934;
kepler1.scl, "Kepler’s Monochord no.1 Harmonices Mundi (1619)" 1 12 261.62558 275.933228 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 413.9 441.493134 470.926025 490.547943;
kepler2.scl, "Kepler’s Monochord no.2" 1 12 261.62558 275.933228 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 441.493134 470.926025 490.547943;
kepler3.scl, "Kepler’s choice system Harmonices Mundi Liber III (1619)" 1 12 261.62558 275.933228 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 413.9 441.493134 470.926025 496.679779;
kilroy.scl, Kilroy 1 12 261.62558 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 441.493134 465.112122 490.547943;
kimball.scl, "Buzz Kimball 18-note just scale" 1 18 261.62558 272.526642 275.933228 290.695068 294.328766 306.592468 327.031952 331.119843 348.834076 363.368835 367.91095 392.438354 408.79 436.042603 441.493134 459.888702 465.112122 490.547943;
KIMBALL_53.scl, "Buzz Kimball 53-note just scale" 1 53 261.62558 277.015289 277.977173 279.067261 281.75061 283.427704 285.409698 287.788116 296.508972 299. 305.229828 307.794769 309.193848 313.950684 317.688171 319.764587 322. 327.031952 332.977997 338.574249 340.11322 342.125732 348.834076 359.735138 362.250793 366.275787 369.353729 370.63623 373.750793 377.903595 380.546265 392.438354 400.133209 402.5 404.330414 411.125885 418.6 425.141541 428.114563 430.912689 436.042603 442.750946 444.763458 448.5 457.844727 461.692169 475.682831 479.646881 483.001038 485.876038 490.547943 492.471649 494.18161;
kirn-stan.scl, "Kirnberger temperament improved by Charles Earl Stanhope (1806)" 1 12 261.62558 276.160309 292.607544 310.680359 327.031952 348.834076 368.213745 392.438354 414.240479 437.19 465.112122 490.547943;
kirnberger.scl, "Kirnberger’s well-temperament also called Kirnberger III" 1 12 261.62558 275.622009 292.506287 310.074738 327.031952 348.834076 367.91095 391.221466 413.432983 437.398895 465.112122 490.547943;
kirnberger1.scl, "Kirnberger’s temperament 1 (1766)" 1 12 261.62558 275.622009 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.432983 438.75946 465.112122 490.547943;
kirnberger2.scl, "Kirnberger 2: 1/2 synt. comma. "Die Kunst des reinen Satzes" (1774)" 1 12 261.62558 275.933228 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.9 438.759399 465.112122 490.547943;
kirnberger3.scl, "Kirnberger 3: 1/4 synt. comma (1744)" 1 12 261.62558 275.933228 292.506287 310.074738 327.031952 348.834076 367.91095 391.221466 413.9 437.398895 465.112122 490.547943;
kirnberger3v.scl, "Variant well-temperament like Kirnberger 3 Kenneth Scholz MTO 4.4000 1998" 1 12 261.62558 275.933228 292.5 310.074738 327.031952 348.834076 367.91095 391.21579 413.432983 437.392578 465.112122 490.547943;
klais.scl, "Johannes Klais Bach temperament" 1 12 261.62558 275.622009 293.002258 310.074738 327.216888 348.834076 367.496002 391.995422 413.432983 438.016998 465.112122 489.994659;
klonaris.scl, "Johnny Klonaris 19-limit harmonic scale" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 457.844727 490.547943;
knot.scl, "Smallest knot in 3-D American Scientist Nov-Dec ’97 p506-510 trefoil knot" 1 24 261.62558 268.268402 280.31311 286.152954 294.328766 299. 306.592468 327.031952 348.834076 357.691193 366.275787 367.91095 381.537292 392.438354 408.79 418.6 429.229431 436.042603 448.5 457.844727 459.888702 476.9216 478.401031 490.547943;
koepf_36.scl, "Siegfried Koepf 36-tone subset of 48-tone scale (1991)" 1 36 261.62558 272.263489 274.950165 277.182617 288.453125 291.3 293.664764 305.605438 308.621124 311.126984 323.777679 326.972687 329.627563 343.030487 346.415497 349.228241 363.428162 367.014435 369.994415 385.038727 388.838257 391.995422 407.934326 411.96 415.304688 432.191345 436.456207 440. 457.890778 462.409241 466.163757 485.118378 489.905518 493.883301 513.965027 519.036804;
koepf_48.scl, "Siegfried Koepf 48-tone scale (1991)" 1 48 261.62558 269.447388 272.263489 274.950165 277.182617 285.469543 288.453125 291.3 293.664764 302.444458 305.605438 308.621124 311.126984 320.428741 323.777679 326.972687 329.627563 339.482422 343.030487 346.415497 349.228241 359.669098 363.428162 367.014435 369.994415 381.056122 385.038727 388.838257 391.995422 403.714905 407.934326 411.96 415.304688 427.721039 432.191345 436.456207 440. 453.154663 457.890778 462.409241 466.163757 480.1 485.118378 489.905518 493.883301 508.648895 513.965027 519.036804;
kolinsky.scl, "Kolinsky’s 7th root of 3/2 also invented by Augusto Novaro" 2 13 261.62558 277.227356 293.759521 311.277588 329.840332 349.51 370.352722 392.438354 415.841034 440.639313 466.916382 494.760498 524.265076;
kora1.scl, "Kora tuning Tomoraba (Silaba)" 1 7 261.62558 293.664764 326.783875 349.228241 391.995422 440. 489.62262;
kora2.scl, "Kora tuning Tomora Mesengo (Tomora)" 1 7 261.62558 298.797943 315.652435 349.228241 391.995422 447.691071 472.944275;
kora3.scl, "Kora tuning Hardino" 1 7 261.62558 291.131348 330.580933 349.228241 391.995422 436.204163 495.311768;
kora4.scl, "Kora tuning Sauta" 1 7 261.62558 291.131348 330.580933 371.064545 391.995422 436.204163 495.311768;
KOREA_5.SCL, "According to Lou Harrison called "the Delightful" in Korea" 1 5 261.62558 294.328766 348.834076 392.438354 470.926025;
kornerup.scl, "Kornerup’s temperament with fifth of (15 – sqrt 5) / 22 octaves" 1 19 261.62558 272.97226 280.229767 292.383331 305.063995 313.174713 326.75708 340.928528 349.992798 365.171967 374.880554 391.139343 408.103058 418.953033 437.123016 456.081299 468.206848 488.51297 509.7;
kornerup_11.scl, "Kornerup’s doric minor" 1 11 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 470.926025 490.547943;
kraeh_22.scl, "Kraehenbuehl & Schmidt 7-limit 22-tone tuning" 1 22 261.62558 267.076111 274.706848 286.152954 294.328766 305.229828 313.950684 320.491302 336.375732 343.383545 353.194519 366.275787 381.537292 392.438354 400.614136 412.060272 436.042603 441.493134 457.844727 470.926025 488.367737 504.563599;
kraeh_22a.scl, "Kraehenbuehl & Schmidt 7-limit 22-tone tuning with "inflections" for some tones" 1 46 261.62558 267.076111 269.1 272.526642 274.706848 279.067261 280.31311 286.152954 294.328766 299. 305.229828 311.459015 313.950684 318.934021 320.491302 327.031952 336.375732 343.383545 348.834076 350.391388 353.194519 358.8 366.275787 367.91095 373.750793 381.537292 392.438354 398.667542 400.614136 403.650879 408.79 412.060272 418.6 420.469666 436.042603 441.493134 448.5 457.844727 467.188507 470.926025 476.9216 478.401031 488.367737 490.547943 498.334412 504.563599;
kraeh_22b.scl, "Best 22-tET approximation of KRAEH_22A.SCL" 1 22 261.62558 269.1 279.067261 286.152954 299. 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 367.91095 381.537292 392.438354 408.79 420.469666 436.042603 448.5 457.844727 476.9216 490.547943 504.563599;
KRING1.scl, "Double-tie circular mirroring of 4:5:6 and Partch’s 5-limit tonality Diamond" 1 7 261.62558 313.950684 327.031952 348.834076 392.438354 418.6 436.042603;
KRING1P3.SCL, "Third carthesian power of double-tie mirroring of 4:5:6 with kleismas removed" 1 35 261.62558 267.904572 272.526642 279.067261 282.555603 290.695068 294.328766 301.392639 306.592468 310.074738 313.950684 327.031952 334.880737 340.658295 348.834076 353.194519 363.368835 367.91095 372.089691 376.740814 387.593445 392.438354 401.856873 408.79 418.6 436.042603 441.493134 446.507629 454.21106 465.112122 470.926025 484.491791 490.547943 502.321075 510.987427;
kring2.scl, "Double-tie circular mirroring of 6:7:8" 1 7 261.62558 299. 305.229828 348.834076 392.438354 448.5 457.844727;
kring2p3.scl, "Third power of 6:7:8 mirroring with 1029/1024 intervals removed" 1 25 261.62558 265.778351 271.315399 288.322052 294.328766 299. 305.229828 310.074738 329.510925 336.375732 343.383545 348.834076 356.101471 384.429413 392.438354 398.667542 406.973114 415.451721 441.493134 448.5 457.844727 465.112122 474.801941 504.563599 515.075317;
kring3.scl, "Double-tie circular mirroring of 3:5:7" 1 7 261.62558 305.229828 313.950684 366.275787 373.750793 436.042603 448.5;
kring3bp.scl, "Double-tie BP circular mirroring of 3:5:7" 2 8 261.62558 336.375732 366.275787 436.042603 470.926025 560.626221 610.459656 784.876709;
kring4.scl, "Double-tie circular mirroring of 4:5:7" 1 7 261.62558 299. 327.031952 366.275787 373.750793 418.6 457.844727;
kring4p3.scl, "Third power of 4:5:7 mirroring with 3136/3125 intervals removed" 1 29 261.62558 267.904572 273.372009 280.43 286.152954 293.02063 299. 305.102692 320.491302 327.031952 334.880737 341.715027 350.537384 357.691193 366.275787 373.750793 382.720825 390.531464 400.614136 408.79 418.6 427.143768 448.687836 457.844727 467.188507 478.401031 488.164307 500.76767 510.987427;
kring5.scl, "Double-tie circular mirroring of 5:7:9" 1 7 261.62558 290.695068 336.375732 366.275787 373.750793 406.973114 470.926025;
kring5p3.scl, "Third power of 5:7:9 mirroring with 250047/250000 intervals removed" 1 33 261.62558 266.964874 272.464325 278.024841 284.881165 290.695068 296.68338 302.738159 308.916473 316.534637 322.994537 329.648224 336.375732 343.24054 351.705139 358.882813 366.275787 373.750793 381.45 389.234772 398.833649 406.973114 415.278687 423.833405 432.483063 443.148499 452.192322 461.420746 470.926025 480.536743 492.387207 502.435913 512.786133;
kring6.scl, "Double-tie circular mirroring of 6:7:9" 1 7 261.62558 305.229828 336.375732 348.834076 392.438354 406.973114 448.5;
kring6p3.scl, "Third power of 6:7:9 mirroring with 118098/117649 intervals removed" 1 34 261.62558 267.076111 271.315399 276.967804 288.322052 294.328766 299. 305.229828 310.074738 316.534637 324.362305 329.510925 336.375732 343.383545 348.834076 356.101471 361.753876 369.290405 378.422699 384.429413 392.438354 398.667542 406.973114 415.451721 422.046173 432.483063 441.493134 448.5 457.844727 465.112122 474.801941 494.266388 504.563599 512.57251;
krousseau.scl, "Kami Rousseau’s tri-blues scale" 1 12 261.62558 274.706848 294.328766 305.229828 343.383545 348.834076 366.275787 392.438354 406.973114 457.844727 465.112122 488.367737;
KROUSSEAU2.scl, "19-tET version of Kami Rousseau’s tri-blues scale" 1 12 261.62558 271.346283 291.884644 302.729614 337.742706 350.291534 363.306641 390.805542 405.325928 452.205078 469.006775 486.432739;
kukuya.scl, "African Kukuya Horns (aerophone ivory one note only)" 2 5 261.62558 307.375793 361.961639 412.674286 460.809418;
kurzw_arab.scl, "Kurzweil "Empirical Arabic"" 1 12 261.62558 282.02771 290.291748 302.269806 321.17 349.631897 374.942719 393.356354 411.96 429.205994 447.691071 496.744324;
kurzw_harmp.scl, "Kurzweil "Empirical Bali/Java Harmonic Pelog"" 1 12 261.62558 285.469543 287.621246 306.489319 308.8 324.901764 345.815735 348.422272 427.721039 430.944916 458.95 462.409241;
kurzw_melp.scl, "Kurzweil "Empirical Bali/Java Melodic Pelog"" 1 12 261.62558 281.539398 283.989349 303.66983 307.020905 323.964752 344.022644 347.016327 421.102142 424.766571 451.06546 454.990631;
kurzw_slen.scl, "Kurzweil "Empirical Bali/Java Slendro Siam 7"" 1 12 261.62558 266.968628 288.9534 306.666412 318.951447 352.267212 352.267212 389.062927 404.4151 429.205994 464.819366 474.038269;
kurzw_tibet.scl, "Kurzweil "Empirical Tibetian Ceremonial"" 1 12 261.62558 270.539063 299.143311 312.929321 325.46524 353.694427 373.861389 397.697144 408.87793 438.984558 471.308014 489.905518;
lambdoma5_12.scl, "5×12 Lambdoma" 2 43 261.62558 21.80213 23.784143 26.162558 29.06951 32.703197 37.37508 43.604259 47.568283 52.325111 58.139015 65.406395 71.352425 74.75016 78.487671 87.208519 95.136566 98.109589 104.650223 109.010651 112.125244 116.27803 118.920708 130.81279 145.347534 149.5 156.975342 163.515976 174.417038 186.875397 196.219177 209.3 218.021301 261.62558 327.031952 348.834076 392.438354 436.042603 523.25116 654.063904 784.876709 1046.502319 1308.127808;
LAMBDOMA_prim.scl, "Prime Lambdoma" 2 57 261.62558 8.439535 9.021572 11.375026 13.769768 15.38974 16.879068 18.043142 20.125046 22.75 23.784143 25.318605 27.064714 27.539536 30.779478 34.125072 37.37508 40.25 41.309299 42.19767 45.107857 46.169216 47.568283 52.325111 56.875122 59.07674 60.37513 63.151001 68.848831 71.352425 74.75016 76.948692 79.625175 87.208519 96.388367 100.625214 104.650223 107.728172 112.125244 118.920708 130.81279 140.875305 156.975342 166.488998 174.417038 186.875397 261.62558 366.275787 392.438354 436.042603 523.25116 610.459656 654.063904 784.876709 915.689453 1308.127808 1831.378906;
lambert.scl, "Lambert’s temperament (1774) 1/7 Pyth. comma 5 pure" 1 12 261.62558 276.156006 293.191376 310.675507 328.565704 349.51 368.208008 391.679474 414.234009 438.936646 466.013275 491.895508;
lara.scl, "Sundanese ‘multi-laras’ gamelan Ki Barong tuning Weintraub TL 15-2-99 1/1=497" 2 13 261.62558 286.460632 298.280609 313.110138 341.054779 377.114746 395.406586 420.13031 450.024506 492.7435 523.25116 577.239563 599.670593;
lebanon.scl, "Lebanese scale? Dastgah Shur" 1 7 261.62558 285.304688 311.126984 349.228241 391.995422 415.304688 466.163757;
leedy.scl, "Douglas Leedy scale for "Pastorale" (1987) 1/1=f 10/9 only in vocal parts" 1 13 261.62558 269.801361 290.695068 294.328766 305.229828 327.031952 348.834076 359.735138 392.438354 436.042603 441.493134 457.844727 490.547943;
leeuw1.scl, "Ton de Leeuw: non-oct. mode from "Car nos vignes sont en fleurs" part 5.0000 1/1=A" 2 14 261.62558 311.126984 349.228241 380.83609 415.304688 466.163757 508.355194 554.365234 604.539612 659.255127 739.988831 806.963562 880. 987.766602;
leftpistol.scl, "Left Pistol" 1 12 261.62558 275.933228 279.067261 294.328766 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 441.493134 490.547943;
legros1.scl, "Example of temperament with 3 just major thirds" 1 12 261.62558 274.22464 292.506287 309.497498 327.031952 348.834076 365.632843 391.221466 411.336945 437.398895 465.112122 489.026825;
legros2.scl, "Example of temperament with 2 just major thirds" 1 12 261.62558 275.077606 292.506287 309.497498 327.031952 348.834076 366.770142 391.221466 412.616394 437.398895 465.112122 489.026825;
leven.scl, "Leven’s monochord ?" 1 12 261.62558 279.067261 298.970581 313.950684 330.39 348.834076 369.353821 392.438354 418.6 448.467529 465.112122 502.321075;
ligon.scl, "Jacky Ligon strictly proper all prime scale TL 08-09-2000" 1 12 261.62558 279.668701 292.405029 309.193848 329.875702 342.125732 366.275787 392.438354 411.125885 436.042603 462.876007 485.876038;
ligon2.scl, "Jacky Ligon 19-limit symmetrical non-octave scale 2001" 2 13 261.62558 276.160309 292.405029 310.680359 331.392395 355.063263 382.375824 411.789337 441.202881 470.616394 500.03 529.443481 558.856995;
ligon3.scl, "Jacky Ligon 23-limit non-octave scale (2001)" 2 17 261.62558 273.517639 286.542297 300.869415 316.70462 334.3 341.250732 376.086761 401.15921 427.903137 471.58493 481.391052 508.134979 534.878906 561.622864 588.366821 615.110779;
ligon4.scl, "Jacky Ligon 2/1 Phi Scale TL 12-04-2001" 2 22 261.62558 278.5 289.46759 308.136993 320.272369 340.928528 362.916931 386.323486 401.53833 427.435791 444.269531 472.923004 491.548401 523.25116 556.998535 592.922485 616.273987 640.544739 681.857056 725.833862 754.419861 803.07666;
ligon5.scl, "Jacky Ligon scale for "Two Golden Flutes" (2001)" 2 17 261.62558 273.227661 280.653839 293.1 314.417206 328.360413 337.285095 352.242401 377.861328 394.618011 405.343781 423.31897 454.107666 474.245331 487.135345 508.73764 545.738953;
ligon6.scl, "Jacky Ligon "Primal Golden Tuning" (2001)" 2 14 261.62558 280.653839 293.1 314.417206 328.360413 352.242401 377.861328 394.618011 423.31897 442.091553 474.245331 508.73764 531.298218 569.94;
ligon7.scl, "Jacky Ligon 7 tone 27/22=generator MMM 22-01-2002" 2 8 261.62558 294.328766 321.085907 361.221649 394.06 443.317505 483.61908 527.584473;
lindley_wt.scl, "Mark Lindley +J. de Boer +W. Drake tuning for organ Grosvenor Chapel London" 1 12 261.62558 275.622009 293.002258 310.074738 328.141998 349.622833 367.911224 391.553009 413.432983 438.511902 465.637634 491.10257;
ling-lun.scl, "Scale of Ling Lun from C" 1 12 261.62558 279.382385 294.328766 314.305176 331.119843 353.593323 372.509827 392.438354 419.073578 441.493134 471.457764 496.679779;
liu_major.scl, "Linus Liu’s Major Scale see his 1978 book "Intonation Theory"" 1 7 261.62558 290.695068 322.994537 348.834076 392.438354 436.042603 484.491791;
liu_mel.scl, "Linus Liu’s Melodic Minor use 5 and 7 descending and 6 and 8 ascending" 1 9 261.62558 290.695068 313.950684 348.834076 392.438354 423.833405 436.042603 470.926025 484.491791;
LIU_MINor.scl, "Linus Liu’s Harmonic Minor" 1 7 261.62558 290.695068 313.950684 348.834076 387.593445 418.6 484.491791;
liu_pent.scl, "Linus Liu’s "pentatonic scale"" 2 8 261.62558 294.328766 331.119843 353.194519 392.438354 441.493134 496.679779 529.791748;
lorina.scl, Lorina 1 12 261.62558 271.315399 293.02063 305.229828 313.950684 348.834076 348.834076 385.553467 406.973114 457.844727 457.844727 465.112122;
lt46a.scl, "13-limit temperament minimax g=495.66296 cents" 1 29 261.62558 265.625824 273.73233 277.917725 286.4 290.778412 299.652527 308.797455 313.519012 323.087128 328.027161 338.038055 348.354462 353.680817 364.474609 370.047455 381.340729 387.171478 398.987366 411.163849 417.450562 430.190521 436.768158 450.097656 463.833954 470.926025 485.298004 492.718201 507.755219;
lucy_19.scl, "Lucy’s 19-tone scale" 1 19 261.62558 272.177155 280.81424 292.139709 301.410248 313.566406 326.21283 336.564606 350.13858 364.26 375.819122 390.976257 406.74469 419.652008 436.576965 450.430969 468.59726 487.496216 502.966064;
lucy_31.scl, "LucyTuning from A" 1 31 261.62558 269.927795 272.177155 280.81424 283.15448 292.139709 301.410248 303.92215 313.566406 323.516876 326.21283 336.566498 339.369476 350.13858 361.249603 364.26 375.819122 378.870605 390.976257 403.383209 406.74469 419.652008 432.968933 436.576965 450.430969 454.184784 468.59726 483.467377 487.496216 502.966064 507.157684;
lucy_7.scl, "Diatonic Lucy’s scale" 1 7 261.62558 292.139709 326.21283 350.13858 390.976257 436.576965 487.496216;
Carl, Lumma 0 0 293.67395 305.57 326.667969 349.222778 366.683899 392.001587 419.067322 262.382263 262.685547 489.456635;
lumma5r.scl, "Carl Lumma’s scale 5-limit just version TL 19-2-99" 1 12 261.62558 279.067261 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 459.888702 490.547943;
lumma7.scl, "Carl Lumma’s 7-limit 12-tone scale TL 21-11-98" 1 12 261.62558 279.067261 293.02063 305.229828 327.031952 348.834076 366.275787 390.694183 418.6 436.042603 457.844727 488.367737;
lumma72.scl, "Carl Lumma’s scale 72-tET version" 1 12 261.62558 279.863953 293.664764 305.193817 326.469452 349.228241 366.449554 391.995422 419.322174 435.784424 457.274048 489.151489;
lumma_10.scl, "Carl Lumma’s 10-tone 125 cent Pyth. scale TL 29-12-1999" 1 10 261.62558 281.214355 302.269806 324.901764 349.228241 375.376129 391.995422 421.345428 452.893005 486.802582;
lumma_5151.scl, "Carl Lumma’s 5151 temperament III (1197/709.5/696). June 2003" 2 13 261.62558 276.782654 292.817841 309.782043 327.729034 346.71579 369.673981 391.09079 413.748352 437.718536 463.077454 489.905518 522.345215;
lumma_dec1.scl, "Carl Lumma two 5-tone 7/4-chains 5/4 apart in 31-tET TL 9-2-2000" 1 10 261.62558 286.103241 299.187927 327.18 342.143219 374.154083 391.265717 427.872498 457.558167 489.303406;
lumma_dec2.scl, "Carl Lumma two 5-tone 3/2-chains 7/4 apart in 31-tET TL 9-2-2000" 1 10 261.62558 286.103241 292.572449 327.18 342.143219 382.614258 391.265717 437.547302 457.558167 511.681274;
lumma_g.scl, "Carl Lumma’s Glumma scale 7-limit 2002" 1 12 261.62558 269.1 299. 313.950684 327.031952 358.8 373.750793 392.438354 436.042603 448.5 457.844727 512.57251;
lumma_k.scl, "Dave Keenan’s adaptation of lumma.scl to include 6:8:11 TL 17-04-99" 1 12 261.62558 279.950989 293.4 305.141846 326.515381 349.385986 366.170227 391.818451 419.263184 436.042603 456.99 489.;
lumma_magic.scl, "Magic chord test Carl Lumma TL 24-06-99" 1 12 261.62558 293.02063 299. 313.950684 327.031952 348.834076 366.275787 373.750793 418.6 436.042603 457.844727 467.188507;
LYDIAN_CHROM.SCL, "Lydian Chromatic Tonos" 2 25 261.62558 275.395325 290.695068 307.794769 317.121887 327.031952 373.750793 402.5 418.6 427.143768 436.042603 475.682831 523.25116 550.790649 581.390137 615.589539 634.243774 654.063904 747.501587 805.001709 837.201782 854.287537 872.085205 951.365662 1046.502319;
lydian_chrom2.scl, "Schlesinger’s Lydian Harmonia in the chromatic genus" 1 7 261.62558 272.090576 283.427704 340.11322 377.903595 400.133209 425.141541;
LYDIAN_CHROMinv.scl, "A harmonic form of Schlesinger’s Chromatic Lydian inverted" 1 7 261.62558 271.68808 281.75061 362.250793 402.5 422.625916 442.750946;
lydian_diat.scl, "Lydian Diatonic Tonos" 2 25 261.62558 275.395325 290.695068 327.031952 348.834076 373.750793 387.593445 402.5 436.042603 455. 475.682831 498.334412 523.25116 550.790649 581.390137 654.063904 697.668152 747.501587 852.705566 805.001709 872.085205 910.001953 951.365662 996.668823 1046.502319;
LYDIAN_DIAT2.scl, "Schlesinger’s Lydian Harmonia a subharmonic series through 13 from 26" 1 8 261.62558 283.427704 309.193848 340.11322 358.013947 377.903595 425.141541 485.876038;
LYDIAN_DIAT2INV.scl, "Inverted Schlesinger’s Lydian Harmonia a harmonic series from 13 from 26" 1 8 261.62558 281.75061 322. 362.250793 382.375824 402.5 442.750946 483.001038;
lydian_diatcon.scl, "A Lydian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 283.427704 309.193848 340.11322 358.013947 425.141541 485.876038;
lydian_enh.scl, "Lydian Enharmonic Tonos" 2 25 261.62558 275.395325 290.695068 299. 303.333984 307.794769 373.750793 402.5 410.393036 414.456329 418.6 475.682831 523.25116 550.790649 581.390137 598.001282 606.667969 615.589539 747.501587 805.001709 820.786072 828.912659 837.201782 951.365662 1046.502319;
lydian_enh2.scl, "Schlesinger’s Lydian Harmonia in the enharmonic genus" 1 7 261.62558 266.755493 272.090576 340.11322 377.903595 388.7 400.133209;
LYDIAN_ENHinv.scl, "A harmonic form of Schlesinger’s Enharmonic Lydian inverted" 1 7 261.62558 266.65683 271.68808 362.250793 402.5 412.563385 422.625916;
lydian_pent.scl, "Schlesinger’s Lydian Harmonia in the pentachromatic genus" 1 7 261.62558 269.931152 283.427704 340.11322 377.903595 395.480499 425.141541;
lydian_pis.scl, "The Diatonic Perfect Immutable System in the Lydian Tonos" 2 16 261.62558 290.695068 327.031952 373.750793 402.5 436.042603 475.682831 523.25116 550.790649 581.390137 654.063904 747.501587 805.001709 872.085205 951.365662 1046.502319;
lydian_tri.scl, "Schlesinger’s Lydian Harmonia in the first trichromatic genus" 1 7 261.62558 268.510437 275.767487 340.11322 377.903595 392.438354 408.135895;
lydian_tri2.scl, "Schlesinger’s Lydian Harmonia in the second trichromatic genus" 1 7 261.62558 268.510437 283.427704 340.11322 377.903595 392.438354 425.141541;
majmin.scl, "Malcolm & Marpurg 4 (Yamaha major & minor) mixed. Mersenne/Ban without D#" 1 17 261.62558 272.526642 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 367.91095 392.438354 408.79 418.6 436.042603 465.112122 470.926025 490.547943;
major_clus.scl, "Chalmers’ Major Mode Cluster" 1 12 261.62558 275.933228 290.695068 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 465.112122 490.547943;
major_wing.scl, "Chalmers’ Major Wing with 7 major and 6 minor triads" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 392.438354 408.79 418.6 436.042603 470.926025 490.547943;
malcolm.scl, "Malcolm’s Monochord (1721) and C major in Yamaha synths Wilkinson: Tuning In" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 465.112122 490.547943;
malcolm2.scl, "Malcolm 2" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 463.295258 490.547943;
malcolme.scl, "Most equal interval permutation of Malcolm’s Monochord" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 465.112122 496.119598;
malcolme2.scl, "Inverse most equal interval permutation of Malcolm’s Monochord" 1 12 261.62558 275.933228 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 465.112122 490.547943;
malcolms.scl, "Symmetrical version of Malcolm’s Monochord and Albion scale" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 369.994415 392.438354 418.6 436.042603 465.112122 490.547943;
malcolm_ap.scl, "Best approximations in mix of all ETs from 12-23 to Malcolm’s Monochord" 1 12 261.62558 279.47937 293.664764 313.977478 326.183807 349.228241 369.994415 391.995422 419.689362 436.005402 466.163757 489.824585;
malcolm_me.scl, "Malcolm’s Mid-East" 1 7 261.62558 294.328766 327.031952 359.735138 392.438354 457.844727 490.547943;
malerbi1.scl, "Luigi Malerbi’s well-temperament nr.1 (1794) (nr.2 = Young)" 1 12 261.62558 275.622009 292.737701 310.074738 327.549622 348.834076 367.496002 391.37619 413.432983 437.918091 465.112122 489.994659;
mambuti.scl, "African Mambuti Flutes (aerophone vertical wooden one note each)" 2 9 261.62558 294.344055 331.728638 394.266235 466.163757 525.067749 590.390808 792.184692 999.821838;
mandelbaum5.scl, "Mandelbaum’s 5-limit 19-tone scale" 1 19 261.62558 272.526642 282.555603 290.695068 302.807373 313.950684 327.031952 340.658295 348.834076 363.368835 376.740814 392.438354 403.743164 418.6 436.042603 454.21106 470.926025 484.491791 502.321075;
mandelbaum7.scl, "Mandelbaum’s 7-limit 19-tone scale" 1 19 261.62558 272.526642 280.31311 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 376.740814 392.438354 406.973114 418.6 436.042603 457.844727 470.926025 490.547943 504.563599;
marimba1.scl, "Marimba of the Bakwese SW Belgian Congo (Zaire). 1/1=140.5 Hz" 2 18 261.62558 284.481903 319.504639 342.832428 371.922882 411.721893 457.097992 500.488464 547.681396 612.978638 651.682922 728.116943 807.896362 903.695557 1013.19281 1069.726563 1225.957275 1303.365845;
marimba2.scl, "Marimba of the Bakubu S. Belgian Congo (Zaire). 1/1=141.5 Hz" 2 18 261.62558 279.110596 318.031616 343.030487 379.957184 421.588898 458.684937 519.336731 571.268982 613.687195 694.8349 761.232361 846.593933 953.568665 1049.529053 1145.842529 1271.391846 1389.6698;
marimba3.scl, "Marimba from the Yakoma tribe Zaire. 1/1=185.5 Hz" 2 11 261.62558 296.733978 348.221069 420.13031 476.509033 518.737061 603.49292 696.442139 840.26062 953.018066 1037.474121;
marion.scl, "scale with two different ET step sizes" 1 19 261.62558 269.914063 278.465332 287.287506 296.388977 305.778992 315.466339 325.460754 335.771606 346.409302 357.38382 368.706238 380.38736 392.438354 411.713104 431.934296 453.148895 475.405212 498.754913;
marion1.scl, "Marion’s 7-limit Scale # 1" 1 24 261.62558 262.793549 272.526642 280.31311 286.152954 294.328766 305.229828 311.459015 327.031952 336.375732 343.383545 350.391388 367.91095 373.750793 381.537292 392.438354 408.79 420.469666 436.042603 457.844727 467.188507 476.9216 490.547943 515.075317;
marion10.scl, "Marion’s 7-limit Scale # 10" 1 25 261.62558 267.076111 272.526642 286.152954 290.695068 296.751221 305.229828 317.947723 327.031952 339.144257 356.101471 363.368835 370.939026 381.537292 400.614136 406.973114 408.79 423.930328 436.042603 445.126831 457.844727 474.801941 476.9216 484.491791 508.71637;
marion15.scl, "Marion’s 7-limit Scale # 15" 1 24 261.62558 269.1 280.31311 288.322052 299. 313.950684 320.357849 327.031952 336.375732 353.194519 358.8 360.402557 373.750793 384.429413 392.438354 403.650879 418.6 420.469666 427.143768 448.5 461.315277 470.926025 480.536743 504.563599;
marion19.scl, "Marion’s 7-limit Scale # 19" 1 25 261.62558 274.706848 280.31311 286.152954 294.328766 309.045197 313.950684 315.352234 327.031952 336.375732 343.383545 353.194519 366.275787 367.91095 373.750793 392.438354 403.650879 412.060272 420.469666 441.493134 457.844727 470.926025 490.547943 504.563599 515.075317;
marion26.scl, "Marion’s 7-limit Scale # 26" 1 24 261.62558 271.315399 279.067261 284.881165 293.02063 303.87326 305.229828 310.074738 325.578491 334.880737 341.857391 348.834076 366.275787 379.841553 390.694183 406.973114 418.6 427.321747 434.104645 455.809875 465.112122 474.801941 488.367737 512.786133;
marissing.scl, "Peter van Marissing just scale Mens en Melodie 1979" 1 12 261.62558 290.695068 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 465.112122 490.547943;
marpurg-1.scl, "Other temperament by Marpurg 3 fifths 1/3 Pyth. comma flat" 1 12 261.62558 276.869812 294.328766 311.478516 329.627563 348.834076 370.830994 392.438354 415.304688 439.503418 467.217773 494.441345;
marpurg-t1.scl, "Marpurg’s temperament nr.1 Kirnbergersche Temperatur (1766)" 1 12 261.62558 275.622009 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 413.432983 436.042603 465.112122 490.547943;
marpurg-t11.scl, "Marpurg’s temperament nr.11 6 tempered fifths" 1 12 261.62558 278.12326 294.328766 311.478516 331.119843 348.834076 371.669464 392.438354 416.243713 441.493134 466.163757 496.679779;
marpurg-t12.scl, "Marpurg’s temperament nr.12 4 tempered fifths" 1 12 261.62558 279.067078 294.661316 310.42511 330.746155 349.228241 372.089417 392.881775 418.6 441.991974 465.637634 496.119232;
marpurg-t2.scl, "Marpurg’s temperament nr.2 2 tempered fifths Neue Methode (1790)" 1 12 261.62558 278.752106 294.328766 313.59613 331.119843 348.834076 371.669464 392.438354 418.128143 441.493134 470.394165 495.559296;
marpurg-t3.scl, "Marpurg’s temperament nr.3 2 tempered fifths" 1 12 261.62558 276.557312 294.328766 311.126984 331.119843 348.834076 368.743103 392.438354 414.835968 441.493134 465.112122 491.657471;
marpurg-t4.scl, "Marpurg’s temperament nr.4 2 tempered fifths" 1 12 261.62558 276.869812 294.328766 310.074738 331.119843 348.834076 369.159729 392.438354 415.304688 441.493134 465.112122 492.212982;
marpurg-t5.scl, "Marpurg’s temperament nr.5 2 tempered fifths" 1 12 261.62558 277.809357 294.328766 312.535522 331.119843 348.834076 370.412476 392.438354 416.71402 441.493134 468.803284 493.883301;
marpurg-t7.scl, "Marpurg’s temperament nr.7 3 tempered fifths" 1 12 261.62558 276.869812 293.002258 310.074738 329.627563 348.834076 369.159729 390.669708 415.304688 439.503418 465.112122 492.212982;
marpurg-t8.scl, "Marpurg’s temperament nr.8 4 tempered fifths" 1 12 261.62558 277.495819 293.333344 311.126984 330. 348.834076 369.994415 391.111115 414.835968 440. 466.69046 493.325897;
marpurg-t9.scl, "Marpurg’s temperament nr.9 4 tempered fifths" 1 12 261.62558 277.495819 294.328766 312.1828 331.119843 350.017853 371.25 392.438354 416.243713 441.493134 468.2742 496.679779;
marpurg.scl, "Marpurg Versuch ueber die musikalische Temperatur (1776) p. 153" 1 12 261.62558 277.495819 293.830719 311.126984 330. 349.425568 369.994415 392.438354 415.539368 440. 466.69046 494.162384;
marpurg1.scl, "Marpurg’s Monochord no.1 (1776)" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 470.926025 490.547943;
marpurg3.scl, "Marpurg 3" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 441.493134 465.112122 490.547943;
MARPURG4.SCL, "Marpurg 4 also Yamaha Pure Minor" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 470.926025 490.547943;
marsh.scl, "John Marsh’s meantone temperament (1809)" 1 12 261.62558 275.506592 293.156342 311.936737 328.487122 349.530945 368.075958 391.655945 412.435974 438.857788 466.97226 491.748352;
marsh2.scl, "John Marsh’s quasi-equal temperament (1840)" 1 12 261.62558 277.2276 293.664307 311.216614 329.707916 349.188446 369.99118 391.906799 415.309845 439.964905 466.293365 494.030304;
matrix.scl, matrix 1 12 261.62558 285.409698 294.328766 313.950684 327.031952 348.834076 359.735138 392.438354 425.141541 448.5 457.844727 490.547943;
mbira_banda.scl, "Mubayiwa Bandambira’s tuning of keys R2-R9 from Berliner: The soul of mbira." 2 8 261.62558 291.131348 327.539795 368.501434 404.882568 443.572571 480.1 555.006042;
mbira_banda2.scl, "Mubayiwa Bandambira’s Mbira DzaVadzimu tuning B1=114 Hz" 2 22 261.62558 321.17 360.292877 380.83609 422.32 461.342072 587.329529 513.965027 761.67218 711.486755 849.042542 936.104919 1046.502808 633.496582 1055.609497 1174.65979 1321.560913 1486.833374 1633.62439 1789.731201 1937.11499 2239.344238;
mbira_gondo.scl, "John Gondo’s Mbira DzaVadzimu tuning B1=122 Hz" 2 22 261.62558 315.287994 345.21701 379.518494 422.564087 461.075653 564.05542 516.942383 778.575439 697.247192 842.690857 926.422424 1029.118896 628.394348 1040.475464 1153.81311 1308.647217 1415.595947 1572.5177 1715.833496 1883.056519 2103.914795;
mbira_kunaka.scl, "John Kunaka’s mbira tuning of keys R2-R9" 2 8 261.62558 292.98703 325.277313 350.440674 386.598724 434.193115 479.823395 507.76825;
mbira_kunaka2.scl, "John Kunaka’s Mbira DzaVadzimu tuning B1=113 Hz" 2 22 261.62558 340.2677 358.83905 405.116516 448.985901 490.755188 622.613525 541.703552 817.28363 724.341553 907.356934 997.514404 1094.730835 673.885498 1085.913818 1216.083984 1350.109375 1454.553345 1604.632446 1802.17981 1991.574707 2107.563721;
mbira_mude.scl, "Hakurotwi Mude’s Mbira DzaVadzimu tuning B1=132 Hz" 2 22 261.62558 289.287415 309.156403 364.68988 372.567932 408.17 507.182007 459.745941 689.636841 610.505188 760.792786 824.39563 887.657776 562.753662 888.683777 1015.537109 1126.80896 1206.289551 1365.008179 1507.588745 1666.024536 1935.996338;
mbira_mujuru.scl, "Ephat Mujuru’s Mbira DzaVadzimu tuning B1=106 Hz" 2 22 261.62558 281.376831 301.05 329.437225 394.95 419.645233 533.012817 488.774902 700.881348 602.1 765.2 809.297546 942.616028 577.573059 937.728455 1046.502808 1145.181519 1243.79 1411.51355 1540.155762 1658.343628 1904.936523;
mbira_zimb.scl, "Shona mbira scale" 2 8 261.62558 276.86261 305.958679 343.625427 379.080322 408.405853 453.416504 507.76825;
mboko_bow.scl, "African Mboko Mouth Bow (chordophone single string plucked)" 2 3 261.62558 347.618164 375.376129;
mboko_zither.scl, "African Mboko Zither (chordophone idiochordic palm fibre plucked)" 2 8 261.62558 294.684296 319.320129 354.922363 396.550201 418.676758 472.671173 513.075134;
mcclain.scl, "McClain’s 12-tone scale see page 119 of The Myth of Invariance" 1 12 261.62558 275.933228 294.328766 306.592468 327.031952 331.119843 367.91095 392.438354 408.79 441.493134 490.547943 510.987427;
MCCLAIN_18.scl, "McClain’s 18-tone scale see page 143 of The Myth of Invariance" 1 18 261.62558 275.933228 294.328766 306.592468 319.367157 327.031952 331.119843 344.916504 367.91095 383.24057 392.438354 408.79 413.9 441.493134 459.888702 490.547943 496.679779 510.987427;
MCCLAIN_8.scl, "McClain’s 8-tone scale see page 51 of The Myth of Invariance" 1 8 261.62558 294.328766 327.031952 367.91095 392.438354 408.79 441.493134 490.547943;
mclaren_bar.scl, "Metal bar scale. see McLaren Xenharmonicon 15 pp.31-33" 2 14 261.62558 281.774017 292.14325 304.767548 325.505493 328.661346 353.45752 360.67041 379.155212 397.639709 405.755127 436.411072 476.986816 521.169495;
mclaren_cps.scl, "2)12 [1 2 3 4 5 6 8 9 10 12 14 15] a degenerate CPS" 1 15 261.62558 275.933228 286.152954 294.328766 306.592468 327.031952 343.383545 367.91095 392.438354 408.79 429.229431 441.493134 457.844727 490.547943 515.075317;
mclaren_harm.scl, "from "Wilson part 9" claimed to be Schlesingers Dorian Enharmonic prov. unkn" 1 11 261.62558 279.067261 299. 304.437012 307.23 348.834076 380.546265 389.396179 393.977325 398.667542 465.112122;
mclaren_rath1.scl, "McLaren Rat H1" 1 12 261.62558 279.067261 299. 334.880737 341.715027 348.834076 372.089691 380.546265 389.396179 398.667542 492.471649 507.39505;
MCLAREN_RATH2.scl, "McLaren Rat H2" 1 12 261.62558 279.067261 299. 334.880737 341.715027 348.834076 380.546265 389.396179 398.667542 440.632538 452.541504 465.112122;
mean10.scl, "3/10-comma meantone scale" 1 12 261.62558 272.188293 292.143127 313.560913 326.220459 350.136536 364.272766 390.978546 406.763702 436.584625 468.591797 487.510468;
mean11.scl, "3/11-comma meantone scale. A.J. Ellis no. 10" 1 12 261.62558 272.834564 292.341156 313.242371 326.662842 350.017914 365.013977 391.111023 407.867676 437.028595 468.274384 488.337006;
mean11ls_19.scl, "Least squares appr. to 3/2 5/4 7/6 15/14 and 11/8 Petr Parízek" 1 19 261.62558 272.934784 280.257202 292.371826 305.010132 313.193085 326.731415 340.85495 350. 365.128906 374.924774 391.131561 408.03891 418.985992 437.097382 455.991699 468.22525 488.465118 509.579895;
mean13.scl, "3/13-comma meantone scale" 1 12 261.62558 273.831848 292.646057 312.75296 327.344604 349.835541 366.157318 391.314941 409.57196 437.712494 467.786469 489.611328;
mean14.scl, "3/14-comma meantone scale (Giordano Riccati 1762)" 1 12 261.62558 274.22464 292.76593 312.560883 327.612823 349.763916 366.607452 391.395081 410.243439 437.981445 467.59494 490.112854;
mean14a.scl, "fifth of sqrt(5/2)-1 octave "recursive" meantone Paul Hahn" 1 12 261.62558 274.246918 292.772736 312.55 327.628052 349.759857 366.632965 391.4 410.281525 437.996704 467.584106 490.141296;
mean14_15.scl, "15 of 3/14-comma meantone scale" 1 15 261.62558 274.22464 279.315002 292.76593 306.864624 312.560883 327.612823 349.763916 366.607452 391.395081 410.243439 417.858704 437.981445 467.59494 490.112854;
mean14_19.scl, "19 of 3/14-comma meantone scale" 1 19 261.62558 274.22464 279.315002 292.76593 306.864624 312.560883 327.612823 343.389648 349.763916 366.607452 373.412689 391.395081 410.243439 417.858704 437.981445 459.073273 467.59494 490.112854 513.715149;
mean14_7.scl, "Least squares appr. of 5L+2S to Ptolemy’s Intense Diatonic scale" 1 7 261.62558 292.76593 327.612823 349.763916 391.395081 437.981445 490.112854;
mean16.scl, "3/16-comma meantone scale" 1 12 261.62558 274.864105 292.960846 312.249023 328.049164 349.647552 367.34 391.52533 411.336945 438.418884 467.283875 490.928955;
mean17.scl, "4/17-comma meantone scale least squares error of 5/4 and 3/2" 1 12 261.62558 273.724121 292.613159 312.805695 327.271027 349.855194 366.033844 391.292938 409.387817 437.638672 467.839081 489.473724;
mean17_17.scl, "4/17-comma meantone scale with split C#/Db D#/Eb F#/Gb G#/Ab and A#/Bb" 1 17 261.62558 273.724121 279.679718 292.613159 306.144714 312.805695 327.271027 349.855194 366.033844 373.997864 391.292938 409.387817 418.295135 437.638672 457.87677 467.839081 489.473724;
mean17_19.scl, "4/17-comma meantone scale least squares error of 5/4 and 3/2" 1 19 261.62558 273.724121 279.679718 292.613159 306.144714 312.805695 327.271027 342.405273 349.855194 366.033844 373.997864 391.292938 409.387817 418.295135 437.638672 457.87677 467.839081 489.473724 512.108826;
mean18.scl, "5/18-comma meantone scale (Smith). 3/2 and 5/3 eq. beat. A.J. Ellis no. 9" 1 12 261.62558 272.714783 292.304474 313.301331 326.580872 350.039886 364.876617 391.086487 407.663025 436.94632 468.33313 488.183838;
mean19.scl, "5/19-comma meantone scale fifths beats three times third. A.J. Ellis no. 11" 1 12 261.62558 273.061707 292.410675 313.130676 326.818207 349.976318 365.274445 391.157532 408.255737 437.184479 468.163055 488.627319;
mean19r.scl, "Approximate 5/19-comma meantone with 19/17 tone Petr Parizek 2002" 1 12 261.62558 273.043335 292.405029 313.139709 326.805634 349.98 365.253357 391.153778 408.224335 437.171844 468.172058 488.603851;
mean23.scl, "5/23-comma meantone scale A.J. Ellis no. 4" 1 12 261.62558 274.150574 292.743347 312.597076 327.562286 349.777405 366.522583 391.38 410.116852 437.930786 467.631042 490.018311;
mean23six.scl, "6/23-comma meantone scale" 1 12 261.62558 273.116058 292.427307 313.103973 326.855377 349.96637 365.336731 391.16864 408.348602 437.221741 468.136444 488.696777;
mean25.scl, "7/25-comma meantone scale least square weights 3/2:0 5/4:1 6/5:1" 1 12 261.62558 272.662079 292.28833 313.327301 326.5448 350.049561 364.816193 391.075684 407.572998 436.910156 468.359009 488.116455;
mean26.scl, "7/26-comma meantone scale (Woolhouse 1835). Almost equal to meaneb742.scl" 1 12 261.62558 272.917542 292.366547 313.201569 326.719604 350.002716 365.109131 391.128021 408.00943 437.085541 468.233704 488.443054;
mean26_21.scl, "21 of 7/26-comma meantone scale (Woolhouse 1835)" 1 21 261.62558 272.917542 280.269867 292.366547 304.985352 313.201569 326.719604 335.521332 340.821106 350.002716 365.109131 374.945068 391.128021 408.00943 419.001099 437.085541 455.950531 468.233704 488.443054 501.601593 509.524689;
mean27.scl, "7/27-comma meantone scale least square weights 3/2:2 5/4:1 6/5:1" 1 12 261.62558 273.154297 292.438995 313.085205 326.881531 349.959381 365.380585 391.176483 408.413971 437.247986 468.117706 488.745667;
mean29.scl, "7/29-comma meantone scale least square weights 3/2:4 5/4:1 6/5:1" 1 12 261.62558 273.579315 292.568939 312.876648 327.172089 349.881653 365.867859 391.263367 409.14032 437.539459 467.91 489.288757;
mean2sev.scl, "2/7-comma meantone scale. Zarlino’s temperament (1558). See also meaneb371" 1 12 261.62558 272.526642 292.246826 313.394012 326.452118 350.074402 364.660828 391.047943 407.341614 436.817108 468.425507 487.943237;
mean2seveb.scl, ""2/7-comma" meantone with equal beating fifths. A.J. Ellis no. 8" 1 12 261.62558 274.267487 292.590759 312.443573 327.426605 349.761017 366.616943 391.047943 410.010834 437.495728 467.274963 489.749512;
mean2sev_15.scl, "15 of 2/7-comma meantone scale" 1 15 261.62558 272.526642 280.556915 292.246887 304.423767 313.394043 326.452026 350.074463 364.660828 391.047852 407.341644 419.344513 436.817108 468.425415 487.943298;
mean2sev_19.scl, "19 of 2/7-comma meantone scale" 1 19 261.62558 272.526642 280.556915 292.246887 304.423767 313.394043 326.452026 340.054321 350.074463 364.660828 375.406036 391.047852 407.341644 419.344513 436.817108 455.0177 468.425415 487.943298 508.274139;
mean2sev_31.scl, "31 of 2/7-comma meantone scale" 1 31 261.62558 264.726196 272.526642 280.556915 283.881897 292.246887 300.858337 304.423767 313.394043 317.108215 326.452026 336.071381 340.054321 350.074463 354.223145 364.660828 375.406036 379.855133 391.047852 395.682343 407.341644 419.344513 424.314117 436.817108 449.688507 455.0177 468.425415 473.976929 487.943298 502.321075 508.274139;
mean9.scl, "2/9-comma meantone scale Lemme Rossi Sistema musico (1666)" 1 12 261.62558 274.035492 292.708282 306.592468 327.483612 349.79837 366.390656 391.356537 409.92 437.852081 467.687073 489.871277;
mean94.scl, "4/9-comma meantone scale" 1 12 261.62558 268.790833 291.096588 315.253387 323.88739 350.765381 360.371948 390.277618 400.96637 434.240753 470.276459 483.156158;
mean9_15.scl, "15 of 2/9-comma meantone scale" 1 15 261.62558 274.035492 279.452759 292.708282 306.592468 312.653442 327.483612 349.79837 366.390656 391.356537 409.92 418.02359 437.852081 467.687073 489.871277;
mean9_19.scl, "19 of 2/9-comma meantone scale" 1 19 261.62558 274.035492 279.452759 292.708282 306.592468 312.653442 327.483612 343.017426 349.79837 366.390656 373.633636 391.356537 409.92 418.02359 437.852081 458.620819 467.687073 489.871277 513.107788;
mean9_31.scl, "31 of 2/9-comma meantone scale" 1 31 261.62558 268.723236 274.035492 279.452759 287.034058 292.708282 298.494659 306.592468 312.653442 321.135254 327.483612 333.957458 343.017426 349.79837 359.288025 366.390656 373.633636 383.77 391.356537 401.973663 409.92 418.02359 429.363953 437.851807 446.507629 458.620819 467.687073 480.374969 489.871277 499.555298 513.107788;
meaneb1071.scl, "Equal beating 7/4 = 3/2 same." 1 12 261.62558 273.459595 292.532318 305.764526 327.090393 349.903442 365.730743 391.239014 408.935791 437.457458 457.244843 489.135834;
meaneb1071a.scl, "Equal beating 7/4 = 3/2 opposite." 1 12 261.62558 273.941162 292.679352 306.456757 327.419312 349.815521 366.282532 391.337311 409.758636 437.787323 458.395172 489.750732;
meaneb341.scl, "Equal beating 6/5 = 5/4 same. Almost 4/15 Pyth. comma" 1 12 261.62558 272.437469 292.219543 313.438019 326.391144 350.090851 364.558685 391.029572 407.189209 436.755798 468.469238 487.829163;
meaneb371.scl, "Equal beating 6/5 = 3/2 same. Practically 2/7-comma (Zarlino)" 1 12 261.62558 272.525757 292.246582 313.39444 326.451508 350.074554 364.659851 391.04776 407.340149 436.816528 468.425934 487.942139;
MEANEB371A.scl, "Equal beating 6/5 = 3/2 opposite. Almost 2/5-comma" 1 12 261.62558 269.838623 291.42041 314.728302 324.608185 350.570435 361.575684 390.494629 421.726501 434.965271 469.753906 484.5;
meaneb381.scl, "Equal beating 6/5 = 8/5 same. Almost 1/7-comma" 1 12 261.62558 275.928009 293.284363 311.732483 328.774139 349.454651 368.558472 391.741455 416.382721 439.145355 466.768402 492.285492;
meaneb451.scl, "Equal beating 5/4 = 4/3 same 5/24 comma meantone. A.J. Ellis no. 6" 1 12 261.62558 274.366821 292.809235 312.491486 327.71 349.737946 366.770325 391.424133 410.486603 438.078735 467.525818 490.294495;
meaneb471.scl, "Equal beating 5/4 = 3/2 same. Almost 5/17-comma" 1 12 261.62558 272.328461 292.186127 313.491791 326.316467 350.11087 364.433624 391.007202 407.003204 436.680878 468.522827 487.689697;
meaneb471a.scl, "Equal beating 5/4 = 3/2 opposite. Almost 1/5 Pyth. Gottfried Keller (1707)" 1 12 261.62558 274.149139 292.742889 312.597778 327.561279 349.777679 366.520935 391.379669 410.114349 437.93 467.631744 490.016449;
MEANEB471b.SCL, "21/109-comma meantone with 9/7 major thirds almost equal beating 5/4 and 3/2" 1 12 261.62558 272.310883 292.180725 313.5 326.304413 350.114014 364.413391 391.003693 406.973114 436.668884 468.531494 487.667297;
meaneb472.scl, "Beating of 5/4 = twice 3/2 same. Almost 5/14-comma" 1 12 261.62558 270.837677 291.728271 314.230194 325.294403 350.385406 362.72287 390.7 404.457611 435.654724 469.258179 485.781281;
MEANEB472A.scl, "Beating of 5/4 = twice 3/2 opposite. Almost 3/17-comma" 1 12 261.62558 274.74649 292.924927 312.306335 327.968994 349.668854 367.205292 391.501465 411.13562 438.33844 467.341125 490.778717;
MEANEB472_19.scl, "Beating of 5/4 = twice 3/2 same 19 tones" 1 19 261.62558 270.83786 281.80542 291.728271 302. 314.23 325.294586 336.748779 350.385406 362.723083 377.41153 390.7 404.458069 420.836609 435.654968 450.995117 469.258179 485.781555 502.886749;
MEANEB591.scl, "Equal beating 4/3 = 5/3 same." 1 12 261.62558 273.062164 292.410858 313.130402 326.81842 349.976196 365.274902 391.157654 418.87439 437.184875 468.16275 488.627838;
meaneb732.scl, "Beating of 3/2 = twice 6/5 same. Almost 4/13-comma" 1 12 261.62558 272.005493 292.087067 313.651215 326.095245 350.170135 364.063049 390.94101 406.451508 436.458923 468.681732 487.27655;
meaneb732a.scl, "Beating of 3/2 = twice 6/5 opposite. Almost 1/3 Pyth. comma" 1 12 261.62558 270.688477 291.682281 314.30426 325.192017 350.412933 362.551514 390.670135 404.203033 435.552063 469.332184 485.59021;
MEANEB732_19.scl, "Beating of 3/2 = twice 6/5 same 19 tones" 1 19 261.62558 272.005524 280.940765 292.087067 303.675598 313.651184 326.095276 339.033081 350.170135 364.06311 376.022369 390.94104 406.451599 419.803314 436.458954 453.775452 468.681732 487.276642 506.609283;
MEANEB742.scl, "Beating of 3/2 = twice 5/4 same." 1 12 261.62558 272.893433 292.359161 313.213409 326.703125 350.007141 365.081482 391.123077 407.968231 437.069 468.245514 488.412231;
MEANEB742A.scl, "Beating of 3/2 = twice 5/4 opposite. Almost 3/13-comma 3/14 Pyth. comma" 1 12 261.62558 273.788513 292.632874 312.774109 327.315094 349.843414 366.107605 391.306122 409.497894 437.682892 467.807556 489.556152;
meaneb781.scl, "Equal beating 3/2 = 8/5 same." 1 12 261.62558 273.883728 292.661957 312.727478 327.380157 349.82605 366.216736 391.325562 418.155701 437.748138 467.761078 489.67749;
meaneb891.scl, "Equal beating 8/5 = 5/3 same. Almost 5/18-comma" 1 12 261.62558 272.742615 292.31308 313.287598 326.6 350.034851 364.9086 391.092133 419.154663 436.965485 468.319366 488.219604;
meaneight.scl, "1/8 Pyth. comma meantone scale" 1 12 261.62558 276.089264 293.333344 311.654449 328.883942 349.425476 368.743103 391.77417 413.432983 439.25531 466.69046 492.490997;
meanfifth.scl, "1/5-comma meantone scale (Verheijen)" 1 12 261.62558 274.56546 292.869781 312.394562 327.84549 349.701782 366.997925 391.4646 410.826294 438.21463 467.429138 490.547943;
meanfifth2.scl, "1/5-comma meantone by John Holden (1770)" 1 12 261.62558 279.067261 292.869873 312.394531 327.84549 349.701843 366.998016 391.464539 417.562195 438.214691 467.429016 490.547943;
meanfiftheb.scl, ""1/5-comma" meantone with equal beating fifths" 1 12 261.62558 275.8 293.111572 311.733734 328.533325 349.483246 368.382813 391.4646 412.726593 438.693604 466.626831 491.826263;
meanfifth_19.scl, "19 of 1/5-comma meantone scale" 1 19 261.62558 274.56546 279.067261 292.869781 307.355194 312.394562 327.84549 344.060608 349.701782 366.997925 373.015411 391.4646 410.826294 417.562164 438.21463 459.888702 467.429138 490.547943 514.810364;
meanfifth_43.scl, "Complete 1/5-comma meantone scale" 1 43 261.62558 265.915161 270.136322 274.56546 279.067261 283.497162 288.145386 292.869781 297.671753 302.397125 307.355194 312.394562 317.353546 322.556854 327.84549 333.220825 338.510406 344.060608 349.701782 355.435486 361.077698 366.997925 373.015411 378.936615 385.149719 391.4646 397.883026 404.2 410.826294 417.562164 424.190613 431.14566 438.21463 445.4 452.47 459.888702 467.429138 475.093079 482.634766 490.547943 498.591003 506.505707 514.810364;
meangold.scl, "Meantone scale with Blackwood’s R = phi and diat./chrom. ST = phi ~4/15-comma" 1 12 261.62558 272.972321 292.383301 313.174622 326.75708 349.992706 365.171936 391.139221 408.102997 437.123138 468.206848 488.513062;
meanhalf.scl, "1/2-comma meantone scale" 1 12 261.62558 267.495453 290.695068 315.906769 322.994537 351.007538 358.882813 390.008362 398.758667 433.342621 470.926025 481.491821;
meanhar2.scl, "1/9-Harrison’s comma meantone scale" 1 12 261.62558 273.087708 292.41861 305.229828 326.835968 349.971558 365.30423 391.162842 408.3 437.202301 456.356659 488.660553;
meanhar3.scl, "1/11-Harrison’s comma meantone scale" 1 12 261.62558 274.221527 292.764984 306.860168 327.610718 343.383545 366.603882 391.39444 410.238159 437.97934 459.065857 490.108887;
meanharris.scl, "1/10-Harrison’s comma meantone scale" 1 12 261.62558 273.710724 292.60907 306.125458 327.261871 349.857635 366.018463 391.290222 409.364929 437.629517 457.844727 489.456604;
meanhsev.scl, "1/14-septimal schisma tempered meantone scale" 1 41 261.62558 265.694946 271.187683 275.405792 279.689484 284.039825 289.911835 294.421173 299. 305.181915 309.928772 314.749481 321.256317 326.253204 331.327789 336.481323 343.437439 348.779327 354.204315 361.526825 367.15 372.860809 378.660339 386.488434 392.5 398.60495 406.845367 413.173523 419.6 426.126617 434.936005 441.70108 448.571381 457.844727 464.966125 472.198303 481.960114 489.456604 497.069702 504.801208 515.237061;
meanlst357_19.scl, "19 of mean-tone scale least square error in 3/2 5/4 and 7/4" 1 19 261.62558 273.712616 279.688019 292.609711 306.128204 312.81131 327.263123 342.382782 349.857361 366.020691 374.011292 391.290527 409.368286 418.305237 437.630829 457.849518 467.844574 489.459167 512.072083;
meanmalc.scl, "Meantone approximation to Malcolm’s Monochord 3/16 Pyth. comma" 1 12 261.62558 279.162262 292.83 312.458313 327.756226 349.725647 366.848145 391.437897 417.675873 438.125214 467.492645 490.381012;
meannkleis.scl, "1/5 kleisma tempered meantone scale" 1 12 261.62558 277.556702 293.777924 311.666931 329.881622 349.969147 370.422211 392.070953 415.945313 440.254395 467.062744 494.359283;
meanpi.scl, "Pi-based meantone with Harrison’s major third by Erv Wilson" 1 12 261.62558 275.384552 294.430267 309.91449 326.21283 348.774048 367.115997 392.506134 413.147949 434.875336 464.951752 489.403473;
meanpi2.scl, "Pi-based meantone by Erv Wilson analogous to 22-tET" 1 12 261.62558 287.580688 296.771027 326.21283 336.637726 370.034607 381.86 394.063141 433.157043 447. 491.345154 507.047241;
meanpkleis.scl, "1/5 kleisma positive temperament" 1 12 261.62558 274.33429 294.880615 309.204742 324.22467 348.507538 365.436615 392.806061 411.887024 442.735382 464.241699 486.792694;
meanquar.scl, "1/4-comma meantone scale. Pietro Aaron’s temp. (1523). 6/5 beats twice 3/2" 1 12 261.62558 273.374298 292.506287 312.977173 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 468.01 489.026825;
meanquareb.scl, ""1/4-comma" meantone with equal beating fifths" 1 12 261.62558 274.905762 292.807648 312.14798 327.887451 349.645355 367.352264 391.221436 411.141724 437.994568 467.005066 490.614288;
meanquarm23.scl, "1/4-comma meantone approximation with minimal order 23 beatings" 1 12 261.62558 273.517639 292.405029 313.950684 327.031952 348.834076 366.275787 392.438354 408.79 436.042603 468.172058 489.126068;
meanquarr.scl, "Rational approximation to 1/4-comma meantone Kenneth Scholz MTO 4.4000 1998" 1 12 261.62558 273.370361 292.5 312.981689 327.031952 349.924194 365.625793 391.21579 408.79 437.392578 468.019073 489.019745;
meanquar_14.scl, "1/4-comma meantone scale with split D#/Eb and G#/Ab Otto Gibelius (1666)" 1 14 261.62558 273.374298 292.506287 305.641785 312.977173 327.031952 349.919128 365.632843 391.221466 408.79 418.6 437.398895 468.01 489.026825;
meanquar_15.scl, "1/4-comma meantone scale with split C#/Db D#/Eb and G#/Ab" 1 15 261.62558 273.374298 279.935303 292.506287 305.641785 312.977173 327.031952 349.919128 365.632843 391.221466 408.79 418.6 437.398895 468.01 489.026825;
meanquar_16.scl, "1/4-comma meantone scale with split C#/Db D#/Eb G#/Ab and A#/Bb" 1 16 261.62558 273.374298 279.935486 292.506287 305.641785 312.977234 327.031952 349.91922 365.632935 391.221375 408.79 418.6 437.398834 457.040985 468.01 489.026794;
meanquar_17.scl, "1/4-comma meantone scale with split C#/Db D#/Eb F#/Gb G#/Ab and A#/Bb" 1 17 261.62558 273.374298 279.935303 292.506287 305.641785 312.977173 327.031952 349.919128 365.632843 374.40802 391.221466 408.79 418.6 437.398895 457.041046 468.01 489.026825;
meanquar_19.scl, "19 of 1/4-comma meantone scale" 1 19 261.62558 273.374298 279.935303 292.506287 305.641785 312.977173 327.031952 341.717896 349.919128 365.632843 374.40802 391.221466 408.79 418.6 437.398895 457.041046 468.01 489.026825 510.987427;
meanquar_27.scl, "27 of 1/4-comma meantone scale" 1 27 261.62558 273.374298 279.935303 285.650665 292.506287 299.526428 305.641785 312.977173 327.031952 334.880737 341.717896 349.919128 365.632843 374.40802 382.052216 391.221466 400.610779 408.79 418.6 427.147369 437.398895 447.896484 457.041046 468.01 489.026825 500.763489 510.987427;
meanquar_31.scl, "31 of 1/4-comma meantone scale" 1 31 261.62558 267.904572 273.374298 279.935303 285.650665 292.506287 299.526428 305.641785 312.977173 320.488617 327.031952 334.880737 341.717896 349.919128 358.317169 365.632843 374.40802 382.052216 391.221466 400.610779 408.79 418.6 427.147369 437.398895 447.896484 457.041046 468.01 479.242279 489.026825 500.763489 510.987427;
meansabat.scl, "1/9-schisma meantone scale of Eduard Sa’bat-Garibaldi" 1 12 261.62558 279.137268 294.254944 313.950684 330.953827 348.877838 372.229675 392.38913 418.653412 441.327087 470.866974 496.3685;
meansabat_53.scl, "53-tone 1/9-schisma meantone scale" 1 53 261.62558 264.796265 268.005371 271.253387 275.794861 279.137268 282.520172 285.944092 290.731537 294.254944 297.821106 301.43045 305.083527 310.191406 313.950684 317.755524 321.606445 326.990967 330.953827 334.964722 339.024231 343.132935 348.877838 353.105957 357.385315 361.716522 367.772583 372.229675 376.740814 381.30661 385.927734 392.38913 397.144592 401.957672 406.829071 413.640411 418.653412 423.727142 428.862366 436.042603 441.327087 446.675629 452.088989 457.567932 465.22876 470.866974 476.573517 482.349182 490.424927 496.3685 502.384064 508.472565 514.634827;
meanschis.scl, "1/8-schisma meantone scale Helmholtz" 1 12 261.62558 275.816467 294.245728 310.205994 327.031952 348.883301 367.807159 392.382996 413.666351 436.104126 465.243347 490.478729;
meanschis7.scl, "1/7-schisma meantone scale" 1 12 261.62558 275.844269 294.233887 310.224762 327.084686 348.89032 367.851654 392.375092 413.7 436.183228 465.262115 490.547943;
meanschis_17.scl, "17-tone 1/8-schisma tempered meantone scale" 1 17 261.62558 275.816467 290.7771 294.245728 310.205994 327.031952 330.933075 348.883301 367.807159 372.194672 392.382996 413.666351 436.104126 441.306335 465.243347 490.478729 496.32959;
meansept.scl, "Meantone scale with septimal diminished fifth" 1 12 261.62558 273.935242 292.677612 312.702362 327.415222 349.816681 366.275787 391.33606 409.748688 437.783295 467.736023 489.743347;
meansept2.scl, "Meantone scale with septimal neutral second" 1 19 261.62558 273.614594 286.152954 292.57962 305.987152 320.00885 327.196198 342.189819 349.875153 365.908234 382.676025 391.27063 409.2 427.952118 437.563599 457.61499 478.584991 489.333649 511.757446;
MEANSEPT3.SCL, "Meantone scale with septimal minor third" 1 41 261.62558 267.115173 271.235809 275.420197 281.2 285.53717 289.942169 296.025909 300.59256 305.229828 309.938477 316.441803 321.323578 326.280487 333.126709 338.2659 343.484161 348.782898 356.101471 361.59491 367.173065 374.877319 380.660583 386.532837 394.643341 400.731537 406.913422 413.190918 421.860748 428.368591 434.976807 444.104034 450.955017 457.911682 464.975922 474.732361 482.055817 489.492523 499.763367 507.472992 515.301819;
meansept4.scl, "Meantone scale with septimal narrow fourth" 1 41 261.62558 266.940857 271.132111 275.389191 280.9841 285.395844 289.876862 295.766144 300.41 305.126709 309.917542 316.213959 321.178833 326.22168 332.849365 338.075439 343.383545 348.775055 355.860931 361.448303 367.123444 374.582062 380.463409 386.437286 394.288116 400.479065 406.767029 413.153687 421.547485 428.166229 434.888885 443.724274 450.690918 457.767548 464.954987 474.401215 481.849792 489.415344 499.358521 507.2 515.162537;
meansept5.scl, "Mean-tone scale with septimal diminished fifth" 1 29 261.62558 269.361938 274.859192 282.986877 288.762177 297.3 303.368256 309.55954 318.713318 325.217743 334.834564 341.667999 348.640717 358.950165 366.275787 377.106689 384.802826 396.18158 404.267029 412.517212 424.715759 433.383301 446.198608 455.30481 464.596832 478.335175 488.097229 502.530457 512.786133;
meansept6.scl, "Mean-tone scale with septimal neutral second" 1 41 261.62558 267.874725 271.687714 275.555145 282.137024 286.152954 290.226196 297.158508 301.388336 305.678528 310.029602 317.434967 321.9534 326.536133 334.335968 339.095001 343.921722 348.817169 357.148987 362.232727 367.388824 376.164459 381.51886 386.949463 396.192108 401.831604 407.551575 413.352753 423.226074 429.250366 435.360413 445.759399 452.104675 458.54 465.066986 476.175537 482.953522 489.827972 501.528259 508.667114 515.907593;
meansev.scl, "1/7-comma meantone scale Jean-Baptiste Romieu (1755)" 1 12 261.62558 275.933228 293.28595 311.73 328.77771 349.453705 368.564453 391.742523 413.165955 439.148895 466.765869 492.292114;
meansev2.scl, "Meantone scale with 1/7-comma stretched octave ( Pyth. project 2 to 2+$k7 )" 2 13 261.62558 273.981415 292.76593 312.838348 327.612823 350.074402 366.607452 391.742523 410.243439 438.37027 468.425507 490.547943 524.180542;
meanseveb.scl, ""1/7-comma" meantone with equal beating fifths" 1 12 261.62558 276.822906 293.459076 311.260101 329.271759 349.297913 369.561066 391.742584 414.538635 439.492859 466.194397 493.211914;
meansev_19.scl, "19 of 1/7-comma meantone scale" 1 19 261.62558 275.933228 278.078583 293.285889 309.325012 311.73 328.77774 346.75766 349.453613 368.564423 371.43 391.742615 413.165863 416.378143 439.148895 463.164917 466.765961 492.292023 496.119598;
meansixth.scl, "1/6-comma meantone scale (tritonic temperament of Salinas)" 1 12 261.62558 275.362457 293.112457 312.006653 328.388855 349.556976 367.91095 391.62677 412.189484 438.75946 467.042114 491.564606;
meansixtheb.scl, ""1/6-comma" meantone with equal beating fifths" 1 12 261.62558 276.396729 293.31427 311.457458 328.96405 349.375153 369.07 391.62674 413.783508 439.15979 466.374603 492.63446;
meansixthm.scl, "modified 1/6-comma meantone scale wolf spread over 2 fifths" 1 12 261.62558 275.362518 293.112518 312.006683 328.388947 349.557068 367.91095 391.626678 414.523682 438.759399 467.042053 491.564636;
meanSIXTHM2.scl, "modified 1/6-comma meantone scale wolf spread over 4 fifths" 1 12 261.62558 276.141144 293.112518 310.249756 328.388947 349.557068 367.91095 391.626678 414.523804 438.759399 465.72522 491.564636;
meansixthso.scl, "1/6-comma meantone scale with 1/6-comma stretched oct Dave Keenan TL 13-12-99" 2 13 261.62558 273.091461 292.506287 313.301331 327.031952 350.281555 365.632843 391.626678 408.79 437.851929 468.98 489.533356 524.335632;
meansixth_19.scl, "19 of 1/6-comma meantone scale" 1 19 261.62558 275.362457 278.49 293.112457 308.502777 312.006653 328.388855 345.631409 349.556976 367.91095 372.089691 391.62677 412.189484 416.871246 438.75946 461.796906 467.042114 491.564606 517.374756;
meanten.scl, "1/10-comma meantone scale" 1 12 261.62558 276.96347 293.598419 311.232483 329.478607 349.2677 369.743652 391.951141 414.929443 439.850861 466.269135 493.60434;
meanthird.scl, "1/3-comma meantone scale (Salinas)" 1 12 261.62558 271.4 291.901276 313.950684 325.680573 350.281555 363.368835 390.816681 405.418457 436.042603 468.98 486.502136;
meanthirdeb.scl, ""1/3-comma" meantone with equal beating fifths" 1 12 261.62558 273.416809 292.301697 312.837555 326.812347 349.915192 365.636841 390.816711 408.50354 436.830902 467.634674 488.596863;
meanthird_19.scl, "Complete 1/3-comma meantone scale" 1 19 261.62558 271.4 281.388 291.901276 302.807373 313.950684 325.680573 337.848724 350.281555 363.368835 376.740814 390.816681 405.418457 420.33786 436.042603 452.334137 468.98 486.502136 504.405426;
meanvar1.scl, "Variable meantone 1: C-G-D-A-E 1/4 others 1/6" 1 12 261.62558 274.22464 292.506287 312.006683 327.031952 349.557068 366.390625 391.221466 410.486176 437.398895 467.042053 489.533356;
meanvar2.scl, "Variable meantone 2: C..E 1/4 1/5-1/6-1/7-1/8 outward both directions" 1 12 261.62558 274.1922 292.506287 312.04361 327.031952 349.701843 366.238953 391.221466 410.650116 437.398895 467.235504 489.330688;
meanvar3.scl, "Variable meantone 3: C..E 1/4 1/6 next then Pyth." 1 12 261.62558 275.362518 292.506287 310.717407 327.031952 349.557068 367.15 391.221466 413.043762 437.398895 466.07608 489.533356;
meanvar4.scl, "Variable meantone 4: naturals 1/4-comma accidentals Pyth." 1 12 261.62558 275.077606 292.506287 311.039215 327.031952 349.919128 366.770142 391.221466 412.616394 437.398895 466.558838 489.026825;
mediant16.scl, "Mediant doubling of octave done four times" 1 16 261.62558 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 425.141541 436.042603 448.5 457.844727 470.926025;
mercadier.scl, "Mercadier’s well-temperament 1/12 and 1/6 Pyth. comma" 1 12 261.62558 276.245178 293.002258 310.42511 328.141998 349.228241 368.743103 391.553009 413.9 438.511902 465.637634 492.212982;
mercator.scl, "19 out of 53-tET see Mandelbaum p. 331" 1 19 261.62558 272.094482 279.30542 290.481628 306.082062 318.329895 326.766144 335.425964 348.847778 362.806885 372.421844 387.324036 408.125458 418.941406 435.705322 453.13974 465.148651 490.13 509.742157;
merrick.scl, "A. Merrick’s melodically tuned equal temperament (1811)" 1 12 261.62558 278.62146 295.288452 312.949249 329.918732 349.3 371.627228 394.014404 416.601227 438.969055 468.024261 493.633148;
mersen-ban.scl, "A. Merrick’s melodically tuned equal temperament (1811)" 1 18 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 363.368835 367.91095 392.438354 408.79 418.6 436.042603 465.112122 470.926025 490.547943;
mersenmt1.scl, "Mersenne’s Improved Meantone 1" 1 12 261.62558 273.374298 292.506287 311.039215 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 466.558838 489.026825;
mersenmt2.scl, "Mersenne’s Improved Meantone 2" 1 12 261.62558 273.374298 292.506287 309.113251 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 465.112122 489.026825;
mersenne.scl, "31-note choice system of Mersenne Harmonie universelle (1636)" 1 31 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 310.074738 313.950684 322.994537 327.031952 340.658295 344.527496 348.834076 363.368835 367.91095 372.089691 376.740814 387.593445 392.438354 408.79 413.432983 418.6 430.659363 436.042603 454.21106 459.888702 465.112122 470.926025 484.491791 490.547943 510.987427;
mersen_l1.scl, "Mersenne lute 1" 1 12 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 470.926025 490.547943;
mersen_l2.scl, "Mersenne lute 2" 1 12 261.62558 279.067261 294.328766 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 470.926025 490.547943;
mersen_s1.scl, "Mersenne spinet 1" 1 12 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 465.112122 490.547943;
mersen_s2.scl, "Mersenne spinet 2" 1 12 261.62558 272.526642 294.328766 306.592468 327.031952 348.834076 363.368835 392.438354 408.79 436.042603 465.112122 490.547943;
meyer.scl, "Max Meyer see Doty David 1/1 August 1992 (7:4) p.1 and 10-14" 1 19 261.62558 279.067261 290.695068 294.328766 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727 465.112122 470.926025 490.547943;
MEYER_29.scl, "Max Meyer see Doty David 1/1 August 1992 (7:4) p.1 and 10-14" 1 29 261.62558 268.268402 275.933228 286.152954 289.729889 294.328766 306.592468 321.922089 327.031952 331.119843 343.383545 344.916504 357.691193 367.91095 372.509827 383.24057 386.306488 392.438354 408.79 413.9 429.229431 441.493134 457.844727 459.888702 482.883118 490.547943 496.679779 510.987427 515.075317;
mid_enh1.scl, "Mid-Mode1 Enharmonic permutation of Archytas’s with the 5/4 lying medially" 1 7 261.62558 269.1 336.375732 348.834076 392.438354 403.650879 504.563599;
mid_enh2.scl, "Permutation of Archytas’ Enharmonic with the 5/4 medially and 28/27 first" 1 7 261.62558 271.315399 339.144257 348.834076 392.438354 406.973114 508.71637;
miller.scl, "Herman Miller 19-tone scale of "Nikta". Tuning List 22-1-99" 1 19 261.62558 272.782318 282.823364 292.30661 305.136841 315.177917 326.892487 341.396271 349.763824 364.825409 379.887024 391.601593 407.77887 422.282623 436.228546 456.86853 469.698761 488.107391 508.747375;
miller_12.scl, "Herman Miller scale with appr. to three 7/4 and one 11/8. Tuning List 19-11-99" 1 12 261.62558 273.366577 291.636292 313.291046 327.350647 349.228241 364.9 391.995422 418.193359 436.960693 456.570251 487.083862;
miller_12a.scl, "Herman Miller "Starling" scale alternative version TL 25-11-99" 2 13 261.62558 273.461334 291.686829 313.236755 327.407379 349.228241 365.0271 391.995422 418.120911 437.036438 456.807678 487.252716 523.855957;
miller_12r.scl, "Herman Miller "Starling" scale rational version" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 454.21106 484.491791;
miller_dim.scl, "Diminished temperament g=92.421 oct=1/4 7-limit" 1 20 261.62558 272.37088 275.971771 291.104675 307.067383 311.126984 323.905396 328.187622 346.183746 365.166718 369.994415 385.190582 390.283051 411.684174 434.25885 440. 458.071381 464.12738 489.577759 516.423706;
minor_5.scl, "A minor pentatonic" 1 5 261.62558 299. 348.834076 418.6 465.112122;
MINOR_CLUS.scl, "Chalmers’ Minor Mode Cluster Genus [333335]" 1 12 261.62558 279.067261 294.328766 313.950684 348.834076 353.194519 372.089691 392.438354 418.6 441.493134 465.112122 470.926025;
minor_wing.scl, "Chalmers’ Minor Wing with 7 minor and 6 major triads" 1 12 261.62558 294.328766 313.950684 327.031952 348.834076 376.740814 392.438354 418.6 436.042603 470.926025 490.547943 502.321075;
miracle1.scl, "21 out of 72-tET Pyth. scale "Miracle/Blackjack" Keenan & Erlich TL 2-5-2001" 1 21 261.62558 266.711731 279.863953 285.304688 299.37381 305.193817 320.243713 326.469452 342.568481 349.228241 366.449554 373.573578 391.995422 399.616089 419.322174 427.47406 448.553894 457.274048 479.823395 489.151489 513.272766;
miracle1a.scl, "Version of Blackjack with just 11/8 intervals" 1 21 261.62558 266.576416 279.878174 285.174408 299.404175 305.07 320.29245 326.353485 342.638031 349.121918 366.542572 373.47879 392.114807 399.534973 419.471161 427.408966 448.736053 457.227661 480.042633 489.126648 513.533325;
miracle2.scl, "31 out of 72-tET Pythagorean scale "Miracle/Canasta" tempered Fokker-M 36 7-limit tetrads" 1 31 261.62558 266.711731 274.526978 279.863953 285.304688 293.664764 299.37381 305.193817 314.136688 320.243713 326.469452 336.035736 342.568481 349.228241 359.461395 366.449554 373.573578 380.83609 391.995453 399.616089 407.384857 419.322174 427.47406 435.784424 448.553894 457.274048 466.163757 479.823425 489.151489 498.660889 513.272766;
miracle2a.scl, "Version of Canasta with just 11/8 intervals" 1 31 261.62558 266.576416 274.680298 279.878174 285.174408 293.843658 299.404175 305.07 314.343994 320.29245 326.353485 336.274567 342.638031 349.121918 359.735138 366.542572 373.47879 380.546265 392.114807 399.534973 407.09552 419.471161 427.408966 435.497009 448.736053 457.227661 465.88 480.042633 489.126648 498.382599 513.533325;
miracle3.scl, "41 out of 72-tET Pythagorean scale "Miracle/Studloco" Erlich/Keenan 2001" 1 41 261.62558 266.711731 271.896759 274.526978 279.863953 285.304688 290.851196 293.664764 299.37381 305.193817 311.126984 314.136688 320.243713 326.469452 332.816223 336.035736 342.568481 349.228241 356.017456 359.461395 366.449554 373.573578 380.83609 384.520142 391.995453 399.616089 407.384857 411.325745 419.322174 427.47406 435.784424 440. 448.553894 457.274048 466.163757 470.673218 479.823425 489.151489 498.660889 503.484741 513.272766;
miracle3a.scl, "Version of Studloco with just 11/8 intervals" 1 41 261.62558 266.576416 271.620941 274.680298 279.878174 285.174408 290.570892 293.843658 299.404175 305.07 310.842896 314.343994 320.29245 326.353485 332.529205 336.274567 342.638031 349.121918 355.728485 359.735138 366.542572 373.47879 380.546265 384.832489 392.114807 399.534973 407.09552 411.680756 419.471161 427.408966 435.497009 440.40213 448.736053 457.227661 465.88 471.127289 480.042633 489.126648 498.382599 503.996033 513.533325;
miracle3ls.scl, "Miracle-41 in a 7-limit least-squares tuning Gene Ward Smith 2001" 1 41 261.62558 266.85614 272.191315 274.363556 279.848816 285.443756 291.150513 293.47406 299.3414 305.326019 311.430298 313.91568 320.191681 326.593201 333.12265 335.781158 342.494324 349.341675 356.325928 359.169617 366.350372 373.674713 381.145447 384.187225 391.868134 399.702606 407.693726 410.947357 419.1633 427.543488 436.091217 439.571442 448.35968 457.323578 466.466675 470.189362 479.589691 489.177979 498.957947 502.93988 512.994995;
miracle3p.scl, "Least squares Pythagorean approximation to partch_43" 1 41 261.62558 266.346802 270.0672 274.940765 279.902283 284.953339 290.09552 294.147675 299.45578 304.859711 310.361115 314.69635 320.375275 326.156677 332.042419 336.680511 342.756165 348.941437 355.238342 360.2 366.7 373.317902 380.054718 385.363434 392.317596 399.397278 406.604706 412.284271 419.724274 427.298492 435.00943 441.085754 449.045502 457.148865 465.398438 471.9 480.41507 489.084503 497.9104 504.865387 513.976074;
miracle3s.scl, "Version with Secor’s generator of 116.6900 cents. XH 3 1975" 1 41 261.62558 266.675781 269.368011 274.567688 279.867737 285.270111 290.776733 293.71228 299.381866 305.160919 311.051514 314.191711 320.256653 326.43866 332.74 336.1 342.586945 349.2 355.940674 359.534088 366.474243 373.548401 380.759094 384.603058 392.02713 399.594543 407.308014 411.42 419.361725 427.456757 435.708069 440.10675 448.602264 457.261719 466.088379 470.793762 479.881622 489.144897 498.586975 503.620453 513.34198;
miracle_12.scl, "A 12-tone subset of Blackjack with six 4-7-9-11 tetrads" 1 12 261.62558 279.863953 299.37381 320.243713 336.035736 342.568481 359.461395 366.449554 384.520111 411.325714 440. 470.673218;
miracle_12a.scl, "A 12-tone chain of Miracle generators and subset of Blackjack" 1 12 261.62558 279.863953 299.37381 320.243713 342.568481 366.449554 391.995422 419.322174 448.553894 479.823395 489.151489 513.272766;
0, 0 0 261.62558 266.711731 279.863953 285.304688 290.851196 299.37381 305.193817 320.243713 326.469452 342.568481 349.228241 356.017456 366.449554 373.573578 391.995422 399.616089 407.384888 419.322174 427.47406 448.553894 457.274048 479.823395 489.151489 498.660889;
miring1.scl, "Gamelan Miring from Serdang wetan Tangerang. 1/1=309.5 Hz" 1 5 261.62558 285.294495 307.695374 387.155151 420.967896;
miring2.scl, "Gamelan Miring (Melog gender) from Serdang wetan" 1 5 261.62558 279.348663 304.667236 384.420715 412.693115;
misca.scl, "21/20 x 20/19 x 19/18=7/6 7/6 x 8/7=4/3" 1 9 261.62558 274.706848 289.1651 305.229828 348.834076 392.438354 412.060272 433.74765 457.844727;
miscb.scl, "33/32 x 32/31x 31/27=11/9 11/9 x 12/11=4/3" 1 9 261.62558 269.801361 278.504639 319.764587 348.834076 392.438354 404.702057 417.756958 479.646881;
MISCC.SCL, "96/91 x 91/86 x 86/54=32/27. 32/27 x 9/8=4/3." 1 9 261.62558 276. 292.04715 310.074738 348.834076 392.438354 414. 438.070709 465.112122;
miscd.scl, "27/26 x 26/25 x 25/24=9/8. 9/8 x 32/27=4/3." 1 9 261.62558 271.68808 282.555603 294.328766 348.834076 392.438354 407.532135 423.833405 441.493134;
misce.scl, "15/14 x 14/13 x 13/12=5/4. 5/4 x 16/15= 4/3." 1 9 261.62558 280.31311 301.875641 327.031952 348.834076 392.438354 420.469666 452.813477 490.547943;
miscf.scl, SupraEnh1 1 9 261.62558 271.315399 279.067261 348.834076 378.422699 392.438354 406.973114 418.6 504.563599;
miscg.scl, "SupraEnh 2" 1 9 261.62558 271.315399 279.067261 336.375732 348.834076 392.438354 406.973114 418.6 504.563599;
misch.scl, "SupraEnh 3" 1 9 261.62558 271.315399 279.067261 336.375732 348.834076 392.438354 406.973114 490.547943 504.563599;
mixed9_3.scl, "A mixture of the hemiolic chromatic and diatonic genera 75 + 75 + 150 + 200 c" 1 9 261.62558 273.20871 285.304688 311.126984 349.228241 391.995422 409.350555 427.47406 466.163757;
mixed9_4.scl, "Mixed enneatonic 4 each "tetrachord" contains 67 + 67 + 133 + 233 cents." 1 9 261.62558 271.89679 282.571228 305.193817 349.228241 391.995422 407.384888 423.378479 457.274048;
mixed9_5.scl, "A mixture of the intense chromatic genus and the permuted intense diatonic" 1 9 261.62558 277.182617 293.664764 329.627563 349.228241 391.995422 415.304688 440. 493.883301;
mixed9_6.scl, "Mixed 9-tonic 6 Mixture of Chromatic and Diatonic" 1 9 261.62558 277.182617 293.664764 311.126984 349.228241 391.995422 415.304688 440. 466.163757;
mixed9_7.scl, "Mixed 9-tonic 7 Mixture of Chromatic and Diatonic" 1 9 261.62558 277.182617 311.126984 329.627563 349.228241 391.995422 415.304688 466.163757 493.883301;
mixed9_8.scl, "Mixed 9-tonic 8 Mixture of Chromatic and Diatonic" 1 9 261.62558 293.664764 311.126984 329.627563 349.228241 391.995422 440. 466.163757 493.883301;
mixol_chrom.scl, "Mixolydian chromatic tonos" 2 25 261.62558 274.083923 287.788116 302.934875 311.122284 319.764587 359.735138 411.125885 426.352783 434.397156 442.750946 479.646881 523.25116 548.167847 575.576233 605.869751 622.244568 639.529175 719.470276 822.25177 852.705566 868.794312 885.501892 959.293762 1046.502319;
MIXOL_CHROM2.scl, "Schlesinger’s Mixolydian Harmonia in the chromatic genus" 1 7 261.62558 271.315399 281.75061 332.977997 366.275787 385.553467 406.973114;
MIXOL_CHROMinv.scl, "A harmonic form of Schlesinger’s Chromatic Mixolydian inverted" 1 7 261.62558 279.067261 299. 373.750793 411.125885 429.813416 448.5;
mixol_diat.scl, "Mixolydian diatonic tonos" 2 25 261.62558 274.083923 287.788116 319.764587 338.574249 359.735138 383.717499 411.125885 442.750946 460.460999 479.646881 500.501068 523.25116 548.167847 575.576233 639.529175 677.148499 719.470276 767.434998 822.25177 885.501892 920.921997 959.293762 1001.002136 1046.502319;
mixol_diat2.scl, "Schlesinger’s Mixolydian Harmonia a subharmonic series though 13 from 28" 1 8 261.62558 281.75061 305.229828 332.977997 348.834076 366.275787 406.973114 457.844727;
mixol_diatcon.scl, "A Mixolydian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 281.75061 305.229828 332.977997 392.438354 406.973114 457.844727;
mixol_diatinv.scl, "A Mixolydian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 299. 336.375732 348.834076 411.125885 448.5 485.876038;
mixol_diatinv2.scl, "Inverted Schlesinger’s Mixolydian Harmonia a harmonic series from 14 from 28" 1 8 261.62558 299. 336.375732 348.834076 373.750793 411.125885 448.5 485.876038;
mixol_enh.scl, "Mixolydian Enharmonic Tonos" 2 25 261.62558 274.083923 287.788116 295.167297 299. 302.934875 348.834076 411.125885 418.6 422.441284 426.352783 469.858154 523.25116 548.167847 575.576233 590.334595 598.001282 605.869751 697.668152 822.25177 837.201782 844.882568 852.705566 939.716309 1046.502319;
mixol_enh2.scl, "Schlesinger’s Mixolydian Harmonia in the enharmonic genus" 1 7 261.62558 266.382385 271.315399 332.977997 366.275787 375.66748 385.553467;
MIXOL_ENHinv.scl, "A harmonic form of Schlesinger’s Mixolydian inverted" 1 7 261.62558 270.346405 279.067261 373.750793 411.125885 420.469666 429.813416;
mixol_penta.scl, "Schlesinger’s Mixolydian Harmonia in the pentachromatic genus" 1 7 261.62558 269.320435 281.75061 332.977997 366.275787 381.537292 406.973114;
mixol_pis.scl, "The Diatonic Perfect Immutable System in the Mixolydian Tonos" 2 16 261.62558 287.788116 319.764587 359.735138 411.125885 442.750946 479.646881 523.25116 548.167847 575.576233 639.529175 719.470276 822.25177 885.501892 959.293762 1046.502319;
mixol_tri1.scl, "Schlesinger’s Mixolydian Harmonia in the first trichromatic genus" 1 7 261.62558 268.006683 274.706848 332.977997 366.275787 378.906006 392.438354;
mixol_tri2.scl, "Schlesinger’s Mixolydian Harmonia in the second trichromatic genus" 1 7 261.62558 268.006683 281.75061 332.977997 366.275787 378.906006 406.973114;
mmmgeo1.scl, "Scale for MakeMicroMusic in Peppermint 24 maybe a bit like Georgian tunings" 1 7 261.62558 291.526611 317.822357 348.403046 392.923889 423.239502 463.963348;
mmmgeo2.scl, "Scale for MakeMicroMusic in Peppermint 24 maybe a bit like Georgian tunings" 2 8 261.62558 295.057526 323.447784 352.622803 392.923889 430.730804 485.771942 529.588623;
mmmgeo3a.scl, "Peppermint 24 scale for MakeMicroMusic maybe a bit "Georgian-like"?" 1 7 261.62558 281.811005 317.822357 348.403046 392.923889 423.239502 463.963348;
mmmgeo4a.scl, "Peppermint 24 scale for MakeMicroMusic maybe a bit "Georgian-like"?" 1 7 261.62558 281.811005 317.822357 348.403046 392.923889 423.239502 477.323364;
mmmgeo4b.scl, "Peppermint 24 scale for MakeMicroMusic maybe a bit "Georgian-like"?" 1 7 261.62558 295.057526 323.447784 348.403046 392.923889 430.730804 485.771942;
mohajira.scl, "Mohajira (Dudon) Two 3 + 4 + 3 Mohajira tetrachords neutral diatonic" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 479.823395;
moha_baya.scl, "Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords" 1 7 261.62558 285.304688 320.243713 349.228241 391.995422 427.47406 466.163757;
mokhalif.scl, "Iranian mode Mokhalif from C" 1 7 261.62558 293.664764 329.627563 349.228241 391.995422 425.011993 477.059814;
montvallon.scl, "Montvallon’s Monochord Nouveau sisteme de musique (1742)" 1 12 261.62558 275.933228 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 413.9 436.042603 465.112122 490.547943;
monzo-names.scl, "5-limit interv 0-100 cents arbitr boundaries 3^-15…15 * 5^-7…7 Joe Monzo 2000" 2 6 261.62558 261.62558 275.622009 265.195007 270.695374 266.740662;
monzo-sym-11.scl, "Monzo symmetrical system: 11-limit" 1 41 261.62558 269.801361 276.760925 279.067261 285.409698 286.152954 287.788116 294.328766 299. 304.437012 305.229828 313.950684 314.76825 327.031952 332.977997 334.880737 341.715027 343.383545 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 398.667542 400.614136 408.79 411.125885 418.6 434.91 436.042603 448.5 449.668945 457.844727 465.112122 475.682831 478.401031 479.646881 490.547943 494.635834 507.39505;
monzo-sym-5.scl, "Monzo symmetrical system: 5-limit" 1 13 261.62558 279.067261 294.328766 313.950684 327.031952 334.880737 348.834076 392.438354 408.79 418.6 436.042603 465.112122 490.547943;
monzo-sym-7.scl, "Monzo symmetrical system: 7-limit" 1 25 261.62558 279.067261 286.152954 294.328766 299. 305.229828 313.950684 327.031952 334.880737 341.715027 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 400.614136 408.79 418.6 436.042603 448.5 457.844727 465.112122 478.401031 490.547943;
morgan.scl, "Augustus de Morgan’s temperament (1843)" 1 12 261.62558 277.182617 294.07959 310.863586 330.186371 349.031097 370.307922 392.327576 415.070282 440.745941 465.769104 494.580933;
mos11-34.scl, "Wilson 11 of 34-tET G=9 Chain of minor & major thirds with Kleismatic fusion" 1 11 261.62558 272.513367 301.756714 314.314636 348.04364 362.527832 377.614807 418.136536 435.53772 453.663055 502.34552;
mos12-17.scl, "MOS 12 of 17 generator 7" 1 12 261.62558 272.513367 283.854309 307.97168 320.788208 348.04364 362.527832 377.614807 409.698425 426.748444 463.006653 482.275146;
mos12-22.scl, "MOS 12 of 22 contains nearly just recognizable diatonic and pentatonic scales" 1 12 261.62558 287.560822 296.765167 326.183838 336.62442 347.3992 381.837311 394.059265 433.122833 446.986359 491.296661 507.022217;
mos13-22.scl, "MOS 13 of 22 contains 5 and 9 tone MOS as well. G=5 or 17" 1 13 261.62558 278.641968 296.765167 316.067078 326.183838 347.3992 369.994415 381.837311 406.672424 433.122833 446.986359 476.058838 507.022217;
mos15-22.scl, "MOS 15 in 22 contains 7 and 8 tone MOS as well. G= 3 or 19" 1 15 261.62558 278.641968 287.560822 306.264099 316.067078 336.62442 347.3992 369.994415 381.837311 406.672424 419.689301 446.986359 461.29361 491.296661 507.022217;
moscow.scl, "Charles E. Moscow’s equal beating piano tuning (1895)" 1 12 261.62558 277.481628 293.648193 311.486267 329.673676 349.741486 370.882904 392.438354 416.222412 440.472321 467.229401 494.510529;
muri.scl, "Modified meantone tuning of Evangelienorgel Muri" 1 12 261.62558 274.07016 292.836884 312.1828 327.401703 349.622833 366.253113 391.77417 410.409454 437.769745 466.427032 489.718079;
musaqa.scl, "Egyptian scale by Miha’il Musaqa" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 427.47406 466.163757;
musaqa_24.scl, "from d’Erlanger vol.5 p.34 after Mih.a’il Mu^saqah 1899 a Lebanese scholar" 1 24 261.62558 268.980865 276.702728 284.646271 292.817841 301.22403 310.050568 319.135742 328.487122 338.307892 348.221069 358.631836 369.353821 380.396393 391.769073 403.481781 415.544647 427.96817 440.508606 453.678467 466.97226 480.655579 494.739868 508.94281;
mystic-r.scl, "Skriabin’s mystic chord op. 60 rationalised" 2 6 261.62558 367.91095 465.112122 654.063904 872.085205 1177.315063;
mystic.scl, "Skriabin’s mystic chord op. 60" 2 6 261.62558 369.994415 466.163757 659.255127 880. 1174.659058;
nachbaur_6.scl, "Fred Nachbaur’s harmonic hexatonic as used in "Void of Sensation"" 1 6 261.62558 294.328766 327.031952 359.735138 392.438354 457.844727;
nassarre.scl, "Nassarre’s Equal Semitones" 1 12 261.62558 277.663361 294.344055 311.666595 331.154297 350.643158 372.567932 394.494049 419.160706 443.828888 471.580322 495.884277;
negri_19.scl, "Negri temperament 13-limit g=124.831" 1 19 261.62558 269.028259 281.186829 289.143005 302.210632 310.761658 324.806335 333.996735 349.091492 358.969025 375.192413 392.148987 403.244843 421.469208 433.394684 452.981689 465.798798 486.85025 500.625671;
negri_29.scl, "Negri temperament 13-limit g=124.831" 1 29 261.62558 269.028259 276.640411 281.186829 289.143005 297.32428 302.210632 310.761658 319.554657 324.806335 333.996735 343.447144 349.091492 358.969025 369.126038 375.192413 385.808472 392.148987 403.244843 414.654633 421.469208 433.394684 445.657593 452.981689 465.798798 478.978546 486.85025 500.625671 514.790894;
neid-mar-morg.scl, "Neidhardt-Marpurg-de Morgan temperament (1858)" 1 12 261.62558 277.495819 293.996582 311.126984 330. 349.622833 369.994415 392.438354 415.773956 440. 466.69046 494.441345;
neidhardt1.scl, "Neidhardt I temperament (1724)" 1 12 261.62558 276.245178 293.002258 310.42511 328.141998 348.834076 368.326935 391.553009 414.367798 438.511902 465.112122 491.657471;
neidhardt2.scl, "Neidhardt II temperament (1724)" 1 12 261.62558 276.557312 293.002258 310.775848 328.512756 349.228241 369.159729 391.553009 414.367798 438.511902 466.163757 492.769135;
neidhardt3.scl, "Neidhardt III temperament (1724)" 1 12 261.62558 276.557312 293.002258 310.775848 328.512756 348.834076 369.159729 391.553009 414.367798 438.511902 465.637634 492.769135;
neidhardt4.scl, "Neidhardt IV temperament (1724) equal temperament" 1 12 261.62558 277.182617 293.664764 311.126984 329.627563 349.228241 369.994415 391.995422 415.304688 440. 466.163757 493.883301;
neidhardtn.scl, "Johann Georg Neidhardt’s temperament (1732) alt. 1/6 & 0 P also Marpurg nr.10" 1 12 261.62558 276.869812 293.664764 310.775848 329.627563 348.834076 369.994415 391.553009 415.304688 439.503418 466.163757 493.325897;
neogeb24.scl, "Neo-Gothic e-based lineotuning (T/S or Blackwood’s R=e ~2.71828) 24 notes" 1 24 261.62558 270.114777 282.394196 291.557312 295.231842 304.811523 308.653107 318.668274 333.154938 343.965118 348.3 359.601776 375.94928 388.148071 393.04 405.793304 424.240662 438.006409 443.526642 457.918182 463.689362 478.735168 500.498474 516.738647;
neogji12.scl, "M. Schulter neo-Gothic 12-note JI (prim. 2/3/7/11) 1/1=F with Eb key as D+1" 1 12 261.62558 282.526794 294.328766 317.842621 332.977997 348.834076 374.6 392.438354 423.790161 441.493134 443.970642 499.46698;
neogp16a.scl, "M. Schulter scale from mainly prime-to-prime ratios and octave complements (Gb-D#)" 1 16 261.62558 274.387787 281.283508 295.024567 309.193848 317.192047 332.335175 348.834076 366.275787 374.863342 392.438354 411.125885 422.625916 442.750946 464.348572 498.913879;
neutr_diat.scl, "Neutral Diatonic 9 + 9 + 12 parts geometric mean of major and minor" 1 7 261.62558 294.328766 320.243713 348.834076 392.438354 427.47406 479.823395;
neutr_pent1.scl, "Quasi-Neutral Pentatonic 1 15/13 x 52/45 in each trichord after Dudon" 1 5 261.62558 302.322876 348.834076 392.438354 453.484314;
neutr_pent2.scl, "Quasi-Neutral Pentatonic 2 15/13 x 52/45 in each trichord after Dudon" 1 5 261.62558 301.875641 348.834076 392.438354 452.813477;
new_enh.scl, "New Enharmonic" 1 7 261.62558 264.895874 279.067261 348.834076 392.438354 397.343842 418.6;
new_enh2.scl, "New Enharmonic permuted" 1 7 261.62558 327.031952 331.119843 348.834076 392.438354 490.547943 496.679779;
norden.scl, "Reconstructed Schnitger temperament organ in Norden. Ortgies 2002" 1 12 261.62558 274.876007 292.737701 310.074738 327.549622 349.780792 366.501343 391.37619 412.314026 437.918091 466.37439 489.994659;
novaro.scl, "9-limit diamond with 21/20 16/15 15/8 and 40/21 added for evenness" 1 23 261.62558 274.706848 279.067261 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025 490.547943 498.334412;
novaro15.scl, "1-15 diamond see Novaro 1927 Sistema Natural base del Natural-Aproximado p" 1 49 261.62558 279.067261 280.31311 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 301.875641 305.229828 309.193848 313.950684 319.764587 322. 327.031952 332.977997 336.375732 340.11322 348.834076 356.762146 359.735138 362.250793 366.275787 373.750793 377.903595 380.546265 383.717499 392.438354 402.5 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 442.750946 448.5 453.484314 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038 488.367737 490.547943;
novaro_eb.scl, "Novaro (?) equal beating 4/3 with strectched octave almost pure 3/2" 2 13 261.62558 277.277344 293.702728 311.345093 329.859467 349.745605 370.614624 392.515167 416.0383 440.724152 467.238983 495.064362 524.265076;
oconnell.scl, "Walter O’Connell Pythagorean scale of 25 octaves reduced by Phi. XH 15 (1993)" 2 26 261.62558 267.57428 272.278748 278.469696 283.365723 288.347809 294.904144 300.089111 305.365234 312.308502 317.8 323.386993 330.74 336.555054 344.207489 350.259308 356.417511 364.521576 370.930542 377.452209 386.034546 392.821747 399.728302 408.817139 416.004913 423.319061;
oconnell_11.scl, "Walter O’Connell 11-note mode of 25-tone scale" 2 12 261.62558 272.278748 288.347809 300.089111 312.308502 323.386993 344.207489 356.417511 370.930542 386.034546 408.817139 423.319061;
oconnell_14.scl, "Walter O’Connell 14-note mode of 25-tone scale" 2 15 261.62558 272.278748 283.365723 288.347809 300.089111 312.308502 323.386993 336.555054 344.207489 356.417511 370.930542 386.034546 399.728302 408.817139 423.319061;
oconnell_7.scl, "Walter O’Connell 7-note mode of 25-tone scale" 2 8 261.62558 283.365723 300.089111 323.386993 344.207489 370.930542 392.821747 423.319061;
oconnell_9.scl, "Walter O’Connell 9-tone mode of 25-tone scale" 2 10 261.62558 278.469696 294.904144 305.365234 323.386993 344.207489 364.521576 377.452209 399.728302 423.319061;
oconnell_9a.scl, "Walter O’Connell 7+2 major mode analogy for 25-tone scale" 2 10 261.62558 272.278748 288.347809 305.365234 323.386993 344.207489 356.417511 377.452209 399.728302 423.319061;
OCTONY_MIN.scl, "Octony on Harmonic Minor from Palmer on an album of Turkish music" 1 8 261.62558 294.328766 313.950684 327.031952 348.834076 392.438354 418.6 490.547943;
octony_rot.scl, "Rotated Octony on Harmonic Minor" 1 8 261.62558 327.031952 348.834076 392.438354 408.79 418.6 436.042603 490.547943;
OCTONY_trans.scl, "Complex 10 of p. 115 an Octony based on Archytas’s Enharmonic" 1 8 261.62558 271.315399 279.067261 327.031952 348.834076 408.79 420.469666 436.042603;
OCTONY_trans2.scl, "Complex 6 of p. 115 based on Archytas’s Enharmonic an Octony" 1 8 261.62558 271.315399 279.067261 315.352234 324.362305 336.375732 348.834076 504.563599;
octony_trans3.scl, "Complex 5 of p. 115 based on Archytas’s Enharmonic an Octony" 1 8 261.62558 271.315399 279.067261 306.592468 315.352234 327.031952 348.834076 490.547943;
OCTONY_TRANS4.scl, "Complex 11 of p. 115 an Octony based on Archytas’s Enharmonic 8 tones" 1 8 261.62558 271.315399 279.067261 336.375732 348.834076 420.469666 432.483063 448.5;
OCTONY_TRANS5.scl, "Complex 15 of p. 115 an Octony based on Archytas’s Enharmonic 8 tones" 1 8 261.62558 271.315399 279.067261 317.947723 327.031952 339.144257 348.834076 508.71637;
OCTONY_TRANS6.scl, "Complex 14 of p. 115 an Octony based on Archytas’s Enharmonic 8 tones" 1 8 261.62558 269.1 271.315399 279.067261 336.375732 345.98645 348.834076 358.8;
octony_u.scl, "7)8 octony from 1.3.5.7.9.11.13.15 1.3.5.7.9.11.13 tonic (subharmonics 8-16)" 1 8 261.62558 280.31311 301.875641 327.031952 356.762146 392.438354 436.042603 490.547943;
odd1.scl, ODD-1 1 12 261.62558 272.526642 313.950684 327.031952 376.740814 392.438354 408.79 418.6 436.042603 470.926025 490.547943 502.321075;
odd2.scl, ODD-2 1 12 261.62558 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 363.368835 392.438354 436.042603 470.926025 490.547943;
oettingen.scl, "von Oettingen’s Orthotonophonium tuning" 1 53 261.62558 264.895874 267.904572 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 298.007874 301.392639 306.592468 310.424866 313.950684 317.875061 323.359222 327.031952 331.119843 334.880737 339.066742 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.509827 376.740814 383.24057 388.031067 392.438354 397.343842 401.856873 408.79 413.9 418.6 423.833405 431.14566 436.042603 441.493134 446.507629 452.088989 459.888702 465.112122 470.926025 476.812592 485.038849 490.547943 496.679779 502.321075 510.987427 517.374756;
OETTINGEN2.scl, "von Oettingen’s Orthotonophonium tuning with central 1/1" 1 53 261.62558 264.895874 267.904572 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 317.516541 322.994537 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 396.89566 401.856873 408.79 413.432983 418.6 423.833405 431.14566 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 476.274811 484.491791 490.547943 496.119598 502.321075 510.987427 516.79126;
ogr10.scl, "Optimal Golomb Ruler of 10 segments length 72" 1 10 261.62558 264.156403 271.89679 296.505554 342.568481 359.461395 411.325714 440. 484.464996 513.272766;
ogr11.scl, "Optimal Golomb Ruler of 11 segments length 85" 1 11 261.62558 265.92749 274.74472 318.182922 331.424438 362.527832 371.506104 409.698425 455.516571 482.275146 486.22403;
ogr12.scl, "Optimal Golomb Ruler of 12 segments length 106" 1 12 261.62558 265.069641 270.320953 308.090149 333.239655 346.574127 384.8 413.498138 456.112701 468.2 496.58194 499.839813;
ogr2.scl, "Optimal Golomb Ruler of 2 segments length 3" 1 2 261.62558 329.627563;
ogr3.scl, "Optimal Golomb Ruler of 3 segments length 6" 1 3 261.62558 293.664764 415.304688;
ogr4.scl, "Optimal Golomb Ruler of 4 segments length 11" 1 4 261.62558 278.641968 336.62442 461.29361;
ogr5.scl, "Optimal Golomb Ruler of 5 segments length 17" 1 5 261.62558 272.513367 307.97168 393.32962 426.748444;
ogr6.scl, "Optimal Golomb Ruler of 6 segments length 25" 1 6 261.62558 268.980865 292.310883 345.21701 430.944916 495.025726;
ogr7.scl, "Optimal Golomb Ruler of 7 segments length 34" 1 7 261.62558 267.013977 283.854309 314.314636 355.211914 409.698425 502.34552;
ogr8.scl, "Optimal Golomb Ruler of 8 segments length 44" 1 8 261.62558 265.779663 283.066284 316.067078 387.9 400.316162 454.083649 499.097504;
ogr9.scl, "Optimal Golomb Ruler of 9 segments length 55" 1 9 261.62558 264.943604 282.175842 296.765167 349.595184 363.065735 401.579407 438.615875 510.227234;
oldani.scl, "This scale by Norbert L. Oldani appeared in Interval 5(3) p.10-11" 1 12 261.62558 272.526642 294.328766 310.074738 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 465.112122 490.547943;
oljare.scl, "Mats Öljare scale for "Tampere" (2001)" 1 12 261.62558 286.152954 305.229828 327.031952 348.834076 381.537292 392.438354 406.973114 436.042603 457.844727 490.547943 508.71637;
oljare17.scl, "Mats Öljare scale for "Fafner" (2001) MOS in 17-tET" 1 8 261.62558 272.513367 320.788208 334.138153 393.32962 409.698425 426.748444 502.34552;
Olympos.scl, "Scale of ancient Greek flutist Olympos 6th century BC as reported by Partch" 1 5 261.62558 279.067261 348.834076 372.089691 465.112122;
opelt.scl, "Friederich Wilhelm Opelt 19-tone" 1 19 261.62558 272.526642 282.555603 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 454.21106 470.926025 490.547943 502.321075;
org1373a.scl, "English organ tuning (1373) with 18:17:16 ficta semitones (Eb-G#)" 1 12 261.62558 277.015289 294.328766 311.642212 331.119843 348.834076 369.353729 392.438354 415.522949 441.493134 465.112122 496.679779;
org1373b.scl, "English organ tuning (1373) with 18:17:16 accidental semitones (Eb-G#)" 1 12 261.62558 277.015289 294.328766 311.642212 331.119843 348.834076 369.353729 392.438354 415.522949 441.493134 467.463318 496.679779;
pagano_b.scl, "Pat Pagano and David Beardsley 17-limit scale TL 27-2-2001" 1 12 261.62558 277.977173 289.55954 312.724304 333.572601 351.81485 370.63623 389.16803 416.965759 444.763458 463.295258 486.46;
palace.scl, "Palace mode+" 1 12 261.62558 277.015289 294.328766 299. 336.375732 348.834076 373.750793 392.438354 409.5 428.114563 448.5 470.926025;
palace2.scl, "Byzantine Palace mode 17-limit" 1 7 261.62558 277.015289 336.375732 348.834076 392.438354 428.114563 470.926025;
panpipe1.scl, "Palina panpipe of Solomon Islands. 1/1=f+45c. From Ocora CD Guadalcanal" 1 6 261.62558 305.782013 346.615662 386.598724 424.031128 475.684021;
panpipe2.scl, "Lalave panpipe of Solomon Islands. 1/1=f’+47c." 2 16 261.62558 301.398071 340.464294 389.512665 435.7 481.489227 540.453369 606.988953 675.834595 749.452393 819.174133 915.781555 979.245239 1073.44043 1178.737183 1360.28479;
panpipe3.scl, "Tenaho panpipe of Solomon Islands. 1/1=f’+67c." 2 16 261.62558 302.444458 341.449005 382.6 433.191071 482.881836 542.016541 602.1 677.789307 755.101318 822.018127 906.309326 994.062683 1067.874512 1155.146118 1300.35791;
parachrom.scl, "Parachromatic new genus 5 + 5 + 20 parts" 1 7 261.62558 274.526978 288.064606 349.228241 391.995422 411.325714 431.609253;
parizek.scl, "Petr Parizek 12-tone Linear Level tuning 1/1=Ab" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 425.141541 441.493134 457.844727 490.547943;
parizek_13lqmt.scl, "April 2003 – Petr Parizek" 1 12 261.62558 272.706757 292.185822 313.056244 325.578491 348.834076 365.232269 391.320282 406.973114 436.042603 467.188507 486.976349;
parizek_7lmtd1.scl, "Use SET MIDDLE 62" 1 12 261.62558 280.31311 293.02063 313.950684 327.031952 350.391388 366.275787 392.438354 418.6 437.989227 468.833008 490.547943;
parizek_7lqmtd2.scl, "July 2002 – Petr Parizek" 1 12 261.62558 279.067261 293.02063 312.555328 327.031952 348.834076 366.275787 390.694183 418.6 436.042603 468.833008 488.367737;
parizek_epi.scl, "In The Epimoric World" 1 12 261.62558 283.427704 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 479.646881;
parizek_epi2.scl, "In the Epimoric World – extended (version for two keyboards)" 1 24 261.62558 283.427704 287.788116 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 523.25116;
parizek_epi2a.scl, "April 2003 – Petr Parizek" 1 24 261.62558 283.427704 287.788116 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 425.141541 436.042603 448.5 457.844727 470.926025 479.646881 485.876038 523.25116;
parizek_ji1.scl, "Petr Parizek 12-tone septimal tuning 2002.0000" 1 12 261.62558 274.706848 294.328766 305.229828 327.031952 343.383545 366.275787 392.438354 412.060272 436.042603 457.844727 490.547943;
parizek_jiweltmp.scl, "April 2003 – Petr Parizek" 1 12 261.62558 277.977173 294.328766 310.680359 329.454407 348.834076 370.63623 392.438354 416.965759 440.632538 465.112122 494.18161;
parizek_llt7.scl, "7-tone mode of Linear Level Tuning 2000 (= wilson_helix.scl)" 1 7 261.62558 283.427704 327.031952 359.735138 392.438354 425.141541 479.646881;
partch-barstow.scl, "Guitar scale for Partch’s Barstow (1941 1968)" 1 18 261.62558 279.067261 287.788116 290.695068 294.328766 299. 313.950684 327.031952 348.834076 359.735138 373.750793 392.438354 418.6 436.042603 448.5 470.926025 479.646881 490.547943;
PARTCH-greek.scl, "Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white" 1 12 261.62558 261.62558 271.315399 294.328766 279.067261 348.834076 313.950684 392.438354 392.438354 406.973114 418.6 418.6;
partch-grm.scl, "Partch Greek scales from "Two Studies on Ancient Greek Scales" mixed" 1 9 261.62558 271.315399 279.067261 294.328766 313.950684 348.834076 392.438354 406.973114 418.6;
partch-indian.scl, "Partch’s Indian Chromatic Exposition of Monophony 1933.0000" 1 22 261.62558 269.801361 277.977173 285.409698 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 383.717499 392.438354 406.973114 411.125885 428.114563 441.493134 457.844727 475.682831 490.547943 507.39505;
PARTCH-ur.scl, "Ur-Partch curved keyboard published in Interval" 1 39 261.62558 267.076111 269.801361 274.083923 279.067261 285.409698 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 356.762146 359.735138 366.275787 373.750793 380.546265 383.717499 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 490.547943 499.46698 507.39505 512.57251;
partch_29-av.scl, "29-tone JI scale from Partch’s Adapted Viola 1928-30" 1 29 261.62558 269.801361 274.706848 280.31311 285.409698 290.695068 299. 305.229828 313.950684 319.764587 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 418.6 428.114563 436.042603 448.5 457.844727 470.926025 479.646881 488.367737 498.334412 507.39505;
partch_29.scl, "Partch/Ptolemy 11-limit Diamond" 1 29 261.62558 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881;
partch_37.scl, "From "Exposition on Monophony" 1933 unp. see Ayers 1/1 vol.9(2)" 1 37 261.62558 267.076111 269.801361 274.083923 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943 499.46698 507.39505 512.57251;
partch_39.scl, "Ur-Partch Keyboard 39 tones published in Interval" 1 39 261.62558 267.076111 269.801361 274.083923 279.067261 285.409698 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 356.762146 359.735138 366.275787 373.750793 380.546265 383.717499 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 490.547943 499.46698 507.39505 512.57251;
PARTCH_41.scl, "13-limit Diamond after Partch Genesis of a Music p 454 2nd edition" 1 41 261.62558 281.75061 283.427704 285.409698 287.788116 290.695068 294.328766 299. 305.229828 309.193848 313.950684 319.764587 322. 327.031952 332.977997 336.375732 340.11322 348.834076 359.735138 362.250793 366.275787 373.750793 377.903595 380.546265 392.438354 402.5 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 442.750946 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 483.001038 485.876038;
partch_41a.scl, "From "Exposition on Monophony" 1933 unp. see Ayers 1/1 vol. 9(2)" 1 41 261.62558 267.076111 269.801361 274.083923 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 356.762146 359.735138 366.275787 373.750793 380.546265 383.717499 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943 499.46698 507.39505 512.57251;
partch_41comb.scl, "41-tone JI combination from Partch’s 29-tone and 37-tone scales" 1 41 261.62558 267.076111 269.801361 274.083923 274.706848 279.067261 280.31311 285.409698 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 488.367737 490.547943 498.334412 499.46698 507.39505 512.57251;
PARTCH_43.scl, "Harry Partch’s 43-tone pure scale" 1 43 261.62558 264.895874 269.801361 274.706848 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 310.074738 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 353.194519 359.735138 366.275787 373.750793 380.546265 387.593445 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943 498.334412 507.39505 516.79126;
partch_43a.scl, "From "Exposition on Monophony" 1933 unp. see Ayers 1/1 vol. 9(2)" 1 43 261.62558 267.076111 269.801361 274.706848 279.067261 285.409698 287.788116 290.695068 294.328766 299. 305.229828 310.074738 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 356.762146 359.735138 366.275787 373.750793 380.546265 383.717499 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 490.547943 498.334412 507.39505 512.57251;
pelog.scl, "Observed Javanese Pelog scale from Helmholtz" 1 7 261.62558 283.219421 338.503357 358.259155 389.152832 420.13031 493.284576;
pelog1.scl, "Gamelan Saih pitu from Ksatria Den Pasar (South Bali). 1/1=312.5 Hz" 1 7 261.62558 285.8 313.834412 359.876892 393.356354 426.980499 482.045776;
pelog10.scl, "Balinese saih 7 scale Krobokan. 1/1=275 Hz. McPhee 1966" 1 7 261.62558 290.166534 310.145203 342.491638 385.303101 418.6 442.38504;
pelog11.scl, "Balinese saih pitu gamelan luang banjar Se`se’h. 1/1=276 Hz. McPhee 1966" 1 7 261.62558 289.115204 327.031952 352.625763 388.646667 441.730133 478.698944;
pelog12.scl, "Balinese saih pitu gamelan Semar Pegulingan Tampak Gangsai 1/1=310 McPhee" 1 7 261.62558 284.412323 308.042999 358.680206 385.686707 409.317413 472.613922;
pelog13.scl, "Balinese saih pitu gamelan Semar Pegulingan Klungkung 1/1=325. McPhee 1966" 1 7 261.62558 289.8 323.610687 351.785767 394.450867 454.020966 494.271057;
pelog14.scl, "Balinese saih pitu suling gambuh Tabanan 1/1=211 Hz McPhee 1966" 1 7 261.62558 287.664124 309.98291 347.180847 375.7 402.977753 427.776398;
pelog15.scl, "Balinese saih pitu suling gambuh Batuan 1/1=202 Hz. McPhee 1966" 1 7 261.62558 284.938721 307.604309 344.516846 375.601074 407.980469 427.408112;
pelog2.scl, "Bamboo gambang from Batu lulan (South Bali). 1/1=315 Hz" 1 7 261.62558 285.304688 314.92395 345.815735 388.613739 424.521271 466.97226;
pelog3.scl, "Gamelan Gong from Padangtegal distr. Ubud (South Bali). 1/1=555 Hz" 1 5 261.62558 285.634491 315.834808 390.188202 421.345428;
pelog4.scl, "Hindu-Jav. demung excavated in Banjarnegara. 1/1=427 Hz" 1 7 261.62558 290.963226 317.297668 352.878174 385.038727 434.946167 470.492004;
pelog5.scl, "Gamelan Kyahi Munggang (Paku Alaman Jogja). 1/1=199.5 Hz" 1 7 261.62558 284.646271 310.947327 358.217743 390.864929 427.47406 468.322876;
pelog6.scl, "Gamelan Semar pegulingan Ubud (S. Bali). 1/1=263.5 Hz" 1 6 261.62558 282.02771 315.834808 354.512573 386.375488 413.39;
pelog7.scl, "Gamelan Kantjilbelik (kraton Jogja). Measured by Surjodiningrat 1972.0000" 1 7 261.62558 281.214355 303.319214 353.898804 384.816376 412.435974 448.726654;
pelog8.scl, "from William Malm: Music Cultures of the Pacific the Near East and Asia." 2 15 261.62558 281.214355 305.076324 362.170776 386.598724 415.304688 456.834045 529.330994 573.914917 623.333191 730.644775 786.258423 840.746094 945.88855 1075.302124;
pelog9.scl, "9-tET Pelog" 1 7 261.62558 282.571228 305.193817 356.017456 384.520111 415.304688 448.553894;
pelogic.scl, "Pelogic temperament g=521.1 5-limit" 1 9 261.62558 268.934265 294.6 322.713409 353.51062 363.386169 398.06485 436.053009 477.666443;
pelogic2.scl, "Pelogic temperament g=677.0 in cycle of fifths order" 1 12 261.62558 252.567703 285.964661 276.064148 312.568024 301.74646 341.646301 386.822083 373.429749 422.808258 408.17 462.142212;
pelog_24.scl, "Subset of 24-tET (Sumatra?)" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 440. 479.823395;
pelog_a.scl, "Pelog average class A. Kunst 1949" 1 7 261.62558 280.727448 305.958679 363.848236 386.822083 411.721893 452.108856;
pelog_alv.scl, "Bill Alves JI Pelog 1/1 vol. 9 no. 4 1997.0000 1/1=293.33" 1 7 261.62558 299. 313.950684 343.383545 392.438354 418.6 457.844727;
pelog_av.scl, ""Normalised Pelog" Kunst 1949.0000 Average of 39 Javanese gamelans" 1 7 261.62558 280.403351 305.782013 357.391052 385.2612 411.721893 452.893005;
pelog_b.scl, "Pelog average class B. Kunst 1949" 1 7 261.62558 280.07959 302.794037 354.307861 382.821045 408.641815 451.586853;
pelog_c.scl, "Pelog average class C. Kunst 1949" 1 7 261.62558 279.917847 304.372253 350.845734 384.816376 410.297455 451.586853;
pelog_jc.scl, "John Chalmers’ Pelog on keys C# E F# A B c# like Olympos’ Enharmonic on 4/3" 1 5 261.62558 294.328766 313.950684 392.438354 418.6;
pelog_laras.scl, "Lou Harrison gamelan "Si Betty"" 1 7 261.62558 283.427704 305.229828 370.63623 392.438354 414.240479 457.844727;
pelog_me1.scl, "Gamelan Kyahi Kanyut Mesem pelog (Mangku Nagaran). 1/1=295 Hz" 1 7 261.62558 281.136536 305.968933 353.859741 389.33429 412.392853 454.075653;
pelog_me2.scl, "Gamelan Kyahi Bermara (kraton Jogja). 1/1=290 Hz" 1 7 261.62558 277.86441 299.967285 349.585876 383.416779 405.970825 447.47;
pelog_me3.scl, "Gamelan Kyahi Pangasih (kraton Solo). 1/1=286 Hz" 1 7 261.62558 281.75058 306.906891 358.591644 385.120117 411.648651 457.387482;
pelog_pa.scl, ""Blown fifth" pelog von Hornbostel type a." 1 7 261.62558 286.295197 313.291046 342.832428 387.045593 423.541565 463.478851;
pelog_pa2.scl, "New mixed gender Pelog" 1 7 261.62558 286.295197 313.291046 353.694427 387.045593 423.541565 463.478851;
pelog_pb.scl, ""Primitive" Pelog step of blown semi-fourths von Hornbostel type b." 1 7 261.62558 277.984314 304.196503 353.694427 387.045593 411.246521 450.024506;
pelog_pb2.scl, ""Primitive" Pelog Kunst: Music in Java p. 28" 1 7 261.62558 277.503021 303.66983 353.694427 387.045593 410.534515 449.245331;
pelog_schmidt.scl, "Modern Pelog designed by Dan Schmidt and used by Berkeley Gamelan" 1 7 261.62558 287.788116 313.950684 366.275787 392.438354 418.6 470.926025;
pelog_selun.scl, "Gamelan selunding from Kengetan South Bali (Pelog) 1/1=141 Hz" 2 12 261.62558 281.108307 350.689575 378.522095 416.559784 523.25116 562.216614 701.37915 757.044189 833.11969 1046.502319 1124.433228;
pelog_str.scl, "JI Pelog with stretched 2/1 and extra tones between 2-3 6-7. Wolf XH 11 ’87" 2 10 261.62558 282.737976 305.229828 329.860962 356.101471 384.837799 415.451721 448.977417 484.693665 523.807007;
penta1.scl, "Pentagonal scale 9/8 3/2 16/15 4/3 5/3" 1 12 261.62558 282.555603 294.328766 313.950684 331.119843 372.509827 376.740814 397.343842 423.833405 441.493134 470.926025 496.679779;
penta2.scl, "Pentagonal scale 7/4 4/3 15/8 32/21 6/5" 1 12 261.62558 267.076111 286.152954 305.229828 312.98 333.845123 356.101471 363.368835 400.614136 436.042603 457.844727 476.9216;
pentadekany.scl, "2)6 1.3.5.7.11.13 Pentadekany (1.3 tonic)" 1 15 261.62558 283.427704 299.779297 305.229828 327.031952 354.284607 359.735138 381.537292 389.713074 419.69101 425.141541 436.042603 457.844727 479.646881 495.998474;
PENTADEKANY2.scl, "2)6 1.3.5.7.9.11 Pentadekany (1.3 tonic)" 1 15 261.62558 269.801361 294.328766 299.779297 305.229828 327.031952 343.383545 359.735138 381.537292 392.438354 419.69101 436.042603 457.844727 479.646881 490.547943;
pentadekany3.scl, "2)6 1.5.11.17.23.31 Pentadekany (1.5 tonic)" 1 15 261.62558 277.977173 278.794739 287.788116 291.467224 300.869415 305.774872 319.673737 359.735138 376.086761 405.519623 413.695435 430.864594 444.763458 506.9;
pentatetra1.scl, "Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3" 1 9 261.62558 275.395325 290.695068 327.031952 348.834076 392.438354 413.092987 436.042603 490.547943;
pentatetra2.scl, "Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3" 1 9 261.62558 275.395325 307.794769 327.031952 348.834076 392.438354 413.092987 461.692169 490.547943;
pentatetra3.scl, "Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3" 1 9 261.62558 290.695068 307.794769 327.031952 348.834076 392.438354 436.042603 461.692169 490.547943;
pentatriad.scl, "4:5:6 Pentatriadic scale" 1 11 261.62558 290.695068 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 465.112122 490.547943;
PENTATRIAD1.scl, "3:5:9 Pentatriadic scale" 1 11 261.62558 290.695068 294.328766 327.031952 348.834076 387.593445 392.438354 436.042603 441.493134 465.112122 490.547943;
penta_opt.scl, "Optimally consonant major pentatonic John deLaubenfels 2001" 1 5 261.62558 292.508484 327.036926 391.622009 436.95816;
pepper.scl, "Keenan Pepper’s 17-tone jazz tuning TL 07-06-2000" 1 17 261.62558 274.706848 290.695068 294.328766 305.229828 327.031952 343.383545 348.834076 367.91095 392.438354 406.973114 436.042603 441.493134 457.844727 465.112122 490.547943 515.075317;
pepper2.scl, "Keenan Pepper’s "Noble Fifth" with chromatic/diatonic semitone = Phi (12)" 1 12 261.62558 281.811005 295.057526 308.926697 332.761597 348.403046 375.283691 392.923889 423.239502 443.13385 463.963348 499.76;
peprmint.scl, "Peppermint 24: Wilson/Pepper apotome/limma=Phi 2 chains spaced for pure 7:6" 1 24 261.62558 270.645294 281.811005 291.526611 295.057526 305.229828 308.926697 319.577148 332.761597 344.233765 348.403046 360.414459 375.283691 388.221832 392.923889 406.470215 423.239502 437.830963 443.13385 458.411194 463.963348 479.958801 499.76 516.989502;
perkis-indian.scl, "Indian 22 Perkis" 1 22 261.62558 269.1 277.015289 285.409698 294.328766 303.823242 313.950684 327.031952 336.375732 348.834076 358.013947 369.994415 377.903595 388.7 400.133209 412.183685 425.141541 438.99884 453.484314 469.121704 485.273224 503.87146;
perrett-tt.scl, "Perrett Tierce-Tone" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 412.060272 418.6 436.042603 457.844727 470.926025 490.547943 515.075317;
perrett.scl, "Perrett / Tartini / Pachymeres Enharmonic" 1 7 261.62558 274.706848 279.067261 348.834076 392.438354 412.060272 418.6;
perrett_14.scl, "Perrett’s 14-tone system (subscale of tierce-tone)" 1 14 261.62558 274.706848 294.328766 305.229828 327.031952 343.383545 348.834076 366.275787 392.438354 412.060272 436.042603 457.844727 490.547943 515.075317;
perrett_chrom.scl, "Perrett’s Chromatic" 1 7 261.62558 274.706848 294.328766 348.834076 392.438354 412.060272 441.493134;
perry.scl, "Robin Perry Tuning List 22-9-’98" 1 12 261.62558 294.328766 313.950684 327.031952 348.834076 392.438354 418.6 436.042603 448.5 457.844727 470.926025 490.547943;
persian-far.scl, "Hormoz Farhat average of observed Persian tar and sehtar tunings (1966)" 1 17 261.62558 275.586182 282.843414 294.51413 310.229706 318.4 331.537079 349.228241 362.589417 376.461823 391.995422 412.91272 423.786285 441.272614 464.819366 477.059814 496.744324;
persian-vaz.scl, "Vaziri’s Persian tuning using quartertones" 1 17 261.62558 277.182617 285.304688 293.664764 311.126984 320.243713 329.627563 349.228241 359.461395 380.83609 391.995422 415.304688 427.47406 440. 466.163757 479.823395 493.883301;
persian.scl, "Persian Tar Scale from Dariush Anooshfar Internet Tuning List 2/10/94" 1 17 261.62558 275.622009 282.555603 294.328766 310.074738 317.875061 331.119843 348.834076 363.368835 376.740814 392.438354 413.432983 423.833405 441.493134 465.112122 476.812592 496.679779;
phi1_13.scl, "Pythagorean scale with (Phi + 1) / 2 as fifth" 1 13 261.62558 272.278748 293.417542 305.365265 329.072815 342.472382 356.417572 384.08844 399.72821 416.004791 448.302032 466.556519 502.778412;
phillips_19.scl, "Pauline Phillips organ manual scale TL 7-10-2002" 1 19 261.62558 274.632721 286.129883 293.664764 305.428955 326.595184 329.627563 342.832428 349.228241 366.590698 384.816376 391.995422 407.698761 428.710419 440. 457.626373 489.339874 493.883301 513.668213;
phillips_19a.scl, "Adaptation by Gene Ward Smith with more consonant chords TL 25-10-2002" 1 19 261.62558 274.581451 285.657501 293.611023 305.454681 326.623901 329.506897 342.798523 349.260193 366.555817 381.341919 391.959564 407.770416 427.96347 439.879181 457.623016 489.338074 493.657288 509.076996;
phillips_22.scl, "All-key 19-limit JI scale (2002) TL 21-10-2002" 1 22 261.62558 275.933228 286.152954 294.328766 305.574463 306.592468 327.031952 331.119843 343.383545 349.227966 367.91095 392.438354 407.767975 408.79 416.965759 429.229431 441.493134 457.844727 459.888702 490.547943 496.679779 515.075317;
phillips_ji.scl, "Pauline Phillips JI 0 #/b "C" scale (2002) TL 8-10-2002" 1 21 261.62558 275.933228 286.152954 294.328766 305.574463 306.592468 327.031952 331.119843 349.227966 367.91095 386.306488 392.438354 407.767975 408.79 429.229431 441.493134 457.844727 459.888702 490.547943 496.679779 515.075317;
phi_10.scl, "Pythagorean scale with Phi as fifth" 1 10 261.62558 277.065948 293.417542 323.387024 342.472382 362.683899 399.72821 423.31897 448.302032 494.091309;
phi_12.scl, "Non-Octave Pythagorean scale with Phi as fourth. Jacky Ligon TL 12-04-2001" 2 13 261.62558 280.653839 301.066071 314.417206 337.285095 352.242401 377.861328 405.343536 423.31897 454.107391 474.245331 508.73764 531.298218;
phi_13.scl, "Pythagorean scale with Phi as fifth" 1 13 261.62558 277.065948 293.417542 305.365265 323.387024 342.472382 362.683899 377.452301 399.72821 423.31897 448.302032 466.556519 494.091309;
phi_13a.scl, "Non-Octave Pythagorean scale with Phi as fifth Jacky Ligon TL 12-04-2001" 2 14 261.62558 280.653839 293.1 314.417206 328.360413 352.242401 377.861328 394.618011 423.31897 442.091553 474.245331 508.73764 531.298218 569.94;
phi_13b.scl, "Non-Octave Pythagorean scale with 12 3/2s Jacky Ligon TL 12-04-2001" 2 14 261.62558 277.569397 287.905304 305.450653 316.824768 336.132538 356.616943 369.896332 392.438354 407.051636 431.857941 458.175995 475.237183 504.198792;
phi_17.scl, "Phi + 1 equal division by 17 Brouncker (1653)" 2 18 261.62558 276.864349 292.990601 310.056305 328.115814 347.227448 367.452271 388.854889 411.504364 435.473083 460.837616 487.67984 516.085205 546.145447 577.956543 611.620178 647.244995 684.944763;
phi_7b.scl, "Heinz Bohlen’s Pythagorean scale with Phi as fifth (1999)" 2 8 261.62558 277.065948 299.795471 323.387024 342.472382 369.422089 399.72821 423.31897;
phi_7be.scl, "36-tET approximation of phi_7b" 2 8 261.62558 277.182617 299.37381 323.341583 342.568481 369.994415 399.616089 423.378479;
phi_8.scl, "Non-Octave Pythagorean scale with 4/3s Jacky Ligon TL 12-04-2001" 2 9 261.62558 280.010345 292.013184 312.533539 325.930511 348.834076 373.347137 389.350922 416.711395;
phi_8a.scl, "Non-Octave Pythagorean scale with 5/4s Jacky Ligon TL 12-04-2001" 2 9 261.62558 275.776642 284.90271 300.312805 310.250671 327.031952 344.720856 356.128235 375.391083;
phrygian.scl, "Old Phrygian ??" 1 12 261.62558 290.695068 313.950684 327.031952 348.834076 353.194519 387.593445 392.438354 418.6 436.042603 465.112122 470.926025;
PHRYGIAN_DIAT.SCL, "Phrygian Diatonic Tonos" 2 25 261.62558 277.015289 294.328766 336.375732 348.834076 362.250793 376.740814 392.438354 428.114563 448.5 470.926025 495.711609 523.25116 554.030579 588.657532 672.751465 697.668152 724.501587 753.481628 784.876709 856.229126 897.001953 941.852051 991.423218 1046.502319;
phrygian_enh.scl, "Phrygian Enharmonic Tonos" 1 12 261.62558 277.015289 294.328766 303.823242 308.803955 313.950684 348.834076 392.438354 400.788086 405.097656 409.5 459.44;
phrygian_harm.scl, "Phrygian Harmonia-Aliquot 24 (flute tuning)" 1 12 261.62558 273. 285.409698 299. 313.950684 330.474396 348.834076 369.353729 392.438354 418.6 448.5 483.001038;
PHRYG_CHROMcon2.scl, "Harmonic Conjunct Chromatic Phrygian" 1 7 261.62558 283.427704 294.328766 305.229828 392.438354 414.240479 436.042603;
phryg_chromconi.scl, "Inverted Conjunct Chromatic Phrygian" 1 7 261.62558 283.427704 348.834076 370.63623 392.438354 479.646881 501.449005;
PHRYG_CHROMinv.scl, "Inverted Schlesinger’s Chromatic Phrygian" 1 7 261.62558 272.526642 283.427704 348.834076 392.438354 414.240479 436.042603;
phryg_chromt.scl, "Phrygian Chromatic Tonos" 2 25 261.62558 277.015289 294.328766 313.950684 324.77655 336.375732 362.250793 392.438354 409.5 418.6 428.114563 470.926025 523.25116 554.030579 588.657532 627.901367 649.553101 672.751465 724.501587 784.876709 819.00177 837.201782 856.229126 941.852051 1046.502319;
PHRYG_DIAT.scl, "Schlesinger’s Phrygian Harmonia a subharmonic series through 13 from 24" 1 8 261.62558 285.409698 313.950684 348.834076 369.353729 392.438354 448.5 483.001038;
phryg_diatcon.scl, "A Phrygian Diatonic with its own trite synemmenon replacing paramese" 1 7 261.62558 285.409698 313.950684 348.834076 369.353729 448.5 483.001038;
PHRYG_DIATINV.scl, "Inverted Conjunct Phrygian Harmonia with 17 the local Trite Synemmenon" 1 7 261.62558 283.427704 305.229828 370.63623 392.438354 436.042603 479.646881;
phryg_diatsinv.scl, "Inverted Schlesinger’s Phrygian Harmonia a harmonic series from 12 from 24" 1 8 261.62558 283.427704 305.229828 348.834076 370.63623 392.438354 436.042603 479.646881;
PHRYG_ENH.scl, "Schlesinger’s Phrygian Harmonia in the enharmonic genus" 1 7 261.62558 267.192078 273. 348.834076 392.438354 405.097656 418.6;
PHRYG_ENHcon.scl, "Harmonic Conjunct Enharmonic Phrygian" 1 7 261.62558 283.427704 288.878235 294.328766 392.438354 403.339417 414.240479;
phryg_enhinv.scl, "Inverted Schlesinger’s Enharmonic Phrygian Harmonia" 1 7 261.62558 327.031952 337.933014 348.834076 392.438354 501.449005 512.35;
PHRYG_ENHINV2.scl, "Inverted harmonic form of Schlesinger’s Enharmonic Phrygian" 1 7 261.62558 267.076111 272.526642 348.834076 392.438354 403.339417 414.240479;
phryg_penta.scl, "Schlesinger’s Phrygian Harmonia in the pentachromatic genus" 1 7 261.62558 270.647125 285.409698 348.834076 392.438354 413.092987 448.5;
phryg_pis.scl, "The Diatonic Perfect Immutable System in the Phrygian Tonos" 2 16 261.62558 294.328766 336.375732 362.250793 392.438354 428.114563 470.926025 523.25116 554.030579 588.657532 672.751465 724.501587 784.876709 856.229126 941.852051 1046.502319;
phryg_tri1.scl, "Schlesinger’s Phrygian Harmonia in the chromatic genus" 1 7 261.62558 273. 285.409698 348.834076 392.438354 418.6 448.5;
PHRYG_TRI1INV.scl, "Inverted Schlesinger’s Chromatic Phrygian Harmonia" 1 7 261.62558 305.229828 327.031952 348.834076 392.438354 479.646881 501.449005;
phryg_tri2.scl, "Schlesinger’s Phrygian Harmonia in the second trichromatic genus" 1 7 261.62558 269.1 285.409698 348.834076 392.438354 409.5 448.5;
phryg_tri3.scl, "Schlesinger’s Phrygian Harmonia in the first trichromatic genus" 1 7 261.62558 269.1 277.015289 348.834076 392.438354 409.5 428.114563;
piano.scl, "Enhanced Piano Total Gamut see 1/1 vol. 8/2 January 1994" 1 19 261.62558 275.933228 279.067261 294.328766 305.229828 313.950684 327.031952 348.834076 367.91095 372.089691 392.438354 406.973114 418.6 436.042603 441.493134 457.844727 465.112122 490.547943 515.075317;
piano7.scl, "Enhanced piano 7-limit" 1 12 261.62558 275.933228 294.328766 305.229828 327.031952 348.834076 367.91095 392.438354 406.973114 441.493134 457.844727 490.547943;
pipedum_10.scl, "2048/2025 and 34171875/33554432 are homophonic intervals" 1 10 261.62558 279.067261 306.592468 327.031952 348.834076 372.089691 396.89566 431.14566 459.888702 490.547943;
pipedum_10a.scl, "2048/2025 and 25/24 Manuel Op de Coul 2001" 1 10 261.62558 279.067261 294.328766 327.031952 348.834076 372.089691 392.438354 418.6 465.112122 490.547943;
pipedum_10b.scl, "225/224 64/63 and 25/24 are homophonic intervals" 1 10 261.62558 279.067261 294.328766 313.950684 348.834076 367.91095 392.438354 418.6 446.507629 490.547943;
pipedum_10c.scl, "225/224 64/63 and 49/48 are homophonic intervals" 1 10 261.62558 280.31311 305.229828 327.031952 348.834076 373.750793 392.438354 429.229431 457.844727 490.547943;
pipedum_10d.scl, "1029/1024 2048/2025 and 64/63 are homophonic intervals" 1 10 261.62558 279.067261 299. 318.934021 343.383545 372.089691 392.438354 425.245361 448.5 488.367737;
pipedum_10e.scl, "2048/2025 64/63 and 49/48 are homophonic intervals" 1 10 261.62558 286.152954 305.229828 327.031952 348.834076 367.91095 406.973114 429.229431 465.112122 490.547943;
pipedum_10f.scl, "225/224 64/63 and 28/27 are homophonic intervals" 1 10 261.62558 280.31311 294.328766 327.031952 348.834076 373.750793 392.438354 420.469666 465.112122 490.547943;
pipedum_10g.scl, "225/224 1029/1024 and 2048/2025 are homophonic intervals" 1 10 261.62558 280.31311 299. 325.578491 348.834076 372.089691 398.667542 425.245361 457.844727 490.547943;
PIPEDUM_10h.scl, "225/224 1029/1024 and 64/63 are homophonic intervals" 1 10 261.62558 286.152954 305.229828 327.031952 348.834076 373.750793 400.614136 429.229431 457.844727 490.547943;
pipedum_10i.scl, "225/224 2048/2025 and 49/48 are homophonic intervals" 1 10 261.62558 279.067261 294.328766 321.922089 343.383545 367.91095 392.438354 418.6 457.844727 488.367737;
PIPEDUM_10J.scl, "25/24 28/27 and 49/48 Gene Ward Smith 2002" 1 10 261.62558 269.1 305.229828 313.950684 348.834076 366.275787 392.438354 418.6 457.844727 488.367737;
pipedum_11.scl, "16/15 and 15625/15552 are homophonic intervals" 1 11 261.62558 272.526642 282.555603 313.950684 327.031952 363.368835 376.740814 392.438354 436.042603 454.21106 470.926025;
pipedum_11a.scl, "126/125 1728/1715 and 10/9 Gene Ward Smith 2002" 1 11 261.62558 269.1 305.229828 313.950684 322.920685 366.275787 376.740814 381.537292 436.042603 448.5 508.71637;
pipedum_12.scl, "81/80 and 2048/2025 are homophonic intervals" 1 12 261.62558 275.933228 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 413.9 436.042603 465.112122 490.547943;
pipedum_12a.scl, "81/80 and 2048/2025 are homophonic intervals" 1 12 261.62558 279.067261 297.671753 306.592468 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 465.112122 490.547943;
pipedum_12b.scl, "64/63 50/49 comma and 36/35 chroma" 1 12 261.62558 274.706848 299. 313.950684 320.491302 348.834076 366.275787 392.438354 418.6 448.5 457.844727 488.367737;
pipedum_12c.scl, "225/224 64/63 and 36/35 are homophonic intervals" 1 12 261.62558 280.31311 294.328766 315.352234 327.031952 348.834076 367.91095 392.438354 420.469666 448.5 457.844727 490.547943;
pipedum_12D.scl, "50/49 128/125 and 225/224 are homophonic intervals" 1 12 261.62558 280.31311 293.02063 313.950684 327.031952 350.391388 366.275787 392.438354 418.6 448.5 457.844727 490.547943;
pipedum_12e.scl, "50/49 225/224 and 3136/3125 are homophonic intervals" 1 12 261.62558 280.31311 293.02063 313.950684 327.031952 350.391388 373.750793 392.438354 418.6 439.530945 467.188507 500.559113;
pipedum_12g.scl, "50/49 225/224 and 28672/28125 are homophonic intervals" 1 25 261.62558 273.743256 293.02063 313.950684 327.031952 350.391388 366.275787 392.438354 408.79 437.989227 468.833008 490.547943 523.25116 261.62558 279.067261 286.152954 306.592468 327.031952 348.834076 366.275787 390.694183 408.79 437.989227 457.844727 488.367737;
pipedum_13.scl, "33275/32768 and 163840/161051 are homophonic intervals. Op de Coul 2001" 1 13 261.62558 276.760925 287.788116 309.1474 327.031952 345.951172 359.735138 380.546265 408.79 418.6 449.668945 475.682831 494.635834;
pipedum_13a.scl, "15/14 3136/3125 2401/2400 Gene Ward Smith 2002" 1 13 261.62558 266.964874 293.02063 299. 327.031952 334.880737 366.275787 373.750793 408.79 418.6 457.844727 467.188507 512.786133;
pipedum_13b.scl, "15/14 3136/3125 6144/6125 Gene Ward Smith 2002" 1 13 261.62558 267.904572 293.02063 299. 327.031952 334.880737 366.275787 373.750793 408.79 418.6 457.844727 467.188507 510.987427;
pipedum_13c.scl, "15/14 2401/2400 6144/6125 Gene Ward Smith 2002" 1 13 261.62558 267.076111 293.02063 299. 327.031952 334.880737 366.275787 373.750793 408.79 418.6 457.844727 467.188507 512.57251;
pipedum_14.scl, "81/80 49/48 and 2401/2400 Paul Erlich TL 17-1-2001" 1 14 261.62558 274.706848 284.762512 305.229828 320.491302 336.375732 348.834076 373.906525 392.438354 406.973114 427.143768 448.5 480.736969 498.334412;
pipedum_14a.scl, "81/80 50/49 and 2401/2400 Paul Erlich 2001" 1 14 261.62558 274.706848 284.881165 305.229828 320.357849 336.375732 348.834076 366.275787 392.438354 406.973114 427.321747 448.5 480.536743 498.334412;
pipedum_14b.scl, "245/243 81/80 comma and 25/24 chroma" 1 14 261.62558 274.706848 294.328766 305.229828 313.950684 339.144257 353.194519 366.275787 392.438354 406.973114 418.6 457.844727 470.926025 508.71637;
pipedum_14c.scl, "245/243 50/49 comma and 25/24 chroma" 1 14 261.62558 280.31311 282.555603 305.229828 327.031952 336.375732 363.368835 366.275787 392.438354 403.650879 436.042603 467.188507 470.926025 508.71637;
pipedum_15.scl, "126/125 128/125 and 875/864 5-limit Paul Erlich 2001" 1 15 261.62558 272.526642 290.695068 301.392639 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 454.21106 470.926025 502.321075;
pipedum_15a.scl, "Septimal version of pipedum_15 Manuel Op de Coul 2001" 1 15 261.62558 274.706848 290.695068 305.229828 313.950684 327.031952 348.834076 366.275787 381.537292 392.438354 418.6 436.042603 457.844727 488.367737 502.321075;
pipedum_15b.scl, "126/125 128/125 and 1029/1024 Paul Erlich 2001" 1 15 261.62558 274.706848 286.152954 299. 311.459015 327.031952 343.383545 357.691193 382.720825 398.667542 418.6 439.530945 457.844727 478.401031 498.334412;
pipedum_15c.scl, "49/48 126/125 and 1029/1024 Paul Erlich 2001" 1 15 261.62558 274.706848 284.762512 299. 313.950684 327.031952 341.715027 358.8 381.537292 400.614136 418.6 436.042603 457.844727 480.736969 498.334412;
pipedum_15d.scl, "64/63 126/125 and 1029/1024 Paul Erlich 2001" 1 15 261.62558 274.706848 286.152954 299. 313.950684 327.031952 343.383545 360.552734 379.68335 398.667542 418.6 436.042603 457.844727 478.401031 498.334412;
pipedum_15e.scl, "64/63 875/864 and 1029/1024 Paul Erlich 2001" 1 15 261.62558 273.372009 286.152954 299. 313.950684 332.222931 343.383545 358.8 381.537292 398.667542 412.060272 436.042603 457.844727 478.401031 500.76767;
pipedum_15f.scl, "126/125 64/63 comma and 28/27 chroma" 1 15 261.62558 274.706848 290.695068 305.229828 313.950684 327.031952 348.834076 366.275787 387.593445 392.438354 418.6 436.042603 465.112122 488.367737 490.547943;
pipedum_15g.scl, "128/125 and 250/243" 1 15 261.62558 279.067261 290.695068 294.328766 313.950684 327.031952 348.834076 363.368835 376.740814 392.438354 418.6 436.042603 465.112122 470.926025 502.321075;
pipedum_16.scl, "50/49 126/125 and 1029/1024 Paul Erlich 2001" 1 16 261.62558 274.706848 286.152954 299. 313.950684 327.031952 343.383545 355.953156 373.750793 384.589569 400.614136 418.6 439.530945 457.844727 480.736969 498.334412;
pipedum_17.scl, "245/243 64/63 and 525/512 Paul Erlich 2001" 1 17 261.62558 269.1 286.152954 294.328766 305.229828 318.934021 336.375732 348.834076 358.8 381.537292 392.438354 406.973114 429.229431 448.5 465.112122 478.401031 508.71637;
pipedum_17a.scl, "245/243 525/512 and 1728/1715 Paul Erlich 2001" 1 17 261.62558 271.315399 286.152954 296.751221 305.229828 318.934021 336.375732 348.834076 358.8 381.537292 392.438354 406.973114 429.229431 448.5 461.315277 478.401031 504.563599;
pipedum_17b.scl, "245/243 64/63 comma and 25/24 chroma" 1 17 261.62558 264.895874 286.152954 294.328766 305.229828 327.031952 339.144257 343.383545 367.91095 381.537292 392.438354 406.973114 436.042603 441.493134 457.844727 490.547943 508.71637;
pipedum_17c.scl, "1605632/1594323 and 177147/175616 Manuel Op de Coul 2002" 1 17 261.62558 273.680695 285.830231 299. 310.074738 321.55899 336.375732 348.834076 364.907593 378.422699 392.438354 413.432983 428.745331 448.5 465.112122 486.543457 504.563599;
pipedum_17d.scl, "243/242 99/98 and 64/63 Manuel Op de Coul 2002" 1 17 261.62558 274.083923 284.235168 299. 308.344421 319.764587 336.375732 348.834076 365.445221 373.058685 392.438354 411.125885 426.352783 448.5 465.112122 479.646881 504.563599;
pipedum_17e.scl, "245/243 1728/1715 and 32805/32768 Manuel Op de Coul 2003" 1 17 261.62558 271.315399 286.152954 296.751221 310.074738 321.922089 336.375732 348.834076 362.162354 378.422699 395.668304 413.432983 429.229431 445.126831 465.112122 482.883118 504.563599;
pipedum_18.scl, "875/864 686/675 and 128/125 Paul Erlich 2001" 1 18 261.62558 272.526642 280.31311 296.751221 305.229828 317.947723 327.031952 340.658295 350.391388 379.841553 390.694183 406.973114 418.6 436.042603 448.5 474.801941 488.367737 508.71637;
pipedum_18a.scl, "875/864 686/675 and 50/49 Paul Erlich 2001" 1 18 261.62558 269.1 280.31311 293.02063 305.229828 313.950684 327.031952 341.857391 356.101471 366.275787 384.429413 400.447296 418.6 436.042603 448.5 467.188507 488.367737 508.71637;
pipedum_18b.scl, "1728/1715 875/864 and 686/675 Paul Erlich 2001" 1 18 261.62558 272.526642 280.31311 296.751221 305.229828 317.947723 327.031952 346.209747 356.101471 373.750793 384.429413 400.447296 418.6 436.042603 448.5 467.188507 488.367737 508.71637;
pipedum_19.scl, "81/80 and 15625/15552 are homophonic intervals inverse of Mandelbaum" 1 19 261.62558 272.526642 282.555603 290.695068 301.392639 313.950684 327.031952 339.066742 348.834076 363.368835 376.740814 392.438354 401.856873 418.6 436.042603 452.088989 470.926025 484.491791 502.321075;
pipedum_19a.scl, "3125/3072 and 15625/15552 are homophonic intervals" 1 19 261.62558 271.253387 282.555603 294.328766 301.392639 313.950684 327.031952 339.066742 353.194519 361.671173 376.740814 392.438354 408.79 416.645203 434.005432 452.088989 470.926025 490.547943 502.321075;
pipedum_19b.scl, "Periodicity block by Paul Erlich TL 19-2-2001" 1 19 261.62558 272.526642 282.555603 290.695068 302.807373 313.950684 327.031952 339.066742 348.834076 363.368835 376.740814 392.438354 403.743164 418.6 436.042603 452.088989 470.926025 484.491791 502.321075;
pipedum_19c.scl, "Periodicity block by Paul Erlich 2001" 1 19 261.62558 269.1 280.31311 290.695068 305.229828 313.950684 327.031952 336.375732 348.834076 363.368835 376.740814 392.438354 406.973114 418.6 436.042603 448.5 470.926025 488.367737 508.71637;
pipedum_19d.scl, "Periodicity block by Paul Erlich 2001" 1 19 261.62558 271.315399 280.31311 290.695068 305.229828 313.950684 327.031952 336.375732 348.834076 363.368835 376.740814 392.438354 406.973114 418.6 436.042603 448.5 470.926025 488.367737 504.563599;
pipedum_19e.scl, "Periodicity block by Paul Erlich 2001" 1 19 261.62558 269.1 280.31311 287.040619 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 381.537292 392.438354 406.973114 418.6 436.042603 448.5 476.9216 488.367737 508.71637;
pipedum_19f.scl, "Periodicity block by Paul Erlich 2001" 1 19 261.62558 269.1 279.067261 287.040619 305.229828 315.352234 327.031952 336.375732 348.834076 358.8 381.537292 392.438354 406.973114 418.6 434.104645 448.5 476.9216 490.547943 508.71637;
pipedum_19g.scl, "Periodicity block by Paul Erlich 2001" 1 19 261.62558 269.1 280.31311 288.322052 305.229828 313.950684 327.031952 336.375732 348.834076 360.402557 379.841553 392.438354 406.973114 418.6 436.042603 448.5 474.801941 488.367737 508.71637;
pipedum_19h.scl, "126/125 81/80 comma and 49/48 chroma" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 343.383545 353.194519 366.275787 381.537292 392.438354 412.060272 415.278687 436.042603 457.844727 470.926025 490.547943 508.71637;
pipedum_19i.scl, "225/224 81/80 comma and 49/48 chroma" 1 19 261.62558 275.933228 286.152954 294.328766 305.229828 321.922089 327.031952 343.383545 348.834076 367.91095 381.537292 392.438354 406.973114 429.229431 436.042603 457.844727 465.112122 490.547943 515.075317;
pipedum_19j.scl, "21/20 3136/3125 and 2401/2400 Gene Ward Smith 2002" 1 19 261.62558 266.964874 286.152954 293.02063 299. 320.491302 327.031952 333.706085 358.950287 366.275787 373.750793 381.378387 410.228882 418.6 427.143768 457.844727 467.188507 478.401031 512.786133;
pipedum_19k.scl, "21/20 3136/3125 and 6144/6125 Gene Ward Smith 2002" 1 19 261.62558 267.904572 286.152954 293.02063 299. 320.491302 327.031952 334.880737 357.691193 366.275787 373.750793 382.720825 408.79 418.6 427.143768 457.844727 467.188507 478.401031 510.987427;
pipedum_19l.scl, "21/20 2401/2400 and 6144/6125 Gene Ward Smith 2002" 1 19 261.62558 267.076111 286.152954 293.02063 299. 320.491302 327.031952 333.845123 358.8 366.275787 373.750793 381.537292 410.058014 418.6 427.143768 457.844727 467.188507 478.401031 512.57251;
pipedum_19m.scl, "126/125 1728/1715 and 16/15 Gene Ward Smith 2002" 1 19 261.62558 269.1 293.02063 299. 305.229828 313.950684 317.947723 348.834076 358.8 366.275787 373.750793 406.973114 418.6 430.560944 436.042603 448.5 488.367737 502.321075 508.71637;
pipedum_19n.scl, "126/125 2401/2400 and 16/15 Gene Ward Smith 2002" 1 19 261.62558 267.076111 274.706848 280.31311 305.229828 313.950684 320.491302 327.031952 333.706085 366.275787 373.750793 381.537292 392.438354 427.321747 436.042603 448.5 457.844727 467.188507 512.786133;
pipedum_20.scl, "225/224 1029/1024 comma and 25/24 chroma" 1 20 261.62558 279.067261 286.152954 299. 305.229828 318.934021 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 429.229431 448.5 457.844727 478.401031 490.547943 510.294434;
pipedum_21.scl, "36/35 225/224 and 2401/2400 P. Erlich 2001.0000 Just PB version of miracle1.scl" 1 21 261.62558 267.076111 280.31311 284.881165 299. 305.229828 320.357849 327.031952 341.857391 348.834076 366.275787 373.750793 392.438354 400.447296 418.6 427.321747 448.5 457.844727 480.536743 488.367737 512.57251;
pipedum_21a.scl, "1029/1024 81/80 comma and 25/24 chroma" 1 21 261.62558 265.778351 286.152954 290.695068 299. 305.229828 327.031952 332.222931 343.383545 348.834076 373.750793 381.537292 392.438354 398.667542 429.229431 436.042603 448.5 457.844727 490.547943 498.334412 515.075317;
pipedum_21b.scl, "36/35 225/224 and 1029/1024 Gene Ward Smith 2002" 1 21 261.62558 267.076111 279.067261 284.881165 299. 305.229828 318.934021 325.578491 343.383545 348.834076 366.275787 372.089691 392.438354 398.667542 418.6 427.321747 448.5 457.844727 478.401031 488.367737 496.119598;
pipedum_22.scl, "3125/3072 and 2109375/2097152 are homophonic intervals" 1 22 261.62558 267.904572 279.067261 285.764893 299.406708 306.592468 313.950684 327.031952 334.880737 348.834076 357.206116 365.779053 383.24057 392.438354 408.79 418.6 436.042603 446.507629 457.223816 479.05072 490.547943 510.987427;
pipedum_22a.scl, "2048/2025 and 2109375/2097152 are homophonic intervals" 1 22 261.62558 267.904572 279.067261 287.43042 297.671753 306.592468 317.516541 327.031952 334.880737 348.834076 357.206116 372.089691 381.019836 392.438354 408.79 418.6 436.042603 446.507629 459.888702 476.274811 490.547943 508.026459;
pipedum_22b.scl, "2025/2048 245/243 and 64/63. P. Erlich "7-limit Indian" TL 19-12-2000" 1 22 261.62558 271.315399 279.067261 286.152954 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 357.691193 367.91095 381.537292 392.438354 406.973114 418.6 429.229431 441.493134 457.844727 470.926025 490.547943 508.71637;
pipedum_22b2.scl, "Version of pipedum_22b with other shape Paul Erlich" 1 22 261.62558 271.315399 279.067261 286.152954 294.328766 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 367.91095 381.537292 392.438354 406.973114 418.6 429.229431 448.5 465.112122 478.401031 490.547943 504.563599;
pipedum_22c.scl, "1728/1715 64/63 and 50/49 Paul Erlich 2001" 1 22 261.62558 267.076111 274.706848 290.695068 299. 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 498.334412 512.57251;
pipedum_22d.scl, "1728/1715 875/864 and 64/63 Paul Erlich 2001" 1 22 261.62558 269.1 274.706848 290.695068 299. 305.229828 313.950684 327.031952 333.845123 348.834076 358.8 366.275787 381.537292 392.438354 410.058014 418.6 436.042603 448.5 457.844727 470.926025 498.334412 508.71637;
pipedum_22e.scl, "1728/1715 245/243 and 50/49 Paul Erlich 2001" 1 22 261.62558 269.1 274.706848 290.695068 299. 305.229828 313.950684 327.031952 336.375732 348.834076 356.101471 366.275787 384.429413 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 498.334412 508.71637;
pipedum_22f.scl, "1728/1715 245/243 and 875/864 Paul Erlich 2001" 1 22 261.62558 269.1 276.789185 290.695068 296.751221 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 461.315277 470.926025 494.585358 508.71637;
pipedum_22g.scl, "225/224 1728/1715 and 64/63 Paul Erlich 2001" 1 22 261.62558 267.076111 279.067261 286.152954 299. 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 457.844727 478.401031 490.547943 512.57251;
pipedum_22h.scl, "225/224 1728/1715 and 875/864 Paul Erlich 2001" 1 22 261.62558 269.1 280.31311 287.040619 296.751221 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 461.315277 476.9216 488.367737 508.71637;
pipedum_22i.scl, "1728/1715 245/243 and 245/243 Paul Erlich 2001" 1 22 261.62558 269.1 279.067261 288.322052 296.751221 305.229828 313.950684 327.031952 336.375732 348.834076 358.8 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 461.315277 474.801941 490.547943 508.71637;
pipedum_22j.scl, "50/49 64/63 and 245/243 Gene Ward Smith 2002" 1 22 261.62558 271.315399 280.31311 290.695068 299. 305.229828 320.357849 332.222931 336.375732 348.834076 353.194519 373.750793 387.593445 392.438354 406.973114 427.143768 436.042603 448.5 465.112122 480.536743 498.334412 504.563599;
pipedum_24.scl, "121/120 16384/16335 and 32805/32768. Manuel Op de Coul 2001" 1 24 261.62558 267.571594 275.933228 285.409698 290.695068 299.779297 310.074738 319.764587 327.031952 338.263367 348.834076 356.762146 367.91095 380.546265 392.438354 401.357391 413.432983 426.352783 436.042603 449.668945 465.112122 479.646881 490.547943 507.39505;
pipedum_24a.scl, "49/48 81/80 and 128/125 Gene Ward Smith 2002" 1 24 261.62558 272.526642 274.706848 286.152954 294.328766 305.229828 313.950684 321.922089 327.031952 343.383545 348.834076 366.275787 367.91095 381.537292 392.438354 412.060272 418.6 429.229431 436.042603 457.844727 470.926025 488.367737 490.547943 515.075317;
pipedum_26.scl, "1029/1024 1728/1715 and 50/49 Paul Erlich 2001" 1 26 261.62558 267.076111 274.706848 286.152954 292.89859 299. 305.229828 313.950684 327.031952 333.845123 341.715027 348.834076 358.8 366.275787 381.537292 392.438354 400.614136 410.058014 418.6 436.042603 448.5 457.844727 467.383179 478.401031 498.334412 512.57251;
PIPEDUM_26a.scl, "50/49 81/80 and 525/512 Gene Ward Smith 2002" 1 26 261.62558 272.526642 274.706848 286.152954 294.328766 305.229828 306.592468 321.922089 325.578491 327.031952 343.383545 348.834076 366.275787 367.91095 381.537292 392.438354 408.79 412.060272 429.229431 436.042603 457.844727 459.888702 465.112122 488.367737 490.547943 515.075317;
pipedum_27.scl, "126/125 1728/1715 and 4000/3969 are homophonic intervals Paul Erlich" 1 27 261.62558 271.202393 278.95105 284.762512 292.89859 299. 307.543518 316.402802 325.442871 332.222931 341.715027 351.478302 358.8 369.052216 379.68335 390.531464 398.667542 410.058014 418.6 430.560944 442.862671 455.62 468.637756 478.401031 492.069641 502.321075 516.673096;
pipedum_27a.scl, "126/126 1728/1715 and 64/63 Paul Erlich 2001" 1 27 261.62558 269.1 274.706848 280.31311 290.695068 299. 305.229828 313.950684 320.491302 327.031952 336.375732 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 406.973114 418.6 427.143768 436.042603 448.5 457.844727 470.926025 488.367737 498.334412 508.71637;
pipedum_27b.scl, "2401/2400 126/125 and 128/125 Paul Erlich 2001" 1 27 261.62558 266.964874 272.526642 280.31311 293.02063 299. 305.229828 313.950684 320.491302 327.031952 333.706085 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 410.228882 418.6 427.143768 436.042603 448.5 457.844727 467.188507 488.367737 502.321075 512.786133;
pipedum_27c.scl, "2401/2400 126/125 and 686/675 Paul Erlich 2001" 1 27 261.62558 266.964874 274.706848 280.31311 290.695068 299. 305.229828 313.950684 320.357849 327.031952 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 418.6 427.321747 436.042603 448.5 457.844727 470.926025 488.367737 498.334412 512.786133;
pipedum_27d.scl, "2401/2400 126/125 and 64/63 Paul Erlich 2001" 1 27 261.62558 266.964874 274.706848 280.31311 290.695068 299. 305.229828 313.950684 320.491302 327.031952 336.375732 348.834076 355.953156 366.275787 373.750793 384.589569 392.438354 406.973114 418.6 427.143768 436.042603 448.5 457.844727 470.926025 488.367737 498.334412 512.786133;
pipedum_27e.scl, "2401/2400 126/125 and 245/243 Paul Erlich 2001" 1 27 261.62558 269.1 274.706848 282.555603 290.695068 299. 305.229828 313.950684 320.357849 329.648224 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 415.278687 427.321747 436.042603 448.5 457.844727 470.926025 484.491791 498.334412 508.71637;
pipedum_27f.scl, "2401/2400 1728/1715 and 128/125 Paul Erlich 2001" 1 27 261.62558 267.076111 272.526642 280.31311 293.02063 299. 305.229828 313.950684 320.357849 327.031952 333.845123 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 410.058014 418.6 427.321747 436.042603 448.5 457.844727 467.188507 488.367737 502.321075 512.57251;
pipedum_27g.scl, "2401/2400 1728/1715 and 686/675 Paul Erlich 2001" 1 27 261.62558 267.076111 274.592438 280.31311 290.816193 299. 305.229828 313.950684 320.357849 327.031952 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 418.6 427.321747 436.042603 448.5 457.844727 470.729889 488.367737 498.542053 512.57251;
pipedum_27h.scl, "2401/2400 1728/1715 and 64/63 Paul Erlich 2001" 1 27 261.62558 267.076111 274.706848 280.31311 290.695068 299. 305.229828 313.950684 320.491302 327.031952 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 418.6 427.143768 436.042603 448.5 457.844727 470.926025 488.367737 498.334412 512.57251;
pipedum_27i.scl, "2401/2400 1728/1715 and 245/243 Paul Erlich 2001" 1 27 261.62558 269.1 274.706848 282.437927 290.695068 299. 305.229828 313.950684 320.491302 329.510925 336.375732 348.834076 356.101471 366.275787 373.750793 384.429413 392.438354 406.973114 415.451721 427.143768 436.042603 448.5 457.844727 470.926025 484.693665 498.334412 508.71637;
pipedum_31.scl, "81/80 225/224 and 1029/1024 are homophonic intervals" 1 31 261.62558 271.621765 275.933228 281.681824 289.729889 294.328766 300.460602 310.424866 316.892059 321.922089 331.119843 338.018188 343.383545 356.503571 362.162354 367.91095 380.270447 386.306488 392.438354 407.432648 413.9 422.522736 434.594818 441.493134 450.690918 465.637299 475.338074 482.883118 496.679779 507.027283 515.075317;
pipedum_31a.scl, "393216/390625 and 2109375/2097152 are homophonic intervals" 1 31 261.62558 269.466034 275.933228 282.555603 287.43042 294.328766 301.392639 306.592468 313.950684 321.485504 329.201141 336.83255 344.916504 353.194519 359.288025 367.91095 376.740814 385.782593 392.438354 401.856873 411.501434 421.04068 431.14566 441.493134 452.088989 459.888702 470.926025 482.228241 490.547943 502.321075 514.37677;
pipedum_31b.scl, "245/243 1029/1024 comma and 25/24 chroma" 1 31 261.62558 267.076111 280.31311 286.152954 290.695068 294.328766 299. 305.229828 307.543518 327.031952 333.845123 339.144257 343.383545 348.834076 356.101471 373.750793 381.537292 387.593445 392.438354 400.614136 406.973114 429.229431 436.042603 445.126831 448.5 457.844727 465.112122 490.547943 498.334412 508.71637 515.075317;
pipedum_31c.scl, "126/125 225/224 and 1029/1024 Op de Coul" 1 31 261.62558 265.778351 274.706848 279.067261 286.152954 293.02063 299. 305.229828 313.950684 320.491302 327.031952 334.880737 343.383545 348.834076 360.552734 366.275787 373.750793 384.589569 392.438354 398.667542 412.060272 418.6 429.229431 439.530945 448.5 457.844727 470.926025 480.736969 490.547943 502.321075 515.075317;
pipedum_31d.scl, "1728/1715 225/224 and 81/80" 1 31 261.62558 269.1 274.706848 280.31311 286.152954 294.328766 299. 305.229828 313.950684 316.534637 327.031952 336.375732 343.383545 348.834076 358.8 366.275787 373.750793 381.537292 392.438354 403.650879 406.973114 418.6 429.229431 436.042603 448.5 457.844727 470.926025 478.401031 490.547943 504.563599 508.71637;
pipedum_34.scl, "15625/15552 and 393216/390625 are homophonic intervals" 1 34 261.62558 267.904572 272.526642 279.067261 283.881897 290.695068 294.328766 301.392639 306.592468 313.950684 321.485504 327.031952 334.880737 340.658295 348.834076 354.852386 363.368835 367.91095 376.740814 385.782593 392.438354 401.856873 408.79 418.6 425.822845 436.042603 446.507629 454.21106 465.112122 470.926025 482.228241 490.547943 502.321075 510.987427;
pipedum_34a.scl, "15625/15552 and 2048/2025 Manuel Op de Coul 2001" 1 34 261.62558 264.895874 272.526642 279.067261 282.555603 290.695068 294.328766 301.392639 306.592468 313.950684 317.875061 327.031952 334.880737 340.658295 348.834076 353.194519 363.368835 367.91095 376.740814 387.593445 392.438354 401.856873 408.79 418.6 423.833405 436.042603 441.493134 452.088989 465.112122 470.926025 484.491791 490.547943 502.321075 510.987427;
pipedum_36.scl, "1029/1024 245/243 comma and 50/49 chroma Gene Ward Smith 2001" 1 36 261.62558 267.076111 269.1 280.31311 286.152954 290.695068 294.328766 300.460602 305.229828 311.588776 320.357849 327.031952 333.845123 336.375732 343.383545 348.834076 356.101471 367.91095 373.750793 381.537292 384.429413 392.438354 400.614136 406.973114 420.469666 429.229431 436.042603 445.126831 448.5 457.844727 467.383179 480.536743 490.547943 498.334412 508.71637 515.075317;
pipedum_36a.scl, "1125/1024 and 531441/524288 Op de Coul" 1 36 261.62558 264.895874 275.622009 275.933228 279.067261 290.695068 293.996796 294.328766 310.074738 310.424866 313.950684 327.031952 330.746399 331.119843 348.834076 349.227966 353.194519 367.91095 372.089691 372.509827 387.593445 392.438354 397.343842 413.432983 413.9 418.6 436.042603 440.995178 441.493134 465.112122 465.637299 470.926025 490.547943 496.119598 496.679779 516.79126;
pipedum_37.scl, "250/243 3136/3125 and 3125/3087 Gene Ward Smith 2002" 1 37 261.62558 263.718567 276.852448 279.067261 280.31311 290.695068 293.02063 299. 308.987122 311.459015 313.950684 325.578491 332.222931 333.706085 346.065552 348.834076 351.624756 353.194519 370.784546 373.750793 376.740814 390.694183 392.438354 400.447296 415.278687 418.6 421.95 436.042603 444.941437 448.5 465.112122 467.188507 470.926025 494.379364 498.334412 502.321075 519.098328;
pipedum_38.scl, "81/80 and 1224440064/1220703125 Manuel Op de Coul 2001" 1 38 261.62558 271.253387 272.526642 280.377197 282.555603 290.695068 292.953644 301.392639 302.807373 313.950684 315.424347 325.504059 327.031952 336.452637 339.066742 348.834076 350.471497 361.671173 363.368835 376.740814 378.509216 390.604889 392.438354 403.743164 406.88 418.6 420.565796 434.005432 436.042603 452.088989 454.21106 467.295319 470.926025 484.491791 488.256104 502.321075 504.678955 519.217041;
PIPEDUM_38a.scl, "50/49 81/80 and 3125/3072 Gene Ward Smith 2002" 1 38 261.62558 268.268402 272.526642 274.706848 279.067261 286.152954 293.02063 294.328766 305.229828 306.592468 313.950684 321.922089 327.031952 329.648224 340.658295 343.383545 348.834076 357.691193 366.275787 367.91095 381.537292 383.24057 390.694183 392.438354 408.79 412.060272 418.6 429.229431 436.042603 439.530945 457.844727 459.888702 470.926025 476.9216 488.367737 490.547943 510.987427 515.075317;
pipedum_41.scl, "100/99 105/104 196/195 275/273 385/384 Paul Erlich TL 3-11-2000" 1 41 261.62558 265.71347 269.801361 274.706848 280.31311 286.152954 290.695068 294.328766 299. 303.672546 308.344421 313.950684 320.491302 327.031952 331.119843 336.375732 343.383545 348.834076 354.284607 359.735138 366.275787 373.750793 381.537292 387.407074 392.438354 400.614136 406.973114 412.060272 418.6 425.141541 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 495.998474 503.629211 513.907349;
PIPEDUM_41a.scl, "pipedum_41 improved shape by Manuel Op de Coul all intervals superparticular" 1 41 261.62558 265.71347 269.801361 274.706848 280.31311 285.409698 290.695068 294.328766 299. 305.229828 309.193848 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 353.194519 359.735138 366.275787 373.750793 380.546265 387.593445 392.438354 400.614136 406.973114 411.125885 418.6 425.141541 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 495.998474 503.629211 513.907349;
pipedum_41b.scl, "pipedum_41 more improved shape by M. OdC all intervals superparticular" 1 41 261.62558 265.778351 271.315399 274.706848 279.067261 284.881165 290.695068 294.328766 299. 305.229828 310.074738 313.950684 319.764587 327.031952 331.119843 336.375732 343.383545 348.834076 353.194519 359.735138 366.275787 373.750793 381.537292 387.593445 392.438354 398.667542 406.973114 412.060272 418.6 425.141541 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 479.646881 490.547943 498.334412 504.563599 515.075317;
pipedum_41c.scl, "225/224 245/243 and 1029/1024 Gene Ward Smith 2002" 1 41 261.62558 267.076111 271.315399 275.933228 280.31311 286.152954 290.695068 294.328766 299. 305.229828 310.074738 315.352234 320.357849 327.031952 333.845123 336.375732 343.383545 348.834076 356.101471 360.402557 367.91095 373.750793 381.537292 384.429413 392.438354 398.667542 406.973114 410.058014 420.469666 429.229431 436.042603 445.126831 448.5 457.844727 465.112122 474.801941 480.536743 490.547943 498.334412 508.71637 512.57251;
pipedum_41d.scl, "3125/3072 and 32805/32768" 1 41 261.62558 264.895874 272.526642 275.933228 279.067261 282.555603 290.695068 294.328766 297.671753 306.592468 310.074738 313.950684 317.516541 327.031952 331.119843 334.880737 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 376.740814 387.593445 392.438354 396.89566 408.79 413.9 418.6 423.833405 436.042603 441.493134 446.507629 459.888702 465.112122 470.926025 484.491791 490.547943 496.119598 502.321075 517.374756;
pipedum_43.scl, "81/80 126/125 and 12288/12005 Gene Ward Smith 2002" 1 43 261.62558 269.1 273.372009 274.706848 282.555603 286.152954 287.040619 290.695068 299. 305.229828 307.543518 313.950684 322.920685 327.031952 328.046417 332.222931 341.715027 343.383545 348.834076 358.8 366.275787 369.052216 376.740814 379.68335 381.537292 392.438354 398.667542 410.058014 412.060272 418.6 423.930328 430.560944 436.042603 448.5 455.62 457.844727 470.926025 478.401031 492.069641 494.472321 498.334412 508.71637 512.57251;
pipedum_45.scl, "81/80 525/512 and 2401/2400 Gene Ward Smith 2002" 1 45 261.62558 265.778351 267.076111 274.706848 279.067261 280.31311 284.881165 293.02063 294.328766 299. 303.746674 305.229828 313.950684 320.491302 325.578491 327.031952 336.375732 341.857391 343.383545 348.834076 356.101471 358.8 366.275787 372.089691 373.750793 384.589569 392.438354 398.667542 400.614136 406.973114 418.6 420.469666 427.321747 436.042603 439.530945 448.5 455.809875 457.844727 465.112122 478.401031 480.736969 488.367737 498.334412 512.786133 515.075317;
pipedum_45a.scl, "81/80 2401/2400 and 4375/4374 Gene Ward Smith" 1 45 261.62558 267.076111 269.1 274.706848 276.852448 282.555603 288.322052 290.695068 296.751221 299. 305.229828 311.459015 313.950684 320.491302 322.994537 329.648224 336.375732 339.144257 345.98645 348.834076 356.101471 363.285797 366.275787 373.750793 376.826935 384.429413 392.438354 395.668304 403.650879 406.973114 415.278687 423.833405 427.143768 436.042603 439.530945 448.5 457.844727 461.315277 470.926025 474.801941 484.491791 494.472321 498.334412 508.71637 512.57251;
pipedum_46.scl, "126/125 1029/1024 and 5120/5103. Manuel Op de Coul 2001" 1 46 261.62558 265.778351 270.414551 274.706848 279.067261 280.31311 286.152954 290.695068 295.309265 300.460602 305.229828 310.074738 313.950684 320.491302 325.578491 327.031952 332.222931 339.144257 343.383545 348.834076 354.371124 360.552734 366.275787 372.089691 373.750793 381.537292 387.593445 392.438354 398.667542 406.973114 412.060272 418.6 427.321747 429.229431 436.042603 442.963928 450.690918 457.844727 465.112122 470.926025 480.736969 488.367737 490.547943 498.334412 508.71637 515.075317;
pipedum_46a.scl, "126/125 1029/1024 and 245/243 Gene Ward Smith 2002" 1 46 261.62558 267.076111 269.1 274.706848 279.067261 280.31311 286.152954 290.695068 294.328766 299. 305.229828 307.543518 313.950684 320.357849 320.491302 327.031952 332.222931 336.375732 343.383545 348.834076 353.194519 358.8 366.12323 366.275787 373.750793 381.537292 387.593445 392.438354 398.667542 406.973114 412.060272 418.6 427.143768 427.321747 436.042603 445.126831 448.5 457.844727 465.112122 470.926025 478.401031 488.367737 490.547943 498.334412 508.71637 512.57251;
pipedum_46b.scl, "2048/2025 and 78732/78125" 1 46 261.62558 264.895874 271.253387 272.526642 279.067261 282.555603 283.881897 290.695068 294.328766 301.392639 302.807373 310.074738 313.950684 317.875061 322.994537 327.031952 334.880737 339.066742 340.658295 348.834076 353.194519 361.671173 363.368835 372.089691 376.740814 381.45 387.593445 392.438354 401.856873 403.743164 408.79 418.6 423.833405 430.659363 436.042603 441.493134 452.088989 454.21106 465.112122 470.926025 482.228241 484.491791 490.547943 502.321075 508.6 516.79126;
pipedum_50.scl, "81/80 126/125 and 16807/16384 Gene Ward Smith 2002" 1 50 261.62558 267.076111 269.1 273.372009 274.706848 276.852448 284.762512 286.152954 290.695068 299. 300.460602 305.229828 307.543518 313.950684 316.402802 320.491302 327.031952 332.222931 333.845123 341.715027 343.383545 348.834076 358.8 360.552734 361.60321 366.275787 373.750793 379.68335 381.537292 392.438354 398.667542 400.614136 410.058014 412.060272 418.6 423.930328 427.143768 436.042603 445.126831 448.5 455.62 457.844727 470.926025 478.401031 480.736969 484.491791 498.334412 500.76767 508.71637 512.57251;
pipedum_53.scl, "15625/15552 and 32805/32768 Manuel Op de Coul 2001" 1 53 261.62558 264.895874 269.162109 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 298.007874 302.807373 306.592468 310.074738 313.950684 317.875061 322.994537 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 397.343842 403.743164 408.79 413.9 418.6 423.833405 430.659363 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 476.812592 484.491791 490.547943 496.679779 502.321075 510.987427 516.79126;
pipedum_53a.scl, "225/224 1728/1715 and 4375/4374 Manuel Op de Coul 2001" 1 53 261.62558 266.964874 269.1 272.526642 276.852448 280.31311 282.555603 288.322052 290.695068 294.328766 299. 302.807373 305.229828 311.459015 313.950684 320.357849 322.994537 327.031952 332.222931 336.375732 339.144257 346.065552 348.834076 353.194519 358.8 363.368835 366.275787 373.750793 376.740814 384.429413 387.593445 392.438354 398.667542 403.650879 406.973114 415.278687 418.6 423.833405 430.560944 436.042603 441.493134 448.5 454.21106 457.844727 467.188507 470.926025 480.536743 484.491791 490.547943 498.334412 504.563599 508.71637 519.098328;
pipedum_53b.scl, "225/224 1728/1715 and 3125/3087 Gene Ward Smith 2002" 1 53 261.62558 266.964874 269.1 272.526642 274.706848 280.31311 286.033783 288.322052 290.695068 293.02063 299. 301.392639 305.229828 311.459015 313.950684 320.357849 322.920685 327.031952 333.706085 336.375732 341.857391 343.24054 348.834076 351.624756 358.8 363.368835 366.275787 373.750793 376.740814 384.429413 389.323761 392.438354 400.447296 403.650879 406.973114 410.228882 418.6 427.143768 430.560944 436.042603 439.530945 448.5 457.654053 457.844727 467.188507 470.926025 478.6 480.536743 488.367737 498.334412 502.321075 512.57251 512.786133;
pipedum_55.scl, "81/80 686/675 and 6144/6125 Gene Ward Smith 2002" 1 55 261.62558 267.076111 269.1 272.526642 274.706848 279.067261 280.31311 286.152954 293.02063 294.328766 296.751221 299. 305.229828 306.592468 313.950684 317.947723 320.491302 325.578491 327.031952 333.845123 336.375732 340.658295 343.383545 348.834076 356.101471 358.8 366.275787 367.91095 373.750793 376.740814 381.537292 390.694183 392.438354 400.614136 403.650879 406.973114 408.79 418.6 427.321747 429.229431 436.042603 439.530945 445.126831 448.5 457.844727 459.888702 470.926025 474.801941 476.9216 488.367737 490.547943 502.321075 504.563599 508.71637 520.925598;
pipedum_58.scl, "9801/9800 2401/2400 5120/5103 and 896/891" 1 58 261.62558 264.295227 268.602234 271.315399 275.622009 277.51 280.31311 284.881165 287.788116 292.356201 295.309265 297.332123 302.177521 305.229828 310.074738 313.23877 315.352234 320.491302 323.761627 328.9 332.222931 337.636932 339.95 343.383545 348.834076 352.393616 358.136322 361.753876 364.231842 370.013306 373.750793 379.841553 383.717499 389.808258 392.438354 396.44281 402.903381 406.973114 413.432983 417.651703 420.469666 427.321747 431.68219 438.534271 442.963928 445.998169 453.266296 457.844727 465.112122 469.858154 477.515106 480.736969 485.642456 493.351074 498.334412 506.455414 511.623322 515.075317;
pipedum_65.scl, "1216/1215 32805/32768 and 39858075/39845888. Manuel Op de Coul 2001" 1 65 261.62558 264.597107 267.382355 270.72464 273.058899 275.933228 279.067261 282.004822 285.207825 287.991821 291.262848 294.328766 297.671753 300.805145 303.398773 306.844788 310.424866 313.950684 317.255432 320.858826 323.625366 327.301117 331.119843 334.605316 338.405792 341.323639 345.2 348.834076 352.796143 356.912354 360.966156 364.078552 367.91095 372.089691 376.006439 380.706512 383.989105 388.350433 392.438354 396.89566 401.073517 404.531708 409.588348 413.9 418.6 423.007233 427.811768 431.5 436.894257 441.493134 446.507629 451.207703 455.098175 460.267212 465.112122 470.926025 475.883148 481.288239 485.438049 490.951691 496.119598 501.90799 507.608673 511.985443 517.8;
pipedum_65a.scl, "78732/78125 and 32805/32768" 1 65 261.62558 264.895874 267.904572 269.162109 272.526642 275.933228 279.067261 282.555603 286.087555 287.106232 290.695068 294.328766 298.007874 301.392639 302.807373 306.592468 310.074738 313.950684 317.875061 319.006927 322.994537 327.031952 331.119843 334.880737 339.066742 340.658295 344.527496 348.834076 353.194519 357.609436 358.882813 363.368835 367.91095 372.089691 376.740814 381.45 383.24057 387.593445 392.438354 397.343842 401.856873 403.743164 408.79 413.432983 418.6 423.833405 429.131348 430.659363 436.042603 441.493134 446.507629 452.088989 454.21106 459.888702 465.112122 470.926025 476.812592 478.510406 484.491791 490.547943 496.679779 502.321075 508.6 510.987427 516.79126;
pipedum_67.scl, "81/80 1029/1024 and 9604/9375 Gene Ward Smith 2002" 1 67 261.62558 262.793549 266.964874 267.076111 272.526642 274.706848 279.067261 280.31311 284.881165 286.152954 293.02063 294.328766 299. 299.125244 300.33548 305.229828 306.592468 311.459015 313.950684 320.357849 320.491302 325.578491 327.031952 332.222931 336.515869 339.002991 341.857391 343.383545 348.834076 350.391388 355.953156 360.552734 366.275787 367.91095 373.750793 373.906525 381.537292 384.589569 390.694183 392.438354 398.833649 400.447296 400.614136 406.973114 408.79 418.6 420.469666 427.321747 429.229431 436.042603 439.530945 448.5 448.687836 455.809875 457.844727 459.888702 465.112122 467.188507 474.604187 480.736969 488.367737 490.547943 498.334412 504.773834 512.786133 515.075317 520.925598;
pipedum_68.scl, "245/243 2048/2025 and 2401/2400 Gene Ward Smith 2002" 3 69 246.94165 250.861359 252.086273 253.997131 258.028839 259.288727 263.404419 264.580353 268.892029 272.139771 273.160156 276.574646 277.809357 282.219025 286.818146 288.098602 291.7 292.6716 296.33 301.03363 302.50351 307.305176 308.677063 311.016876 316.085327 317.496399 322.536041 324.110931 329.255524 333.371216 334.481812 338.662842 340.174713 345.718323 351.205902 352.773773 357.183472 358.522705 362.853027 368.766205 370.412476 376.292053 378.129395 384.13147 387.043243 388.933105 395.106628 396.870514 403.338043 409.740234 411.569427 414.861969 416.71405 423.328552 430.227234 432.147888 439.007385 441.15097 444.494995 451.550446 453.566284 460.957733 468.274536 470.365051 474.12796 476.244598 483.804047 491.688263 493.883301;
pipedum_7.scl, "81/80 64/63 and 6144/6125 Manuel Op de Coul" 1 7 261.62558 290.695068 317.947723 347.755341 392.438354 429.229431 476.9216;
pipedum_72.scl, "225/224 1029/1024 and 4375/4374 Gene Ward Smith 2002" 3 73 195.997711 198.447693 200.081009 201.597656 204.164291 205.797607 208.417709 209.06424 211.677536 214.372498 216.087479 217.775238 220.497437 222.312225 223.997391 226.797363 228.664001 231.522308 232.293594 235.197266 238.191666 240.097198 241.917191 244.997147 246.957123 250.101257 251.99707 254.071121 257.247009 258.044983 261.330292 264.596924 266.774658 268.796875 272.219055 274.39682 277.890289 279.996735 282.236725 285.83 289.402893 290.367004 293.996582 296.41629 300.12149 302.396484 304.885345 308.696411 311.107483 313.596344 317.588898 321.558746 322.556244 326.662872 329.276154 333.468353 335.996094 338.761475 342.996002 347.283447 348.440399 352.795898 357.287506 360.145813 362.95874 365.862396 370.435699 373.328979 376.315613 381.106659 385.870514 387.155975 391.995422;
pipedum_72a.scl, "4375/4374 2401/2400 and 15625/15552 Manuel Op de Coul 2002" 3 73 195.997711 197.565704 200.081009 201.597656 203.210434 205.797607 207.443985 209.997559 211.677536 213.419739 216.04686 217.775238 219.517441 222.312225 223.997391 226.849213 228.664001 230.493317 233.330612 235.197266 237.078842 240.097198 241.917191 244.997147 246.957123 248.932785 251.99707 254.071121 256.103699 259.256226 261.330292 264.65741 266.774658 268.796875 272.219055 274.39682 276.59198 279.996735 282.236725 285.83 288.116638 290.3 293.996582 296.348541 298.59491 302.465607 304.885345 308.766968 311.107483 313.596344 317.588898 320.129608 322.556244 326.662872 329.276154 333.468353 335.996094 338.684052 342.996002 345.74 348.360748 352.795898 355.7 360.078125 362.95874 365.862396 370.520386 373.328979 376.315613 381.106659 384.155518 388.884369 391.995422;
pipedum_74.scl, "81/80 126/125 and 4194304/4117715 Gene Ward Smith 2002" 3 75 174.61412 175.466721 177.385773 178.251907 182.453934 183.344818 186.255051 187.164505 187.666901 191.57663 192.51207 194.015686 194.963028 195.486359 199.55899 200.533401 202.726593 203.716461 208.518784 209.536942 210.56 212.862915 213.902298 216.62558 218.944717 220.013779 221.732208 222.81488 228.067413 229.18103 231.687531 232.818817 233.955627 239.470795 240.64 243.271912 244.459763 249.552673 250.222534 251.444321 253.408234 254.645584 259.950714 260.648468 261.921173 266.078644 267.377869 273.680908 275.017242 278.025055 279.382599 280.746765 285.203064 287.36496 291.023529 291.9263 292.44455 297.086517 299.33847 304.089874 305.574707 310.42511 311.940857 312.778168 319.294373 320.853424 325.94635 328.417084 333.63 334.222321 335.259094 339.527435 342.101135 347.531311 349.228241;
pipedum_81.scl, "81/80 126/125 and 17294403/16777216 Gene Ward Smith 2002" 3 82 116.540939 117.11 118.96888 119.870682 121.773392 122.367989 122.965485 124.865295 124.91732 126.847282 127.466652 128.08905 130.122208 130.471497 131.108551 133.189651 133.84 135.964432 136.628326 136.995071 139.169586 139.849121 140.531982 142.703186 142.76265 144.968323 145.676178 146.387482 148.71109 149.838348 152.216736 152.96 153.706863 155.387924 156.146652 156.565781 159.827576 160.607986 163.089355 163.157318 163.953995 166.487061 167.3 169.129715 169.955536 170.7854 173.96199 174.811417 175.664978 177.586197 178.453308 182.66 183.551987 184.086761 184.448227 186.4655 187.375977 190.27092 191.2 193.291092 194.234894 195.183319 199.78447 200.76 202.955658 203.94664 204.942474 208.754379 209.773697 210.798004 213.103439 214.143982 217.452484 218.514267 218.605316 221.982742 223.06665 227.713867 228.325104 229.44 231.94931 233.081879;
pipedum_87.scl, "67108864/66430125 and 15625/15552 Op de Coul" 3 88 82.406891 83.342865 83.436974 84.384651 84.87648 85.840508 86.815491 86.913513 87.9 88. 89. 90.4328 90.534912 91.56321 92.603188 92.707748 93.760727 93.8666 95.378342 96.461655 96.570572 97.667427 97.777702 98.888268 100.011444 100.594345 101.7369 101.851776 103.008614 104.178589 104.296219 105.48082 105.6 107.3 108.519363 108.641891 109.875854 111.123825 111.249298 112.512871 113.16864 114.45401 115.753983 115.884689 117.2 117.333244 118.665924 120.577065 120.713219 122.084282 122.22213 123.610336 125.014305 125.155464 127.171127 128.61554 128.760757 130.223236 130.37027 131.851028 133.348587 133.5 135.6492 135.802368 137.344818 138.904785 139.06163 140.641098 140.8 143.06752 144.692474 144.855865 146.501129 146.666565 148.332397 150.017166 150.891525 152.605347 154.338638 154.512924 156.267883 156.444336 158.221222 160.769424 160.950958 162.779037 162.962845 164.813782;
pipedum_9.scl, "225/224 49/48 and 36/35 are homophonic intervals" 1 9 261.62558 280.31311 305.229828 327.031952 348.834076 392.438354 420.469666 448.5 490.547943;
pipedum_99.scl, "2401/2400 3136/3125 and 4375/4374 Gene Ward Smith 2002" 3 100 41.203445 41.533073 41.728027 42.061852 42.380688 42.7295 42.920254 43.263618 43.609726 43.95034 44.146549 44.5 44.865974 45.066269 45.407879 45.781605 46.147858 46.353874 46.73539 47.089649 47.46637 47.689171 48.070686 48.45525 48.651299 49.05172 49.444134 49.839687 50.073631 50.47422 50.856823 51.275398 51.504307 51.91634 52.343636 52.555412 52.975857 53.411873 53.839169 54.079521 54.501911 54.937927 55.37743 55.624649 56.082466 56.50758 56.759846 57.227005 57.684822 58.146301 58.419235 58.862064 59.332962 59.821297 60.088356 60.569065 61.042141 61.314651 61.805168 62.3 62.812363 63.066498 63.57103 64.094246 64.607002 64.895424 65.40229 65.925514 66.219818 66.764839 67.298958 67.809097 68.127388 68.672409 69.221786 69.775558 70.103081 70.634476 71.2 71.53376 72.106026 72.682877 73.250565 73.577583 74.166199 74.776619 75.374832 75.679794 76.302673 76.913094 77.256462 77.874512 78.48275 79.110611 79.463783 80.117805 80.758751 81.370918 81.752869 82.406891;
pipedum_9a.scl, "4375/4374 2401/2400 and 21/20 are homophonic intervals" 1 9 261.62558 282.620209 305.229828 329.723572 356.101471 384.677521 415.451721 448.790436 484.693665;
pipedum_9b.scl, "128/125 and 2109375/2097152 are homophonic intervals" 1 9 261.62558 279.067261 306.592468 327.031952 357.206116 383.24057 418.6 446.507629 490.547943;
pipedum_9c.scl, "49/48 21/20 99/98 and 121/120 Gene Ward Smith 2002" 1 9 261.62558 285.409698 305.229828 332.977997 348.834076 392.438354 411.125885 448.5 479.646881;
pipedum_9d.scl, "128/125 36/35 99/98 and 121/120 Gene Ward Smith 2002" 1 9 261.62558 277.481659 308.344421 327.031952 346.852081 394.680847 418.6 443.970642 493.351074;
polansky_ps.scl, "Three interlocking harmonic series on 1:5:3 by Larry Polansky in Psaltery" 2 51 261.62558 523.25116 784.876709 1046.502319 1308.127808 1569.753418 1831.378906 2093.004639 2354.630127 2616.255615 2877.881104 3139.506836 3401.132324 3662.757813 3924.383545 4186.009277 4447.634766 327.031952 654.063904 981.095886 1308.127808 1635.15979 1962.191772 2289.223633 2616.255615 2943.287598 3270.31958 3597.351563 3924.383545 4251.415527 4578.447266 4905.479492 5232.51123 5559.543457 392.438354 784.876709 1177.315063 1569.753418 1962.191772 2354.630127 2747.068359 3139.506836 3531.945068 3924.383545 4316.821777 4709.260254 5101.69873 5494.136719 5886.575195 6279.013672 6671.452148;
poole.scl, "Poole’s double diatonic or dichordal scale" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 457.844727;
PORTBAG1.SCL, "Portugese bagpipe tuning" 1 7 261.62558 281.75061 311.642212 334.880737 376.740814 413.432983 457.844727;
portbag2.scl, "Portugese bagpipe tuning 2" 1 10 261.62558 274.706848 281.75061 310.074738 317.688171 343.383545 372.089691 392.438354 408.79 482.372131;
prelleur.scl, "Peter Prelleur’s well temperament (1731)" 1 12 261.62558 276.421539 293.203766 310.919189 328.729218 349.434082 368.895386 391.538361 414.558929 438.90564 466.178772 492.193848;
preston.scl, "Preston’s equal beating temperament (1785)" 1 12 261.62558 276.249481 293.453766 311.267334 328.910492 349.3 368.8 391.738342 413.674194 439.480652 466.201019 492.66571;
preston2.scl, "Preston’s theoretically correct well temperament" 1 12 261.62558 276.230194 293.376099 311.586273 328.98 349.4 368.904419 391.802734 413.674194 439.35141 466.622437 492.670532;
prime_10.scl, "First 10 prime numbers reduced by 2/1" 1 10 261.62558 277.977173 310.680359 327.031952 359.735138 376.086761 392.438354 425.141541 457.844727 474.19635;
PRIME_5.SCL, "What Lou Harrison calls "the Prime Pentatonic" a widely used scale" 1 5 261.62558 294.328766 327.031952 392.438354 436.042603;
prinz.scl, "Prinz well-tempermament (1808)" 1 12 261.62558 275.622009 292.506287 310.074738 327.031952 348.834076 367.496002 391.221466 413.432983 437.398895 465.112122 490.547943;
prinz2.scl, "Prinz equal beating temperament (1808)" 1 12 261.62558 275.622009 291.813141 310.074738 327.031952 348.834076 367.496002 390.425842 413.432983 436.71344 465.112122 490.547943;
prod13-2.scl, "13-limit binary products [1 3 5 7 11 13]" 1 21 261.62558 265.71347 269.801361 286.152954 292.284821 294.328766 314.76825 318.856171 327.031952 343.383545 345.42749 359.735138 371.99884 392.438354 400.614136 408.79 425.141541 449.668945 457.844727 490.547943 494.635834;
prod13.scl, "13-limit binary products [1 3 5 7 9 11 13]" 1 27 261.62558 265.71347 269.801361 286.152954 292.284821 294.328766 314.76825 318.856171 327.031952 331.119843 343.383545 345.42749 359.735138 367.91095 371.99884 392.438354 400.614136 404.702057 408.79 425.141541 441.493134 449.668945 457.844727 478.284241 490.547943 494.635834 515.075317;
prod7d.scl, "Double Cubic Corner 7-limit. Chalmers ’96" 1 39 261.62558 265.778351 267.904572 273.372009 279.067261 286.152954 294.328766 299. 300.460602 306.592468 310.074738 318.934021 327.031952 334.880737 341.715027 343.383545 348.834076 350.537384 357.691193 367.91095 372.089691 382.720825 390.531464 392.438354 398.667542 400.614136 408.79 418.6 429.229431 441.493134 446.507629 455.62 457.844727 465.112122 478.401031 490.547943 500.76767 510.987427 515.075317;
prod7s.scl, "Single Cubic Corner 7-limit" 1 20 261.62558 286.152954 294.328766 300.460602 306.592468 327.031952 343.383545 350.537384 357.691193 367.91095 392.438354 400.614136 408.79 429.229431 441.493134 457.844727 490.547943 500.76767 510.987427 515.075317;
prodq13.scl, "13-limit Binary products&quotients. Chalmers ’96" 1 40 261.62558 265.71347 269.801361 276.760925 279.067261 286.152954 292.284821 294.328766 299. 304.437012 314.76825 318.856171 322. 327.031952 334.880737 341.715027 343.383545 345.42749 348.834076 359.735138 368. 371.99884 380.546265 392.438354 396.308563 400.614136 408.79 418.6 425.141541 429.334259 434.91 449.668945 457.844727 465.112122 468.364655 478.401031 490.547943 494.635834 507.39505 515.201111;
prog_ennea.scl, "Progressive Enneatonic 50+100+150+200 cents in each half (500 cents)" 1 9 261.62558 269.291779 285.304688 311.126984 349.228241 391.995422 403.481781 427.47406 466.163757;
PROG_ENNEA1.scl, "Progressive Enneatonic appr. 50+100+150+200 cents in each half (500 cents)" 1 9 261.62558 269.1 285.409698 310.680359 348.834076 392.438354 404.330414 428.114563 465.112122;
prog_ennea2.scl, "Progressive Enneatonic appr. 50+100+200+150 cents in each half (500 cents)" 1 9 261.62558 269.553619 285.409698 321.085907 348.834076 392.438354 404.330414 428.114563 481.628876;
prog_ennea3.scl, "Progressive Enneatonic appr. 50+100+150+200 cents in each half (500 cents)" 1 9 261.62558 269.553619 285.409698 310.074738 348.834076 392.438354 404.330414 428.114563 465.112122;
prooijen1.scl, "Kees van Prooijen major mode of Bohlen-Pierce" 2 8 261.62558 339.144257 366.275787 436.042603 470.926025 610.459656 726.737671 784.876709;
prooijen2.scl, "Kees van Prooijen minor mode of Bohlen-Pierce" 2 8 261.62558 311.459015 336.375732 436.042603 470.926025 560.626221 726.737671 784.876709;
ps-dorian.scl, "Complex 4 of p. 115 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 348.834076 392.438354 490.547943 504.563599;
ps-enh.scl, "Dorian mode of an Enharmonic genus found in Ptolemy’s Harmonics" 1 7 261.62558 266.382385 279.067261 348.834076 392.438354 399.573578 418.6;
ps-hypod.scl, "Complex 7 of p. 115 based on Archytas’s Enharmonic" 1 7 261.62558 294.328766 367.91095 378.422699 392.438354 406.973114 418.6;
PS-HYPOD2.scl, "Complex 8 of p. 115 based on Archytas’s Enharmonic" 1 7 261.62558 294.328766 305.229828 313.950684 392.438354 490.547943 504.563599;
ps-mixol.scl, "Complex 3 of p. 115 based on Archytas’s Enharmonic" 1 7 261.62558 271.315399 279.067261 348.834076 436.042603 448.5 465.112122;
ptolemy.scl, "Intense Diatonic Syntonon also Zarlino’s scale" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 490.547943;
ptolemy_chrom.scl, "Ptolemy Soft Chromatic" 1 7 261.62558 271.315399 290.695068 348.834076 392.438354 406.973114 436.042603;
ptolemy_ddiat.scl, "Lyra tuning Dorian mode comb. of diatonon toniaion & diatonon ditoniaion" 1 7 261.62558 271.315399 310.074738 348.834076 392.438354 413.432983 465.112122;
PTOLEMY_DIAT.scl, "Ptolemy’s Diatonon Ditoniaion & Archytas’ Diatonic also Lyra tuning" 1 7 261.62558 290.695068 313.950684 348.834076 392.438354 436.042603 470.926025;
ptolemy_diat2.scl, "Dorian mode of a permutation of Ptolemy’s Tonic Diatonic" 1 7 261.62558 271.315399 305.229828 348.834076 392.438354 406.973114 457.844727;
PTOLEMY_DIAT3.scl, "Dorian mode of the remaining permutation of Ptolemy’s Intense Diatonic" 1 7 261.62558 294.328766 313.950684 348.834076 392.438354 441.493134 470.926025;
PTOLEMY_DIAT4.scl, "permuted Ptolemy’s diatonic" 1 7 261.62558 299. 310.074738 348.834076 392.438354 448.5 465.112122;
PTOLEMY_DIAT5.scl, "Sterea lyra Dorian comb. of 2 Tonic Diatonic 4chords also Archytas’ diatonic" 1 7 261.62558 271.315399 310.074738 348.834076 392.438354 406.973114 465.112122;
ptolemy_diff.scl, "Difference tones of Intense Diatonic reduced by 2/1" 1 7 261.62558 294.328766 327.031952 343.383545 392.438354 425.141541 490.547943;
PTOLEMY_enh.scl, "Dorian mode of Ptolemy’s Enharmonic" 1 7 261.62558 267.439453 279.067261 348.834076 392.438354 401.15921 418.6;
ptolemy_exp.scl, "Intense Diatonic expanded: all interval combinations" 1 24 261.62558 272.526642 275.933228 287.43042 290.695068 294.328766 306.592468 327.031952 340.658295 344.916504 348.834076 363.368835 367.91095 383.24057 392.438354 408.79 413.9 431.14566 436.042603 441.493134 459.888702 490.547943 510.987427 517.374756;
PTOLEMY_hom.scl, "Dorian mode of Ptolemy’s Equable Diatonic or Diatonon Homalon" 1 7 261.62558 285.409698 313.950684 348.834076 392.438354 428.114563 470.926025;
ptolemy_iast.scl, "Ptolemy’s Iastia or Lydia tuning mixture of Tonic Diatonic & Intense Diatonic" 1 7 261.62558 271.315399 310.074738 348.834076 392.438354 418.6 470.926025;
PTOLEMY_IASTaiol.scl, "Ptolemy’s kithara tuning mixture of Tonic Diatonic and Ditone Diatonic" 1 7 261.62558 271.315399 310.074738 348.834076 392.438354 441.493134 465.112122;
ptolemy_ichrom.scl, "Dorian mode of Ptolemy’s Intense Chromatic" 1 7 261.62558 274.083923 299. 348.834076 392.438354 411.125885 448.5;
ptolemy_idiat.scl, "Dorian mode of Ptolemy’s Intense Diatonic (Diatonon Syntonon)" 1 7 261.62558 279.067261 313.950684 348.834076 392.438354 418.6 470.926025;
PTOLEMY_malak.scl, "Ptolemy’s Malaka lyra tuning a mixture of Intense Chrom. & Tonic Diatonic" 1 7 261.62558 274.083923 299. 348.834076 392.438354 406.973114 465.112122;
PTOLEMY_MALAK2.scl, "Malaka lyra mixture of his Soft Chromatic and Tonic Diatonic." 1 7 261.62558 271.315399 290.695068 348.834076 392.438354 406.973114 465.112122;
ptolemy_mdiat.scl, "Ptolemy soft diatonic" 1 7 261.62558 274.706848 305.229828 348.834076 392.438354 412.060272 457.844727;
ptolemy_mdiat2.scl, "permuted Ptolemy soft diatonic" 1 7 261.62558 290.695068 305.229828 348.834076 392.438354 436.042603 457.844727;
ptolemy_mdiat3.scl, "permuted Ptolemy soft diatonic" 1 7 261.62558 299. 313.950684 348.834076 392.438354 448.5 470.926025;
ptolemy_meta.scl, "Metabolika lyra tuning mixture of Soft Diatonic & Tonic Diatonic" 1 7 261.62558 274.706848 305.229828 348.834076 392.438354 406.973114 465.112122;
ptolemy_mix.scl, "All modes of Ptolemy Intense Diatonic mixed" 1 19 261.62558 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 348.834076 353.194519 367.91095 372.089691 387.593445 392.438354 418.6 436.042603 441.493134 465.112122 470.926025 490.547943;
ptolemy_prod.scl, "Product of Intense Diatonic with its intervals" 1 21 261.62558 272.526642 275.933228 279.067261 290.695068 294.328766 313.950684 327.031952 331.119843 348.834076 363.368835 367.91095 372.089691 387.593445 392.438354 418.6 436.042603 441.493134 465.112122 484.491791 490.547943;
ptolemy_tree.scl, "Intense Diatonic with all their Farey parent fractions" 1 14 261.62558 294.328766 299. 305.229828 313.950684 327.031952 348.834076 392.438354 436.042603 457.844727 470.926025 479.646881 485.876038 490.547943;
pygmie.scl, "Pygmie scale" 1 5 261.62558 299. 343.383545 392.438354 457.844727;
pyle.scl, "Howard Willet Pyle quasi equal temperament" 1 12 261.62558 277.190643 293.646118 311.157532 329.669434 349.238312 369.992279 391.934296 415.280701 439.964417 466.231079 493.997437;
pyramid.scl, "This scale may also be called the "Wedding Cake"" 1 12 261.62558 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 441.493134 465.112122 490.547943;
pyramid_down.scl, "Upside-Down Wedding Cake (divorce cake)" 1 12 261.62558 279.067261 294.328766 313.950684 334.880737 348.834076 392.438354 418.6 441.493134 465.112122 470.926025 502.321075;
pyth_12.scl, "12-tone Pythagorean scale" 1 12 261.62558 279.382385 294.328766 310.074738 331.119843 348.834076 372.509827 392.438354 419.073578 441.493134 465.112122 496.679779;
pyth_12s.scl, "Scale with major thirds flat by a schisma" 1 12 261.62558 279.382385 294.328766 314.305176 326.663116 348.834076 367.496002 392.438354 419.073578 435.550812 471.457764 489.994659;
pyth_17.scl, "17-tone Pythagorean scale" 1 17 261.62558 275.622009 279.382385 294.328766 310.074738 314.305176 331.119843 348.834076 367.496002 372.509827 392.438354 413.432983 419.073578 441.493134 465.112122 471.457764 496.679779;
pyth_17s.scl, "Schismatically altered 17-tone Pythagorean scale" 1 17 261.62558 275.622009 279.067261 294.328766 310.074738 313.950684 331.119843 348.834076 367.496002 372.089691 392.438354 413.432983 418.6 441.493134 465.112122 470.926025 496.679779;
pyth_22.scl, "Pythagorean shrutis" 1 22 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 392.438354 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779;
pyth_31.scl, "31-tone Pythagorean scale" 1 59 261.62558 265.195007 275.622009 279.382385 290.367218 294.328766 298.34436 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 397.79248 413.432983 419.073578 435.550812 441.493134 447.516541 465.112122 471.457764 489.994659 496.679779 523.25116 261.62558 265.195007 275.622009 279.382385 283.194061 294.328766 298.34436 310.074738 314.305176 318.593323 326.663116 331.119843 335.637421 348.834076 353.593323 367.496002 372.509827 377.592102 392.438354 397.79248 413.432983 419.073578 424.791107 441.493134 447.516541 465.112122 471.457764 477.89 489.994659 496.679779 503.456116;
pyth_7a.scl, "Pythagorean 7-tone with whole tones divided arithmetically" 1 12 261.62558 277.977173 294.328766 312.724304 331.119843 348.834076 370.63623 392.438354 416.965759 441.493134 469.086456 496.679779;
pyth_7h.scl, "Pythagorean 7-tone with whole tones divided harmonically" 1 12 261.62558 277.015289 294.328766 311.642212 331.119843 348.834076 369.353729 392.438354 415.522949 441.493134 467.463318 496.679779;
pyth_chrom.scl, "Dorian mode of the so-called Pythagorean chromatic recorded by Gaudentius" 1 8 261.62558 275.622009 294.328766 348.834076 392.438354 413.432983 441.493134 465.112122;
pyth_sev.scl, "26-tone Pythagorean scale based on 7/4" 1 26 261.62558 268.380188 275.309174 282.417084 291.475372 299. 306.720215 314.639069 322.76239 333.114716 341.715027 350.537384 359.587494 368.871277 380.702515 390.531464 400.614136 410.957153 421.5672 435.088593 446.321655 457.844727 469.665314 481.791077 497.24411 510.081909;
pyth_sev_16.scl, "16-tone Pythagorean scale based on 7/4 "Armodue"" 1 16 261.62558 268.380188 275.309174 282.417084 306.720215 314.639069 322.76239 350.537384 359.587494 368.871277 400.614136 410.957153 421.5672 457.844727 469.665314 481.791077;
pyth_third.scl, "Cycle of 5/4 thirds" 1 31 261.62558 267.904572 274.33429 280.918304 287.660339 290.462738 297.433838 304.572235 311.881989 319.367157 327.031952 334.880737 342.917847 351.147888 359.575439 363.0784 371.792297 380.715302 389.852478 399.208923 408.79 418.6 428.647339 438.934875 449.469299 453.848022 464.740356 475.894135 487.315582 499.011169 510.987427;
quasi_5.scl, "Quasi-Equal 5-Tone in 24-tET 5 5 4 5 5 steps" 1 5 261.62558 302.269806 349.228241 391.995422 452.893005;
quasi_9.scl, "Quasi-Equal Enneatonic Each "tetrachord" has 125 + 125 + 125 + 125 cents" 1 9 261.62558 281.214355 302.269806 324.901764 349.228241 391.995422 421.345428 452.893005 486.802582;
quint_chrom.scl, "Aristides Quintilianus’ Chromatic genus" 1 7 261.62558 277.015289 294.328766 348.834076 392.438354 415.522949 441.493134;
rameau-flat.scl, "Rameau bemols see Pierre-Yves Asselin in "Musique et temperament"" 1 12 261.62558 276.0112 292.506287 312.006653 327.031952 349.91922 366.209747 391.221375 415.304688 437.398834 468.01 489.026794;
rameau-gall.scl, "Rameau’s temperament after Gallimard (1st solution)" 1 12 261.62558 274.650787 292.506287 310.498749 327.031952 349.919128 366.20105 391.221466 412.616394 437.398895 468.01 489.026825;
rameau-merc.scl, "Rameau’s temperament after Mercadier" 1 12 261.62558 273.374298 292.506287 308.729492 327.031952 348.834076 365.632843 391.221466 409.552399 437.398895 464.534698 489.026825;
RAMEAU-MINor.scl, "Rameau’s systeme diatonique mineur on E. Asc. 4-6-8-9 desc. 9-7-5-4" 1 9 261.62558 294.328766 313.950684 353.194519 392.438354 418.6 441.493134 470.926025 490.547943;
rameau-nouv.scl, "Temperament by Rameau in Nouveau Systeme (1726)" 1 12 261.62558 275.98 292.506287 311.496155 327.031952 349.91922 367.371185 391.221375 414.648651 437.398834 468.01 489.026794;
rameau-sharp.scl, "Rameau dieses see Pierre-Yves Asselin in "Musique et temperament"" 1 12 261.62558 273.374298 292.506287 308.549835 327.031952 348.834076 365.632935 391.221375 409.425293 437.398834 464.336334 489.026794;
rameau.scl, "Rameau’s modified meantone temperament (1725)" 1 12 261.62558 275.077576 292.506287 310.731873 327.031952 349.91922 366.770111 391.221375 412.616364 437.398834 468.01 489.026794;
ramis.scl, "Monochord of Ramos de Pareja (Ramis de Pareia) Musica practica (1482)" 1 12 261.62558 275.933228 290.695068 310.074738 327.031952 348.834076 367.91095 392.438354 413.432983 436.042603 465.112122 490.547943;
rapoport_8.scl, "Paul Rapoport cycle of 14/9 close to 8 out of 11-tET XH 13 1991" 1 8 261.62558 297.863861 316.534637 336.375732 382.967834 406.973114 432.483063 492.387207;
rast_moha.scl, "Rast + Mohajira (Dudon) 4 + 3 + 3 Rast and 3 + 4 + 3 Mohajira tetrachords" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 427.47406 479.823395;
rat_dorenh.scl, "Rationalized Schlesinger’s Dorian Harmonia in the enharmonic genus" 1 7 261.62558 267.709869 274.083923 359.735138 411.125885 418.6 426.352783;
rat_hypodenh.scl, "1+1 rationalized enharmonic genus derived from K.S.’s ‘Bastard’ Hypodorian" 1 7 261.62558 270.065094 279.067261 348.834076 380.546265 389.396179 398.667542;
rat_hypodenh2.scl, "1+2 rationalized enharmonic genus derived from K.S.’s ‘Bastard’ Hypodorian" 1 7 261.62558 270.065094 288.690277 348.834076 380.546265 389.396179 408.391113;
rat_hypodenh3.scl, "1+3 rationalized enharmonic genus derived from K.S.’s ‘Bastard’ Hypodorian" 1 7 261.62558 270.065094 299. 348.834076 380.546265 389.396179 418.6;
rat_hypodhex.scl, "1+1 rationalized hexachromatic/hexenharmonic genus derived from K.S.’Bastard'" 1 7 261.62558 267.192078 273. 348.834076 380.546265 386.4 392.438354;
RAT_HYPODHEX2.scl, "1+2 rat. hexachromatic/hexenharmonic genus derived from K.S.’s ‘Bastard’ Hypodo" 1 7 261.62558 267.192078 279.067261 348.834076 380.546265 386.4 398.667542;
RAT_HYPODHEX3.scl, "1+3 rat. hexachromatic/hexenharmonic genus from K.S.’s ‘Bastard’ Hypodorian" 1 7 261.62558 267.192078 285.409698 348.834076 380.546265 386.4 405.097656;
RAT_HYPODHEX4.scl, "1+4 rat. hexachromatic/hexenharmonic genus from K.S.’s ‘Bastard’ Hypodorian" 1 7 261.62558 267.192078 292.04715 348.834076 380.546265 386.4 411.738586;
RAT_HYPODHEX6.scl, "2+3 rationalized hexachromatic/hexenharmonic genus from K.S.’s ‘Bastard’ hypod" 1 15 261.62558 267.192078 299. 348.834076 380.546265 386.4 418.6 523.25116 261.62558 273. 292.04715 348.834076 380.546265 392.438354 411.738586;
RAT_HYPODPEN2.scl, "1+2 rationalized pentachromatic/pentenharmonic genus from K.S.’s ‘Bastard’ hyp" 1 15 261.62558 268.333923 275.395325 348.834076 380.546265 387.593445 394.906525 523.25116 261.62558 268.333923 282.83844 348.834076 380.546265 387.593445 402.5;
RAT_HYPODPEN4.scl, "1+4 rationalized pentachromatic/pentenharmonic genus from ‘Bastard’ Hypodorian" 1 15 261.62558 268.333923 290.695068 348.834076 380.546265 387.593445 410.393036 523.25116 261.62558 268.333923 299. 348.834076 380.546265 387.593445 418.6;
RAT_HYPODPEN5.scl, "2+3 rationalized pentachromatic/pentenharmonic genus from ‘Bastard’ Hypodorian" 1 7 261.62558 275.395325 290.695068 348.834076 380.546265 394.906525 410.393036;
RAT_HYPODPEN6.scl, "2+3 rationalized pentachromatic/pentenharmonic genus from ‘Bastard’ Hypodorian" 1 7 261.62558 268.333923 299. 348.834076 380.546265 394.906525 418.6;
RAT_HYPODTRI.SCL, "rationalized first (1+1) trichromatic genus derived from K.S.’s ‘Bastard’ hyp" 1 7 261.62558 273. 285.409698 348.834076 380.546265 392.438354 405.097656;
RAT_HYPODTRI2.scl, "rationalized second (1+2) trichromatic genus derived from K.S.’s ‘Bastard’ hyp" 1 7 261.62558 273. 299. 348.834076 380.546265 392.438354 418.6;
rat_hypolenh.scl, "Rationalized Schlesinger’s Hypolydian Harmonia in the enharmonic genus" 1 8 261.62558 268.333923 275.395325 348.834076 373.750793 402.5 410.393036 418.6;
rat_hypopchrom.scl, "Rationalized Schlesinger’s Hypophrygian Harmonia in the chromatic genus" 1 7 261.62558 277.015289 294.328766 362.250793 392.438354 409.5 428.114563;
rat_hypopenh.scl, "Rationalized Schlesinger’s Hypophrygian Harmonia in the enharmonic genus" 1 7 261.62558 269.1 277.015289 362.250793 392.438354 400.788086 409.5;
rat_hypoppen.scl, "Rationalized Schlesinger’s Hypophrygian Harmonia in the pentachromatic genus" 1 7 261.62558 273.794189 294.328766 362.250793 392.438354 405.970703 428.114563;
rat_hypoptri.scl, "Rationalized Schlesinger’s Hypophrygian Harmonia in first trichromatic genus" 1 7 261.62558 271.68808 282.555603 362.250793 392.438354 403.650879 415.522949;
RAT_HYPOPTRI2.scl, "Rationalized Schlesinger’s Hypophrygian Harmonia in second trichromatic genus" 1 7 261.62558 271.68808 294.328766 362.250793 392.438354 403.650879 428.114563;
rectsp10.scl, "Rectangle minimal beats spectrum of order 10" 1 32 261.62558 287.788116 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 340.11322 348.834076 359.735138 366.275787 373.750793 377.903595 392.438354 406.973114 411.125885 418.6 425.141541 436.042603 444.763458 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 490.547943 494.18161 497.088562;
rectsp10a.scl, "Rectangle minimal beats spectrum of order 10 union with inversion" 1 45 261.62558 275.395325 277.015289 279.067261 281.75061 285.409698 287.788116 290.695068 294.328766 299. 305.229828 307.794769 313.950684 319.764587 322. 327.031952 332.977997 336.375732 340.11322 348.834076 359.735138 362.250793 366.275787 373.750793 377.903595 380.546265 392.438354 402.5 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 444.763458 448.5 457.844727 465.112122 470.926025 475.682831 479.646881 485.876038 490.547943 494.18161 497.088562;
rectsp11.scl, "Rectangle minimal beats spectrum of order 11" 1 42 261.62558 285.409698 287.788116 290.695068 294.328766 299. 305.229828 309.193848 313.950684 319.764587 327.031952 332.977997 336.375732 340.11322 348.834076 356.762146 359.735138 366.275787 373.750793 377.903595 380.546265 392.438354 404.330414 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 444.763458 448.5 451.898712 457.844727 465.112122 470.926025 475.682831 479.646881 485.876038 490.547943 494.18161 497.088562 499.46698;
rectsp12.scl, "Rectangle minimal beats spectrum of order 12" 1 46 261.62558 283.427704 285.409698 287.788116 290.695068 294.328766 299. 305.229828 309.193848 313.950684 319.764587 327.031952 332.977997 336.375732 340.11322 348.834076 356.762146 359.735138 366.275787 370.63623 373.750793 377.903595 380.546265 392.438354 404.330414 406.973114 411.125885 414.240479 418.6 425.141541 428.114563 436.042603 444.763458 448.5 451.898712 457.844727 465.112122 470.926025 475.682831 479.646881 485.876038 490.547943 494.18161 497.088562 499.46698 501.449005;
rectsp6.scl, "Rectangle minimal beats spectrum of order 6 (=songlines.scl)" 1 12 261.62558 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025 479.646881;
rectsp6a.scl, "Rectangle minimal beats spectrum of order 6 union with inversion" 1 17 261.62558 285.409698 290.695068 299. 305.229828 313.950684 327.031952 348.834076 366.275787 373.750793 392.438354 418.6 436.042603 448.5 457.844727 470.926025 479.646881;
rectsp7.scl, "Rectangle minimal beats spectrum of order 7" 1 18 261.62558 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 411.125885 418.6 436.042603 448.5 457.844727 470.926025 479.646881 485.876038;
rectsp7a.scl, "Rectangle minimal beats spectrum of order 7 union with inversion" 1 23 261.62558 281.75061 285.409698 290.695068 299. 305.229828 313.950684 327.031952 332.977997 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 411.125885 418.6 436.042603 448.5 457.844727 470.926025 479.646881 485.876038;
rectsp8.scl, "Rectangle minimal beats spectrum of order 8" 1 22 261.62558 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 392.438354 411.125885 418.6 425.141541 436.042603 448.5 457.844727 470.926025 479.646881 485.876038 490.547943;
rectsp8a.scl, "Rectangle minimal beats spectrum of order 8 union with inversion" 1 31 261.62558 279.067261 281.75061 285.409698 290.695068 294.328766 299. 305.229828 313.950684 322. 327.031952 332.977997 336.375732 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 406.973114 411.125885 418.6 425.141541 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 490.547943;
rectsp9.scl, "Rectangle minimal beats spectrum of order 9" 1 28 261.62558 290.695068 294.328766 299. 305.229828 313.950684 319.764587 327.031952 336.375732 348.834076 359.735138 366.275787 373.750793 377.903595 392.438354 406.973114 411.125885 418.6 425.141541 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 490.547943 494.18161;
rectsp9a.scl, "Rectangle minimal beats spectrum of order 9 union with inversion" 1 37 261.62558 277.015289 279.067261 281.75061 285.409698 290.695068 294.328766 299. 305.229828 313.950684 319.764587 322. 327.031952 332.977997 336.375732 348.834076 359.735138 362.250793 366.275787 373.750793 377.903595 380.546265 392.438354 406.973114 411.125885 418.6 425.141541 428.114563 436.042603 448.5 457.844727 465.112122 470.926025 479.646881 485.876038 490.547943 494.18161;
redfield.scl, "Redfield New Diatonic" 1 7 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603 490.547943;
reinhard.scl, "Reinhard 19-limit superparticular" 1 12 261.62558 277.015289 294.328766 309.819763 327.031952 348.834076 369.353729 392.438354 413.092987 436.042603 461.692169 490.547943;
reinhard17.scl, "Reinhard’s Harmonic-17 tuning for "Tresspass" 1998" 1 17 261.62558 277.015289 277.977173 286.944183 292.405029 296.508972 307.794769 317.688171 338.574249 342.125732 369.353729 400.133209 404.330414 430.912689 444.763458 477.081909 492.471649;
renteng1.scl, "Gamelan Renteng from Chileunyi (Tg. Sari). 1/1=330 Hz" 1 5 261.62558 285.409698 313.157867 391.645538 426.5289;
renteng2.scl, "Gamelan Renteng from Chikebo (Tg. Sari). 1/1=360 Hz" 1 5 261.62558 294.328766 311.770477 396.071991 425.868408;
renteng3.scl, "Gamelan Renteng from Lebakwangi (Pameungpeuk). 1/1=377 Hz" 1 6 261.62558 278.974701 312.979034 379.6 409.440643 468.427856;
renteng4.scl, "Gamelan Renteng Bale` bandung from Kanoman (Cheribon). 1/1=338 Hz" 1 5 261.62558 296.457306 311.938202 397.082672 424.17395;
robot.scl, "Dead Robot (see lattice)" 1 12 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 436.042603 490.547943;
robot_live.scl, "Live Robot" 1 12 261.62558 294.328766 313.950684 327.031952 334.880737 348.834076 376.740814 392.438354 418.6 446.507629 490.547943 502.321075;
romieu.scl, "Romieu’s Monochord Memoire theorique & pratique (1758)" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 465.112122 490.547943;
romieu_inv.scl, "Romieu inverted Pure (just) C minor in Wilkinson: Tuning In" 1 12 261.62558 272.526642 290.695068 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 465.112122 490.547943;
rosati_21.scl, "Dante Rosati JI guitar tuning" 1 21 261.62558 279.067261 290.695068 294.328766 299. 305.229828 313.950684 327.031952 336.375732 348.834076 366.275787 373.750793 392.438354 406.973114 418.6 436.042603 448.5 457.844727 465.112122 470.926025 490.547943;
rousseau.scl, "Rousseau’s Monochord Dictionnaire de musique (1768)" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 363.368835 392.438354 418.6 436.042603 470.926025 490.547943;
rousseauw.scl, "Jean-Jacques Rousseau’s temperament (1768)" 1 12 261.62558 276.816589 293.312195 311.149414 328.836517 349.337341 369.195221 391.76 415.105194 439.207825 466.320587 492.402222;
rsr_12.scl, "RSR – 7 limit JI" 1 12 261.62558 279.067261 299. 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 470.926025 490.547943;
RVF-1, "D-A 695 cents the increment is 0.2500 cents interval range 49.5000 to 75.5000" 1 19 261.62558 272.145569 280.2 292.1 304.196503 313.291046 326.029724 340.218567 350.086609 364.111053 374.672089 390.977844 406.875336 419.039673 436.393158 454.924927 468.390503 487.224548 508.94281;
RVF-2, "695 cents 0.6070 cents 31-90 cents C-A# is 7/4." 1 19 261.62558 272.877502 278.756134 292.2771 305.711365 312.513855 326.293488 342.971069 349.874329 364.795227 372.137787 391.135956 408.382263 417.493439 436.657928 457.837891 467.701111 487.815918 513.99469;
RVF-3, "694.7370 0.0820 25-97 the fifth E#-B# is 3/2." 1 19 261.62558 272.987885 278.193146 292.294006 306.117798 312.243195 326.255798 343.903442 349.813721 364.816315 371.085999 391.158569 408.712646 416.890991 436.607483 458.737915 467.485046 487.78775 515.838745;
saba_sup.scl, "Superparticular version of maqam Sabâ" 1 8 261.62558 287.788116 313.950684 327.031952 392.438354 418.6 470.926025 497.088562;
safi_diat.scl, "Safi al-Din’s Diatonic also the strong form of Avicenna’s 8/7 diatonic" 1 7 261.62558 276.160309 305.229828 348.834076 392.438354 414.240479 457.844727;
safi_diat2.scl, "Safi al-Din’s 2nd Diatonic a 3/4 tone diatonic like Ptolemy’s Equable Diatonic" 1 7 261.62558 283.797211 310.074738 348.834076 392.438354 425.695831 465.112122;
safi_major.scl, "Singular Major (DF #6) from Safi al-Din strong 32/27 chromatic" 1 6 261.62558 281.75061 322. 348.834076 375.66748 392.438354;
salinas_19.scl, "Salinas’ enharmonic tuning for his 19-tone instr. "instrumentum imperfectum"" 1 19 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 340.658295 348.834076 363.368835 372.089691 392.438354 408.79 418.6 436.042603 454.21106 465.112122 490.547943 510.987427;
salinas_24.scl, "Salinas enharmonic system "instrumentum perfectum". Subset of Mersenne" 1 24 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 340.658295 348.834076 363.368835 367.91095 372.089691 376.740814 392.438354 408.79 418.6 436.042603 454.21106 459.888702 465.112122 470.926025 490.547943 510.987427;
salinas_enh.scl, "Salinas’s and Euler’s enharmonic" 1 7 261.62558 272.526642 279.067261 348.834076 392.438354 408.79 418.6;
salunding.scl, "Gamelan slunding Kengetan South-Bali. 1/1=378 Hz" 1 5 261.62558 282.389587 310.766876 390.36203 419.431488;
sankey.scl, "John Sankey’s Scarlatti tuning personal evaluation based on d’Alembert’s" 1 12 261.62558 274.886658 292.547363 309.585266 327.031952 348.834076 366.738953 391.248932 412.316895 437.137421 464.792511 489.994659;
santur1.scl, "Persian santur tuning. 1/1=E" 1 8 261.62558 282.027649 319.320129 347.216888 376.461914 427.473938 475.683929 504.552216;
santur2.scl, "Persian santur tuning. 1/1=E" 1 8 261.62558 281.214355 317.480988 345.21701 375.376129 423.786285 475.683929 498.181061;
sanza.scl, "African N’Gundi Sanza (idiophone set of lamellas thumb-plucked)" 2 9 261.62558 293.156342 308.977875 346.215485 390.188202 462.409241 524.461487 595.184448 620.101135;
sanza2.scl, "African Baduma Sanza (idiophone like mbira)" 2 8 261.62558 390.639221 465.356659 523.25116 588.68811 663.457275 702.908508 783.085693;
sauveur.scl, "Sauveur’s tempered system of the harpsichord. Traité (1697)" 1 12 261.62558 274.859497 292.702698 313.252869 328.807953 349.69754 367.273376 391.351318 417.158844 438.29718 468.842285 491.116455;
sauveur2.scl, "Sauveur’s Syste^me Chromatique des Musiciens (Memoires 1701) 12 out of 55.0000" 1 12 261.62558 278.641998 293.048645 312.108856 328.245667 349.595154 372.333221 391.584015 417.05307 438.615784 467.143829 491.296631;
sauveur_17.scl, "Sauveur’s oriental system aft. Kitab al-adwar (Bagdad 1294) by Safi al-Din" 1 17 261.62558 275.622009 290.367218 294.328766 310.074738 326.663116 331.119843 348.834076 367.496002 372.509827 392.438354 413.432983 419.073578 441.493134 465.112122 489.994659 496.679779;
sauveur_ji.scl, "Aplication des sons harmoniques aux jeux d’orgues (1702) (PB 81/80 & 128/125)" 1 12 261.62558 272.526642 294.328766 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 470.926025 490.547943;
savas_bardiat.scl, "Savas’s Byzantine Liturgical mode 8 + 12 + 10 parts" 1 7 261.62558 282.571228 317.175507 349.228241 391.995422 423.378479 475.226288;
savas_barenh.scl, "Savas’s Byzantine Liturgical mode 8 + 16 + 6 parts" 1 7 261.62558 282.571228 329.627563 349.228241 391.995422 423.378479 493.883301;
savas_chrom.scl, "Savas’s Chromatic Byzantine Liturgical mode 8 + 14 + 8 parts" 1 7 261.62558 282.571228 323.341583 349.228241 391.995422 423.378479 484.464996;
savas_diat.scl, "Savas’s Diatonic Byzantine Liturgical mode 10 + 8 + 12 parts" 1 7 261.62558 288.064606 311.126984 349.228241 391.995422 431.609253 466.163757;
savas_palace.scl, "Savas’s Byzantine Liturgical mode 6 + 20 + 4 parts" 1 7 261.62558 277.182617 336.035736 349.228241 391.995422 415.304688 503.484711;
scalatron.scl, "Scalatron ™ 19-tone scale see manual 1974" 1 19 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 340.658295 348.834076 367.91095 376.740814 392.438354 408.79 418.6 436.042603 459.888702 470.926025 490.547943 510.987427;
scheengaas.scl, "Scheengaas’ variation" 1 12 261.62558 273.840698 292.648773 312.748627 327.539795 350.036041 366.802521 391.542847 418.193359 437.971466 467.512054 489.62262;
scheffer.scl, "H.Th. Scheffer (1748) modified 1/5-comma temperament Sweden" 1 12 261.62558 274.56546 292.869781 309.864655 327.84549 349.701782 366.997925 391.4646 410.826294 438.21463 467.429138 490.547943;
schidlof.scl, Schidlof 1 21 261.62558 264.895874 274.706848 280.31311 294.328766 305.229828 315.352234 322.994537 327.031952 348.834076 353.194519 366.275787 373.750793 392.438354 406.973114 420.469666 436.042603 457.844727 467.188507 484.491791 490.547943;
schillinger.scl, "Joseph Schillinger’s double equal temperament p.664 Mathematical Basis…" 1 36 261.62558 262.887939 275.851624 277.182617 278.52 292.254608 293.664764 295.081726 309.632965 311.126984 312.628204 328.044708 329.627563 331.218048 347.551239 349.228241 350.9133 368.217712 369.994415 371.779694 390.113098 391.995422 393.886871 413.310425 415.304688 417.308594 437.887146 440. 442.123047 463.925262 466.163757 468.413055 491.511688 493.883301 496.266357 520.738525;
schismic.scl, "Scale with major thirds flat by a schisma" 1 12 261.62558 279.382385 294.328766 314.305176 326.663116 348.834076 367.496002 392.438354 419.073578 435.550812 471.457764 489.994659;
schlick.scl, "Reconstructed temp. A. Schlick Spiegel d. Orgelmacher und Organisten (1511)" 1 12 261.62558 275.622009 293.002258 311.478516 328.141998 349.622833 367.911224 391.553009 414.367798 438.511902 466.69046 491.10257;
schlick2.scl, "Schlick’s temperament reconstructed by F.J. Ratte (1991)" 1 12 261.62558 275.310913 293.002258 311.830444 328.141998 349.622833 367.911224 391.553009 415.304688 438.511902 466.69046 491.10257;
schlick3.scl, "Possible well-tempered interpretation of 1555 tuning Margo Schulter" 1 12 261.62558 275.310913 293.002258 311.830444 328.141998 349.622833 367.703552 391.553009 415.070282 438.511902 466.954041 491.10257;
scholz.scl, "Simple Tune #1 Carter Scholz" 1 8 261.62558 271.315399 299. 305.229828 348.834076 392.438354 406.973114 457.844727;
scholz_epi.scl, "Carter Scholz Epimore" 2 41 261.62558 1046.502319 1308.127808 1569.753418 1831.378906 2093.004639 2354.630127 2616.255615 2877.881104 3139.506836 3401.132324 3662.757813 3924.383545 4186.009277 4709.260254 5232.51123 5494.136719 5755.762207 6279.013672 6540.63916 6802.264648 7063.890137 7325.515625 8372.018555 8633.643555 9156.894531 9418.520508 10203.397461 10465.022461 10988.273438 11511.524414 11773.150391 12558.027344 12819.652344 13081.27832 14127.780273 14389.40625 14651.03125 16482.410156 16744.037109 17005.662109;
schulter.scl, "Margo Schulter’s 5-limit JI virt. ET "scintilla of Artusi" tempered 22-08-98" 2 13 261.62558 277.184052 293.665192 311.129059 329.62854 349.231079 369.996063 391.995728 415.307159 440. 466.167206 493.885132 523.255798;
schulter_17.scl, "Neo-Gothic well-temperament (14:11 9:7 hypermeantone fifths) TL 04-09-2000" 1 17 261.62558 272.436554 282.131805 295.153442 308.776093 319.096466 332.977997 348.346405 361.821381 375.649841 392.987762 410.266876 423.790161 443.35 463.812561 480.532898 500.166229;
schulter_24.scl, "Rational intonation (RI) scale with some "17-ish" features (24 notes)" 1 24 261.62558 270.065094 283.817017 292.972412 295.750641 305.229828 307.794769 317.688171 334.3 345.083191 348.06842 359.296448 377.903595 390.094025 393.301605 406.079834 426.862762 440.632538 444.763458 458.662323 462.876007 477.807495 502.321075 518.890686;
schulter_cart34.scl, ""Carthesian tuning" with two 17-tET chains 55.1060 cents apart" 1 34 261.62558 270.087189 272.513367 281.327148 283.854309 293.034851 295.667175 305.229828 307.97168 317.932251 320.788208 331.1633 334.138153 344.945007 348.04364 359.3 362.527832 374.252869 377.614807 389.827789 393.32962 406.050873 409.698425 422.949097 426.748444 440.550537 444.507996 458.884491 463.006653 477.981445 482.275146 497.873108 502.34552 518.59259;
schulter_diat7.scl, "Diatonic scale symmetrical tetrachords based on 14/11 and 13/11 triads" 1 7 261.62558 295.167297 332.977997 348.834076 392.438354 442.750946 499.46698;
schulter_ham.scl, "New rational tuning of "Hammond organ type" TL 01-03-2002" 1 17 261.62558 272.526642 283.817017 295.750641 307.794769 320.702301 334.3 348.011353 362.250793 377.903595 393.366089 409.5 426.862762 444.763458 462.876007 482.338501 502.321075;
schulter_jot17a.scl, "Just octachord tuning — 4:3-9:8-4:3 division 17 steps (7 + 3 + 7) Bb-Bb" 1 17 261.62558 271.315399 281.75061 295.167297 305.229828 318.5 332.977997 348.834076 361.753876 375.66748 392.438354 406.973114 422.625916 442.750946 457.844727 477.751038 499.46698;
schulter_jot17bb.scl, ""Just Octachord Tuning" (Bb-Eb F-Bb) — 896:891 divided into 1792:1787:1782" 1 17 261.62558 271.315399 281.75061 295.152283 305.229828 318.5 332.977997 348.834076 361.753876 375.66748 392.438354 406.973114 422.625916 442.728424 457.844727 477.751038 499.46698;
schulter_lin76-34.scl, "Two 12-note chains ~704.160 cents 34 4ths apart (32 4ths = 7:6) TL 29-11-02" 1 24 261.62558 270.625061 281.884705 291.581085 295.079559 305.229828 308.892059 319.517456 332.81131 344.259491 348.39 360.374084 375.367828 388.279877 392.938568 406.455017 423.365997 437.929108 443.183533 458.428314 463.92868 479.887085 499.853271 517.047424;
schulter_pel.scl, "Just pelog-style Phrygian pentatonic" 1 5 261.62558 271.315399 305.229828 392.438354 406.973114;
schulter_pepr.scl, "Peppermint 24: Wilson/Pepper apotome/limma=Phi 2 chains spaced for pure 7:6" 1 24 261.62558 270.645294 281.811005 291.526611 295.057526 305.229828 308.926697 319.577148 332.761597 344.233765 348.403046 360.414459 375.283691 388.221832 392.923889 406.470215 423.239502 437.830963 443.13385 458.411194 463.963348 479.958801 499.76 516.989502;
schulter_qcm62a.scl, "1/4-comma meantone two 31-notes at 1/4-comma (Vicentino-like system)" 1 62 261.62558 262.439331 267.904572 268.737885 273.374298 274.22464 279.935303 280.80603 285.650665 286.539154 292.506287 293.416107 299.526428 300.458099 305.641785 306.592468 312.977173 313.950684 320.360535 320.488617 327.031952 328.049164 334.880737 335.922363 341.717896 342.780792 349.919128 351.007538 358.317169 359.431702 365.632843 366.770142 374.40802 375.572601 382.052216 383.24057 391.221466 392.438354 400.610779 401.856873 408.79 410.061462 418.6 419.902954 427.147369 428.475983 437.398895 438.759399 447.896484 449.289642 457.041046 458.462646 468.01 469.465759 479.242279 480.732941 489.026825 490.547943 500.763489 502.321075 510.987427 512.576843;
schulter_qcmlji24.scl, "24-note adaptive JI (Eb-G#/F’-A#’) for Lasso’s Prologue to _Prophetiae_" 1 24 261.62558 262.439331 273.374298 274.22464 292.506287 293.416107 306.592468 312.977173 327.031952 328.049164 349.919128 351.007538 365.632843 366.770142 391.221466 392.438354 408.79 410.061462 437.398895 438.759399 458.462646 468.01 489.026825 490.547943;
schulter_qcmqd8_4.scl, "F-C# in 1/4-comma meantone other 5ths ~4.888 cents wide or (2048/2025)^(1/4)" 1 12 261.62558 273.374298 292.506287 309.28772 327.031952 349.919128 365.632843 391.221466 411.220917 437.398895 465.243347 489.026825;
schulter_sq.scl, ""Sesquisexta" tuning two 12-tone Pyth. manuals a 7/6 apart. TL 16-5-2001" 1 24 261.62558 271.315399 279.382385 289.729889 294.328766 305.229828 310.074738 325.946106 331.119843 343.383545 348.834076 361.753876 372.509827 386.306488 392.438354 406.973114 419.073578 434.594818 441.493134 457.844727 465.112122 488.919159 496.679779 515.075317;
schulter_tedorian.scl, "Eb Dorian in temperament extraordinaire — neo-medieval style" 1 7 261.62558 295.995544 309.28772 347.850555 393.547974 442.616577 462.493042;
SCHULTER_ZARTE84.SCL, "Temperament extraordinaire Zarlino’s 2/7-comma meantone (F-C#)" 1 12 261.62558 272.526642 292.246826 308.876343 326.452118 350.074402 364.660828 391.047943 410.309723 436.817108 465.036987 487.943237;
scotbag.scl, "Scottish bagpipe tuning" 1 7 261.62558 290.695068 327.031952 356.762146 387.593445 436.042603 479.646881;
scotbag2.scl, "Scottish bagpipe tuning 2" 1 7 261.62558 290.695068 319.764587 348.834076 392.438354 428.114563 470.926025;
scotbag3.scl, "Scottish bagpipe tuning 3" 1 7 261.62558 294.328766 327.031952 359.735138 392.438354 441.493134 479.646881;
SCOTBAG4.SCL, "Scottish Bagpipe Ellis/Land" 1 7 261.62558 293.156342 318.583191 348.221069 392.675293 428.215454 468.593475;
scottd1.scl, "Dale Scott’s temperament 1 TL 9-6-1999" 1 12 261.62558 275.933411 292.6716 310.42511 327.401703 349.228241 367.911224 391.553009 413.9 437.522644 465.637634 490.548309;
scottd2.scl, "Dale Scott’s temperament 2 TL 9-6-1999" 1 12 261.62558 276.1828 292.936096 310.705658 327.993805 349.307129 368.243744 391.641479 414.2742 438.214905 466.058502 491.324432;
scottd3.scl, "Dale Scott’s temperament 3 TL 9-6-1999" 1 12 261.62558 276.401215 293.167755 310.951355 328.512756 349.228119 368.534943 391.77417 414.601807 438.759583 466.427032 491.93515;
scottd4.scl, "Dale Scott’s temperament 4 TL 9-6-1999" 1 12 261.62558 276.604401 293.304932 310.982849 328.785797 349.374756 369.052002 391.831055 414.776855 439.106659 466.17 492.535034;
scottj.scl, "Jeff Scott’s "seven and five" tuning fifth-repeating. TL 20-04-99" 2 5 261.62558 294.328766 336.375732 348.834076 392.438354;
scottj2.scl, "Jeff Scott’s "just tritone/13" tuning. TL 17-03-2001" 2 20 261.62558 290.695068 299. 305.229828 313.950684 348.834076 366.275787 406.973114 418.6 428.114563 436.042603 485.876038 523.25116 566.855408 581.390137 598.001282 610.459656 680.22644 719.470276 784.876709;
secor-19p3.scl, "George Secor’s Microtonal 19+3 well-temperament. TL 28-6-2002. Aux=1 10 19" 1 22 261.62558 266.85321 272.310883 282.265045 292.180725 304.113983 314.364349 326.304413 339.631348 350.114014 357.109772 364.413391 378.254395 391.003693 406.973114 421.269653 436.668884 454.503357 469.176636 477.893402 487.667297 506.886688;
secor.scl, "George Secor’s well temperament with 5 pure 11/7 and 3 near just 11/6" 1 17 261.62558 271.908691 284.458069 296.12442 307.258636 320.91217 335.172424 347.774841 362.037964 378.74707 393.633636 408.434143 427.284576 445.539551 462.291718 482.042297 504.29;
secor12_2.scl, "George Secor’s closed 12-tone well-temperament #2 with 7 just fifths" 1 12 261.62558 275.622009 292.795563 310.074738 327.355408 348.834076 367.496002 391.608398 413.432983 437.831512 465.112122 489.994659;
secor12_3.scl, "George Secor’s closed 12-tone temperament #3 with 5 meantone 3 just and 2 wide fifths" 1 12 261.62558 274.49585 292.506287 309.768372 327.031952 349.573364 365.994476 391.221466 411.743774 437.398895 466.097839 489.026825;
segah.scl, "Arabic SEGAH (Dudon) Two 4 + 3 + 3 tetrachords" 1 7 261.62558 293.664764 320.243713 349.228241 391.995422 440. 479.823395;
segah2.scl, "Iranian mode Segah from C" 1 7 261.62558 293.664764 318.4 349.228241 391.995422 425.011993 466.163757;
segah_rat.scl, "Rationalized Arabic SEGAH" 1 7 261.62558 294.328766 319.764587 348.834076 392.438354 441.493134 479.646881;
seikilos.scl, "Seikilos Tuning" 1 12 261.62558 271.315399 294.328766 305.229828 336.375732 348.834076 356.101471 392.438354 406.973114 441.493134 457.844727 504.563599;
sekati1.scl, "Gamelan sekati from Sumenep East-Madura. 1/1=244 Hz." 1 7 261.62558 285.214722 318.990143 340.971069 383.860443 424.605377 468.56723;
sekati2.scl, "Gamelan Kyahi Sepuh from kraton Solo. 1/1=216 Hz." 1 7 261.62558 288.878296 317.342194 357.312622 393.649567 420.29657 469.35141;
sekati3.scl, "Gamelan Kyahi Henem from kraton Solo. 1/1=168.5 Hz." 1 7 261.62558 291.90274 308.205688 369.536499 403.695313 425.432739 475.118317;
sekati4.scl, "Gamelan Kyahi Guntur madu from kraton Jogya. 1/1=201.5 Hz." 1 7 261.62558 271.363525 288.891815 342.125793 379.129791 410.29129 439.504944;
sekati5.scl, "Gamelan Kyahi Naga Ilaga from kraton Jogya. 1/1=218.5 Hz." 1 7 261.62558 274.796631 311.316467 355.619263 375.974609 397.527191 433.448395;
sekati6.scl, "Gamelan Kyahi Munggang from Paku Alaman Jogya. 1/1=199.5 Hz." 1 7 261.62558 284.575256 310.803314 358.014008 390.8 427.518494 468.187653;
sekati7.scl, "Gamelan of Sultan Anom from Cheribon. 1/1=282 Hz." 1 7 261.62558 286.674805 318.218323 371.1 390.582825 422.126434 463.875244;
sekati8.scl, "The old Sultans-gamelan Kyahi Suka rame from Banten. 1/1=262.5 Hz." 1 7 261.62558 287.04068 315.944092 350.827515 381.724091 425.577484 447.504395;
sekati9.scl, "Gamelan Sekati from Katjerbonan Cheribon. 1/1=292 Hz." 1 7 261.62558 280.441071 310.904388 346.743439 376.310699 412.15 455.156769;
selisir.scl, "Gamelan semara pagulingan Bali. Pagan Kelod" 2 6 261.62558 278.78833 320.243713 380.83609 417.710541 524.764526;
selisir2.scl, "Gamelan semara pagulingan Bali. Kamasan" 2 6 261.62558 279.594666 299.66214 376.461823 408.17 520.237427;
selisir3.scl, "Gamelan gong Pliatan Bali. 1/1=280 Hz McPhee 1966" 1 5 261.62558 284.984985 305.54129 378.422699 406.45401;
selisir4.scl, "Gamelan gong Apuan Bali. 1/1=285 Hz. McPhee 1966" 1 5 261.62558 277.231293 295.591003 376.373627 399.323242;
selisir5.scl, "Gamelan gong Sayan Bali. 1/1=275 Hz. McPhee 1966" 1 5 261.62558 275.896057 309.193848 383.4 406.233154;
selisir6.scl, "Gamelan gong Gianyar Bali. 1/1=274 Hz. McPhee 1966" 1 5 261.62558 282.631989 312.231964 396.25769 415.354462;
semisixths.scl, "Semisixths temperament 13-limit g=443.0" 1 46 261.62558 264.198303 270.23056 272.887909 275.571411 281.863342 284.635071 291.133942 293.996857 300.709473 303.666565 306.65271 313.654297 316.738678 323.970551 327.156372 330.373505 337.916687 341.239655 349.030945 352.463196 360.510712 364.055878 367.635895 376.029846 379.7276 388.397644 392.21701 396.073944 405.117218 409.101013 418.441742 422.556549 426.711823 436.45462 440.746582 450.809845 455.24295 465.637177 470.216125 474.84 485.681732 490.457794 501.656036 506.589172 511.570801;
serre_enh.scl, "Dorian mode of the Serre’s Enharmonic" 1 7 261.62558 265.778351 279.067261 348.834076 392.438354 398.667542 418.6;
sev-elev.scl, ""Seven-Eleven Blues" of Pitch Palette" 1 12 261.62558 279.067261 294.328766 305.229828 327.031952 336.375732 359.735138 392.438354 406.973114 436.042603 457.844727 490.547943;
shalfun.scl, "d’Erlanger vol.5 p.40. After Alexandre ^Salfun (Chalfoun)" 1 24 261.62558 269.439301 277.469055 285.742218 294.328766 302.807373 311.459015 320.305542 329.503235 338.981049 348.834076 359.12912 369.788788 380.878693 392.438354 404.242218 416.269806 428.683533 441.493134 454.447754 467.689606 481.194702 494.940521 508.9;
sharm1c-conm.scl, Subharm1C-ConMixolydian 1 7 261.62558 305.229828 318.5 332.977997 406.973114 430.912689 457.844727;
sharm1c-conp.scl, Subharm1C-ConPhryg 1 7 261.62558 313.950684 330.474396 348.834076 418.6 448.5 483.001038;
sharm1c-dor.scl, Subharm1C-Dorian 1 8 261.62558 319.764587 338.574249 359.735138 383.717499 411.125885 479.646881 547.035278;
sharm1c-lyd.scl, Subharm1C-Lydian 1 8 261.62558 309.193848 323.917358 340.11322 382.375824 377.903595 485.876038 503.87146;
sharm1c-mix.scl, Subharm1C-Mixolydian 1 7 261.62558 305.229828 318.5 332.977997 366.275787 457.844727 488.367737;
sharm1c-phr.scl, Subharm1C-Phrygian 1 7 261.62558 313.950684 330.474396 348.834076 392.438354 483.001038 502.321075;
SHARM1E-CONM.SCL, Subharm1E-ConMixolydian 1 7 261.62558 318.5 325.578491 332.977997 430.912689 443.970642 457.844727;
sharm1e-conp.scl, Subharm1E-ConPhrygian 1 7 261.62558 330.474396 339.406128 348.834076 448.5 465.112122 483.001038;
sharm1e-dor.scl, Subharm1E-Dorian 1 8 261.62558 338.574249 348.834076 359.735138 383.717499 411.125885 500.501068 511.623322;
SHARM1E-lyd.scl, Subharm1E-Lydian 1 8 261.62558 323.917358 331.81778 340.11322 382.375824 377.903595 503.87146 513.378479;
sharm1e-mix.scl, Subharm1E-Mixolydian 1 7 261.62558 318.5 325.578491 332.977997 366.275787 488.367737 505.207977;
sharm1e-phr.scl, Subharm1E-Phrygian 1 7 261.62558 330.474396 339.406128 348.834076 392.438354 502.321075 512.57251;
SHARM2C-15.scl, Subharm2C-15-Harmonia 1 7 261.62558 327.031952 341.250732 356.762146 392.438354 461.692169 490.547943;
sharm2c-hypod.scl, SHarm2C-Hypodorian 1 8 261.62558 322. 334.880737 348.834076 364. 380.546265 465.112122 492.471649;
SHarm2C-Hypol.scl, SHarm2C-Hypolydian 1 8 261.62558 307.794769 327.031952 348.834076 373.750793 402.5 475.682831 498.334412;
SHarm2C-Hypop.scl, SHarm2C-Hypophrygian 1 8 261.62558 336.375732 348.834076 362.250793 376.740814 392.438354 470.926025 495.711609;
sharm2e-15.scl, Subharm2E-15-Harmonia 1 7 261.62558 341.250732 348.834076 356.762146 392.438354 490.547943 506.37207;
SHarm2E-Hypod.scl, SHarm2E-Hypodorian 1 8 261.62558 334.880737 341.715027 348.834076 364. 380.546265 492.471649 507.39505;
SHarm2E-Hypol.scl, SHarm2E-Hypolydian 1 8 261.62558 327.031952 337.58136 348.834076 373.750793 402.5 498.334412 510.488922;
SHarm2E-Hypop.scl, SHarm2E-Hypophrygian 1 8 261.62558 348.834076 355.415863 362.250793 376.740814 392.438354 495.711609 509.109222;
sherwood.scl, "Sherwood’s improved meantone temperament" 2 13 261.62558 279.501007 292.733459 312.734344 327.540161 349.91922 366.485474 391.525421 418.276001 438.078735 468.01 490.167328 523.657471;
shrutar.scl, "Paul Erlich’s Shrutar tuning (from 9th fret) tempered with Dave Keenan" 1 22 261.62558 269.801361 277.495819 285.409698 294.328766 304.376984 313.950684 327.031952 336.375732 348.834076 359.735138 368.951202 379.483002 392.438354 405.835999 417.420654 428.114563 441.493134 457.844727 470.926025 490.547943 505.977325;
shrutart.scl, "Paul Erlich’s ‘Shrutar’ tuning tempered by Dave Keenan TL 29-12-2000" 1 22 261.62558 269.836761 278.273499 286.146423 294.327057 305.234955 313.943176 327.029358 337.293274 348.825012 358.797577 369.994415 381.54068 392.448547 405.865997 418.604218 436.053009 448.493439 465.114807 478.411987 491.947205 507.328491;
shrutar_temp.scl, "Shrutar temperament 11-limit g=52.474 1/2 oct." 1 22 261.62558 269.676819 277.975861 286.530304 295.347992 304.437012 313.805756 327.748993 337.835114 348.231659 358.948151 369.994415 381.380646 393.117249 405.215027 417.68512 430.538971 443.788361 463.50705 477.771027 492.473938 507.629333;
siamese.scl, "Siamese Tuning after Clem Fortuna’s Microtonal Guide" 1 12 261.62558 269.260681 288.9534 296.220245 319.135742 352.267212 362.547546 388.793335 400.185852 429.404358 443.777588 473.983521;
silbermann1.scl, "Gottfried Silbermann’s temperament nr. 1" 1 12 261.62558 275.155518 293.664764 312.535522 327.771637 349.820282 367.911224 391.995422 411.569733 438.759583 467.745697 491.10257;
silbermann2.scl, "Gottfried Silbermann’s temperament nr. 2 1/6 Pyth. comma meantone" 1 12 261.62558 275. 293.002258 312.1828 328.141998 349.622833 367.496002 391.553009 411.569733 438.511902 467.217773 491.10257;
silbermann2a.scl, "Modified Silbermann’s temperament nr. 2" 1 12 261.62558 275. 293.002258 310.775848 328.141998 349.622833 367.496002 391.553009 411.569733 438.511902 467.217773 491.10257;
silver.scl, "Equal beating chromatic scale A.L.Leigh Silver JASA 29/4 476-481 1957" 1 12 261.62558 277.18808 293.58316 311.091003 329.535431 349.23175 369.98175 391.841858 415.185638 439.778229 466.04 493.706665;
silvermean.scl, "First 6 approximants to the Silver Mean 1+ sqr(2) reduced by 2/1" 1 7 261.62558 286.152954 327.031952 345.42749 392.438354 416.965759 474.19635;
silver_10.scl, "Ten-tone MOS from 350.9000 cents" 1 10 261.62558 270.268829 294.272675 320.410217 330.993652 360.392792 392.4 405.364624 441.366913 480.569519;
silver_11.scl, "Eleven-tone MOS from 1+sqr(2) 1525.8640 cents" 1 11 261.62558 277.736572 294.839722 315.81 335.257721 355.903046 381.216431 404.691925 429.613007 460.169006 488.506378;
silver_11a.scl, "Eleven-tone MOS from 317.1700 cents" 1 11 261.62558 272.213165 283.229248 314.228027 326.944366 340.175323 377.406738 392.67984 408.571014 453.288177 471.63208;
silver_11b.scl, "Eleven-tone MOS from 331.6700 cents" 1 11 261.62558 281.488983 302.858765 316.870911 340.928741 366.81311 383.781952 412.92 444.27 464.824738 500.112793;
silver_7.scl, "Seven-tone MOS from 1+sqr(2) 1525.8640 cents" 1 7 261.62558 277.736511 315.81 335.257629 381.2164 404.691742 460.168884;
silver_8.scl, "Eight-tone MOS from 273.8500 cents" 1 8 261.62558 288.494781 306.462769 337.936829 358.984161 395.852203 420.506622 492.572754;
silver_9.scl, "Nine-tone MOS from 280.6100 cents" 1 9 261.62558 294.182587 307.661774 345.947601 361.798615 406.821289 425.461487 478.406464 500.326599;
simonton.scl, "Simonton Integral Ratio Scale JASA 25/6 (1953): A new integral ratio scale" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 348.834076 370.63623 392.438354 414.240479 436.042603 465.112122 494.18161;
sims.scl, "Ezra Sims’ 18-tone mode" 1 18 261.62558 272.526642 283.427704 294.328766 305.229828 316.13089 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
sims2.scl, "Sims II" 1 20 261.62558 269.801361 277.977173 286.152954 294.328766 302.504547 310.680359 318.856171 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
sims_24.scl, "See his article Reflections on This and That 1991 p.93-106" 1 24 261.62558 269.801361 272.526642 277.977173 283.427704 286.152954 294.328766 302.504547 305.229828 310.680359 316.13089 318.856171 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
sin.scl, "1/sin(2pi/n) n=4..25" 2 22 261.62558 275.089386 302.1 334.631653 369.994415 407.01712 445.104004 483.917542 523.25116 562.970886 602.985413 643.230896 683.660583 724.239746 764.941956 805.746826 846.638123 887.602905 928.630859 969.71344 1010.843445 1052.015259;
sinemod12.scl, "Sine modulated F=12 A=-.08203754" 1 19 261.62558 270.603607 282.048553 292.168396 301.828033 314.425201 326.242615 336.764343 350.464142 364.218109 375.862335 390.613068 406.503723 419.613708 435.384552 453.555847 468.551239 485.362793 505.890808;
sinemod8.scl, "Sine modulated F=8 A=.11364155. Deviation minimal3/2 4/3 5/4 6/5 5/3 8/5" 1 19 261.62558 272.439056 281.984039 290.995667 301.680756 314.4 326.991577 337.973328 348.964081 362.382782 377.765961 392.292175 405.049347 418.652588 435.418732 453.777283 470.439545 485.473816 502.482574;
singapore.scl, "An observed xylophone tuning from Singapore" 1 7 261.62558 291.467865 321.355499 354.512573 385.706512 428.95813 462.142212;
singapore2.scl, "An observed balafon tuning from Singapore" 2 8 261.62558 288.453125 320.243713 358.010895 394.038574 438.477722 477.059814 524.764526;
sintemp6.scl, "Sine modulated fifths A=1/6 Pyth one cycle f0=-90 degrees" 1 12 261.62558 277.182617 292.429749 312.088348 327.870819 349.911957 369.159729 391.111115 416.117798 437.65506 467.604187 491.806244;
sintemp6a.scl, "Sine modulated fifths A=1/12 Pyth one cycle f0= D-A" 1 12 261.62558 276.172821 293.212128 310.6474 328.426666 349.228241 368.438385 391.77417 414.196564 438.825958 465.9 491.806244;
sintemp_19.scl, "Sine modulated thirds A=7.366 cents one cycle over fifths f0=90 degrees" 1 19 261.62558 272.864471 281.309723 292.506287 304.148468 313.561981 327.031952 338.655029 350.021118 365.304932 376.985809 391.197632 407.479645 419.94696 437.425568 453.915863 468.430115 488.884308 505.29248;
sintemp_7.scl, "Sine modulated fifths A=8.12 cents one cycle f0=90 degrees" 1 7 261.62558 291.066101 319.673981 351.093628 390.601929 432.07135 473.030457;
slendro.scl, "Observed Javanese Slendro scale from Helmholtz" 1 5 261.62558 298.452942 346.015533 398.386902 455.516571;
slendro10.scl, "Low gender from Singaraja (banjar Lod Peken) Bali. 1/1=172 Hz. McPhee 1966.0000" 1 5 261.62558 304.215759 342.242737 391.677795 463.929047;
slendro11.scl, "Low gender from Sawan Bali. 1/1=167.5 Hz. McPhee 1966.0000" 1 5 261.62558 299.112213 343.627594 387.36203 452.963654;
slendro2.scl, "Gamelan slendro from Ranchaiyuh distr. Tanggerang Batavia. 1/1=282.5 Hz" 1 5 261.62558 299.132965 343.586151 395.911194 450.088715;
slendro3.scl, "Gamelan kodok ngorek. 1/1=270 Hz" 2 6 261.62558 298.44693 339.144257 391.46936 453.484314 522.282166;
slendro4.scl, "Low gender in saih lima from Kuta Bali. 1/1=183 Hz. McPhee 1966" 1 5 261.62558 294.507477 344.545135 400.301422 467.494873;
slendro5_1.scl, "A slendro type pentatonic which is based on intervals of 7 from Lou Harrison" 1 5 261.62558 299. 336.375732 392.438354 448.5;
slendro5_2.scl, "A slendro type pentatonic which is based on intervals of 7 no. 2" 1 5 261.62558 305.229828 348.834076 392.438354 457.844727;
slendro5_4.scl, "A slendro type pentatonic which is based on intervals of 7 no. 4" 1 5 261.62558 294.328766 348.834076 392.438354 448.5;
slendro6.scl, "Low gender from Klandis Bali. 1/1=180 Hz. McPhee 1966" 1 5 261.62558 295.055511 341.566711 398.252258 461.478424;
slendro8.scl, "Low gender from Tabanan Bali. 1/1=179 Hz. McPhee 1966.0000" 1 5 261.62558 309.858215 350.782867 406.323517 467.71051;
slendro9.scl, "Low gender from Singaraja (banjar Panataran) Bali. 1/1=175 Hz. McPhee 1966.0000" 1 5 261.62558 299. 336.375732 388.7 448.5;
slendrob1.scl, "Gamelan miring of Musadikrama desa Katur Bajanegara. 1/1=434 Hz" 1 5 261.62558 307.440247 355.666107 409.920319 476.833649;
slendrob2.scl, "Gamelan miring from Bajanegara. 1/1=262 Hz" 1 5 261.62558 307.559784 346.50415 398.429688 449.356934;
slendrob3.scl, "Gamelan miring from Ngumpak Bajanegara. 1/1=266 Hz" 1 5 261.62558 304.901917 342.277008 398.339722 447.517334;
slendroc1.scl, "Kyahi Kanyut mesem slendro (Mangku Nagaran Solo). 1/1=291 Hz" 1 5 261.62558 297.592224 344.420288 394.721985 449.504913;
slendroc2.scl, "Kyahi Pengawe sari (Paku Alaman Jogja). 1/1=295 Hz." 1 5 261.62558 302.444458 346.015533 396.092346 453.154663;
slendroc3.scl, "Gamelan slendro of R.M. Jayadipura Jogja. 1/1=231 Hz" 1 5 261.62558 301.398071 344.420288 395.406586 451.847778;
slendroc4.scl, "Gamelan slendro Rancha iyuh Tanggerang Batavia. 1/1=282.5 Hz" 1 5 261.62558 299.143311 343.823975 396.092346 450.284515;
slendroc5.scl, "Gender wayang from Pliatan South Bali. 1/1=611 Hz" 1 5 261.62558 299.835297 340.071198 393.129211 447.174164;
slendroc6.scl, "from William Malm: Music Cultures of the Pacific the Near East and Asia." 2 11 261.62558 296.733978 343.823975 396.779327 453.940613 527.195068 607.339661 696.442139 797.234131 918.430298 1071.581909;
slendrod1.scl, "Gender wayang from Ubud (S. Bali). 1/1=347 Hz" 1 5 261.62558 292.479767 340.661011 389.062927 444.85553;
slendro_7_1.scl, "Septimal Slendro 1 From HMSL Manual also Lou Harrison Jacques Dudon" 1 5 261.62558 299. 341.715027 392.438354 448.5;
slendro_7_2.scl, "Septimal Slendro 2 From Lou Harrison Jacques Dudon’s APTOS" 1 5 261.62558 294.328766 343.383545 392.438354 448.5;
slendro_7_3.scl, "Septimal Slendro 3 Harrison Dudon called "MILLS" after Mills Gamelan" 1 5 261.62558 294.328766 336.375732 392.438354 448.5;
slendro_7_4.scl, "Septimal Slendro 4 from Lou Harrison Jacques Dudon called "NAT"" 1 5 261.62558 294.328766 343.383545 392.438354 457.844727;
slendro_7_5.scl, "Septimal Slendro 5 from Jacques Dudon" 1 5 261.62558 305.229828 343.383545 400.614136 467.383179;
slendro_7_6.scl, "Septimal Slendro 6 from Robert Walker" 1 5 261.62558 299. 341.715027 390.531464 455.62;
slendro_a1.scl, "Dudon’s Slendro A1 "Seven-Limit Slendro Mutations" 1/1 8:2’94 hexany 1.3.7.21" 1 5 261.62558 299. 348.834076 392.438354 457.844727;
slendro_a2.scl, "Dudon’s Slendro A2 from "Seven-Limit Slendro Mutations" 1/1 8:2 Jan 1994" 1 5 261.62558 299. 341.715027 398.667542 448.5;
slendro_alv.scl, "Bill Alves slendro for Gender Barung 1/1 vol.9 no.4 1997.0000 1/1=282.86" 1 5 261.62558 299. 348.834076 406.973114 465.112122;
slendro_ang.scl, "Gamelan Angklung Sangsit North Bali. 1/1=294 Hz" 1 5 261.62558 299. 340.825165 388.43396 445.831238;
slendro_av.scl, "Average of 30 measured slendro gamelans W. Surjodiningrat et al. 1993.0000" 2 6 261.62558 298.970581 344.022644 395.863617 454.202881 525.674683;
slendro_dudon.scl, "Dudon’s Slendro from "Fleurs de lumie`re"" 1 5 261.62558 305.229828 348.834076 399.705719 457.844727;
slendro_gum.scl, "Gumbeng bamboo idiochord from Banyumas. 1/1=440 Hz" 2 6 261.62558 305.031555 348.437775 394.816833 470.926025 525.629395;
slendro_ky1.scl, "Kyahi Kanyut Me`sem slendro Mangku Nagaran Solo. 1/1=291 Hz" 1 5 261.62558 297.587769 344.338745 394.685944 449.528534;
slendro_ky2.scl, "Kyahi Pengawe’ sari Paku Alaman Jogya. 1/1=295 Hz" 1 5 261.62558 302.421387 345.877869 395.54248 453.18869;
slendro_laras.scl, "Lou Harrison gamelan "Si Betty"" 2 8 261.62558 299. 348.834076 392.438354 448.5 523.25116 598.001282 697.668152;
slendro_m.scl, "Dudon’s Slendro M from "Seven-Limit Slendro Mutations" 1/1 8:2 Jan 1994" 1 5 261.62558 299. 348.834076 392.438354 448.5;
slendro_madu.scl, "Sultan’s gamelan Madoe kentir Jogjakarta Jaap Kunst" 2 6 261.62558 300.52887 345.616058 394.494049 447.95 522.948975;
slendro_mat.scl, "Dudon’s Slendro Matrix from "Seven-Limit Slendro Mutations" 1/1 8:2 Jan 1994" 1 12 261.62558 261.62558 299. 299. 341.715027 343.383545 348.834076 392.438354 398.667542 448.5 455.62 457.844727;
slendro_pa.scl, ""Blown fifth" primitive slendro von Hornbostel" 1 5 261.62558 304.196503 353.694427 411.246521 478.16333;
slendro_pas.scl, "Gamelan slendro of regent of Pasoeroean Jaap Kunst" 1 5 261.62558 300.355316 343.030487 393.129211 450.544678;
slendro_pb.scl, ""Blown fifth" medium slendro von Hornbostel" 1 5 261.62558 304.724091 342.832428 399.308441 449.245331;
slendro_pc.scl, ""Blown fifth" modern slendro von Hornbostel" 1 5 261.62558 299.489105 342.832428 392.448547 449.245331;
slendro_pliat.scl, "Gender wayang from Pliatan South Bali (Slendro) 1/1=305.5 Hz" 2 10 261.62558 299.73468 339.984772 393.080597 447.032898 523.25116 599.46936 679.969543 786.161194 894.065796;
slendro_q13.scl, "13-tET quasi slendro Blackwood" 1 5 261.62558 307.007263 360.260864 400.801575 470.324799;
slendro_s1.scl, "Dudon’s Slendro S1 from "Seven-Limit Slendro Mutations" 1/1 8:2 Jan 1994" 1 5 261.62558 299. 348.834076 398.667542 457.844727;
slendro_s2.scl, "Dudon’s Slendro S2" 1 5 261.62558 299. 341.715027 398.667542 455.62;
slendro_udan.scl, "Slendro Udan Mas (approx)" 1 5 261.62558 305.229828 351.325745 402.5 465.112122;
slendro_wolf.scl, "Daniel Wolf’s slendro. Tuning List 30 5 1997" 1 5 261.62558 298.18866 339.861572 395.003235 450.206329;
SLEN_PEL.SCL, "Pelog white Slendro black" 1 12 261.62558 261.62558 283.170349 298.452942 338.503357 364.68988 346.015533 389.062927 398.386902 420.13031 455.516571 493.31308;
slen_pel16.scl, "16-tET Slendro and Pelog" 1 12 261.62558 261.62558 285.304688 285.304688 297.936218 311.126984 339.286377 386.375488 386.375488 403.481781 421.345428 440.;
SLEN_PEL23.scl, "23-tET Slendro and Pelog" 1 12 261.62558 261.62558 295.143555 295.143555 286.381531 343.142456 313.479858 398.947632 398.947632 387.103943 450.058289 423.733154;
SLEN_PEL_jc.scl, "Slendro/JC PELOG S1c P1c# S2d eb P2e S3f P3f# S4g ab P4a S5bb P5b" 1 12 261.62558 261.62558 299. 299. 279.067261 341.715027 348.834076 392.438354 392.438354 392.438354 448.5 418.6;
slen_pel_schmidt.scl, "Dan Schmidt (Pelog white Slendro black)" 1 12 261.62558 261.62558 294.328766 305.229828 327.031952 348.834076 359.735138 392.438354 392.438354 457.844727 457.844727 490.547943;
smithgw46.scl, "Gene Ward Smith 46-tET subset "Star"" 1 8 261.62558 273.723816 313.48 327.976044 364.460999 392.98114 436.697418 456.891418;
smithgw46a.scl, "46-tET version of "Star" alternative version" 1 8 261.62558 282.098541 313.48 327.976044 375.611877 392.98114 436.697418 470.87027;
smithgw72a.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 11 261.62558 285.304688 299.37381 326.469452 342.568481 373.573578 391.995422 427.47406 435.784424 457.274048 498.660889;
smithgw72b.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 10 261.62558 279.863953 305.193817 326.469452 349.228241 366.449554 391.995422 419.322174 457.274048 489.151489;
smithgw72c.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 9 261.62558 279.863953 305.193817 326.469452 349.228241 391.995422 419.322174 457.274048 489.151489;
smithgw72d.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 8 261.62558 305.193817 326.469452 349.228241 366.449554 391.995422 419.322174 489.151489;
smithgw72e.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 8 261.62558 279.863953 326.469452 349.228241 366.449554 391.995422 419.322174 489.151489;
smithgw72f.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 5 261.62558 326.469452 349.228241 435.784424 466.163757;
smithgw72g.scl, "Gene Ward Smith 72-tET subset TL 04-01-2002" 1 5 261.62558 326.469452 349.228241 391.995422 419.322174;
smithgw72h.scl, "Gene Ward Smith 72-tET subset TL 09-01-2002" 1 7 261.62558 279.863953 314.136688 349.228241 391.995422 435.784424 489.151489;
smithgw72I.scl, "Gene Ward Smith 72-tET subset version of Duodene TL 02-06-2002" 1 12 261.62558 279.863953 293.664764 314.136688 326.469452 349.228241 366.449554 391.995422 419.322174 435.784424 470.673218 489.151489;
smithgw72j.scl, "{225/224 441/440} tempering of decad 72-et version (2002)" 1 10 261.62558 274.526978 305.193817 326.469452 349.228241 366.449554 391.995422 435.784424 457.274048 489.151489;
smithgw84.scl, "Gene Ward Smith 84-tET subset 11-limit temperament "Orwell" 2002" 1 9 261.62558 286.484253 306.034424 335.112701 357.981354 391.995422 418.74588 458.533569 489.824677;
smithgw_18.scl, "Gene Ward Smith chord analogue to periodicity blocks TL 12-07-2002" 1 18 261.62558 272.526642 280.31311 286.152954 294.328766 306.592468 327.031952 343.383545 350.391388 367.91095 381.537292 392.438354 408.79 420.469666 436.042603 457.844727 467.188507 490.547943;
smithgw_21.scl, "Gene Ward Smith symmetrical 7-limit JI version of Blackjack TL 10-5-2002" 1 21 261.62558 267.076111 280.31311 286.152954 299. 305.229828 320.491302 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 427.143768 448.5 457.844727 478.401031 488.367737 512.57251;
smithgw_45.scl, "Gene Ward Smith large limma repeating 5-tone MOS" 1 45 261.62558 267.02 269.136261 274.685608 276.86261 282.571228 288.397583 290.683258 296.676849 299.028137 305.193817 311.486633 313.955292 320.428741 322.968262 329.627563 336.424164 339.090454 346.082184 348.825012 356.017456 363.358185 366.237946 373.789429 376.751862 384.520111 392.448547 395.558868 403.714905 406.91452 415.304688 423.867889 427.227203 436.036224 439.492004 448.553894 457.802612 461.430908 470.94516 474.677612 484.464996 494.454193 498.372955 508.648895 512.680176;
smithgw_58.scl, "Gene Ward Smith 58-tone epimorphic superset of Partch’s 43-tone scale" 1 58 261.62558 264.895874 267.571594 269.801361 274.706848 279.067261 282.555603 285.409698 287.788116 290.695068 294.328766 299. 301.49231 305.229828 310.074738 313.950684 317.121887 319.764587 323.761627 327.031952 332.977997 336.375732 340.545685 343.383545 348.834076 353.194519 356.762146 359.735138 366.275787 370.013306 373.750793 380.546265 383.717499 387.593445 392.438354 398.667542 401.99 406.973114 411.125885 418.6 423.833405 428.114563 431.68219 436.042603 441.493134 448.5 452.238464 457.844727 465.112122 470.926025 475.682831 479.646881 484.491791 490.547943 498.334412 507.39505 511.623322 516.79126;
smithgw_9.scl, "Gene Ward Smith "Miracle-Magic square" tuning genus chromaticum of ji_12a" 1 9 261.62558 279.067261 305.229828 327.031952 348.834076 392.438354 418.6 448.5 490.547943;
smithgw_cauldron.scl, "Circulating temperament with two pure 9/7 thirds" 1 12 261.62558 275.030579 291.839325 312.585419 325.542297 350.318726 364.839691 390.775208 414.657806 435.903748 469.07962 486.243988;
smithgw_ck.scl, "Catakleismic temperament g=316.745 11-limit" 3 73 195.997711 198.064377 200.152817 202.26329 203.729401 205.877594 208.048416 210.242142 211.766098 214. 216.255478 218.535751 220.119812 222.440811 224.786301 227.156509 228.80307 231.215637 233.653641 235.34729 237.828857 240.336594 242.870773 244.631226 247.210693 249.817352 252.451492 254.281403 256.962616 259.672119 262.410156 264.312256 267.1 269.915619 272.761688 274.7388 277.635742 280.563202 282.596893 285.57666 288.58786 291.630829 293.74472 296.842041 299.972046 303.13504 305.332306 308.551819 311.805298 315.093048 317.377014 320.723541 324.105347 327.522797 329.896851 333.375397 336.890594 339.332581 342.910583 346.526337 350.180206 352.718506 356.437683 360.196045 363.99408 366.632507 370.498383 374.405029 378.352844 381.095367 385.113739 389.1745 391.995422;
smithgw_decab.scl, "(10/9) <==> (16/15) transform of decaa" 1 10 261.62558 274.706848 293.02063 313.950684 348.834076 366.275787 392.438354 418.6 439.530945 488.367737;
smithgw_decac.scl, "inversion of decaa" 1 10 261.62558 280.31311 299. 313.950684 348.834076 373.750793 392.438354 418.6 448.5 498.334412;
smithgw_decad.scl, "inversion of decab" 1 10 261.62558 280.31311 311.459015 327.031952 348.834076 373.750793 392.438354 436.042603 467.188507 498.334412;
SMITHGW_EXOTIC1.SCL, "Exotic temperament featuring four pure 14/11 thirds and two pure fifths" 1 12 261.62558 274.96 293.390991 313.057495 327.964996 349.949066 367.785095 392.438354 411.125885 438.684357 468.090118 491.94751;
smithgw_gm.scl, "Gene Ward Smith "Genesis Minus" periodicity block" 1 41 261.62558 264.895874 269.801361 274.706848 279.067261 285.409698 290.695068 294.328766 299. 305.229828 310.074738 313.950684 319.764587 327.031952 332.977997 336.375732 343.383545 348.834076 353.194519 359.735138 366.275787 373.750793 380.546265 387.593445 392.438354 398.667542 406.973114 411.125885 418.6 428.114563 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 479.646881 490.547943 498.334412 507.39505 516.79126;
smithgw_graileq.scl, "56% RMS grail + 44% JI grail" 1 12 261.62558 274.837952 293.028473 312.422943 328.2 350.397125 365.673492 391.532257 414.404816 438.613556 469.63031 490.10495;
smithgw_grailrms.scl, "RMS optimized Holy Grail" 1 12 261.62558 274.640381 293.111603 312.825134 328.386932 350.622284 365.937622 391.948822 414.5224 438.396088 469.557709 490.068176;
smithgw_klv.scl, "Variant of kleismic with 9/7 thirds g=316.492" 1 15 261.62558 271.786804 282.342712 293.308624 314.104919 326.304413 338.977722 352.14325 377.111084 391.75766 406.973114 422.77951 452.755615 470.340149 488.607635;
smithgw_mir22.scl, "11-limit Miracle[22]" 1 22 261.62558 267.571594 274.706848 280.31311 285.409698 299. 305.229828 319.764587 327.031952 343.383545 348.834076 366.275787 373.750793 392.438354 398.667542 418.6 428.114563 448.5 457.844727 479.646881 490.547943 512.786133;
smithgw_mmt.scl, "Modified meantone with 5/4 14/11 and 44/35 major thirds TL 17-03-2003" 1 12 261.62558 273.374298 292.506287 307.388306 327.031952 349.919128 365.632843 391.221466 411.125885 437.398895 459.65271 489.026825;
smithgw_octoid.scl, "Octoid temperament g=16.096 oct=1/8 11-limit" 1 48 261.62558 272.345581 274.889435 277.457062 280.048645 282.664459 285.304688 296.994965 299.769073 302.569061 305.395233 308.247772 311.126984 323.875305 326.9 329.953918 333.035858 336.146606 339.286377 353.188538 356.487518 359.817291 363.178192 366.570465 369.994415 385.154846 388.75238 392.383545 396.048615 399.747925 403.481781 420.014313 423.937469 427.897278 431.894073 435.928192 440. 458.02887 462.307098 466.625305 470.983826 475.383057 479.823395 499.484009 504.149475 508.85849 513.611511 518.408936;
smithgw_orw18r.scl, "Rational version of two cycles of 9-tone "Orwell"" 1 18 261.62558 269.1 280.31311 286.152954 299. 305.229828 327.031952 336.375732 348.834076 358.8 381.537292 392.438354 406.973114 418.6 448.5 457.844727 474.801941 490.547943;
smithgw_pk.scl, "Parakleismic temperament g=315.263 5-limit" 1 15 261.62558 271.016602 280.74472 290.822021 313.882141 325.148926 336.820129 348.910248 376.576355 390.093536 404.095917 418.6 451.792999 468.01 484.809235;
smithgw_pris.scl, "optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale" 1 12 261.62558 279.067261 293.02063 305.229828 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 488.367737;
smithgw_prisa.scl, "optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale" 1 12 261.62558 274.706848 293.02063 313.950684 327.031952 343.383545 366.275787 392.438354 418.6 439.530945 457.844727 488.367737;
smithgw_qm3a.scl, "Qm(3) 10-note quasi-miracle scale mode A" 1 10 261.62558 279.863953 305.193817 326.469452 349.228241 366.449554 391.995422 419.322174 457.274048 489.151489;
smithgw_qm3b.scl, "Qm(3) 10-note quasi-miracle scale mode B" 1 10 261.62558 279.863953 299.37381 326.469452 349.228241 373.573578 391.995422 419.322174 448.553894 489.151489;
smithgw_sc19.scl, "Fokker block from commas <81/80 78732/78125> Gene Ward Smith 2002" 1 19 261.62558 269.162109 282.555603 290.695068 302.807373 313.950684 327.031952 339.066742 348.834076 363.368835 376.740814 392.438354 403.743164 418.6 436.042603 452.088989 470.926025 484.491791 508.6;
smithgw_sch13.scl, "13-limit schismic temperament g=704.3917 TL 31-10-2002" 1 29 261.62558 269.712158 278.048737 282.14859 290.869537 295.158478 304.281555 313.686615 318.311951 328.150696 332.989319 343.281708 353.892242 359.110413 370.210205 375.669006 387.280579 392.991089 405.138092 417.660522 423.819 436.918854 443.361298 457.065186 471.192627 478.140442 492.919342 500.1875 515.647827;
smithgw_sch13a.scl, "13-limit schismic temperament g=702.660507 TL 31-10-2002" 1 29 261.62558 266.495026 271.455109 280.180481 285.395294 294.568756 300.051361 305.636017 315.46 321.331482 331.66 337.833008 344.12085 355.181915 361.792694 373.421783 380.372009 392.598297 399.905457 407.348633 420.442047 428.267426 442.033203 450.260468 458.640869 473.382965 482.193695 497.692841 506.956055;
smithgw_scj22a.scl, "225/224 ^ 15625/15552 = [6 5 22 37 -18 -6] catakleismic" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 301.392639 313.950684 327.031952 334.880737 348.834076 361.671173 363.368835 376.740814 392.438354 408.79 418.6 436.042603 454.21106 465.112122 470.926025 490.547943 502.321075;
smithgw_scj22b.scl, "5120/5103 ^ 225/224 = [1 -8 -14 -10 25 -15] schismic candidate" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 334.880737 348.834076 353.194519 372.089691 387.593445 392.438354 408.79 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 502.321075;
smithgw_scj22c.scl, "225/224 ^ 65625/65536 = [7 -3 827 7 -21] orwell candidate" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 357.206116 367.91095 383.24057 392.438354 408.79 418.6 436.042603 446.507629 465.112122 470.926025 490.547943 502.321075;
smithgw_secab.scl, "{126/125 176/175} tempering of decab 328-et version" 1 10 261.62558 274.076141 291.398071 313.105713 348.736572 365.332672 392.548096 417.357605 437.21933 486.974091;
smithgw_secac.scl, "{126/125 176/175} tempering of decac 328-et version" 1 10 261.62558 281.115326 298.882141 313.105713 348.736572 374.715637 392.548096 417.357605 448.448578 499.481201;
smithgw_secad.scl, "{126/125 176/175} tempering of decad 328-et version" 1 10 261.62558 281.115326 313.105713 328.006195 348.736572 374.715637 392.548096 437.21933 469.79 499.481201;
smithgw_smalldi11.scl, "Small diesic 11-note block <10/9 126/125 1728/1715> commas" 1 11 261.62558 269.1 305.229828 313.950684 322.920685 366.275787 373.750793 423.930328 436.042603 448.5 508.71637;
smithgw_smalldi19a.scl, "Small diesic 19-note block <16/15 126/125 1728/1715> commas" 1 19 261.62558 269.1 272.526642 299. 305.229828 313.950684 317.947723 327.031952 358.8 366.275787 373.750793 381.537292 418.6 430.560944 436.042603 448.5 457.844727 502.321075 508.71637;
smithgw_smalldi19b.scl, "Small diesic 19-note block <16/15 126/125 2401/2400> commas" 1 19 261.62558 266.964874 274.706848 299. 305.229828 313.950684 320.491302 327.031952 358.8 366.275787 373.750793 381.537292 418.6 427.143768 436.042603 448.5 457.844727 498.334412 512.786133;
smithgw_smalldi19c.scl, "Small diesic 19-note scale containing glumma" 1 19 261.62558 267.076111 274.706848 280.31311 286.152954 313.950684 320.491302 327.031952 336.375732 343.383545 373.750793 381.537292 392.438354 400.614136 436.042603 448.5 457.844727 470.926025 508.71637;
smithgw_smalldiglum19.scl, "Small diesic "glumma" variant of 19-note MOS 31/120 version" 1 19 261.62558 267.740784 273.998932 280.403351 286.957458 312.929321 320.243713 327.729034 335.389343 343.228699 374.293549 383.042236 391.995422 401.157898 437.46579 447.691071 458.155334 468.864227 511.3;
smithgw_smalldimos11.scl, "Small diesic 11-note MOS 31/120 version" 1 11 261.62558 267.740784 305.782013 312.929321 320.243713 365.744659 374.293549 427.47406 437.46579 447.691071 511.3;
smithgw_smalldimos19.scl, "Small diesic 19-note MOS 31/120 version" 1 19 261.62558 267.740784 273.998932 298.797943 305.782013 312.929321 320.243713 327.729034 357.391052 365.744659 374.293549 383.042236 417.710541 427.47406 437.46579 447.691071 458.155334 499.621948 511.3;
smithgw_star.scl, "Gene Ward Smith "Star" scale untempered version" 1 8 261.62558 272.526642 313.950684 327.031952 376.740814 392.438354 436.042603 470.926025;
smithgw_star2.scl, "Gene Ward Smith "Star" scale alternative untempered version" 1 8 261.62558 282.555603 313.950684 327.031952 376.740814 392.438354 436.042603 470.926025;
starra.scl, (inverse 0 0 261.62558 274.076141 294.493378 313.105713 328.006195 343.615753 374.715637 392.548096 411.229156 437.21933 458.026276 492.146851;
smithgw_starrb.scl, (inverse 0 0 261.62558 274.076141 287.119202 305.265503 328.006195 343.615753 365.332672 392.548096 411.229156 437.21933 458.026276 479.823395;
smithgw_starrc.scl, "12 note {126/125 176/175} scale 328-et version" 1 12 261.62558 274.076141 287.119202 313.105713 328.006195 343.615753 365.332672 392.548096 411.229156 437.21933 458.026276 492.146851;
smithgw_suzz.scl, "12 note {126/125 176/175} scale 328-et version" 1 10 261.62558 274.332306 299.434479 313.977539 342.707367 365.967133 399.454132 418.855011 457.181396 479.385986;
smithgw_tetra.scl, "{225/224 385/384} tempering of two-tetrachord 12-note scale" 1 12 261.62558 274.841339 293.9021 314.28476 326.447479 342.937683 366.721039 392.153809 419.350403 435.579102 457.582001 489.316162;
smithgw_tr7_13.scl, "81/80 ==> 28561/28672" 1 12 261.62558 183.874496 346.058594 243.215332 457.740295 321.70694 605.464417 425.529724 299.068878 562.858704 395.585815 744.507141;
smithgw_tr7_13b.scl, "reverse reduced 81/80 ==> 28561/28672" 1 12 261.62558 372.253571 395.585815 281.429352 299.068878 425.529724 302.732208 321.70694 457.740295 486.430664 346.058594 367.748993;
smithgw_tr7_13r.scl, "reduced 81/80 ==> 28561/28672" 1 12 261.62558 367.748993 346.058594 486.430664 457.740295 321.70694 302.732208 425.529724 299.068878 281.429352 395.585815 372.253571;
smithgw_tra.scl, "81/80 ==> 1029/512" 1 12 261.62558 128.359375 399.564789 196.035461 610.230957 299.393005 931.968567 457.24472 224.334518 698.322021 342.612457 1066.504639;
smithgw_tre.scl, "81/80 ==> 1029/512 ==> reduction" 1 12 261.62558 256.718719 399.564758 392.070831 305.115448 299.392944 465.984192 457.244843 448.669098 349.161072 342.612488 533.25238;
smithgw_treb.scl, "reversed 81/80 ==> 1029/512 ==> reduction" 1 12 261.62558 266.62619 342.612488 349.161072 448.669098 457.244843 465.984192 299.392944 305.115448 392.070831 399.564758 513.437439;
smithgw_trx.scl, "reduced 3/2->7/6 5/4->11/6 scale" 1 12 261.62558 490.178345 354.351746 331.954498 479.942291 449.606903 325.022491 304.479034 285.234039 412.393494 386.327637 279.277679;
smithgw_trxb.scl, "reversed reduced 3/2->7/6 5/4->11/6 scale" 1 12 261.62558 279.277679 386.327637 412.393494 285.234039 304.479034 325.022491 449.606903 479.942291 331.954498 354.351746 490.178345;
smithgw_wa.scl, "Wreckmeister A temperament TL 2-6-2002" 1 12 261.62558 273.64743 299.37381 313.130219 327.518768 349.228241 374.774292 391.995422 417.978699 437.18512 469.165222 500.263672;
smithgw_wa120.scl, "120-tET version of Wreckmeister A temperament" 1 12 261.62558 273.998932 298.797943 312.929321 327.729034 349.228241 374.293549 391.995422 417.710541 437.46579 468.864227 499.621948;
smithgw_wb.scl, "Wreckmeister B temperament TL 2-6-2002" 1 12 261.62558 280.763489 291.786041 313.130219 327.518768 349.228241 365.275513 391.995422 417.978699 437.18512 469.165222 487.58429;
smithgw_whelp1.scl, "well-temperament with one pure third Gene Ward Smith 2003" 1 12 261.62558 275.933228 292.506287 310.074738 327.031952 348.051208 368.503815 390.453735 413.666351 438.258942 464.363831 491.651337;
smithgw_whelp2.scl, "well-temperament with two pure thirds" 1 12 261.62558 275.85 292.432678 309.981049 327.031952 347.973083 368.211456 391.78949 413.340363 438.144165 464.483154 489.736847;
smithgw_whelp3.scl, "well-temperament with three pure thirds" 1 12 261.62558 275.968719 292.506287 310.034851 327.031952 349.461365 368.118835 391.733948 413.666351 436.826691 464.849457 489.667419;
smithgw_wiz28.scl, "11-limit Wizard[28]" 1 28 261.62558 269.801361 277.481659 280.31311 287.788116 297.301788 305.229828 308.344421 317.121887 327.031952 336.375732 345.345734 348.834076 359.735138 370.013306 380.546265 392.438354 396.402374 406.973114 418.6 431.68219 436.042603 448.5 460.460999 475.682831 490.547943 493.351074 508.71637;
smithgw_wiz34.scl, "11-limit Wizard[34]" 1 34 261.62558 269.801361 272.526642 277.481659 280.31311 287.788116 297.301788 305.229828 308.344421 313.950684 317.121887 327.031952 336.375732 345.345734 348.834076 356.762146 359.735138 370.013306 380.546265 383.717499 392.438354 396.402374 406.973114 418.6 431.68219 436.042603 443.970642 448.5 460.460999 475.682831 490.547943 493.351074 504.563599 508.71637;
smithgw_wiz38.scl, "11-limit Wizard[38]" 1 38 261.62558 269.801361 272.526642 277.481659 280.31311 285.409698 287.788116 297.301788 305.229828 308.344421 313.950684 317.121887 327.031952 336.375732 339.144257 345.345734 348.834076 356.762146 359.735138 370.013306 380.546265 383.717499 392.438354 396.402374 403.650879 406.973114 418.6 431.68219 436.042603 443.970642 448.5 460.460999 475.682831 479.646881 490.547943 493.351074 504.563599 508.71637;
smithrk_19.scl, "19 out of 612-tET by Roger K. Smith 1978" 1 19 261.62558 274.682526 286.113678 294.330811 305.193878 313.958801 327.024658 343.345306 348.832886 366.242126 381.483582 392.439697 406.923767 418.610504 436.031342 457.792145 470.94 488.321136 508.643036;
smithrk_mult.scl, "Roger K. Smith "Multitonic" scale just version" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 457.844727 470.926025 488.367737 508.71637;
smith_eh.scl, "Robert Smith’s Equal Harmony temperament (1749)" 1 12 261.62558 272.711761 292.303558 313.302826 326.578796 350.040436 364.873138 391.085876 407.657837 436.944244 468.334625 488.18;
smith_mq.scl, "Robert Smith approximation of quarter comma meantone fifth" 1 12 261.62558 273.37439 292.506287 312.977142 327.032013 349.919098 365.632935 391.221497 408.79 437.398956 468.01 489.026917;
solar.scl, "Solar system scale: 0=Pluto 8=Mercury. 1/1=248.54 years period" 2 5 261.62558 394.589752 774.00177 2207.365234 5481.834473;
solemn.scl, "Solemn 6" 1 6 261.62558 313.950684 348.834076 392.438354 418.6 470.926025;
songlines.scl, "Songlines.DEM Bill Thibault and Scott Gresham-Lancaster. 1992 ICMC (=rectsp6)" 1 12 261.62558 305.229828 313.950684 327.031952 348.834076 366.275787 392.438354 418.6 436.042603 457.844727 470.926025 479.646881;
sorge.scl, "Sorge’s Monochord (1756)" 1 12 261.62558 272.526642 294.328766 306.592468 327.031952 348.834076 367.91095 392.438354 408.79 436.042603 470.926025 490.547943;
sorge1.scl, "Georg Andreas Sorge 1744 (A)" 1 12 261.62558 276.869812 293.002258 311.478516 328.883942 349.622833 369.576843 391.553009 415.304688 439.007385 466.69046 493.325897;
sorge2.scl, "Georg Andreas Sorge 1744 (B)" 1 12 261.62558 276.245178 293.002258 310.775848 328.883942 348.834076 368.743103 391.553009 414.367798 438.511902 465.637634 492.212982;
sorge3.scl, "Georg Andreas Sorge well temperament (1756 1758)" 1 12 261.62558 276.557312 293.002258 310.775848 328.512756 348.834076 369.159729 391.553009 414.835968 438.511902 465.637634 492.769135;
spec1_14.scl, "Spectrum of 8/7: 1 to 27 reduced by 2/1" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 441.493134 457.844727;
spec1_17.scl, "Spectrum of 7/6: 1 to 27 reduced by 2/1" 1 12 261.62558 277.977173 294.328766 310.680359 327.031952 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 490.547943;
spec1_25.scl, "Spectrum of 5/4: 1 to 25 reduced by 2/1" 1 12 261.62558 277.977173 294.328766 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 457.844727 490.547943;
spec1_33.scl, "Spectrum of 4/3: 1 to 29 reduced by 2/1" 1 12 261.62558 277.977173 294.328766 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 457.844727 474.19635 490.547943;
spec1_4.scl, "Spectrum of 7/5: 1 to 25 reduced by 2/1" 1 12 261.62558 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 457.844727 490.547943;
spec1_5.scl, "Spectrum of 1.5: 1 to 27 reduced by 2/1" 1 12 261.62558 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 441.493134 457.844727 490.547943;
specr2.scl, "Spectrum of sqrt(2): 1 to 29 reduced by 2/1" 1 12 261.62558 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 457.844727 474.19635 490.547943;
specr3.scl, "Spectrum of sqrt(3): 1 to 31 reduced by 2/1" 1 12 261.62558 277.977173 310.680359 327.031952 359.735138 392.438354 408.79 425.141541 441.493134 474.19635 490.547943 506.9;
spon_chal1.scl, "JC Spondeion from discussions with George Kahrimanis about tritone of spondeion" 1 9 261.62558 280.31311 285.409698 286.152954 348.834076 392.438354 420.469666 428.114563 429.229431;
spon_chal2.scl, "JC Spondeion II 10 May 1997.0000 Various tunings for the parhypatai and hence trito" 1 9 261.62558 275.622009 279.067261 285.409698 348.834076 392.438354 413.432983 418.6 428.114563;
spon_mont.scl, "Montford’s Spondeion a mixed septimal and undecimal pentatonic 1923" 1 5 261.62558 271.315399 348.834076 392.438354 428.114563;
spon_terp.scl, "Subharm. 6-tone series guess at Greek poet Terpander’s 6th c. BC & Spondeion Winnington-Ingram (1928)" 1 5 261.62558 285.409698 348.834076 392.438354 428.114563;
stanhope.scl, "Well temperament of Charles third earl of Stanhope (1806)" 1 12 261.62558 275.622009 293.002258 310.074738 326.663116 348.834076 367.496002 392.438354 413.432983 437.522644 465.112122 489.994659;
stanhope_f.scl, "Stanhope temperament equal beating version by Farey (1807)" 1 12 261.62558 275.622009 292.460144 310.074738 326.663116 348.834076 367.496002 392.438354 413.432983 436.792023 465.112122 489.994659;
stanhope_s.scl, "Stanhope temperament alt. version with 1/3 syntonic comma" 1 12 261.62558 275.777588 293.112457 310.249786 327.031952 348.834076 367.70343 392.438354 413.666382 437.851807 465.112122 490.547943;
starling.scl, "Starling temperament Herman Miller (1999)" 1 12 261.62558 278.981628 293.664764 313.146301 327.501953 349.228241 367.608521 391.995422 418. 437.162659 466.163757 490.698486;
stearns.scl, "Dan Stearns guitar scale" 1 7 261.62558 299. 336.375732 366.275787 398.667542 448.5 504.563599;
stearns2.scl, "Dan Stearns scale for "At A Day Job" based on harmonics 10-20 and 14-28" 1 22 261.62558 280.31311 287.788116 299. 313.950684 317.688171 336.375732 340.11322 355.063263 366.275787 373.750793 392.438354 411.125885 418.6 429.813416 444.763458 448.5 467.188507 470.926025 485.876038 497.088562 504.563599;
stearns3.scl, "Dan Stearns trivalent version of Bohlen’s Lambda scale" 2 10 261.62558 304.115997 327.882935 364.309204 423.47641 470.522705 546.94 607.702454 706.398987 784.876709;
stearns4.scl, "Dan Stearns 1/4-septimal comma temperament tuning-math 2-12-2001" 1 7 261.62558 296.655518 336.375732 347.463409 393.98645 446.738647 461.464111;
steldek1.scl, "Stellated two out of 1 3 5 7 9 dekany" 1 30 261.62558 274.706848 275.933228 280.31311 286.152954 294.328766 305.229828 309.045197 315.352234 321.922089 327.031952 331.119843 343.383545 353.194519 367.91095 381.537292 386.306488 392.438354 400.614136 408.79 412.060272 420.469666 429.229431 436.042603 441.493134 457.844727 490.547943 504.563599 508.71637 515.075317;
steldek1s.scl, "Superstellated two out of 1 3 5 7 9 dekany" 1 34 261.62558 274.706848 275.933228 280.31311 286.152954 294.328766 305.229828 309.045197 315.352234 321.922089 327.031952 331.119843 339.144257 343.383545 353.194519 360.402557 367.91095 381.537292 386.306488 392.438354 400.614136 408.79 412.060272 420.469666 429.229431 436.042603 441.493134 457.844727 482.883118 490.547943 494.472321 504.563599 508.71637 515.075317;
steldek2.scl, "Stellated two out of 1 3 5 7 11 dekany" 1 35 261.62558 262.306885 269.801361 274.706848 280.31311 286.152954 294.328766 299.779297 308.344421 312.16687 314.76825 327.031952 337.251709 343.383545 356.762146 359.735138 377.721924 381.537292 385.430511 392.438354 393.460327 400.614136 408.79 416.222504 419.69101 429.229431 431.68219 449.668945 457.844727 472.152374 490.547943 494.635834 499.46698 503.629211 513.907349;
steldek2s.scl, "Superstellated two out of 1 3 5 7 11 dekany" 1 40 261.62558 262.306885 269.801361 274.706848 280.31311 286.152954 294.328766 295.095245 299.779297 302.177521 308.344421 312.16687 314.76825 327.031952 337.251709 343.383545 349.742523 356.762146 359.735138 377.721924 381.537292 385.430511 392.438354 393.460327 400.614136 408.79 416.222504 419.69101 429.229431 431.68219 440.492035 449.668945 454.060913 457.844727 472.152374 490.547943 494.635834 499.46698 503.629211 513.907349;
steleik1.scl, "Stellated Eikosany 3 out of 1 3 5 7 9 11" 3 71 220. 220.572922 224.583328 225. 226.875 229.166672 232.03125 235.277771 238.21875 240.625 242.630203 243.080353 247.5 248.144531 252.083328 252.65625 255.234375 256.666656 257.8125 262.5 264.6875 270.703125 272.25 275. 277.291656 278.4375 280.729156 283.59375 288.75 294.097229 297.773438 302.5 308.802094 309.375 311.953125 315. 315.104156 317.625 320.833344 324.107147 324.84375 330. 330.859375 336.111115 336.875 340.3125 343.75 346.5 346.614594 350. 352.916656 353.571442 360.9375 366.666656 371.25 378.125 385. 388.928558 392.129639 393.75 397.03125 401.041656 403.333344 412.5 415.9375 423.5 425.390625 427.777771 432.142853 433.125 440.;
steleik1s.scl, "Superstellated Eikosany 3 out of 1 3 5 7 9 11" 3 81 123.470825 123.792366 125.339767 127.329292 129.981995 130.223129 131.308334 132.590836 132.634674 133.695755 135.046219 136.42424 136.734299 138.904678 139.266403 141.47699 141.798523 143.245453 144.692368 145.85 145.898148 147.323151 148.550842 148.826447 151.927002 154.338531 156.267761 156.674713 159.161606 160.434906 160.487961 162.055466 163.709091 165.056488 165.43161 165.738541 167.11969 168.80777 169.772385 173.630844 175.077774 175.801239 178.261002 179.056808 180.061615 181.9 182.312393 185.206238 185.688553 189.064697 189.415466 190.993927 192.923172 195.334702 198.06778 200.543625 202.569321 204.257401 204.636353 208.357025 208.9 212.215485 212.697784 214.868179 216.073944 217.038559 220.075317 220.984711 222.826248 227.890488 229.192719 231.507797 233.437027 233.870117 234.401642 236.330872 238.742416 241.074234 241.153961 243.083191 246.94165;
steleik2.scl, "Stellated Eikosany 3 out of 1 3 5 7 11 13" 3 81 123.470825 124.5 126.043137 126.116631 127.68 128.744064 129.644363 130.416061 132.045181 132.968582 133.76 135.817902 137.94 138.647446 140.448059 141.47699 144.049301 145.92 146.265442 147.136063 148.164993 148.550842 151.251755 152.152069 154.338531 154.492874 155.62468 156.053406 157.144684 157.645782 158.454224 160.51207 160.93 163.856079 164.627762 167.2 169.772385 170.24 171.658737 172.859161 173.888077 175.56 176.563278 180.061615 181.090546 182.831802 183.92 185.206238 186.749619 187.264084 190.145065 193.116089 194.025589 197.553314 198.06778 200.64 201.669022 202.312088 203.726868 204.288086 205.784714 205.990494 208.950623 210.194382 214.016098 214.573425 216.073944 217.36 217.874557 220.704102 224.716904 226.363174 229.302963 230.478867 234.080109 237.681335 239.096115 240.768112 243.775726 245.226776 246.94165;
steleik2s.scl, "Superstellated Eikosany 3 out of 1 3 5 7 11 13" 3 93 61.735413 61.896183 62.329021 62.7 63.664646 64.659401 64.99099 65.83503 66.226906 66.317337 67.054199 67.523109 68.4 68.561928 68.97 69.452339 69.633202 70.9 71.321281 72.346184 72.418533 72.949074 73.15 73.661575 73.896461 74.275421 75.24 75.435974 76.807533 77.169266 78.375038 79.580803 79.8 80.24398 80.465034 81.027733 81.51 82.293785 82.715805 82.764038 84.403885 84.453102 84.886192 85.702408 86.21254 86.815422 87.054588 87.538887 87.78 89.130501 90.523163 90.949493 92.603119 92.844276 94.05 94.532349 94.833794 95.497002 95.76 96.461586 96.558044 97.94561 98.528618 100.32 100.581299 101.28466 101.887543 102.1287 103.455048 104.178513 105.336044 105.479881 106.107742 107.485764 108.036972 109.725052 111.413124 112.076302 112.86 113.153961 114.269875 114.95 115.753899 115.869652 116.718513 118.165436 118.234337 119.7 120.576981 120.697556 121.541595 122.265053 123.470825;
STELHEX1.SCL, "Stellated two out of 1 3 5 7 hexany also dekatesserany mandala tetradekany" 1 14 261.62558 274.706848 280.31311 286.152954 294.328766 327.031952 343.383545 381.537292 392.438354 400.614136 408.79 429.229431 457.844727 490.547943;
stelhex2.scl, "Stellated two out of 1 3 5 9 hexany" 1 12 261.62558 275.933228 294.328766 327.031952 331.119843 353.194519 367.91095 392.438354 408.79 436.042603 441.493134 490.547943;
stelhex3.scl, "Stellated Tetrachordal Hexany based on Archytas’s Enharmonic" 1 14 261.62558 271.315399 279.067261 281.364105 289.403107 297.671753 339.144257 348.834076 358.8 361.753876 372.089691 385.870789 434.104645 465.112122;
STELHEX4.scl, "Stellated Tetrachordal Hexany based on the 1/1 35/36 16/15 4/3 tetrachord" 1 14 261.62558 269.1 276.789185 279.067261 287.040619 297.671753 336.375732 348.834076 358.8 361.753876 372.089691 382.720825 430.560944 465.112122;
stelhex5.scl, "Stellated two out of 1 3 7 9 hexany stellation is degenerate" 1 12 261.62558 294.328766 305.229828 331.119843 343.383545 386.306488 392.438354 400.614136 441.493134 457.844727 504.563599 515.075317;
stelhex6.scl, "Stellated two out of 1 3 5 11 hexany from The Giving by Stephen J. Taylor" 1 14 261.62558 269.801361 294.328766 299.779297 327.031952 337.251709 356.762146 359.735138 392.438354 408.79 431.68219 449.668945 490.547943 494.635834;
stelpd1.scl, "Stellated two out of 1 3 5 7 9 11 pentadekany" 3 72 207.652344 208.193115 212.371719 214.141479 218.034973 219.008331 222.072647 222.484665 222.990311 224.848557 227.119751 229.437302 233.608887 237.934998 240.909164 242.261078 244.733124 245.289337 247.767014 249.831726 250.295242 254.846069 255.50972 256.97 259.56543 262.81 267.676849 272.543701 275.324768 277.59082 280.330658 281.060699 283.162292 285.521973 292.011108 297.320404 299.798065 302.826355 305.916412 306.611664 311.478516 312.289673 317.246643 317.967651 318.557587 321.212219 324.456787 327.05246 330.356018 333.108978 333.72699 340.679626 342.626373 346.08725 350.41333 356.902466 363.391602 367.1 371.650513 374.747589 380.696014 385.454681 389.348145 392.592712 396.427216 399.730774 400.472382 401.515289 403.768463 407.88855 408.815552 415.304688;
stelpd1s.scl, "Superstellated two out of 1 3 5 7 9 11 pentadekany" 3 111 21.826765 21.883604 22.15715 22.230968 22.322826 22.50885 22.688925 22.918102 23.020416 23.149599 23.15196 23.342512 23.385818 23.438972 23.624454 23.634296 23.873028 24.116631 24.352179 24.555115 24.619059 25.009834 25.21 25.322456 25.46456 25.724401 25.782867 25.936129 26.043303 26.260326 26.30905 26.787395 26.857155 27.01062 27.283459 27.561859 27.624498 27.69644 28.011019 28.136066 28.293955 28.361156 28.410873 28.582668 28.647633 28.94 29.178144 29.29871 29.466131 29.54287 29.763769 30.011805 30.067486 30.69389 30.993677 31.12335 31.251963 31.512396 31.653072 31.8307 32.155502 32.22858 32.412746 32.740147 32.825409 33.07423 33.346447 33.422234 33.484241 33.763275 34.093044 34.104321 34.377155 34.581501 34.7244 35.013767 35.078728 35.451439 35.809536 36.01416 36.174938 36.377941 36.749146 36.832664 36.928585 37.50235 37.514751 37.814869 37.881161 38.196838 38.267704 38.586601 38.904186 39.064949 39.390488 40.015736 40.285728 40.51593 40.925182 41.252586 41.266228 41.342789 41.669277 42.016521 42.094475 42.204094 42.440929 42.616306 42.874001 42.971443 43.65353;
stelpent1.scl, "Stellated one out of 1 3 5 7 9 pentany" 1 30 261.62558 274.706848 280.31311 286.152954 290.695068 294.328766 305.229828 313.950684 327.031952 336.375732 343.383545 348.834076 353.194519 366.275787 367.91095 373.750793 381.537292 392.438354 406.973114 412.060272 420.469666 436.042603 441.493134 448.5 457.844727 470.926025 490.547943 504.563599 508.71637 515.075317;
stelpent1s.scl, "Superstellated one out of 1 3 5 7 9 pentany" 1 55 261.62558 271.315399 274.706848 275.933228 280.31311 282.555603 286.152954 288.322052 290.695068 294.328766 301.461548 305.229828 309.045197 313.950684 315.352234 320.357849 321.922089 327.031952 329.648224 336.375732 339.144257 343.383545 348.834076 353.194519 360.402557 366.275787 367.91095 373.750793 381.537292 386.306488 387.593445 392.438354 395.57785 403.650879 406.973114 411.888641 412.060272 420.469666 429.229431 436.042603 439.530945 441.493134 448.5 452.192322 457.844727 470.926025 480.536743 482.883118 488.367737 490.547943 494.472321 498.334412 504.563599 508.71637 515.075317;
steltet1.scl, "Stellated one out of 1 3 5 7 tetrany" 1 16 261.62558 274.706848 280.31311 286.152954 305.229828 313.950684 327.031952 343.383545 366.275787 373.750793 381.537292 392.438354 436.042603 448.5 457.844727 490.547943;
steltet1s.scl, "Superstellated one out of 1 3 5 7 tetrany" 1 20 261.62558 274.706848 280.31311 286.152954 305.229828 313.950684 320.357849 327.031952 343.383545 366.275787 373.750793 381.537292 392.438354 429.229431 436.042603 439.530945 448.5 457.844727 490.547943 508.71637;
steltet2.scl, "Stellated three out of 1 3 5 7 tetrany" 1 16 261.62558 267.076111 272.526642 286.152954 305.229828 327.031952 333.845123 343.383545 381.537292 392.438354 400.614136 408.79 436.042603 457.844727 476.9216 490.547943;
steltet2s.scl, "Superstellated three out of 1 3 5 7 tetrany" 1 20 261.62558 286.152954 294.328766 300.460602 306.592468 327.031952 343.383545 350.537384 357.691193 367.91095 392.438354 400.614136 408.79 429.229431 441.493134 457.844727 490.547943 500.76767 510.987427 515.075317;
steltri1.scl, "Stellated one out of 1 3 5 triany" 1 6 261.62558 313.950684 327.031952 392.438354 436.042603 490.547943;
steltri2.scl, "Stellated two out of 1 3 5 triany" 1 6 261.62558 294.328766 327.031952 392.438354 408.79 490.547943;
stevin.scl, "Simon Stevin monochord division of 10000 parts for 12-tET (1585)" 1 12 261.62558 277.204468 293.664337 311.125671 329.669312 349.253204 369.997986 392.007141 415.410553 440.150696 466.272614 494.005981;
stopper.scl, "Bernard Stopper piano tuning with 19th root of 3 (1988)" 2 20 261.62558 277.2 293.7 311.182465 329.705933 349.332031 370.126404 392.158569 415.502197 440.235413 466.440918 494.206299 523.624451 554.793762 587.81842 622.80896 659.882324 699.162537 740.780945 784.876709;
storbeck.scl, "Ulrich Storbeck 2001" 1 21 261.62558 290.695068 294.328766 299. 305.229828 313.950684 327.031952 339.144257 348.834076 353.194519 358.8 381.537292 387.593445 392.438354 403.650879 418.6 436.042603 448.5 457.844727 465.112122 470.926025;
strahle.scl, "Strahle’s Geometrical scale" 1 12 261.62558 278.949402 296.905426 315.652435 335.002106 355.127441 376.244415 398.15683 421.102142 444.85553 469.948792 496.170807;
sub24-12.scl, "Subharmonics 24-12" 1 12 261.62558 273. 285.409698 299. 313.950684 330.474396 348.834076 369.353729 392.438354 418.6 448.5 483.001038;
sub24.scl, "Subharmonics 24-1" 2 25 261.62558 10.901067 11.375027 11.892073 12.458363 13.08128 13.769769 14.534756 15.38974 16.351603 17.441708 18.68754 20.125048 21.80213 23.784143 26.16256 29.06951 32.703197 37.37508 43.604259 52.325111 65.406395 87.208519 130.81279 261.62558;
sub40.scl, "sub 40-20" 1 12 261.62558 275.395325 290.695068 307.794769 327.031952 348.834076 373.750793 402.5 418.6 436.042603 475.682831 498.334412;
SUB48.SCL, "12 of sub 48 (Leven)" 1 12 261.62558 279.067261 299. 313.950684 330.474396 348.834076 369.353729 392.438354 418.6 448.5 465.112122 502.321075;
sub50.scl, "12 of sub 50" 1 12 261.62558 272.526642 290.695068 311.459015 327.031952 344.244171 373.750793 384.743469 408.79 436.042603 467.188507 484.491791;
sub8.scl, "Subharmonic series 1/16 – 1/8" 1 8 261.62558 279.067261 299. 322. 348.834076 380.546265 418.6 465.112122;
sumatra.scl, ""Archeological" tuning of Pasirah Rus orch. in Muaralakitan Sumatra. 1/1=354 Hz" 2 10 261.62558 266.798889 324.445282 356.963776 390.960236 474.473572 530.641541 639.282837 713.927551 784.876709;
super_10.scl, "Most equal superparticular 10-tone scale" 1 10 261.62558 283.427704 305.229828 327.031952 348.834076 370.63623 392.438354 425.141541 457.844727 490.547943;
super_11.scl, "Most equal superparticular 11-tone scale" 1 11 261.62558 283.427704 305.229828 327.031952 348.834076 370.63623 392.438354 418.6 444.763458 470.926025 497.088562;
super_12.scl, "Most equal superparticular 12-tone scale" 1 12 261.62558 279.067261 296.508972 313.950684 331.392395 348.834076 372.089691 395.345306 418.6 441.856506 465.112122 494.18161;
super_12_1.scl, "One but most equal superparticular 12-tone scale" 1 12 261.62558 280.31311 299. 317.688171 336.375732 355.063263 373.750793 392.438354 418.6 444.763458 470.926025 497.088562;
super_12_2.scl, "Two but most equal superparticular 12-tone scale" 1 12 261.62558 280.31311 299. 317.688171 336.375732 355.063263 373.750793 392.438354 420.469666 448.5 473.417694 498.334412;
super_13.scl, "Most equal superparticular 13-tone scale" 1 13 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 418.6 444.763458 470.926025 497.088562;
super_14.scl, "Most equal superparticular 14-tone scale" 1 14 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 376.086761 392.438354 414.240479 436.042603 457.844727 479.646881 501.449005;
super_15.scl, "Most equal superparticular 15-tone scale" 1 15 261.62558 276.160309 290.695068 305.229828 319.764587 334.3 348.834076 363.368835 381.537292 399.705719 417.874176 436.042603 457.844727 479.646881 501.449005;
super_17.scl, "Superparticular 17-tone scale" 1 17 261.62558 274.083923 286.542297 299. 311.459015 323.917358 336.375732 348.834076 363.368835 377.903595 392.438354 411.125885 429.813416 448.5 467.188507 485.876038 504.563599;
super_19.scl, "Superparticular 19-tone scale" 1 19 261.62558 272.526642 283.427704 294.328766 305.229828 316.13089 327.031952 340.11322 353.194519 366.275787 379.357056 392.438354 408.135895 423.833405 439.530945 455.228485 470.926025 488.367737 505.809418;
super_19_1.scl, "Superparticular 19-tone scale" 1 19 261.62558 272.090576 282.555603 293.02063 303.485657 313.950684 325.578491 337.206299 348.834076 363.368835 377.903595 392.438354 408.135895 423.833405 439.530945 455.228485 470.926025 488.367737 505.809418;
super_19_2.scl, "Superparticular 19-tone scale" 1 19 261.62558 269.801361 277.977173 294.328766 302.504547 310.680359 318.856171 327.031952 343.383545 359.735138 376.086761 392.438354 408.79 425.141541 441.493134 457.844727 474.19635 490.547943 506.9;
super_22.scl, "Superparticular 22-tone scale" 1 22 261.62558 270.96933 280.31311 289.656891 299. 308.344421 317.688171 327.031952 337.933014 348.834076 359.735138 370.63623 381.537292 392.438354 406.45401 420.469666 434.485321 448.5 463.450989 478.401031 493.351074 508.301086;
super_22_1.scl, "Superparticular 22-tone scale" 1 22 261.62558 272.090576 282.555603 293.02063 303.485657 313.950684 325.163208 336.375732 347.588257 358.8 370.013306 381.22583 392.438354 405.519623 418.6 431.68219 444.763458 457.844727 470.926025 484.007294 497.088562 510.169861;
super_24.scl, "Superparticular 24-tone scale inverse of Mans.ur ‘Awad" 1 24 261.62558 270.346405 279.067261 287.788116 296.508972 305.229828 313.950684 322.671539 331.392395 340.11322 348.834076 359.735138 370.63623 381.537292 392.438354 405.519623 418.6 431.68219 444.763458 457.844727 470.926025 484.007294 497.088562 510.169861;
super_6.scl, "Most equal superparticular 6-tone scale" 1 6 261.62558 294.328766 327.031952 359.735138 392.438354 457.844727;
super_7.scl, "Most equal superparticular 7-tone scale" 1 7 261.62558 287.788116 313.950684 353.194519 392.438354 431.68219 470.926025;
super_8.scl, "Most equal superparticular 8 tone scale" 1 8 261.62558 287.788116 313.950684 340.11322 366.275787 392.438354 436.042603 479.646881;
super_9.scl, "Most equal superparticular 9-tone scale" 1 9 261.62558 287.788116 313.950684 340.11322 366.275787 392.438354 425.141541 457.844727 490.547943;
suppig.scl, "Friedrich Suppig’s 19-tone JI scale. Calculus Musicus Berlin 1722" 1 19 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 340.658295 348.834076 367.91095 376.740814 392.438354 408.79 418.6 436.042603 459.888702 470.926025 490.547943 502.321075;
sur_7.scl, "7-tone surupan" 1 7 261.62558 280.403351 327.729034 351.251282 383.042236 410.534515 479.823395;
sur_9.scl, "Theoretical nine-tone surupan gamut" 1 9 261.62558 280.403351 305.782013 327.729034 351.251282 383.042236 410.534515 447.691071 479.823395;
sur_ajeng.scl, "Surupan ajeng" 1 5 261.62558 285.304688 305.782013 383.042236 417.710541;
sur_degung.scl, "Surupan degung" 1 5 261.62558 322.098846 345.21701 396.550201 488.210571;
sur_madenda.scl, "Surupan madenda" 1 5 261.62558 322.098846 345.21701 425.011993 488.210571;
sur_melog.scl, "Surupan melog" 1 5 261.62558 280.403351 305.782013 383.042236 410.534515;
sur_miring.scl, "Surupan miring" 1 5 261.62558 285.304688 305.782013 389.737701 417.710541;
sur_x.scl, "Surupan tone-gender X (= unmodified nyorog)" 1 5 261.62558 280.403351 305.782013 383.042236 417.710541;
sur_y.scl, "Surupan tone-gender Y (= mode on pamiring)" 1 5 261.62558 280.403351 300.52887 383.042236 410.534515;
sverige.scl, "Scale on Swedish 50 crown banknote of some kind of violin." 2 25 261.62558 293.664764 329.627563 349.228241 391.995422 440. 466.163757 493.883301 523.25116 554.365234 587.329529 622.253967 659.255127 698.456482 739.988831 783.990845 830.609375 880. 932.327515 987.766602 1046.502319 1174.659058 1318.510254 1396.912964 1567.981689;
syntonolydian.scl, "Greek Syntonolydian also genus duplicatum medium or ditonum (Al-Farabi)" 1 7 261.62558 294.328766 331.119843 372.509827 392.438354 441.493134 496.679779;
syrian.scl, "After ^Sayh.’Ali ad-Darwis^ (Shaykh Darvish) from d’Erlanger vol.5 p.29" 1 30 261.62558 268.678375 275.622009 279.382385 286.749786 294.328766 302.108032 310.074738 314.305176 322.593506 326.663116 331.119843 339.851624 348.834076 358.053986 367.496002 372.509827 382.333069 392.438354 402.81073 413.432983 419.073578 430.124695 441.493134 453.135468 465.112122 477.405304 489.994659 496.679779 509.777405;
t-side.scl, Tau-on-Side 1 12 261.62558 272.526642 279.067261 294.328766 327.031952 348.834076 367.91095 392.438354 408.79 418.6 436.042603 490.547943;
t-side2.scl, "Tau-on-Side opposite" 1 12 261.62558 294.328766 306.592468 313.950684 327.031952 348.834076 367.91095 392.438354 436.042603 459.888702 470.926025 490.547943;
tamil.scl, "Possible Tamil sruti scale. Alternative 11th sruti is 45/32 or 64/45" 1 22 261.62558 275.622009 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 331.119843 348.834076 353.194519 372.509827 387.593445 392.438354 413.432983 418.6 436.042603 441.493134 465.112122 470.926025 490.547943 496.679779;
tamil_vi.scl, "Vilarippalai scale in Tamil music Vidyasankar Sundaresan" 1 12 261.62558 275.622009 290.695068 310.074738 327.031952 348.834076 367.91095 387.593445 413.432983 436.042603 465.112122 490.547943;
tamil_vi2.scl, "Vilarippalai scale with 1024/729 tritone" 1 12 261.62558 275.622009 290.695068 310.074738 327.031952 348.834076 367.496002 387.593445 413.432983 436.042603 465.112122 490.547943;
tanaka.scl, "26-note choice system of Shohé Tanaka Studien i.G.d. reinen Stimmung (1890)" 1 26 261.62558 272.526642 275.933228 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 331.119843 344.916504 348.834076 353.194519 363.368835 367.91095 372.089691 387.593445 392.438354 408.79 418.6 436.042603 441.493134 459.888702 465.112122 470.926025 490.547943;
tanbur.scl, "Sub-40 tanbur scale" 1 12 261.62558 268.333923 275.395325 282.83844 290.695068 299. 306.667328 314.737518 323.243927 332.222931 341.715027 351.765472;
tansur.scl, "William Tans’ur temperament from A New Musical Grammar (1746) p. 73" 1 12 261.62558 275.712799 293.191254 310.074738 328.215179 348.834076 367.617065 391.788361 413.569183 438.486877 465.112122 491.022766;
tartini_7.scl, "Tartini (1754) with 2 neochromatic tetrachords 1/1=d Minor Gipsy (Slovakia)" 1 7 261.62558 294.328766 313.950684 367.91095 392.438354 418.6 490.547943;
taylor_g.scl, "Gregory Taylor’s Dutch train ride scale based on pelog_schmidt" 1 12 261.62558 274.706848 287.788116 294.328766 313.950684 353.194519 366.275787 392.438354 412.060272 418.6 431.68219 470.926025;
taylor_n.scl, "Nigel Taylor’s Circulating Balanced temperament (20th cent.)" 1 12 261.62558 275.933411 292.6716 310.42511 327.401703 348.834076 367.911224 391.332001 413.9 437.769745 465.637634 491.10257;
telemann.scl, "G.Ph. Telemann (1767). 55-tET interpretation of Klang- und Intervallen-Tafel" 1 44 261.62558 264.943604 271.706482 275.152374 278.641968 282.175842 289.378571 293.048584 296.765167 300.52887 304.340302 308.2 312.108795 316.067078 324.134918 328.245728 332.408691 336.62442 345.21701 349.595184 354.0289 363.065735 367.670288 372.333252 377.055328 386.68 391.583984 396.550201 406.672424 411.83 417.053009 422.342255 433.122833 438.615875 444.178589 449.811859 461.29361 467.143951 473.068451 485.14386 491.296661 497.527496 503.837341 516.69812;
telemann_28.scl, "Telemann’s tuning as described on Sorge’s monochord 1746 1748 1749" 1 28 261.62558 264.943604 275.152374 278.641968 293.048584 296.765167 308.2 312.108795 328.245728 332.408691 345.21701 349.595184 354.0289 367.670288 372.333252 386.68 391.583984 396.550201 406.672424 411.83 438.615875 444.178589 461.29361 467.143951 473.068451 491.296661 497.527496 516.69812;
temes-mix.scl, "Temes’ 5-tone Phi scale mixed with its octave inverse" 1 9 261.62558 306.316589 323.386993 342.472382 361.557739 378.628204 399.728424 423.319061 446.91;
temes-ur.scl, "Temes’ Ur 5-tone phi scale" 2 6 261.62558 306.316589 323.387024 342.472382 361.557739 423.319061;
temes.scl, "Temes’ 5-tone Phi scale / 2 cycle" 2 11 261.62558 306.316589 323.387024 342.472382 361.557739 423.319061 495.630585 523.25116 554.131897 585.012573 684.944641;
temes2-mix.scl, "Temes’ 2 cycle Phi scale mixed with its 4/1 inverse" 2 19 261.62558 306.316589 323.386993 342.472382 361.557739 399.728424 423.319061 468.010284 495.630585 523.25116 552.411255 585.012573 646.773987 684.944397 757.256409 799.456848 846.638123 893.82 1046.502319;
temp10coh.scl, "Differential coherent 10-tone scale OdC 2003" 1 10 261.62558 279.067261 299.103394 320.578064 343.594513 368.26355 394.704346 423.052856 453.575836 488.367737;
temp10ebss.scl, "Cycle of 10 equal "beating" 15/14’s" 1 10 261.62558 280.43399 300.585846 322.177155 345.310669 370.096588 396.652924 425.106171 455.591766 488.254913;
temp11ebst.scl, "Cycle of 11 equal beating 9/7’s" 1 11 261.62558 278.683014 296.809662 316.07251 336.71 358.64093 381.946625 406.713165 433.246979 461.44397 491.408447;
temp12coh3.scl, "Differential coherent scale interval=3 OdC 2003" 1 12 261.62558 279.839294 294.681366 311.327698 332.210693 353.564728 370.238617 397.617096 418.97113 440.198456 471.287415 496.80304;
temp12ebf.scl, "Equal beating temperament tuned by The Best Factory Tuners (1840)" 1 12 261.62558 277.18808 293.58316 311.091003 329.535431 349.23175 369.98175 391.841858 415.185638 439.778229 466.04 493.706665;
temp12ebfo.scl, "Equal beating fifths and fifth beats twice octave at C" 2 13 261.62558 277.202667 293.648438 311.16 329.648346 349.334839 370.119202 392.062653 415.428314 440.096985 466.364471 494.096832 523.626587;
temp12ebfp.scl, "All fifths except G#-Eb beat same as 700 c. C-G" 1 12 261.62558 277.753082 293.775146 310.829315 329.94339 349.129364 370.63269 391.995453 416.186707 440.219818 465.801056 494.472198;
temp12ebfr.scl, "Exact values of equal beating temperament of Best Factory Tuners (1840)" 1 12 261.62558 277.18808 293.58316 311.091003 329.535431 349.23175 369.98175 391.841858 415.185638 439.778229 466.04 493.706665;
temp12ep.scl, "Pythagorean comma distributed equally over octave and fifth: 1/19-Pyth comma" 2 13 261.62558 277.2 293.7 311.182465 329.705933 349.332031 370.126404 392.158569 415.502197 440.235413 466.440918 494.206299 523.624451;
temp12fo2.scl, "Fifth beats twice octave" 2 13 261.62558 277.196228 293.693604 311.172791 329.692261 349.313934 370.103394 392.130127 415.467773 440.194366 466.392578 494.15 523.559387;
temp12p10.scl, "1/10-Pyth. comma well temperament" 1 12 261.62558 277.12 293.532135 310.91626 329.329895 349.307129 369.493378 391.906921 415.117157 439.701965 465.742828 493.325897;
temp12p6.scl, "Modified 1/6-Pyth. comma temperament" 1 12 261.62558 275.622009 293.002258 310.074738 328.141998 349.622833 367.911224 391.553009 413.432983 438.511902 466.163757 491.10257;
temp12p8.scl, "1/8-Pyth. comma well temperament" 1 12 261.62558 277.026184 293.333344 310.6 328.883942 349.425476 369.368225 391.77417 414.835968 439.25531 465.9 492.490997;
temp12p8a.scl, "1/8-Pyth. comma well temperament consecutive just fifths" 1 12 261.62558 276.557312 293.333344 311.126984 328.883942 349.425476 368.743103 391.77417 414.835968 439.25531 466.69046 492.490997;
temp12s17.scl, "4/17th synt. comma "well"-temperament. OdC 1999" 1 12 261.62558 275.412659 292.613159 309.933411 327.271027 348.781097 367.161072 391.292938 413.181763 437.638672 464.970795 490.98114;
temp12s3.scl, "1/3 synt. comma "well"-temperament. OdC 1999" 1 12 261.62558 275.794861 293.075775 310.191406 326.990967 348.877838 367.772583 390.816681 413.640411 437.797028 465.22876 490.424927;
temp12w2b.scl, "The fifths on white keys beat twice the amount of fifths on black keys" 1 12 261.62558 276.806213 293.389587 310.937408 329.124084 349.334991 369.325409 391.687012 414.833649 439.333008 466.030426 492.934784;
temp15coh.scl, "Differential coherent 15-tone scale OdC 2003" 1 15 261.62558 273.98642 286.934235 300.52597 314.761566 329.671539 345.285614 360.49 377.614075 395.547455 414.330322 434.934814 455.539276 477.119629 499.650238;
temp15ebmt.scl, "Cycle of 15 equal beating minor thirds" 1 15 261.62558 274.133453 287.101624 300.547028 315.023712 330.033173 345.595001 361.729462 379.101532 397.112854 415.787018 435.148407 455.994873 477.60849 500.017487;
temp15ebsi.scl, "Cycle of 15 equal beating major sixths" 1 15 261.62558 274.090851 287.014832 300.414429 314.841827 329.8 345.30896 361.388489 378.701355 396.651367 415.261932 434.557343 455.332794 476.872803 499.205475;
temp16d3.scl, "Cycle of 16 thirds tempered by 1/3 small diesis" 1 16 261.62558 272.526642 287.691895 299.679047 312.16568 325.172577 338.721436 352.834839 372.468994 387.988525 404.154724 420.994507 438.53595 462.939117 482.228241 502.321075;
temp16d4.scl, "Cycle of 16 thirds tempered by 1/4 small diesis" 1 16 261.62558 271.363708 291.822174 302.684265 313.950684 325.636444 337.757141 350.32901 376.740814 390.763733 405.308594 420.394836 436.042603 468.916473 486.3703 504.473785;
temp16ebs.scl, "Cycle of 16 equal beating sevenths" 1 16 261.62558 273.355652 285.388611 297.732208 311.138031 324.89 338.996948 354.317902 370.034393 386.156647 403.666321 421.628021 440.053467 460.064484 480.592163 501.649811;
temp16ebt.scl, "Cycle of 16 equal beating thirds" 1 16 261.62558 273.543182 285.746826 298.243347 311.039764 324.143341 339.040344 354.294891 369.915558 385.911102 402.290527 420.911804 439.98 459.505798 479.5 499.974548;
temp16l4.scl, "Cycle of 16 fifths tempered by 1/4 major limma" 1 16 261.62558 278.819397 286.596436 305.431335 313.950684 322.707642 343.915741 353.508514 376.740814 387.249176 412.698883 424.210205 436.042603 464.7 477.660736 509.052246;
temp17c10.scl, "Cycle of 17 fifths tempered by 1/10 of "17-tET comma"" 1 17 261.62558 278.132477 287.253998 296.674652 315.392944 325.73642 336.419128 347.452179 369.374207 381.488068 394. 418.858032 432.594696 446.781891 474.971008 490.547943 506.635742;
temp17c11.scl, "Cycle of 17 fifths tempered by 1/11 of "17-tET comma"" 1 17 261.62558 276.930725 286.529327 296.460602 313.803619 324.680267 335.933899 347.577576 367.91095 380.662994 393.857025 416.897736 431.347687 446.298492 472.407043 488.780975 505.722443;
temp17c12.scl, "Cycle of 17 fifths tempered by 1/12 of "17-tET comma"" 1 17 261.62558 275.933228 285.926819 296.282379 312.485321 323.802734 335.53 347.682129 366.696014 379.976807 393.738586 415.271179 430.311249 445.896057 470.281006 487.313385 504.962646;
temp17c13.scl, "Cycle of 17 fifths tempered by 1/13 of "17-tET comma"" 1 17 261.62558 275.09198 285.417999 296.131622 311.374146 323.062073 335.188751 347.770599 365.671082 379.397125 393.638428 413.9 429.436218 445.555817 468.489502 486.075012 504.320648;
temp17c14.scl, "Cycle of 17 fifths tempered by 1/14 of "17-tET comma"" 1 17 261.62558 274.372955 284.982605 296.002502 310.424866 322.428589 334.896454 347.846466 364.794861 378.901001 393.552582 412.727966 428.687622 445.264374 466.959381 485.016052 503.770996;
temp17ebs.scl, "Cycle of 17 equal beating sevenths" 1 53 261.62558 273.751343 284.605774 295.890625 309.604492 321.880554 334.643341 347.912201 364.03717 378.471527 393.47821 411.715057 428.039856 445.011963 465.637299 484.1 503.295105 523.25116 261.62558 272.442261 283.837616 295.842621 308.011414 320.831207 334.336823 348.026703 362.448944 377.642761 393.649445 409.874481 426.967529 444.975037 463.22821 482.457886 502.716309 523.25116 261.62558 272.253021 284.093018 294.994873 307.140533 320.671967 333.131226 347.011993 362.476471 376.715607 392.579346 410.253052 426.526367 444.656342 464.854858 483.452911 504.172913;
temp17fo2.scl, "Fifth beats twice octave" 2 18 261.62558 272.494446 283.81485 295.60553 307.886047 320.676758 333.99881 347.874329 362.326294 377.378632 393.056305 409.385284 426.392609 444.106506 462.556305 481.772552 501.78714 522.633179;
temp17s.scl, "Cycle of 17 fifths tempered by 2 schismas. Schulter Tuning List 10-9-98" 1 17 261.62558 272.475769 283.831451 295.66037 307.9823 320.755005 334.122772 348.047638 362.481964 377.588745 393.325104 409.637177 426.709167 444.492676 463.017303 482.219696 502.31662;
temp19d5.scl, "Cycle of 19 thirds tempered by 1/5 small diesis. Third = 35" 1 19 261.62558 270.668304 280.023621 289.702271 304.501862 315.026581 325.91507 337.18 348.834076 360.891083 379.327393 392.438354 406.002472 420.035431 434.553406 449.573181 472.539856 488.872589 505.769836;
temp19ebf.scl, "Cycle of 19 equal beating fifths" 1 19 261.62558 271.213501 281.452179 291.55304 302.339447 313.857971 325.221436 337.35614 350.314484 363.098389 376.75 390.217773 404.6 419.957672 435.108978 451.288605 468.566345 485.611572 503.81366;
temp19ebmt.scl, "Cycle of 19 equal beating minor thirds" 1 19 261.62558 271.351593 281.435516 291.890533 302.730316 313.987274 325.658478 337.759216 350.305237 363.312958 376.821289 390.826752 405.347626 420.402863 436.012115 452.222137 469.028687 486.453735 504.52;
temp19ebo.scl, "Cycle of 19 equal beating octaves in twelfth" 2 20 261.62558 277.223633 293.656189 311.20401 329.690613 349.431946 370.22937 392.139435 415.53653 440.185333 466.507111 494.237 523.848999 555.045105 587.910217 623.005859 659.979065 699.461731 741.05658 784.876709;
temp19ebt.scl, "Cycle of 19 equal beating thirds" 1 19 261.62558 271.594025 281.801727 292.254395 302.957947 313.918396 325.141876 337.602448 350.362061 363.427917 376.807373 390.507904 404.537262 420.112976 436.0625 452.394836 469.11911 486.244781 503.781494;
temp19k10.scl, "Chain of 19 minor thirds tempered by 1/10 kleisma" 1 19 261.62558 271.761963 282.291107 293.228149 304.588989 314.097748 326.26712 338.90799 352.038605 365.677979 377.093842 391.703918 406.88 422.644226 439.019104 452.724548 470.264893 488.484802 507.410614;
temp19k3.scl, "Chain of 19 minor thirds tempered by 1/3 kleisma" 1 19 261.62558 272.952362 284.769562 297.098358 309.960938 314.441132 328.054535 342.257324 357.074982 372.53418 377.918823 394.280426 411.350372 429.159363 447.73938 454.21106 473.875641 494.391602 515.795776;
temp19k4.scl, "Chain of 19 minor thirds tempered by 1/4 kleisma" 1 19 261.62558 272.526642 283.881897 295.710327 308.031586 314.318451 327.415039 341.057343 355.268066 370.070892 377.623962 393.358307 409.74823 426.821075 444.605286 453.679596 472.582916 492.273865 512.785278;
temp19k5.scl, "Chain of 19 minor thirds tempered by 1/5 kleisma" 1 19 261.62558 272.271515 283.350647 294.880615 306.87973 314.244873 327.031952 340.339386 354.188293 368.6 377.447174 392.806061 408.79 425.424225 442.735382 453.361023 471.80896 491.007599 510.987427;
temp19k6.scl, "Chain of 19 minor thirds tempered by 1/6 kleisma" 1 19 261.62558 272.101563 282.997009 294.328766 306.114258 314.195801 326.776825 339.861572 353.470276 367.623901 377.329346 392.438354 408.152344 424.495514 441.493134 453.148773 471.293701 490.165222 509.792358;
temp19k8.scl, "Chain of 19 minor thirds tempered by 1/8 kleisma" 1 39 261.62558 271.980225 282.74469 293.935211 305.568634 314.160767 326.594696 339.520691 352.958313 366.927734 377.245239 392.175903 407.69751 423.833405 440.608368 452.997223 470.926025 489.564392 508.94046 523.25116 261.62558 271.889252 282.555603 293.640411 305.16 314.134521 326.45816 339.265259 352.574799 366.406494 377.182129 391.979187 407.35672 423.337524 439.945251 452.883575 470.650421 489.114288 508.30246;
temp19k9.scl, "Chain of 19 minor thirds tempered by 1/9 kleisma" 1 19 261.62558 271.818542 282.40863 293.411316 304.842651 314.114075 326.35202 339.066742 352.276825 366.001587 377.133087 391.826233 407.091858 422.952209 439.430481 452.795227 470.436188 488.764465 507.806793;
temp19lst.scl, "Cycle of 19 least squares thirds 5/4^5 = 3/2" 1 19 261.62558 270.561493 279.802643 289.359406 304.78244 315.192413 325.957947 337.091187 348.604675 360.511414 379.726898 392.696625 406.109344 419.980164 434.324768 449.159302 473.1 489.258698 505.969543;
temp19lst2.scl, "Cycle of 19 least squares thirds 5/4 3/2 (5) 6/5 (4)" 1 19 261.62558 270.866821 280.434479 290.340118 303.981445 314.718811 325.835419 337.344727 349.260559 361.59729 378.586548 391.959167 405.804108 420.138092 434.978394 450.342865 471.50177 488.156342 505.3992;
temp21ebs.scl, "Cycle of 21 equal beating sevenths" 1 21 261.62558 270.486053 279.575256 288.9 298.463776 308.59 318.977722 329.633606 340.564606 352.137482 364.009125 376.187286 388.67984 401.906006 415.473572 429.391449 443.668671 458.784241 474.29 490.196228 506.513062;
temp22ebf.scl, "Cycle of 22 equal beating fifths" 1 22 261.62558 269.812164 278.436768 287.522736 297.094788 306.304749 316.007385 326.229126 336.997681 347.358856 358.274353 369.773804 381.888428 394.651184 406.931091 419.867981 433.496948 447.855042 461.67 476.223907 491.556519 507.709351;
temp22ebt.scl, "Cycle of 22 equal beating thirds" 1 22 261.62558 270.164032 278.90741 287.860626 297.028717 306.41684 316.030273 325.874451 336.547516 347.476746 358.668274 370.128387 381.863556 393.880371 406.185577 419.526917 433.188446 447.177826 461.502991 476.171936 491.192993 506.574463;
temp22fo2.scl, "Fifth beats twice opposite rate as octave" 2 23 261.62558 269.973419 278.587616 287.476685 296.649384 306.114777 315.882172 325.961212 336.361877 347.094391 358.169342 369.597656 381.390656 393.56 406.117493 419.075745 432.447449 446.245819 460.484467 475.177429 490.339203 505.984772 522.129578;
temp23ebs.scl, "Cycle of 23 equal beating major sixths" 1 23 261.62558 269.545288 277.756439 286.269806 295.096436 304.247864 313.414215 322.917877 332.771271 342.987274 353.579254 364.560974 375.560608 386.964996 398.789063 411.048279 423.758636 436.936707 450.136261 463.821533 478.010437 492.721466 507.973877;
temp24ebaf.scl, "Cycle of 24 equal beating 11/8’s" 1 24 261.62558 269.282867 277.230835 285.331116 293.738892 302.3078 311.201965 320.266571 329.675293 339.264313 349.217316 359.361084 369.889893 380.818329 391.956238 403.516907 415.3 427.528625 439.992493 452.929443 466.114349 479.8 493.747406 508.224518;
temp24ebf.scl, "24-tone ET with 23 equal beatings fifths. Fifth on 17 slightly smaller." 1 24 261.62558 269.291779 277.18808 285.374542 293.58316 302.207642 311.091003 320.17688 329.535431 339.237946 349.23175 359.453369 369.98175 380.897064 391.841858 403.341156 415.185638 427.465332 439.778229 452.714935 466.04 479.668823 493.706665 508.260437;
temp25ebt.scl, "Cycle of 25 equal beating thirds" 1 25 261.62558 269.070404 276.693909 284.5 292.494232 300.68 309.062073 317.645386 326.434723 335.740753 345.270142 355.028259 365.020538 375.252655 385.730347 396.459503 407.446136 419.078705 430.990448 443.18808 455.678436 468.468597 481.565674 494.977112 508.710419;
temp26eb3.scl, "Cycle of 26 fifths 5/4 beats three times 3/2" 1 26 261.62558 268.535065 276.234131 283.529449 291.017426 298.703156 307.267151 315.38205 323.711243 332.260437 341.78653 350.81308 360.078003 370.401672 380.183929 390.224548 400.530334 412.013794 422.89502 434.063629 445.527191 458.3 470.404388 482.827728 495.579132 509.787689;
temp26ebf.scl, "Cycle of 26 equal beating fifths" 1 26 261.62558 268.42569 275.687347 283.441833 290.605743 298.25589 306.425232 315.149078 323.208466 331.81488 341.005402 350.819702 359.886505 369.568726 379.908051 389.46 399.660126 410.552612 422.184357 432.930237 444.405426 456.659454 469.745178 481.83429 494.743896 508.529694;
temp26ebs.scl, "Cycle of 26 equal beating sevenths" 1 26 261.62558 268.708527 275.974396 283.427826 291.073669 298.916931 307.011749 315.315582 323.833801 332.57193 341.535645 350.786865 360.276947 370.012054 379.998474 390.242737 400.815582 411.661377 422.787201 434.2 445.90799 457.991241 470.386444 483.101654 496.145172 509.525421;
temp28ebt.scl, "Cycle of 28 equal beating thirds" 1 84 261.62558 268.868378 273.882172 281.464294 289.256317 297.264038 305.493439 313.950684 319.805176 328.65863 337.757141 347.107574 356.716827 363.368835 373.428284 383.766205 394.39035 405.308594 412.866699 424.296448 436.042603 448.113953 460.51947 473.268402 482.093842 495.44 509.155731 523.25116 261.62558 268.463196 275.479523 282.67923 290.067108 297.648071 305.217133 313.194061 321.379425 329.778748 338.397583 347.002899 356.071869 365.377869 374.927094 384.725891 394.780762 404.819885 415.4 426.2565 437.39679 448.828217 460.24176 472.270264 484.613129 497.278564 510.275055 523.25116 261.62558 268.207184 274.946777 281.848114 288.9151 296.151672 303.56192 311.15 318.920227 326.876923 335.103973 343.528442 352.155121 360.988831 370.034546 379.297363 388.782501 398.49527 408.441132 418.724915 429.255524 440.038879 451.081024 462.388153 473.966675 485.82309 497.96405 510.396393;
temp29c14.scl, "Cycle of 29 fifths 1/14 comma positive" 1 29 261.62558 268.033844 274.6 281.123108 288.008942 294.851563 302.073669 309.472687 316.825226 324.585571 332.29718 340.436493 348.775177 357.061493 365.807373 374.498352 383.671326 392.786713 402.407684 412.264282 422.05899 432.396912 442.67 453.512726 464.621124 475.659729 487.310577 498.888245 511.108063;
temp29ebf.scl, "Cycle of 29 equal beating fifths" 1 29 261.62558 267.971405 274.403839 281.089172 287.865723 294.908722 302.047791 309.284271 316.805298 324.428894 332.352264 340.383728 348.52478 356.985901 365.562469 374.476257 383.511658 392.902313 402.421082 412.069733 422.097748 432.262573 442.827057 453.535675 464.390381 475.671906 487.10733 498.992371 511.039581;
temp29fo.scl, "Fifth beats with opposite equal rate as octave" 2 30 261.62558 267.947815 274.422821 281.054321 287.846069 294.801941 301.925903 309.222015 316.694427 324.347443 332.185364 340.212708 348.434021 356.854004 365.477478 374.309326 383.354614 392.618469 402.106171 411.823181 421.774963 431.967255 442.405853 453.09671 464.045898 475.259674 486.744446 498.506744 510.553253 522.89093;
temp31c51.scl, "Cycle of 31 51/220-comma tempered fifths (twice diff. of 31-tET and 1/4-comma)" 1 31 261.62558 267.179443 273.806885 279.619324 286.555328 292.638428 298.850677 306.263702 312.765167 319.404663 327.327545 334.276184 342.567932 349.84 357.266632 366.128693 373.9 383.175659 391.309845 399.616699 409.529266 418.2229 428.596985 437.695374 446.986938 458.074524 467.798676 477.729248 489.579407 499.972382 512.374268;
temp31coh.scl, "Differential coherent 31-tone scale interval=8 OdC 2003" 1 31 261.62558 267.179047 272.714447 278.832794 286.673187 292.312592 298.224487 305.962555 312.793762 319.370209 325.99 333.534485 342.550751 349.350677 356.496918 365.94516 373.942261 381.748535 389.68869 401.662384 409.34549 417.529297 426.205109 437.613434 447.020416 456.304657 466.179321 479.860809 489.188049 499.026794 509.588715;
temp31eb1.scl, "Cycle of 31 thirds 3/2 beats equal 5/4. Third 1/18 synt. comma higher" 1 31 261.62558 267.35556 273.21106 279.194794 287.364319 293.658051 300.0896 306.662018 313.378387 320.241882 327.255646 334.423065 341.747437 349.232239 356.880951 367.323639 375.368591 383.589752 391.990936 400.576141 409.349396 418.314758 427.476501 436.838898 446.406342 459.468628 469.531708 479.815155 490.323853 501.062714 512.036743;
temp31eb1a.scl, "Cycle of 31 thirds 5/4 beats equal 7/4" 1 31 261.62558 267.52829 273.564209 279.736328 286.191223 292.648224 299.250885 306.002502 312.906464 319.966187 327.185211 334.567078 342.115509 349.834259 357.906677 365.981689 374.238892 382.682373 391.316376 400.145172 409.173157 418.404846 427.844788 437.497742 447.368469 457.691498 468.017822 478.577148 489.374695 500.415863 511.706116;
temp31eb2.scl, "Cycle of 31 thirds 3/2 beats twice 5/4" 1 31 261.62558 267.43634 273.37616 279.447906 286.815125 293.185364 299.697083 306.353424 313.157623 320.112915 327.222717 334.490417 341.919525 349.513641 357.276428 366.695465 374.839874 383.165161 391.675354 400.374542 409.266968 418.356873 427.648682 437.146881 446.856018 458.636688 468.82312 479.235809 489.879761 500.760101 511.882111;
temp31eb2a.scl, "Cycle of 31 thirds 5/4 beats twice 3/2" 1 31 261.62558 267.303772 273.105225 279.032593 287.717133 293.961639 300.341644 306.860138 313.52 320.324615 327.276794 334.379852 341.637115 349.051849 356.627533 367.727112 375.70813 383.862335 392.193512 400.705505 409.402252 418.28775 427.366089 436.641479 446.118134 460.003021 469.986755 480.187134 490.608917 501.256897 512.135925;
temp31eb2b.scl, "Cycle of 31 thirds 5/4 beats twice 7/4 (7/4 beats twice 5/4 gives 31-tET)" 1 31 261.62558 267.520996 273.549255 279.713348 286.240814 292.690918 299.286346 306.030426 312.926453 319.977875 327.188202 334.560974 342.1 349.808716 357.971954 366.038422 374.286682 382.720764 391.34494 400.163422 409.180634 418.401031 427.829193 437.469818 447.327667 457.766632 468.081848 478.629517 489.414856 500.443237 511.720123;
temp31ebf.scl, "Cycle of 31 equal beating fifths" 1 31 261.62558 267.588959 273.472076 279.84021 286.12262 292.320496 299.029297 305.647797 312.811951 319.879669 326.852264 334.4 341.84552 349.905182 357.856354 365.7 374.191345 382.567902 390.831726 399.776794 408.601501 418.153687 427.577301 436.874115 446.937317 456.865082 467.611298 478.212891 488.671783 499.992889 511.161621;
temp31ebf2.scl, "Cycle of 31 fifths 3/2 beats equal 7/4" 1 31 261.62558 268.472076 273.941071 281.109894 286.836334 292.679413 300.338593 306.456726 312.7 320.882568 327.41922 335.987488 342.831848 349.815613 358.97 366.282501 375.867798 383.524536 391.33725 401.578186 409.758667 420.48172 429.047272 437.787323 449.243835 458.395294 467.733185 479.973358 489.750793 502.567169 512.804871;
temp31ebs.scl, "Cycle of 31 equal beating sevenths" 1 31 261.62558 267.5 273.525513 279.706879 286.047821 292.55249 299.225098 305.938416 312.825043 319.889465 327.136261 334.57019 342.196014 349.868378 357.7388 365.812439 374.094482 382.590393 391.305634 400.074036 409.068817 418.295807 427.761017 437.470612 447.430908 457.451935 467.731659 478.276825 489.094208 500.190887 511.574066;
temp31ebs1.scl, "Cycle of 31 sevenths 3/2 beats equal 7/4. 17/9 schisma fifth" 1 31 261.62558 267.157745 272.806885 278.5755 287.00766 293.076569 299.273773 305.602051 312.064117 318.662842 328.30838 335.25061 342.3396 349.578522 356.97049 364.518768 375.552338 383.49353 391.602661 399.88324 408.338928 416.973419 429.594727 438.67868 447.954712 457.42688 467.1 476.976379 491.413879 501.805023 512.415894;
TEMP31EBS2.scl, "Cycle of 31 sevenths 3/2 beats twice 7/4. Almost 31-tET" 1 31 261.62558 267.529572 273.566803 279.740295 286.130798 292.58783 299.190552 305.942261 312.846344 319.90625 327.214325 334.59845 342.1492 349.870361 357.765747 365.839325 374.196716 382.641083 391.276001 400.105774 409.134827 418.367615 427.924988 437.581818 447.456573 457.554138 467.879608 478.43808 489.367706 500.411102 511.703705;
temp31ebsi.scl, "Cycle of 31 equal beating major sixths" 1 31 261.62558 267.315063 273.213928 279.329895 285.670898 292.24527 299.061554 306.128693 312.713776 319.541168 326.619812 333.958954 341.568176 349.457397 357.636963 366.117523 374.019623 382.212494 390.706848 399.513824 408.644897 418.111969 427.92746 438.104126 447.586609 457.41806 467.611328 478.179688 489.136963 500.497467 512.276001;
temp31ebt.scl, "Cycle of 31 equal beating thirds" 1 31 261.62558 267.508698 273.53299 279.701904 286.01886 292.487427 299.111206 305.894012 312.839569 319.951813 327.234772 334.588684 342.11908 349.8302 357.726379 365.812073 374.091827 382.570313 391.252258 400.142578 409.246277 418.43866 427.851654 437.49054 447.360779 457.467926 467.817627 478.41571 489.268158 500.381042 511.760651;
temp31g3.scl, "Wonder Scale cycle of 31 sevenths tempered by 1/3 gamelan residue s.wonder1.scl" 1 31 261.62558 266.210236 270.875244 275.622009 289.259827 294.328766 299.486511 304.73465 310.074738 315.508423 331.119843 336.922333 342.826477 348.834076 354.946991 361.166992 379.037628 385.679779 392.438354 399.315338 406.312866 413.432983 433.889771 441.493134 449.229767 457.101959 465.112122 473.262634 496.679779 505.383484 514.239685;
temp31g4.scl, "Cycle of 31 sevenths tempered by 1/4 gamelan residue" 1 31 261.62558 266.751068 271.97699 277.305298 287.971161 293.612793 299.36496 305.229828 311.209595 317.306488 329.510925 335.96637 342.548279 349.259125 356.101471 363.07785 377.042755 384.429413 391.960754 399.639648 407.468994 415.451721 431.431061 439.883209 448.5 457.287537 466.246246 475.380493 493.664856 503.336243 513.197083;
temp31g5.scl, "Cycle of 31 sevenths tempered by 1/5 gamelan residue" 1 31 261.62558 267.076111 272.640198 278.32019 287.2 293.184082 299.292084 305.527313 311.892487 318.390228 328.549316 335.394073 342.38147 349.514404 356.795959 364.229218 375.850891 383.681122 391.674469 399.834351 408.164246 416.667664 429.962524 438.920105 448.06427 457.398926 466.92807 476.655731 491.864685 502.111877 512.57251;
temp31g6.scl, "Cycle of 31 sevenths tempered by 1/6 gamelan residue" 1 31 261.62558 267.292999 273.083221 278.99884 286.688232 292.89859 299.243469 305.7258 312.348572 319.114777 327.90979 335.013123 342.270294 349.684692 357.259705 364.99881 375.058411 383.183075 391.483734 399.964233 408.628418 417.480286 428.986298 438.279175 447.773346 457.473206 467.383179 477.507813 490.668243 501.297272 512.156616;
temp31g7.scl, "Cycle of 31 sevenths tempered by 1/7 gamelan residue" 1 31 261.62558 267.448059 273.4 279.484619 286.322723 292.694855 299.208771 305.867676 312.674774 319.633331 327.453766 334.741241 342.190918 349.806366 357.591339 365.54953 374.493378 382.827728 391.347565 400.057007 408.960266 418.061676 428.290344 437.82196 447.565674 457.526245 467.708496 478.117371 489.815399 500.716248 511.85968;
temp31h10.scl, "Cycle of 31 fifths tempered by 1/10 Harrison’s comma" 1 31 261.62558 267.859772 273.710724 279.689484 286.354126 292.60907 299. 306.125458 312.812256 320.266174 327.261871 334.41037 342.378937 349.857635 358.194305 366.018463 374.01355 382.925812 391.290222 400.614136 409.364929 418.306824 428.274536 437.629517 447.188812 457.844727 467.845612 478.993774 489.456604 500.14801 512.065857;
temp31h11.scl, "Cycle of 31 fifths tempered by 1/11 Harrison’s comma" 1 31 261.62558 269.218781 274.221527 279.317261 287.42395 292.764984 298.205292 306.860168 312.562408 321.633972 327.610718 333.698547 343.383545 349.764465 359.915771 366.603882 373.416321 384.254059 391.39444 402.753967 410.238159 417.861389 429.989075 437.97934 446.118073 459.065857 467.596466 481.167603 490.108887 499.216339 513.7052;
temp31h12.scl, "Cycle of 31 fifths tempered by 1/12 Harrison’s comma" 1 31 261.62558 270.356567 274.647949 279.007446 288.318512 292.894989 297.544128 307.473785 312.35434 322.778259 327.901733 333.106506 344.222992 349.686859 361.356628 367.092468 372.919312 385.364441 391.481323 404.545898 410.967255 417.49054 431.423096 438.271088 445.227783 460.085968 467.388916 482.986694 490.653137 498.441284 515.075317;
temp31h8.scl, "Cycle of 31 fifths tempered by 1/8 Harrison’s comma" 1 31 261.62558 264.157715 272.310883 280.715729 283.432648 292.180725 301.198822 304.113983 313.5 316.534637 326.304413 336.375732 339.631348 350.114014 353.502594 364.413391 375.660919 379.296783 391.003693 394.788055 406.973114 419.534241 423.594727 436.668884 450.146576 454.503357 468.531494 473.066193 487.667297 502.719055 507.584625;
temp31h9.scl, "Cycle of 31 fifths tempered by 1/9 Harrison’s comma" 1 31 261.62558 266.208038 273.087708 280.145142 285.052002 292.41861 299.975616 305.229828 313.11792 318.602295 326.835968 335.28244 341.15506 349.971558 356.101471 365.30423 374.744843 381.308655 391.162842 398.014221 408.3 418.851898 426.188263 437.202301 448.5 456.356659 468.15033 476.350189 488.660553 501.289063 510.069366;
temp31ms.scl, "Cycle of 31 5th root of 5/4 chromatic semitones" 1 31 261.62558 267.904572 273.56604 280.131622 286.051483 292.916718 299.10672 306.285309 312.757843 320.264008 327.031952 334.880737 341.95755 350.16452 357.564331 366.145874 373.883423 382.856628 390.947296 400.33 408.79 418.6 427.44693 437.705658 446.955414 457.682343 467.354279 478.57077 488.684113 500.412537 510.987427;
temp31mt.scl, "Cycle of 31 square root of 5/4 meantones" 1 31 261.62558 267.904572 274.33429 280.918304 285.650574 292.506287 299.526428 306.715057 314.076233 319.367157 327.031952 334.880737 342.917847 351.147888 359.575439 365.632751 374.40802 383.393829 392.595276 402.017548 408.79 418.6 428.647339 438.934875 449.469299 457.040924 468.01 479.242279 490.74408 502.521942 510.987427;
temp31to.scl, "Third beats with opposite equal rate as octave" 2 32 261.62558 267.535889 273.579742 279.760101 286.080109 292.542877 299.151672 305.91 312.820465 319.887329 327.113831 334.503601 342.060303 349.787689 357.689667 365.770172 374.033203 382.48291 391.123505 399.95929 408.994659 418.234192 427.682404 437.344086 447.22403 457.327179 467.658569 478.223328 489.026764 500.07428 511.371338 522.923645;
temp31w10.scl, "Cycle of 31 thirds tempered by 1/10 Wuerschmidt comma" 1 31 261.62558 267.373779 273.24826 279.251831 287.240479 293.551453 300.001099 306.592468 313.328644 320.212799 327.24823 334.438232 341.786194 349.295624 356.970154 367.181976 375.24939 383.494019 391.9198 400.530701 409.330811 418.324249 427.515289 436.908264 446.507629 459.281006 469.371918 479.68454 490.223724 500.994476 512.001892;
temp31w11.scl, "Cycle of 31 thirds tempered by 1/11 Wuerschmidt comma" 1 31 261.62558 267.421967 273.346802 279.402924 286.912659 293.269318 299.766815 306.408264 313.196838 320.135834 327.228577 334.478424 341.888916 349.463593 357.206116 366.807037 374.933777 383.24057 391.731415 400.41037 409.281616 418.349396 427.618073 437.092133 446.776062 458.784424 468.949005 479.338715 489.958649 500.813873 511.909576;
temp31w12.scl, "Cycle of 31 thirds tempered by 1/12 Wuerschmidt comma" 1 31 261.62558 267.462158 273.428955 279.52887 286.639771 293.034393 299.571686 306.254822 313.087067 320.071716 327.212189 334.511932 341.974548 349.603668 357.402954 366.494843 374.670959 383.02951 391.574493 400.31012 409.240631 418.370361 427.703766 437.245392 447. 458.371033 468.596802 479.05072 489.737854 500.663391 511.832672;
temp31w13.scl, "Cycle of 31 thirds tempered by 1/13 Wuerschmidt comma" 1 31 261.62558 267.496155 273.498505 279.635529 286.409058 292.835785 299.406708 306.125061 312.994202 320.017456 327.198303 334.540283 342.047028 349.722198 357.569733 366.230927 374.448761 382.850983 391.441772 400.225311 409.205933 418.388092 427.776276 437.375122 447.189362 458.021515 468.3 478.807159 489.551086 500.536102 511.767609;
temp31w14.scl, "Cycle of 31 thirds tempered by 1/14 Wuerschmidt comma" 1 31 261.62558 267.52533 273.558105 279.726959 286.211456 292.665619 299.26535 306.013885 312.914612 319.970947 327.186432 334.564606 342.109161 349.823853 357.712494 366.004822 374.258362 382.698029 391.328033 400.152618 409.176208 418.403046 427.83844 437.486359 447.351837 457.722137 468.043945 478.598511 489.391083 500.427032 511.711823;
temp31w15.scl, "Cycle of 31 thirds tempered by 1/15 Wuerschmidt comma almost 31-tET" 1 31 261.62558 267.550598 273.609802 279.806213 286.040314 292.51825 299.142883 305.917572 312.845673 319.930664 327.176117 334.585663 342.162994 349.911957 357.836395 365.80899 374.093445 382.565552 391.229492 400.08963 409.150452 418.416443 427.892303 437.582764 447.492676 457.46283 467.822968 478.417725 489.252441 500.33252 511.663513;
temp31w8.scl, "Cycle of 31 thirds tempered by 1/8 Wuerschmidt comma" 1 31 261.62558 267.241211 272.977417 278.836761 288.14389 294.328766 300.646393 307.1 313.691345 320.424561 327.302338 334.327698 341.503876 348.834076 356.321625 368.215118 376.118652 384.191864 392.438354 400.861847 409.466125 418.255127 427.232758 436.403107 445.770264 460.649414 470.537018 480.636841 490.953491 501.491547 512.255798;
temp31w9.scl, "Cycle of 31 thirds tempered by 1/9 Wuerschmidt comma" 1 31 261.62558 267.31485 273.127869 279.067261 287.641632 293.896667 300.28772 306.817749 313.489777 320.306915 327.272278 334.389099 341.660706 349.090424 356.681702 367.640808 375.635468 383.804016 392.150177 400.677856 409.390991 418.293518 427.389709 436.683685 446.179749 459.888702 469.889374 480.107544 490.547943 501.215332 512.114746;
temp32ebf.scl, "Cycle of 32 equal beating fifths" 1 32 261.62558 266.990234 272.641937 278.595947 284.86853 291.476654 298.438324 304.473572 310.831726 317.53 324.586639 332.020782 339.852661 346.642334 353.795227 361.330811 369.269531 377.632935 386.443787 395.725983 403.77301 412.250519 421.18158 430.590424 440.502625 450.945099 459.998016 469.535217 479.582642 490.167603 501.318817 513.066589;
temp33a12.scl, "Cycle of 33 fifths tempered by 1/12 "11 fifths" comma" 1 33 261.62558 266.941406 272.365234 277.9 284.737488 290.522919 296.425903 302.448822 308.594116 316.187622 322.612061 329.167053 335.855225 342.67926 351.111511 358.245575 365.524567 372.951447 382.128601 389.892853 397.81488 405.897858 414.145081 424.335876 432.957733 441.754761 450.73053 459.888702 471.205078 480.779236 490.547943 500.515106 512.831177;
temp34eb2a.scl, "Cycle of 34 thirds 5/4 beats twice 3/2" 1 34 261.62558 267.303772 273.105225 279.032593 285.088593 291.276031 293.961609 300.341644 306.860138 313.52 320.324585 327.276794 334.379883 341.637115 349.051849 356.627533 364.367615 372.275696 375.708099 383.862335 392.193512 400.705505 409.402252 418.28775 427.366089 436.641479 446.118164 455.8 465.693024 469.986725 480.187134 490.608917 501.256866 512.135925;
temp34ebsi.scl, "Cycle of 34 equal beating major sixths" 1 34 261.62558 266.997894 272.576965 278.146973 283.931366 289.70636 295.703644 301.691132 307.909088 314.366364 320.813141 327.508057 334.192078 341.133362 348.063354 355.26 362.445068 369.906616 377.655334 385.391479 393.425354 401.446198 409.775726 418.091705 426.727753 435.349792 444.30365 453.602112 462.885468 472.526123 482.151123 492.146545 502.125732 512.489014;
temp34ebt.scl, "Cycle of 34 equal beating thirds" 1 34 261.62558 266.932007 272.365784 277.93 283.627716 289.462219 295.436737 301.554626 307.819366 314.234436 320.803497 327.530212 334.163239 340.955475 347.910736 355.032898 362.326019 369.794159 377.441528 385.272461 393.291321 401.502625 409.911011 418.202301 426.692596 435.386658 444.289398 453.405762 462.740936 472.3 482.088806 492.112396 502.376526 512.887024;
temp34w10.scl, "Cycle of 34 thirds tempered by 1/10 Wuerschmidt comma" 1 34 261.62558 267.373779 273.24826 279.251831 281.065155 287.240479 293.551453 300.001099 306.592468 313.328644 320.212799 327.24823 334.438232 341.786194 349.295624 351.563812 359.288025 367.181976 375.24939 383.494019 391.9198 400.530701 409.330811 418.324249 427.515289 436.908264 446.507629 449.407043 459.281006 469.371918 479.68454 490.223724 500.994476 512.001892;
temp34w5.scl, "Cycle of 34 thirds tempered by 1/5 Wuerschmidt comma" 1 34 261.62558 266.843994 272.166534 277.595215 285.182953 290.871246 296.673035 302.590546 308.626068 314.781982 321.060699 327.464661 333.996338 340.658295 347.453125 356.950317 364.070129 371.33194 378.738617 386.29303 393.998108 401.856873 409.872375 418.047791 426.386261 434.891052 443.565491 455.689789 464.779083 474.049652 483.505157 493.149231 502.985687 513.018372;
temp34w6.scl, "Cycle of 34 thirds tempered by 1/6 Wuerschmidt comma" 1 34 261.62558 267.020477 272.526642 278.069702 283.80368 289.655914 295.628845 301.724915 307.946716 314.296783 320.777832 327.392487 334.143555 341.033844 348.066223 355.145721 362.469055 369.943451 377.57196 385.357758 393.304108 401.414337 409.691772 418.14 426.762268 435.562408 444.421539 453.585846 462.939117 472.48526 482.228241 492.17215 502.321075 512.679321;
temp34w7.scl, "Cycle of 34 thirds tempered by 1/7 Wuerschmidt comma" 1 34 261.62558 267.146606 272.784149 276.9776 282.822601 288.790955 294.885223 301.108154 307.462372 313.950684 320.575928 327.340973 334.248779 341.302368 348.504791 353.862274 361.329773 368.954834 376.740814 384.691101 392.809143 401.098541 409.562836 418.20575 427.031067 436.042603 442.745789 452.088989 461.629333 471.371002 481.318237 491.475403 501.846893 512.437256;
temp34w8.scl, "Cycle of 34 thirds tempered by 1/8 Wuerschmidt comma" 1 34 261.62558 267.241211 272.977417 276.161346 282.088989 288.14389 294.328766 300.646393 307.1 313.691345 320.424561 327.302338 334.327698 341.503876 348.834076 352.902771 360.477631 368.215118 376.118652 384.191864 392.438354 400.861847 409.466125 418.255127 427.232758 436.403107 441.493134 450.969574 460.649414 470.537018 480.636841 490.953491 501.491547 512.255798;
temp34w9.scl, "Cycle of 34 thirds tempered by 1/9 Wuerschmidt comma" 1 34 261.62558 267.31485 273.127869 279.067261 281.519745 287.641632 293.896667 300.28772 306.817749 313.489777 320.306915 327.272278 334.389099 341.660706 349.090424 352.158264 359.816254 367.640808 375.635468 383.804016 392.150177 400.677856 409.390991 418.293518 427.389709 436.683685 440.521301 450.1 459.888702 469.889374 480.107544 490.547943 501.215332 512.114746;
temp35ebsi.scl, "Cycle of 35 equal beating major sixths" 1 35 261.62558 266.578888 271.714508 277.039093 282.559662 288.283356 294.217682 300.370392 306.749542 312.482544 318.426544 324.589294 330.97879 337.603455 344.471893 351.593109 358.976379 366.631317 373.510956 380.643738 388.039032 395.706451 403.656036 411.898163 420.443604 429.303528 438.489471 446.745026 455.304382 464.178711 473.379608 482.919128 492.809662 503.064209 513.696106;
temp37ebs.scl, "Cycle of 37 equal beating sevenths" 1 37 261.62558 266.548828 271.761169 276.811554 282.158478 287.339233 292.824188 298.138702 303.765289 309.72226 315.49411 321.604889 327.525757 333.794281 339.868011 346.298401 353.106354 359.702759 366.686493 373.453186 380.617249 387.558655 394.907654 402.688202 410.226929 418.208344 425.941711 434.129181 442.062225 450.46109 459.353119 467.968842 477.090454 485.928589 495.285706 504.352051 513.950745;
temp37ebt.scl, "Cycle of 37 equal beating thirds" 1 37 261.62558 266.447937 271.386078 276.442688 281.620697 286.922943 292.352478 297.912292 303.60556 309.435455 315.405273 321.518372 327.778198 333.806152 339.978821 346.3 352.772095 359.4 366.186829 373.136597 380.253174 387.540558 395.002838 402.644196 410.468964 418.003937 425.719727 433.620728 441.711334 449.996124 458.479736 467.166962 476.062683 485.171906 494.5 504.051453 513.832397;
temp3ebt.scl, "Cycle of 3 equal beating thirds" 1 3 261.62558 330.248657 416.027527;
temp4ebmt.scl, "Cycle of 4 equal beating minor thirds" 1 4 261.62558 310.363556 368.849152 439.03186;
temp4ebsi.scl, "Cycle of 4 equal beating major sixths" 1 4 261.62558 310.92688 370.08844 441.082306;
temp53ebs.scl, "Cycle of 53 equal beating harmonic sevenths" 1 53 261.62558 264.973694 268.518433 272.271301 275.705872 279.342133 283.191895 286.715149 290.445282 294.39444 298.008667 301.835083 305.8862 310.175232 314.1 318.256165 322.655914 326.682465 330.945465 335.458801 339.589325 343.962402 348.592255 353.493988 357.98 362.72934 367.757599 372.359406 377.231415 382.389496 387.110107 392.10788 397.4 403.001129 408.12796 413.555817 419.302429 424.561615 430.129608 436.024597 441.419556 447.131317 453.178467 459.580719 465.44 471.64325 478.210785 484.221283 490.584717 497.321808 503.487488 510.015228 516.92627;
temp53ebsi.scl, "Cycle of 53 equal beating major sixths" 1 53 261.62558 265.088165 268.545105 272.140961 275.730988 279.315155 283.043335 286.765472 290.481537 294.346924 298.206024 302.058838 306.066467 310.067566 314.229431 318.384552 322.532898 326.847931 331.155945 335.45694 339.930756 344.397308 348.856598 353.495056 358.125977 362.749359 367.558502 372.359863 377.354095 382.34021 387.318237 392.496277 397.665894 402.827087 408.195679 413.555542 418.906677 424.472839 430.03 435.578003 441.348969 447.110596 453.103668 459.087036 465.060669 471.274292 477.477814 483.671295 490.113586 496.54541 502.966797 509.646179 516.314697;
temp53ebt.scl, "Cycle of 53 equal beating thirds" 1 53 261.62558 265.064087 268.619415 272.140472 275.781128 279.386688 283.114746 286.806824 290.624329 294.405029 298.314178 302.185608 306.188568 310.152893 314.251923 318.311432 322.50882 326.665741 330.963898 335.408081 339.809387 344.360229 348.867157 353.527222 358.142303 362.914215 367.64 372.526489 377.365784 382.369476 387.324921 392.4487 397.523071 402.769836 407.966003 413.338654 418.89389 424.395508 430.084045 435.717712 441.542786 447.311676 453.27655 459.183868 465.291901 471.341034 477.595642 483.79 490.194672 496.537628 503.096069 509.591248 516.307068;
temp57ebs.scl, "Cycle of 57 equal beating harmonic sevenths" 1 57 261.62558 264.827789 268.049561 271.334473 274.639404 278.009125 281.4 284.856079 288.333893 291.879852 295.447418 299.08493 302.744629 306.426636 310.180817 313.957886 317.80899 321.683594 325.634094 329.608734 333.661255 337.738495 341.89563 346.078156 350.286163 354.57666 358.893311 363.294556 367.722656 372.237549 376.78 381.411438 386.071136 390.822174 395.602173 400.411316 405.314728 410.248077 415.278076 420.338776 425.498627 430.69 435.983063 441.308441 446.73819 452.20105 457.697235 463.301147 468.939209 474.687805 480.471436 486.368439 492.301422 498.350647 504.436798 510.642212 516.885498;
temp59ebt.scl, "Cycle of 59 equal beating thirds" 1 59 261.62558 264.717743 267.84 271.006439 274.203705 277.446075 280.72 284.040283 287.392822 290.792725 294.225739 297.707214 301.222626 304.787659 308.387451 312.038055 315.724213 319.462433 323.237061 327.065002 330.930237 334.83313 338.791107 342.787659 346.840668 350.933136 355.083405 359.274078 363.523956 367.815216 372.167084 376.56134 381.017639 385.517365 390.080597 394.688324 399.361084 404.079407 408.864319 413.695862 418.574463 423.521942 428.517639 433.583893 438.7 443.887299 449.125641 454.437988 459.802063 465.241882 470.734711 476.305084 481.93 487.63382 493.393463 499.234436 505.132294 511.113464 517.152893;
temp5ebf.scl, "Cycle of 5 equal beating fifths" 1 5 261.62558 300.992432 345.280121 397.769287 456.81955;
temp5ebs.scl, "Cycle of 5 equal beating harmonic sevenths" 1 5 261.62558 300.722656 345.405029 396.470581 454.831238;
temp6.scl, "Tempered wholetone scale with approximations to 5/4 (4) 7/5 (4) and 7/4 (1)" 1 6 261.62558 292.506287 327.175629 373.915039 418.233337 467.6;
temp65ebf.scl, "Cycle of 65 equal beating fifths" 1 65 261.62558 264.416016 267.244537 270.111664 273.017883 275.963776 278.903503 281.883362 284.903839 287.965546 291.069031 294.166046 297.305298 300.487396 303.712891 306.982391 310.296509 313.603729 316.956055 320.354126 323.798523 327.29 330.774078 334.305756 337.88559 341.514282 345.192474 348.920868 352.641479 356.412842 360.235657 364.110626 368.038483 371.95813 375.931244 379.958588 384.040863 388.178833 392.308167 396.493866 400.736633 405.037323 409.396667 413.815491 418.225098 422.694855 427.225586 431.818176 436.473389 441.118896 445.827789 450.6 455.439178 460.343445 465.314606 470.275421 475.303894 480.401001 485.567627 490.804749 496.030945 501.328461 506.698212 512.141235 517.658569;
temp65ebt.scl, "Cycle of 65 equal beating thirds" 1 65 261.62558 264.434082 267.203461 270.079376 272.915253 275.860168 278.764099 281.779694 284.753326 287.841309 290.886292 294.04837 297.166443 300.404419 303.597321 306.913025 310.182556 313.57782 316.925812 320.402588 323.830933 327.391144 330.901764 334.363495 337.958405 341.503235 345.184387 348.814301 352.583801 356.3 360.160797 363.967041 367.92 371.81723 375.864716 379.855835 384. 388.087372 392.331451 396.516449 400.862396 405.147827 409.598083 413.986389 418.313568 422.807159 427.23822 431.839661 436.377045 441.088928 445.735199 450.560181 455.317963 460.258728 465.130707 470.19 475.178986 480.359741 485.468384 490.773499 496.004761 501.437195 506.794006 512.356812 517.842163;
temp6eb2.scl, "Cycle of 6 equal beating 9/8 seconds" 1 6 261.62558 293.460114 329.273956 369.564545 414.891479 465.884247;
temp6s.scl, "Cycle of 6 tempered harmonic sevenths 6/5 and 4/3 minimax Op de Coul 2002" 1 6 261.62558 271.936371 309.967316 353.316925 402.729126 459.051697;
temp6teb.scl, "Cycle of 6 equal beating 6/5’s in a twelfth" 2 7 261.62558 314.32 377.553223 453.433167 544.489075 653.756165 784.876709;
temp7-5ebf.scl, "7 equal beating fifths on white 5 equal beating fifths on black" 1 12 261.62558 272.533112 288.295135 313.541229 318.29837 352.052032 359.675354 387.61145 414.352844 427.615784 475.865021 472.620636;
temp7ebf.scl, "Cycle of 7 equal beating fifths" 1 7 261.62558 288.295135 318.29837 352.052032 387.61145 427.615784 472.620636;
temp7ebnt.scl, "Cycle of 7 equal beating 11/9 neutral thirds" 1 7 261.62558 288.842896 318.657227 351.922852 388.362579 429.020569 473.558044;
temp8eb3q.scl, "Cycle of 8 equal "beating" 12/11’s" 1 8 261.62558 285.270294 311.064545 339.203705 369.901001 403.388947 439.921234 479.774658;
temp9ebmt.scl, "Cycle of 9 equal beating 7/6 septimal minor thirds" 1 9 261.62558 282.570587 305.181793 329.617645 355.997375 384.505859 415.282227 448.542145 484.447906;
tenney_11.scl, "Scale of James Tenney’s "Spectrum II" for wind quintet" 1 11 261.62558 277.977173 294.328766 310.680359 327.031952 343.383545 359.735138 392.438354 408.79 425.141541 457.844727;
tetragam-di.scl, "Tetragam Dia2" 1 12 261.62558 279.067261 290.695068 290.695068 327.031952 348.834076 372.089691 392.438354 418.6 436.042603 436.042603 457.844727;
tetragam-enh.scl, "Tetragam Enharm." 1 12 261.62558 271.315399 279.067261 279.067261 327.031952 348.834076 366.275787 392.438354 406.973114 418.6 418.6 457.844727;
tetragam-hex.scl, Tetragam/Hexgam 1 12 261.62558 271.315399 294.328766 305.229828 327.031952 343.383545 381.537292 392.438354 406.973114 436.042603 457.844727 490.547943;
tetragam-py.scl, "Tetragam Pyth." 1 12 261.62558 275.622009 294.328766 294.328766 331.119843 348.834076 372.509827 392.438354 413.432983 441.493134 441.493134 465.112122;
tetragam-slpe.scl, "Tetragam Slendro as 5-tET Pelog-like pitches on C# E F# A B" 1 12 261.62558 261.62558 300.52887 300.52887 279.067261 345.21701 348.834076 396.550201 455.516571 392.438354 455.516571 418.6;
tetragam-slpe2.scl, "Tetragam Slendro as 5-tET Pelog-like pitches on C# E F# A B" 1 12 261.62558 261.62558 300.52887 300.52887 286.295197 345.21701 313.291046 396.550201 396.550201 387.045593 455.516571 423.541565;
tetragam-sp.scl, "Tetragam Septimal" 1 12 261.62558 271.315399 271.315399 271.315399 336.375732 348.834076 366.275787 392.438354 406.973114 406.973114 406.973114 457.844727;
tetragam-un.scl, "Tetragam Undecimal" 1 12 261.62558 269.801361 285.409698 285.409698 319.764587 348.834076 359.735138 392.438354 404.702057 428.114563 428.114563 479.646881;
tetragam13.scl, "Tetragam (13-tET)" 1 12 261.62558 275.953827 307.007233 307.007233 341.555145 341.555145 400.801666 400.801666 445.904388 445.904388 445.904388 496.08255;
tetragam5.scl, "Tetragam (5-tET)" 1 12 261.62558 300.52887 300.52887 300.52887 300.52887 345.21701 345.21701 396.550201 455.516571 455.516571 455.516571 455.516571;
tetragam7.scl, "Tetragam (7-tET)" 1 12 261.62558 288.858124 288.858124 288.858124 318.92511 352.121948 352.121948 388.774017 429.241425 429.241425 429.241425 473.920807;
TETRAGAM8.SCL, "Tetragam (8-tET)" 1 12 261.62558 285.304688 311.126984 311.126984 339.286377 339.286377 403.481781 403.481781 440. 440. 440. 440.;
tetragam9a.scl, "Tetragam (9-tET) A" 1 12 261.62558 282.571198 305.193878 305.193878 329.627563 356.017395 415.304688 415.304688 448.553802 448.553802 448.553802 484.465088;
tetragam9b.scl, "Tetragam (9-tET) B" 1 12 261.62558 282.571198 282.571198 282.571198 305.193878 305.193878 384.520203 384.520203 415.304688 415.304688 415.304688 448.553802;
tetraphonic_31.scl, "31-tone Tetraphonic Cycle conjunctive form on 5/4 6/5 7/6 and 8/7" 1 31 261.62558 266.964874 272.526642 278.325073 284.37561 290.695068 297.301788 304.215759 311.459015 319.055573 327.031952 333.99 341.250732 348.834076 356.762146 365.058929 373.750793 382.866669 392.438354 400.614136 409.137848 418.032166 427.321747 437.0336 447.197174 457.844727 467.586121 477.751038 488.367737 499.46698 511.082489;
tetratriad.scl, "4:5:6 Tetratriadic scale" 1 9 261.62558 294.328766 327.031952 348.834076 367.91095 392.438354 436.042603 441.493134 490.547943;
tetratriad1.scl, "3:5:9 Tetratriadic scale" 1 9 261.62558 290.695068 294.328766 327.031952 348.834076 392.438354 436.042603 441.493134 490.547943;
tetratriad2.scl, "3:5:7 Tetratriadic scale" 1 9 261.62558 296.751221 305.229828 356.101471 373.750793 415.451721 436.042603 448.5 508.71637;
thailand.scl, "Observed ranat tuning from Thailand. Helmholtz (#85 p. 518)" 2 8 261.62558 281.864838 307.020905 350.845734 397.926941 408.405853 474.038269 539.829407;
thailand2.scl, "Tuning from an out of tune Thai instrument. Helmholtz p. 518 see p. 556" 2 8 261.62558 281.864838 307.020905 350.845734 397.926941 408.405853 474.038269 539.829407;
thailand3.scl, "Observed tak’hay tuning. Helmholtz p. 518" 2 8 261.62558 293.325714 322.471161 354.922363 396.550201 437.46579 488.210571 538.583557;
thailand4.scl, "Observed ranat t’hong tuning. Helmholtz p. 518" 2 8 261.62558 293.664764 318.4 356.772278 391.769073 435.197479 477.887207 525.371094;
thailand5.scl, "Khong mon (bronze percussion vessels) tuning Gemeentemuseum Den Haag 1/1=465" 2 16 261.62558 281.880463 304.385864 332.517639 392.719666 416.350372 461.923859 523.25116 563.760925 608.771729 665.598022 786.001953 831.575439 924.973022 1046.502319 1127.521851;
thomas.scl, "Tuning of the Thomas/Philpott organ Gereformeerde Kerk St. Jansklooster" 1 12 261.62558 280.805298 294.66217 313.950439 332.056458 350.216034 374.620148 391.995422 420.732574 441.991974 468.8 499.492096;
tiby1.scl, "Tiby’s 1st Byzantine Liturgical genus 12 + 13 + 3 parts" 1 7 261.62558 295.667175 337.561554 348.04364 393.32962 444.507996 507.492279;
tiby2.scl, "Tiby’s second Byzantine Liturgical genus 12 + 5 + 11 parts" 1 7 261.62558 295.667175 311.126984 348.04364 393.32962 444.507996 467.750366;
tiby3.scl, "Tiby’s third Byzantine Liturgical genus 12 + 9 + 7 parts" 1 7 261.62558 295.667175 324.07486 348.04364 393.32962 444.507996 487.216278;
tiby4.scl, "Tiby’s fourth Byzantine Liturgical genus 9 + 12 + 7 parts" 1 7 261.62558 286.762512 324.07486 348.04364 393.32962 431.120667 487.216278;
todi_av.scl, "Average of 8 interpretations of raga Todi in B. Bel 1988.0000" 1 7 261.62558 276.38324 310.050568 371.278961 392.448547 413.39 495.884277;
tonos15_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-15" 2 16 261.62558 287.788116 319.764587 359.735138 383.717499 442.750946 479.646881 523.25116 548.167847 575.576233 639.529175 719.470276 767.434998 885.501892 959.293762 1046.502319;
tonos17_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-17" 2 16 261.62558 285.409698 313.950684 348.834076 369.353729 418.6 483.001038 523.25116 546.00116 570.819397 627.901367 697.668152 738.707458 784.876709 897.001953 1046.502319;
tonos19_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-19" 2 16 261.62558 281.75061 305.229828 332.977997 385.553467 406.973114 457.844727 523.25116 542.630798 563.501221 610.459656 665.955994 771.106934 813.946228 915.689453 1046.502319;
tonos21_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-21" 2 16 261.62558 299. 322. 348.834076 398.667542 440.632538 465.112122 523.25116 558.134521 598.001282 644.001404 697.668152 797.335083 881.265076 930.224243 1046.502319;
tonos23_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-23" 2 16 261.62558 294.328766 336.375732 362.250793 409.5 448.5 470.926025 523.25116 554.030579 588.657532 672.751465 724.501587 819.00177 897.001953 941.852051 1046.502319;
tonos25_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-25" 2 16 261.62558 294.328766 336.375732 362.250793 376.740814 428.114563 470.926025 523.25116 554.030579 588.657532 672.751465 724.501587 753.481628 856.229126 941.852051 1046.502319;
tonos27_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-27" 2 16 261.62558 290.695068 327.031952 373.750793 387.593445 436.042603 498.334412 523.25116 550.790649 581.390137 654.063904 747.501587 775.18689 872.085205 996.668823 1046.502319;
tonos29_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-29" 2 16 261.62558 287.788116 319.764587 359.735138 396.949127 442.750946 479.646881 523.25116 548.167847 575.576233 639.529175 719.470276 793.898254 885.501892 959.293762 1046.502319;
tonos31_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-31" 2 16 261.62558 273.517639 300.869415 334.3 388.218567 429.813416 462.876007 501.449005 523.25116 547.035278 601.738831 668.598694 776.437134 859.626831 925.752014 1046.502319;
tonos31_pis2.scl, "Diatonic Perfect Immutable System in the new Tonos-31B" 2 16 261.62558 285.409698 313.950684 348.834076 405.097656 448.5 483.001038 523.25116 546.00116 570.819397 627.901367 697.668152 810.195313 897.001953 966.002075 1046.502319;
tonos33_pis.scl, "Diatonic Perfect Immutable System in the new Tonos-33" 2 16 261.62558 285.409698 313.950684 348.834076 380.546265 418.6 465.112122 523.25116 546.00116 570.819397 627.901367 697.668152 761.092529 837.201782 930.224243 1046.502319;
TRANH.SCL, "Bac Dan Tranh scale Vietnam" 1 5 261.62558 290.695068 348.834076 392.438354 436.042603;
tranh2.scl, "Dan Ca Dan Tranh Scale" 1 5 261.62558 290.695068 307.794769 392.438354 436.042603;
tranh3.scl, "Sa Mac Dan Tranh scale" 1 6 261.62558 317.688171 348.834076 392.438354 473.417694 476.532288;
TRI12-1.scl, "12-tone Tritriadic of 7:9:11" 1 12 261.62558 264.295227 275.216492 319.764587 323.027496 332.977997 336.375732 406.973114 411.125885 428.114563 432.483063 502.487183;
TRI12-2.SCL, "12-tone Tritriadic of 6:7:9" 1 12 261.62558 294.328766 305.229828 336.375732 348.834076 356.101471 392.438354 406.973114 448.5 457.844727 474.801941 504.563599;
tri19-1.scl, "3:5:7 Tritriadic 19-Tone Matrix" 1 19 261.62558 266.964874 269.1 305.229828 311.459015 313.950684 320.357849 356.101471 363.368835 366.275787 373.750793 376.740814 384.429413 427.321747 436.042603 439.530945 448.5 508.71637 512.786133;
tri19-2.scl, "3:5:9 Tritriadic 19-Tone Matrix" 1 19 261.62558 282.555603 290.695068 294.328766 313.950684 322.994537 327.031952 348.834076 353.194519 363.368835 376.740814 387.593445 392.438354 418.6 423.833405 436.042603 465.112122 470.926025 484.491791;
tri19-3.scl, "4:5:6 Tritriadic 19-Tone Matrix" 1 19 261.62558 272.526642 279.067261 290.695068 294.328766 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 465.112122 470.926025 490.547943 502.321075;
tri19-4.scl, "4:5:9 Tritriadic 19-Tone Matrix" 1 19 261.62558 264.895874 290.695068 294.328766 322.994537 327.031952 331.119843 334.880737 363.368835 367.91095 372.089691 376.740814 408.79 413.432983 418.6 423.833405 465.112122 470.926025 516.79126;
tri19-5.scl, "5:7:9 Tritriadic 19-Tone Matrix" 1 19 261.62558 266.964874 284.881165 290.695068 302.738159 316.534637 322.994537 329.648224 336.375732 366.275787 373.750793 406.973114 415.278687 423.833405 432.483063 452.192322 470.926025 480.536743 512.786133;
tri19-6.scl, "6:7:8 Tritriadic 19-Tone Matrix" 1 19 261.62558 267.076111 294.328766 299. 305.229828 336.375732 341.715027 343.383545 348.834076 356.101471 384.429413 392.438354 398.667542 400.614136 406.973114 448.5 457.844727 465.112122 512.57251;
tri19-7.scl, "6:7:9 Tritriadic 19-Tone Matrix" 1 19 261.62558 271.315399 288.322052 294.328766 299. 305.229828 316.534637 336.375732 348.834076 356.101471 384.429413 392.438354 406.973114 432.483063 448.5 457.844727 465.112122 474.801941 504.563599;
TRI19-8.SCL, "7:9:11 Tritriadic 19-Tone Matrix" 1 19 261.62558 264.295227 272.436554 275.216492 316.534637 319.764587 323.027496 332.977997 336.375732 350.275543 390.823364 406.973114 411.125885 423.790161 428.114563 432.483063 497.41156 502.487183 517.965759;
tri19-9.scl, "4:5:7 Tritriadic 19-Tone Matrix" 1 19 261.62558 266.964874 286.152954 293.02063 299. 320.491302 327.031952 334.880737 341.715027 366.275787 373.750793 400.614136 408.79 418.6 427.143768 457.844727 467.188507 478.401031 512.786133;
triang11.scl, "11-limit triangular diamond lattice with 64/63 intervals removed" 1 15 261.62558 294.328766 305.229828 313.950684 327.031952 348.834076 359.735138 366.275787 373.750793 380.546265 392.438354 418.6 436.042603 448.5 465.112122;
triaphonic_12.scl, "12-tone Triaphonic Cycle conjunctive form on 4/3 5/4 and 6/5" 1 12 261.62558 275.395325 290.695068 307.794769 327.031952 348.834076 367.193787 387.593445 410.393036 436.042603 461.692169 490.547943;
triaphonic_17.scl, "17-tone Triaphonic Cycle conjunctive form on 4/3 7/6 and 9/7" 1 17 261.62558 271.315399 281.75061 293.02063 305.229828 318.5 332.977997 348.834076 361.753876 375.66748 390.694183 406.973114 422.625916 439.530945 457.844727 477.751038 499.46698;
trichord7.scl, "Trichordal undecatonic 7-limit" 1 11 261.62558 294.328766 305.229828 327.031952 343.383545 348.834076 392.438354 436.042603 441.493134 457.844727 490.547943;
TRITRIAD.SCL, "Tritriadic scale of the 10:12:15 triad natural minor mode" 1 7 261.62558 294.328766 313.950684 348.834076 392.438354 418.6 470.926025;
TRITRIAD10.scl, "Tritriadic scale of the 10:14:15 triad" 1 7 261.62558 274.706848 294.328766 348.834076 366.275787 392.438354 488.367737;
TRITRIAD11.scl, "Tritriadic scale of the 11:13:15 triad" 1 7 261.62558 309.193848 356.762146 383.717499 421.627991 453.484314 486.493805;
tritriad13.scl, "Tritriadic scale of the 10:13:15 triad" 1 7 261.62558 294.328766 340.11322 348.834076 392.438354 453.484314 510.169861;
tritriad14.scl, "Tritriadic scale of the 14:18:21 triad" 1 7 261.62558 294.328766 336.375732 348.834076 392.438354 448.5 504.563599;
TRITRIAD18.SCL, "Tritriadic scale of the 18:22:27 triad" 1 7 261.62558 294.328766 319.764587 348.834076 392.438354 426.352783 479.646881;
TRITRIAD22.scl, "Tritriadic scale of the 22:27:33 triad" 1 7 261.62558 294.328766 321.085907 348.834076 392.438354 428.114563 481.628876;
TRITRIAD26.scl, "Tritriadic scale of the 26:30:39 triad" 1 7 261.62558 294.328766 301.875641 348.834076 392.438354 402.5 452.813477;
tritriad3.scl, "Tritriadic scale of the 3:5:7 triad. Possibly Mathews’s 3.5.7a" 1 7 261.62558 305.229828 356.101471 373.750793 436.042603 448.5 508.71637;
TRITRIAD32.scl, "Tritriadic scale of the 26:32:39 triad" 1 7 261.62558 294.328766 322. 348.834076 392.438354 429.334259 483.001038;
tritriad3c.scl, "From 1/1 7/6 7/5 a variant of the 3.5.7 triad" 1 7 261.62558 305.229828 366.275787 373.750793 427.321747 436.042603 512.786133;
tritriad3d.scl, "From 1/1 7/6 5/3 a variant of the 3.5.7 triad" 1 7 261.62558 305.229828 313.950684 363.368835 366.275787 436.042603 508.71637;
tritriad5.scl, "Tritriadic scale of the 5:7:9 triad perhaps Mathews’s 5.7.9a." 1 7 261.62558 290.695068 329.648224 366.275787 406.973114 423.833405 470.926025;
tritriad68.scl, "Tritriadic scale of the 6:7:8 triad" 1 7 261.62558 305.229828 348.834076 392.438354 406.973114 457.844727 465.112122;
tritriad68i.scl, "Tritriadic scale of the subharmonic 6:7:8 triad" 1 7 261.62558 299. 348.834076 392.438354 398.667542 448.5 465.112122;
tritriad69.scl, "Tritriadic scale of the 6:7:9 triad septimal natural minor" 1 7 261.62558 294.328766 305.229828 348.834076 392.438354 406.973114 457.844727;
TRITRIAD7.SCL, "Tritriadic scale of the 7:9:11 triad" 1 7 261.62558 264.295227 323.027496 332.977997 336.375732 411.125885 428.114563;
tritriad9.scl, "Tritriadic scale of the 9:11:13 triad" 1 7 261.62558 272.930359 319.764587 362.250793 377.903595 442.750946 461.882172;
tsjerepnin.scl, "Scale from Ivan Tsjerepnin’s Santur Opera (1977) & suite from it Santur Live!" 1 9 261.62558 290.695068 313.950684 348.834076 367.91095 392.438354 418.6 470.926025 490.547943;
tsuda13.scl, "Mayumi Tsuda’s Harmonic-13 scale. 1/1=440 Hz." 1 12 261.62558 281.75061 283.427704 322. 340.11322 362.250793 377.903595 402.5 425.141541 442.750946 485.876038 518.267761;
tuners1.scl, "The Tuner’s Guide well temperament no. 1 (1840)" 1 12 261.62558 276.504578 293.155914 311.067627 328.627533 349.280884 369.119568 391.768158 414.756836 439.06366 466.60144 492.606201;
tuners2.scl, "The Tuner’s Guide well temperament no. 2 (1840)" 1 12 261.62558 276.986176 293.559357 311.279724 329.484894 349.420288 369.901123 391.998688 415.039612 439.9 466.48 493.787689;
tuners3.scl, "The Tuner’s Guide well temperament no. 3 (1840)" 1 12 261.62558 276.918091 293.640503 311.257538 329.381989 349.201172 369.591187 391.887726 415.377106 439.910126 466.335693 493.5224;
turkish.scl, "Turkish 5-limit from Palmer on a Turkish music record harmonic minor inverse" 1 7 261.62558 279.067261 327.031952 348.834076 392.438354 436.042603 465.112122;
turkish_24.scl, "Ra’uf Yaqta Bey 24 of 53 tones Theoretical Turkish gamut" 1 24 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 314.305176 326.663116 331.119843 344.138916 348.834076 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 458.851868 465.112122 489.994659 496.679779 516.208374;
turkish_24a.scl, "Turkish gamut with schismatic simplifications" 1 24 261.62558 275.622009 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 331.119843 344.527496 348.834076 367.91095 372.089691 387.593445 392.438354 413.432983 418.6 436.042603 441.493134 459.37 465.112122 490.547943 496.679779 516.79126;
turkish_41.scl, "Karadeniz’s theoretical Turkish gamut" 1 41 261.62558 266.814453 272.106262 275.427032 281.051971 286.791748 290.627289 294.344055 300.008545 305.958679 310.050568 316.2 322.657501 326.972687 333.265076 339.874817 344.221405 348.825012 355.743378 363.008545 367.863403 375.159363 382.821045 387.493011 392.448547 400.232086 408.17 413.39 421.832489 429.950378 435.952271 441.527557 450.284515 458.95 465.087952 474.586212 483.99881 490.471802 499.910614 509.8255 516.34552;
turkish_41a.scl, "Karadeniz’s theoretical Turkish gamut quantized to subset of 53-tET" 1 41 261.62558 268.559052 272.094421 275.6763 279.305328 286.707367 290.481628 294.305573 298.17984 306.082092 310.111389 314.193756 322.520386 326.766083 335.425903 339.841492 344.315216 348.847839 353.440125 362.806824 367.582886 377.324402 382.291565 387.324097 392.422882 402.822723 408.125519 413.498138 424.456512 430.044128 435.705261 441.440948 453.139832 459.105042 465.148773 477.475952 483.761505 490.129822 503.119019 509.742157 516.452454;
turkish_aeu.scl, "Arel-Ezgi-Uzdilek (AEU) 24 tone theoretical system" 1 24 261.62558 275.622009 279.382385 290.367218 294.328766 310.074738 314.305176 326.663116 331.119843 348.834076 353.593323 367.496002 372.509827 387.156281 392.438354 413.432983 419.073578 435.550812 441.493134 465.112122 471.457764 489.994659 496.679779 516.208374;
turkish_bagl.scl, "Ratios of the 17 frets on the neck of "Baglama" ("saz") according to Yalçýn Tura" 1 17 261.62558 277.015289 285.409698 294.328766 311.642212 321.085907 331.119843 348.834076 369.353729 380.546265 392.438354 415.522949 428.114563 441.493134 465.112122 492.471649 507.39505;
two29.scl, "Two 29-tET scales 25 cents shifted many near just intervals" 1 58 261.62558 265.431 267.954163 271.851654 274.435852 278.427643 281.074341 285.162659 287.873413 292.060638 294.836945 299.125458 301.968933 306.361145 309.273407 313.771912 316.754608 321.361908 324.416748 329.135498 332.264252 337.097137 340.301575 345.251373 348.533325 353.602875 356.964203 362.156372 365.598999 370.916779 374.442688 379.889069 383.5 389.07843 392.776978 398.49 402.278107 408.129364 412.009033 418.001831 421.975342 428.113129 432.182739 438.468994 442.637054 449.075348 453.344238 459.938293 464.310455 471.063995 475.541901 482.458832 487.045044 494.129303 498.826477 506.082062 510.892853 518.323975;
two29a.scl, "Two 29-tET scales 15.8260 cents shifted 13-limit chords Gene Ward Smith" 1 58 261.62558 264.028137 267.954163 270.414856 274.435852 276.956085 281.074341 283.655518 287.873413 290.517029 294.836945 297.544495 301.968933 304.741974 309.273407 312.113556 316.754608 319.663452 324.416748 327.395996 332.264252 335.315521 340.301575 343.426666 348.533325 351.734009 356.964203 360.242279 365.598999 368.95639 374.442688 377.881287 383.5 387.022064 392.776978 396.383972 402.278107 405.972321 412.009033 415.792603 421.975342 425.850433 432.182739 436.151581 442.637054 446.701904 453.344238 457.507416 464.310455 468.57431 475.541901 479.908936 487.045044 491.5177 498.826477 503.407318 510.892853 515.584534;
urmawi.scl, "al-Urmawi one of twelve maqam rows. First tetrachord is Rast" 1 7 261.62558 294.328766 326.663116 348.834076 392.438354 441.493134 471.457764;
valentine.scl, "Robert Valentine tuning with primes 3 & 19 TL 7-2-2002" 1 12 261.62558 276.160309 294.328766 310.680359 330.474396 348.834076 371.783691 392.438354 414.240479 440.632538 466.020538 495.711609;
valentine2.scl, "Robert Valentine two octave 31-tET subset for guitar TL 10-5-2002" 2 16 261.62558 286.103241 312.871033 349.879547 382.614258 418.411621 467.904205 511.681274 559.554138 625.742065 684.286438 748.308167 782.531433 855.744995 935.808411 1046.502319;
Vallotti, & 0 0 293.002258 310.775848 328.141998 349.622833 368.326935 391.553009 414.367798 438.511902 466.163757 491.10257 523.25116;
veroli.scl, "Claudio di Veroli’s well temperament (1978)" 1 12 261.62558 276.876984 293.571503 310.98 329.42 349.282715 369.644104 391.934296 414.976166 439.791656 466.091064 493.492615;
vertex_chrom.scl, "A vertex tetrachord from Chapter 5 66.7000 + 266.7000 + 166.7000 cents" 1 7 261.62558 271.89679 317.175507 349.228241 391.995422 407.384888 448.553894;
vertex_chrom2.scl, "A vertex tetrachord from Chapter 5 83.3000 + 283.3000 + 133.3000 cents" 1 7 261.62558 274.526978 323.341583 349.228241 391.995422 411.325714 484.464996;
vertex_chrom3.scl, "A vertex tetrachord from Chapter 5 87.5000 + 287.5000 + 125 cents" 1 7 261.62558 275.188507 324.901764 349.228241 391.995422 412.316895 486.802582;
vertex_chrom4.scl, "A vertex tetrachord from Chapter 5 88.9000 + 288.9000 + 122.2000 cents" 1 7 261.62558 275.409363 325.423492 349.228241 391.995422 412.647797 487.58429;
vertex_chrom5.scl, "A vertex tetrachord from Chapter 5 133.3000 + 266.7000 + 100 cents" 1 7 261.62558 282.571228 329.627563 349.228241 391.995422 423.378479 493.883301;
vertex_diat.scl, "A vertex tetrachord from Chapter 5 233.3000 + 133.3000 + 133.3000 cents" 1 7 261.62558 299.37381 323.341583 349.228241 391.995422 448.553894 484.464996;
vertex_diat10.scl, "A vertex tetrachord from Chapter 5 212.5000 + 162.5000 + 125 cents" 1 7 261.62558 295.792786 324.901764 349.228241 391.995422 443.188416 486.802582;
VERTEX_DIAT11.scl, "A vertex tetrachord from Chapter 5 212.5000 + 62.5000 + 225 cents" 1 7 261.62558 295.792786 306.666412 349.228241 391.995422 443.188416 459.480469;
vertex_diat12.scl, "A vertex tetrachord from Chapter 5 200 + 125 + 175 cents" 1 7 261.62558 293.664764 315.652435 349.228241 391.995422 440. 472.944275;
vertex_diat2.scl, "A vertex tetrachord from Chapter 5 233.3000 + 166.7000 + 100 cents" 1 7 261.62558 299.37381 329.627563 349.228241 391.995422 448.553894 493.883301;
vertex_diat3.scl, "A vertex tetrachord from Chapter 5 75 + 225 + 200 cents" 1 7 261.62558 273.20871 311.126984 349.228241 391.995422 409.350555 466.163757;
vertex_diat4.scl, "A vertex tetrachord from Chapter 5 225 + 175 + 100 cents" 1 7 261.62558 297.936218 329.627563 349.228241 391.995422 446.4 493.883301;
vertex_diat5.scl, "A vertex tetrachord from Chapter 5 87.5000 + 237.5000 + 175 cents" 1 7 261.62558 275.188507 315.652435 349.228241 391.995422 412.316895 472.944275;
vertex_diat7.scl, "A vertex tetrachord from Chapter 5 200 + 75 + 225 cents" 1 7 261.62558 293.664764 306.666412 349.228241 391.995422 440. 459.480469;
vertex_diat8.scl, "A vertex tetrachord from Chapter 5 100 + 175 + 225 cents" 1 7 261.62558 277.182617 306.666412 349.228241 391.995422 415.304688 459.480469;
vertex_diat9.scl, "A vertex tetrachord from Chapter 5 212.5000 + 137.5000 + 150 cents" 1 7 261.62558 295.792786 320.243713 349.228241 391.995422 443.188416 479.823395;
vertex_sdiat.scl, "A vertex tetrachord from Chapter 5 87.5000 + 187.5000 + 225 cents" 1 7 261.62558 275.188507 306.666412 349.228241 391.995422 412.316895 459.480469;
vertex_sdiat2.scl, "A vertex tetrachord from Chapter 5 75 + 175 + 250 cents" 1 7 261.62558 273.20871 302.269806 349.228241 391.995422 409.350555 452.893005;
vertex_sdiat3.scl, "A vertex tetrachord from Chapter 5 25 + 225 + 250 cents" 1 7 261.62558 265.431 302.269806 349.228241 391.995422 397.697144 452.893005;
vertex_sdiat4.scl, "A vertex tetrachord from Chapter 5 66.7000 + 183.3000 + 250 cents" 1 7 261.62558 271.89682 302.269806 349.228241 391.995422 407.384949 452.893005;
vertex_sdiat5.scl, "A vertex tetrachord from Chapter 5 233.3300 + 16.6700 + 250 cents" 1 7 261.62558 299.373749 302.269806 349.228241 391.995422 448.553802 452.893005;
vicentino1.scl, "Usual Archicembalo tuning 31-tET plus D E G A B a 10th tone higher" 1 36 261.62558 267.54129 273.59079 279.777069 286.103241 292.572449 295.861694 299.187927 305.953003 312.871033 319.945496 327.18 330.858246 334.577911 342.143219 349.879547 357.790833 365.881012 374.154083 382.614258 391.265717 395.66452 400.112793 409.16 418.411621 427.872498 437.547302 442.466431 447.440887 457.558167 467.904205 478.484192 489.303406 494.804413 500.367249 511.681274;
vicentino2.scl, "Alternative Archicembalo tuning lower 3 rows the same upper 3 rows 3/2 higher" 1 36 261.62558 262.409668 273.59079 274.410736 279.777069 280.61557 292.572449 293.44928 305.953003 306.87 312.871033 313.808716 327.18 328.160492 342.143219 343.16861 349.879547 350.928162 365.881012 366.97757 374.154083 391.265717 392.438354 409.16 410.386169 418.411621 419.665588 437.547302 438.858643 457.558167 458.929474 467.904205 469.306519 489.303406 490.769867 511.681274;
vicentino2q217.scl, "Vicentino’s second tuning 217-tET version" 1 36 261.62558 262.462585 273.59079 274.466095 279.777069 280.67218 292.572449 293.508484 305.953003 306.931824 312.871033 313.872009 327.18 328.226654 342.143219 343.237823 349.879547 350.998932 365.881012 367.051575 374.154083 391.265717 392.517487 409.16 410.468964 418.411621 419.750244 437.547302 438.947174 457.558167 459.022034 467.904205 469.401184 489.303406 490.868866 511.681274;
victorian.scl, "Form of Victorian temperament (1885)" 1 12 261.62558 276.542938 293.325714 310.767761 328.297455 349.228241 368.927368 391.995422 414.585663 438.731049 465.894562 492.174591;
victor_eb.scl, "Equal beating Victorian piano temperament interpr. by Bill Bremmer (improved)" 1 12 261.62558 276.453003 293.166321 311.009644 328.528656 348.834076 368.604004 391.839661 414.679504 439.036041 465.777313 492.792999;
vitale1.scl, "Rami Vitale’s 7-limit just scale" 1 16 261.62558 280.31311 294.328766 305.229828 327.031952 336.375732 343.383545 348.834076 373.750793 392.438354 420.469666 441.493134 457.844727 490.547943 504.563599 515.075317;
vitale2.scl, "Rami Vitale inverse mode of vitale1.scl" 1 16 261.62558 274.706848 294.328766 299. 305.229828 313.950684 336.375732 348.834076 366.275787 392.438354 412.060272 441.493134 448.5 457.844727 470.926025 504.563599;
vitale3.scl, "Superset of several Byzantine scales by Rami Vitale TL 29-Aug-2001" 1 23 261.62558 274.706848 280.31311 294.328766 299. 305.229828 313.950684 327.031952 336.375732 343.383545 348.834076 366.275787 373.750793 392.438354 412.060272 420.469666 441.493134 448.5 457.844727 470.926025 490.547943 504.563599 515.075317;
vogelh_wt.scl, "Harald Vogel’s temperament for the Schnitger organ in St. Jakobi Hamburg" 1 12 261.62558 275.248505 292.869873 310.42514 327.84549 349.701843 366.998016 391.464539 412.872772 438.214691 466.269135 490.547943;
vogel_21.scl, "Martin Vogel’s 21-tone Archytas system see Divisions of the tetrachord" 1 21 261.62558 271.315399 279.067261 294.328766 305.229828 310.074738 313.950684 321.55899 330.746399 348.834076 361.753876 372.089691 392.438354 406.973114 413.432983 418.6 428.745331 440.995178 465.112122 482.338501 496.119598;
volans.scl, "African scale according to Kevin Volans 1/1=G" 1 7 261.62558 288.78653 322.098846 352.063782 388.613739 429.950378 482.602997;
vong.scl, "Vong Co Dan Tranh scale Vietnam" 1 7 261.62558 287.788116 324.77655 353.194519 392.438354 431.68219 476.532288;
vries19-72.scl, "Leo de Vries 19/72 Through-Transposing-Tonality 18 tone scale" 1 18 261.62558 271.89679 282.571228 293.664764 305.193817 314.136688 326.469452 339.286377 352.606506 366.449554 377.187347 391.995422 407.384888 423.378479 452.893005 470.673218 489.151489 508.355194;
vries35-72.scl, "Leo de Vries 35/72 Through-Transposing-Tonality 17 tone scale" 1 17 261.62558 320.243713 326.469452 332.816223 339.286377 345.882324 352.606506 359.461395 366.449554 448.553894 457.274048 466.163757 475.226288 484.464996 493.883301 503.484711 513.272766;
vries5-72.scl, "Leo de Vries 5/72 Through-Transposing-Tonality 18 tone scale" 1 18 261.62558 269.291779 274.526978 282.571228 288.064606 296.505554 302.269806 317.175507 332.816223 349.228241 366.449554 384.520111 403.481781 423.378479 444.256348 466.163757 489.151489 513.272766;
vries6-31.scl, "Leo de Vries 6/31 TTT used in "For 31-tone organ" (1995)" 1 11 261.62558 292.572449 299.187927 334.577911 342.143219 382.614258 391.265717 437.547302 447.440887 500.367249 511.681274;
walkerr_11.scl, "Robert Walker "Seven to Pi" scale TL 09-07-2002" 1 11 261.62558 291.475372 299. 333.114716 341.715027 380.702515 390.531464 435.088593 484.729431 497.24411 510.081909;
walker_21.scl, "Douglas Walker 1977 for "out of the fathomless dark/into the limitless light" 1 21 261.62558 279.067261 290.695068 294.328766 299. 305.229828 310.074738 313.950684 327.031952 336.375732 348.834076 392.438354 406.973114 418.6 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 490.547943;
wauchope.scl, "Symmetrical 7-limit JI whole-half step scale Ken Wauchope" 1 8 261.62558 274.706848 305.229828 327.031952 366.275787 392.438354 436.042603 457.844727;
wendell1.scl, "Robert Wendell’s Natural Synchronous well-temperament (2003)" 1 12 261.62558 276.250458 293.354675 310.781769 328.426422 348.834076 369.479736 391.880432 414.375702 438.922943 466.172638 492.639618;
wendell1r.scl, "Rational version of wendell1.scl by Gene Ward Smith" 1 12 261.62558 276.255615 293.368103 310.787537 328.437225 348.834076 369.491852 391.9 414.383392 438.939453 466.181335 492.655823;
wendell2.scl, "Robert Wendell’s Very Mild Synchronous well-temperament (2003)" 1 12 261.62558 276.372223 293.460785 310.918762 328.508698 348.914703 369.572357 392.008575 414.55835 438.923462 466.378143 492.763153;
werck1.scl, "Werckmeister I (just intonation)" 1 20 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 348.834076 363.368835 367.91095 392.438354 408.79 418.6 436.042603 441.493134 459.888702 465.112122 470.926025 490.547943;
werck3.scl, "Andreas Werckmeister’s temperament III (the most famous one 1681)" 1 12 261.62558 275.622009 292.341278 310.074738 327.771637 348.834076 367.496002 391.111115 413.432983 437.028839 465.112122 491.657471;
werck3_eb.scl, "Werckmeister III equal beating version 5/4 beats twice 3/2" 1 12 261.62558 275.622009 292.529266 310.074738 328.063721 348.834076 367.496002 391.410126 413.432983 437.418274 465.112122 492.109772;
werck4.scl, "Andreas Werckmeister’s temperament IV" 1 12 261.62558 274.38 293.002258 310.074738 328.141998 348.834076 367.496002 390.669708 411.57 437.522644 467.217773 489.994659;
werck5.scl, "Andreas Werckmeister’s temperament V" 1 12 261.62558 276.557312 294.328766 311.126984 328.883942 350.017853 369.994415 392.438354 413.432983 440. 466.69046 493.325897;
werck6.scl, "Andreas Werckmeister’s "septenarius" tuning VI" 1 12 261.62558 275.691467 291.355743 310.779449 328.709045 348.834076 368.910858 391.439789 413.53717 438.278717 466.169189 493.063568;
werck6_dup.scl, "Andreas Werckmeister’s VI in the interpretation by Dupont (1935)" 1 12 261.62558 275.622009 291.493622 310.675507 328.565704 348.834076 368.921631 391.679474 413.432983 438.087585 466.013275 492.848541;
white.scl, "Justin White’s 22-tone scale based on Al-Farabi’s tetrachord" 1 22 261.62558 275.933228 289.729889 294.328766 305.229828 310.424866 327.031952 331.119843 343.383545 348.834076 367.91095 386.306488 392.438354 406.973114 413.9 436.042603 441.493134 457.844727 465.112122 490.547943 496.679779 515.075317;
wicks.scl, "Mark Wicks’ equal beating temperament for organs (1887)" 1 12 261.62558 276.657288 293.453766 310.364441 329.260468 348.285004 369.54303 391.938354 414.485931 439.680634 465.046661 493.390717;
wier_cl.scl, "Danny Wier CLownTone (2003)" 1 12 261.62558 276.160309 290.695068 305.229828 319.764587 348.834076 370.63623 392.438354 414.240479 436.042603 457.844727 479.646881;
wiesse.scl, "Von Wiesse’s 1/2 Pyth. comma tuning" 1 12 261.62558 277.495819 294.328766 312.1828 331.119843 348.834076 369.994415 392.438354 416.243713 441.493134 465.112122 496.679779;
wilson1.scl, "Wilson 19-tone 1976" 1 19 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 367.91095 376.740814 392.438354 408.79 418.6 436.042603 459.888702 470.926025 490.547943 502.321075;
wilson11.scl, "Wilson 11-limit 19-tone scale 1977" 1 19 261.62558 271.315399 277.481659 291.355743 305.229828 312.16687 325.578491 332.977997 348.834076 366.275787 374.6 392.438354 406.973114 416.222504 437.0336 457.844727 468.250305 488.367737 499.46698;
wilson2.scl, "Wilson 19-tone 1975" 1 19 261.62558 271.315399 279.067261 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 361.753876 372.089691 392.438354 406.973114 418.6 441.493134 457.844727 470.926025 490.547943 508.71637;
wilson3.scl, "Wilson 19-tone" 1 19 261.62558 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 343.383545 348.834076 366.275787 381.537292 392.438354 412.060272 429.229431 441.493134 457.844727 470.926025 490.547943 515.075317;
wilson5.scl, "Wilson’s 22-tone 5-limit scale" 1 22 261.62558 272.526642 279.067261 290.695068 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 353.194519 367.91095 376.740814 392.438354 408.79 418.6 436.042603 441.493134 459.888702 470.926025 490.547943 502.321075;
wilson7.scl, "Wilson’s 22-tone 7-limit ‘marimba’ scale" 1 22 261.62558 271.315399 279.067261 290.695068 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 353.194519 367.91095 381.537292 392.438354 406.973114 418.6 436.042603 441.493134 457.844727 470.926025 490.547943 508.71637;
wilson7_2.scl, "Wilson 7-limit scale" 1 22 261.62558 263.718567 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 329.648224 343.383545 353.194519 366.275787 376.740814 392.438354 408.79 412.060272 436.042603 439.530945 457.844727 470.926025 490.547943 494.472321;
wilson7_3.scl, "Wilson 7-limit scale" 1 22 261.62558 267.904572 279.067261 290.695068 294.328766 310.074738 313.950684 327.031952 334.880737 348.834076 353.194519 372.089691 376.740814 392.438354 408.79 418.6 436.042603 446.507629 465.112122 470.926025 490.547943 502.321075;
wilson7_4.scl, "Wilson 7-limit 22-tone scale XH 3 1975" 1 22 261.62558 271.315399 279.067261 290.695068 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 361.753876 372.089691 387.593445 392.438354 406.973114 418.6 436.042603 441.493134 457.844727 470.926025 490.547943 508.71637;
wilson_17.scl, "Wilson’s 17-tone 5-limit scale" 1 17 261.62558 275.933228 290.695068 294.328766 310.424866 327.031952 331.119843 348.834076 367.91095 372.509827 392.438354 413.9 436.042603 441.493134 465.112122 490.547943 496.679779;
wilson_31.scl, "Wilson 11-limit 31-tone scale XH 3 1975" 1 31 261.62558 265.778351 271.315399 279.067261 285.409698 294.328766 299. 305.229828 313.950684 321.085907 327.031952 332.222931 339.144257 348.834076 354.371124 361.753876 372.089691 380.546265 392.438354 398.667542 406.973114 418.6 428.114563 441.493134 448.5 457.844727 470.926025 481.628876 490.547943 498.334412 508.71637;
wilson_41.scl, "Wilson 11-limit 41-tone scale XH 3 1975" 1 41 261.62558 265.778351 271.315399 275.622009 279.067261 285.409698 290.695068 294.328766 299. 305.229828 310.074738 313.950684 321.085907 327.031952 331.119843 336.375732 343.383545 348.834076 354.371124 361.753876 367.496002 372.089691 380.546265 387.593445 392.438354 398.667542 406.973114 413.432983 418.6 428.114563 436.042603 441.493134 448.5 457.844727 465.112122 470.926025 481.628876 490.547943 496.679779 504.563599 515.075317;
wilson_alessandro.scl, "D’Alessandro genus [3 3 3 5 7 11 11] plus 8 pigtails XH 12 1989" 1 56 261.62558 265.585724 269.801361 270.503967 275.933228 278.232666 284.556122 286.152954 288.537567 294.328766 295.095245 303.52652 304.316956 305.229828 309.1474 314.76825 321.922089 324.604767 327.031952 331.982147 337.251709 340.062134 343.383545 347.790833 351.187714 354.114288 359.735138 365.180359 367.91095 370.976868 379.408173 386.306488 391.264679 392.438354 393.460327 404.702057 405.755951 413.9 417.348999 419.69101 429.229431 432.806366 441.493134 442.642853 449.668945 456.475464 457.844727 463.7211 472.152374 482.883118 486.907135 490.547943 494.635834 505.877563 515.075317 521.686218;
wilson_bag.scl, "Erv’s bagpipe mar ’97 after Theodore Podnos (37-39)." 1 7 261.62558 294.328766 318.856171 349.515411 392.438354 425.141541 466.020538;
wilson_class.scl, "Class Scale Erv Wilson 9 july 1967" 1 12 261.62558 272.526642 293.02063 305.229828 327.031952 348.834076 366.275787 381.537292 418.6 436.042603 457.844727 488.367737;
wilson_dia1.scl, "Wilson Diaphonic cycles tetrachordal form" 1 22 261.62558 269.1 277.015289 285.409698 294.328766 303.823242 313.950684 324.77655 336.375732 348.834076 362.250793 371.783691 381.831909 392.438354 403.650879 415.522949 428.114563 441.493134 455.734863 470.926025 487.164856 504.563599;
WILSON_DIA2.scl, "Wilson Diaphonic cycle conjunctive form" 1 22 261.62558 268.510437 275.767487 283.427704 291.525635 300.1 309.193848 318.856171 329.141846 340.11322 351.841278 364.407043 377.903595 388.7 400.133209 412.258453 425.141541 438.855774 453.484314 469.121704 485.876038 503.87146;
WILSON_DIA3.SCL, "Wilson Diaphonic cycle on 3/2" 1 22 261.62558 268.510437 275.767487 283.427704 291.525635 300.1 309.193848 318.856171 329.141846 340.11322 351.841278 364.407043 377.903595 392.438354 403.650879 415.522949 428.114563 441.493134 455.734863 470.926025 487.164856 504.563599;
WILSON_DIA4.SCL, "Wilson Diaphonic cycle on 4/3" 1 22 261.62558 269.1 277.015289 285.409698 294.328766 303.823242 313.950684 324.77655 336.375732 348.834076 358.013947 381.831909 377.903595 388.7 400.133209 412.258453 425.141541 438.855774 453.484314 469.121704 485.876038 503.87146;
wilson_duo.scl, "Wilson ‘duovigene'" 1 22 261.62558 271.315399 279.067261 286.152954 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 361.753876 367.91095 381.537292 392.438354 406.973114 418.6 436.042603 441.493134 457.844727 470.926025 490.547943 508.71637;
wilson_enh.scl, "Wilson’s Enharmonic & 3rd new Enharmonic on Hofmann’s list of superp. 4chords" 1 7 261.62558 264.379517 279.067261 348.834076 392.438354 396.569275 418.6;
wilson_enh2.scl, "Wilson’s 81/64 Enharmonic a strong division of the 256/243 pyknon" 1 7 261.62558 265.778351 275.622009 348.834076 392.438354 398.667542 413.432983;
wilson_facet.scl, "Wilson study in ‘conjunct facets’ Hexany based" 1 22 261.62558 271.315399 274.706848 290.695068 294.328766 305.229828 313.950684 327.031952 339.144257 348.834076 353.194519 366.275787 387.593445 392.438354 406.973114 412.060272 436.042603 452.192322 457.844727 470.926025 488.367737 508.71637;
wilson_gh1.scl, "Golden Horagram nr.1: 1phi+0 / 7phi+1" 1 7 261.62558 286.546844 313.84201 343.737183 398.257385 436.193604 477.743439;
wilson_gh11.scl, "Golden Horagram nr.11: 1phi+0 / 3phi+1" 1 7 261.62558 294.511475 316.871246 356.701447 383.782776 432.023651 464.823547;
wilson_gh2.scl, "Golden Horagram nr.2: 1phi+0 / 6phi+1" 1 7 261.62558 290.513611 322.591431 358.211182 382.165283 424.363037 471.220154;
wilson_gh50.scl, "Golden Horagram nr.50: 7phi+2 / 17phi+5" 1 12 261.62558 270.809631 280.316132 306.814972 317.585358 347.607361 359.809723 372.44046 407.64801 421.958038 461.846588 478.059235;
wilson_helix.scl, "Wilson’s Helix Song see David Rosenthal Helix Song XH 7&8 1979" 1 12 261.62558 283.427704 294.328766 305.229828 327.031952 348.834076 359.735138 392.438354 425.141541 436.042603 457.844727 479.646881;
wilson_hypenh.scl, "Wilson’s Hyperenharmonic this genus has a CI of 9/7" 1 7 261.62558 266.382385 271.315399 348.834076 392.438354 399.573578 406.973114;
wilson_l1.scl, "Wilson 11-limit scale" 1 22 261.62558 269.801361 274.706848 286.152954 294.328766 305.229828 314.76825 327.031952 337.251709 343.383545 359.735138 366.275787 377.721924 392.438354 404.702057 419.69101 431.68219 449.668945 457.844727 472.152374 490.547943 503.629211;
wilson_l2.scl, "Wilson 11-limit scale" 1 22 261.62558 267.076111 279.794006 287.788116 294.328766 305.229828 314.76825 327.031952 335.752808 348.834076 359.735138 373.058685 381.537292 392.438354 411.125885 419.69101 436.042603 447.67041 457.844727 479.646881 490.547943 503.629211;
wilson_l3.scl, "Wilson 11-limit scale" 1 22 261.62558 269.801361 274.706848 286.152954 294.328766 305.229828 313.950684 327.031952 332.977997 343.383545 359.735138 366.275787 381.537292 392.438354 406.973114 418.6 429.229431 441.493134 457.844727 470.926025 490.547943 499.46698;
wilson_l4.scl, "Wilson 11-limit scale" 1 22 261.62558 267.076111 274.706848 290.695068 299. 305.229828 313.950684 327.031952 339.144257 348.834076 356.101471 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 457.844727 470.926025 488.367737 508.71637;
wilson_l5.scl, "Wilson 11-limit scale" 1 22 261.62558 267.076111 279.794006 285.409698 299. 305.229828 313.950684 327.031952 332.977997 348.834076 356.101471 366.275787 381.537292 392.438354 406.973114 418.6 436.042603 448.5 457.844727 479.646881 488.367737 508.71637;
wilson_l6.scl, "Wilson 1 3 7 9 11 15 eikosany plus 9/8 and tritone. Used Stearns: Jewel" 1 22 261.62558 267.571594 277.481659 285.409698 294.328766 305.229828 312.16687 327.031952 332.977997 348.834076 356.762146 369.975555 381.537292 392.438354 406.973114 416.222504 436.042603 443.970642 457.844727 475.682831 490.547943 499.46698;
window.scl, "Window lattice" 1 21 261.62558 272.526642 290.695068 294.328766 297.671753 306.592468 327.031952 334.880737 348.834076 363.368835 367.91095 372.089691 376.740814 392.438354 408.79 418.6 446.507629 459.888702 465.112122 470.926025 502.321075;
wonder1.scl, "Wonder Scale gen=~233.54 cents 8/7+1029/1024^7/25 LS 12:14:18:21 M.Schulter" 1 31 261.62558 272.722565 277.862366 283.1 288.434418 293.870361 299.408722 312.108307 317.990387 323.983337 330.089233 336.310181 342.648407 357.182037 363.913574 370.772003 377.759705 384.879059 392.132629 408.765137 416.468872 424.317749 432.314575 440.462128 448.763214 467.79776 476.614014 485.596405 494.748108 504.072296 513.572205;
wonder36.scl, "Wonder Scale 36-tET version" 1 31 261.62558 271.89679 277.182617 282.571228 288.064606 293.664764 299.37381 311.126984 317.175507 323.341583 329.627563 336.035736 342.568481 356.017456 362.93866 369.994415 377.187347 384.520111 391.995422 407.384888 415.304688 423.378479 431.609253 440. 448.553894 466.163757 475.226288 484.464996 493.883301 503.484711 513.272766;
wronski.scl, "Wronski’s scale from Jocelyn Godwin "Music and the Occult" p. 105.0000" 1 12 261.62558 277.977173 294.328766 308.863525 327.031952 348.834076 370.63623 392.438354 416.965759 441.493134 463.295258 494.18161;
wurschmidt.scl, "Wuerschmidt’s normalised 12-tone system" 1 12 261.62558 275.933228 294.328766 313.950684 331.119843 353.194519 367.91095 392.438354 413.9 441.493134 470.926025 490.547943;
WURSCHMIDT1.scl, "Wuerschmidt-1 19-tone scale" 1 19 261.62558 272.526642 279.067261 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 446.507629 465.112122 490.547943 502.321075;
WURSCHMIDT2.scl, "Wuerschmidt-2 19-tone scale" 1 19 261.62558 272.526642 282.555603 294.328766 306.592468 313.950684 327.031952 334.880737 348.834076 363.368835 376.740814 392.438354 408.79 418.6 436.042603 446.507629 465.112122 484.491791 502.321075;
WURSCHMIDT_31.scl, "Wuerschmidt’s 31-tone system" 1 31 261.62558 267.904572 272.526642 279.067261 287.43042 294.328766 301.392639 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 357.206116 363.368835 376.740814 383.24057 392.438354 401.856873 408.79 418.6 428.647339 436.042603 446.507629 454.21106 465.112122 476.274811 490.547943 502.321075 510.987427;
WURSCHMIDT_31a.scl, "Wuerschmidt’s 31-tone system with alternative tritone" 1 31 261.62558 267.904572 272.526642 279.067261 287.43042 294.328766 301.392639 306.592468 313.950684 319.367157 327.031952 334.880737 340.658295 348.834076 357.206116 363.368835 372.089691 383.24057 392.438354 401.856873 408.79 418.6 428.647339 436.042603 446.507629 454.21106 465.112122 476.274811 490.547943 502.321075 510.987427;
wurschmidt_53.scl, "Wuerschmidt’s 53-tone system" 1 53 261.62558 264.895874 267.904572 272.526642 275.933228 279.067261 282.555603 287.43042 290.695068 294.328766 297.671753 301.392639 306.592468 310.074738 313.950684 319.367157 321.485504 327.031952 331.119843 334.880737 340.658295 344.916504 348.834076 353.194519 357.206116 363.368835 367.91095 372.089691 376.740814 383.24057 387.593445 392.438354 396.89566 401.856873 408.79 413.432983 418.6 425.822845 428.647339 436.042603 441.493134 446.507629 454.21106 459.888702 465.112122 470.926025 476.274811 484.491791 490.547943 496.119598 502.321075 510.987427 516.79126;
wurschmidt_temp.scl, "Wuerschmidt temperament 5-limit g=387.722" 1 31 261.62558 270.261993 276.073578 282.010101 288.07431 294.26889 300.59668 307.060577 313.663422 320.408264 327.298157 338.102509 345.372864 352.8 360.385986 368.135529 376.051727 384.138123 392.398438 400.836365 409.455719 422.972137 432.067505 441.358459 450.849182 460.544006 470.447296 480.563538 490.897308 501.453308 512.236267;
xenakis_chrom.scl, "Xenakis’s Byzantine Liturgical mode 5 + 19 + 6 parts" 1 7 261.62558 274.526978 329.627563 349.228241 391.995422 411.325714 493.883301;
xenakis_diat.scl, "Xenakis’s Byzantine Liturgical mode 12 + 11 + 7 parts" 1 7 261.62558 293.664764 326.469452 349.228241 391.995422 440. 489.151489;
xenakis_schrom.scl, "Xenakis’s Byzantine Liturgical mode 7 + 16 + 7 parts" 1 7 261.62558 279.863953 326.469452 349.228241 391.995422 419.322174 489.151489;
xenoga24.scl, "M. Schulter 3+7 ratios Xeno-Gothic adaptive tuning (keyboards 64:63 apart)" 1 24 261.62558 265.778351 279.382385 283.817017 294.328766 299. 310.074738 314.996552 331.119843 336.375732 348.834076 354.371124 372.509827 378.422699 392.438354 398.667542 419.073578 425.725525 441.493134 448.5 465.112122 472.494843 496.679779 504.563599;
xylophone.scl, "Observed south Pacific pentatonic xylophone tuning" 1 5 261.62558 294.004211 323.964752 388.613739 440.763123;
xylophone2.scl, "African Yaswa xylophones (idiophone calbash resonators with membrane)" 2 11 261.62558 295.195404 332.68808 388.838257 446.657867 506.596405 527.195068 579.578247 633.130798 751.186035 842.690857;
xylophone3.scl, "African Banyoro xylophone (idiophone loose log)" 1 5 261.62558 292.479767 348.02 392.438354 442.293335;
xylophone4.scl, "African Bapare xylophone (idiophone loose-log)" 2 11 261.62558 281.702087 314.197174 349.631897 391.769073 436.960693 505.719299 568.963806 597.941162 660.78 716.435486;
yasser_6.scl, "Yasser Hexad 6 of 19 as whole tone scale" 1 6 261.62558 291.884644 325.643402 363.306641 405.325928 452.205078;
yasser_diat.scl, "Yasser’s Supra-Diatonic the flat notes are V W X Y and Z" 1 12 261.62558 281.428162 291.884644 313.977539 325.643402 350.291534 376.805328 390.805542 420.385834 436.00528 469.006775 486.432739;
yasser_ji.scl, "Yasser’s just scale 2 Yasser hexads 121/91 apart" 1 12 261.62558 282.649048 294.328766 304.391296 327.031952 347.875763 359.735138 391.360229 425.141541 434.844696 457.844727 478.329163;
young-g.scl, "Gayle Young’s Harmonium see PNM 26(2): 204-212 (1988)" 2 29 261.62558 299.075073 319.764587 341.885376 390.823364 446.76651 477.673004 510.717407 583.822571 667.392029 713.560913 762.923584 872.13 996.968323 1065.936646 1139.676025 1302.811523 1489.298462 1592.324707 1702.479126 1946.174805 2224.754639 2378.658203 2543.209717 2907.249023 3323.4 3553.304443 3799.115967 4342.927734;
YOUNG-LM_GUITAR.scl, "LaMonte Young Tuning of For Guitar ’58. 1/1 March ’92 inv.of Mersenne lute 1" 1 12 261.62558 279.067261 290.695068 313.950684 327.031952 348.834076 367.91095 392.438354 418.6 436.042603 470.926025 490.547943;
YOUNG-LM_PIANO.scl, "LaMonte Young’s Well-Tempered Piano" 1 12 261.62558 289.729889 294.328766 300.460602 343.383545 338.018188 386.306488 392.438354 400.614136 457.844727 450.690918 515.075317;
young-w10.scl, "William Lyman Young 10 out of 24-tET (1961)" 1 10 261.62558 277.182617 302.269806 320.243713 349.228241 369.994415 391.995422 427.47406 452.893005 493.883301;
young-w14.scl, "William Lyman Young 14 out of 24-tET (1961)" 1 14 261.62558 277.182617 293.664764 302.269806 320.243713 339.286377 359.461395 369.994415 391.995422 415.304688 427.47406 452.893005 479.823395 508.355194;
young-wt.scl, "William Lyman Young "exquisite 3/4 tone Hellenic Lyre" dorian" 1 7 261.62558 285.409698 309.193848 348.834076 392.438354 428.114563 463.790771;
young.scl, "Thomas Young well temperament (1807) also Luigi Malerbi nr.2 (1794)" 1 12 261.62558 275.622009 293.002258 310.074738 328.141998 348.834076 367.496002 391.553009 413.432983 438.511902 465.112122 491.10257;
young2.scl, "Thomas Young well temperament no.2 (1799)" 1 12 261.62558 276.245178 293.002258 310.775848 328.141998 349.228241 368.326935 391.553009 414.367798 438.511902 466.163757 491.657471;
yugo_bagpipe.scl, "Yugoslavian Bagpipe" 1 12 261.62558 277.022583 294.004211 322.471161 341.843719 381.937561 404.4151 430.198822 452.63147 463.746643 478.992645 502.226044;
yves.scl, "St Yves’s scale II from Jocelyn Godwin "Music and the Occult" 1995.0000" 1 7 261.62558 290.695068 327.031952 348.834076 392.438354 436.042603 465.112122;
zalzal.scl, "Tuning of popular flute by Al Farabi & Zalzal. First tetrachord is modern Rast" 1 7 261.62558 294.328766 321.085907 348.834076 392.438354 428.114563 465.112122;
zalzal2.scl, "Zalzal’s Scale a medieval Islamic with Ditone Diatonic & 10/9 x 13/12 x 72/65" 1 7 261.62558 294.328766 331.119843 348.834076 387.593445 419.892883 465.112122;
zarlino.scl, "Ptolemy’s Intense Diatonic Systonon also Zarlino’s scale" 1 7 261.62558 294.328766 327.031952 348.834076 392.438354 436.042603 490.547943;
zarlino2.scl, "16-note choice system of Zarlino Sopplimenti musicali (1588)" 1 16 261.62558 272.526642 290.695068 294.328766 310.074738 313.950684 327.031952 348.834076 363.368835 367.91095 392.438354 408.79 436.042603 465.112122 470.926025 490.547943;
zesster_a.scl, "Harmonic six-star group A from Fokker" 1 8 261.62558 279.067261 313.950684 334.880737 348.834076 392.438354 418.6 502.321075;
zesster_b.scl, "Harmonic six-star group B from Fokker" 1 8 261.62558 293.02063 299. 334.880737 366.275787 418.6 457.844727 478.401031;
zesster_c.scl, "Harmonic six-star group C on Eb from Fokker" 1 8 261.62558 299. 305.229828 348.834076 398.667542 406.973114 457.844727 465.112122;
zesster_mix.scl, "Harmonic six-star groups A B and C mixed from Fokker" 1 16 261.62558 274.706848 279.067261 293.02063 299. 313.950684 334.880737 348.834076 358.8 366.275787 392.438354 418.6 457.844727 478.401031 488.367737 502.321075;
zir_Bouzourk.scl, "Zirafkend Bouzourk (IG #3 DF #9) from both Rouanet and Safi al-Din" 1 6 261.62558 281.75061 305.229828 313.950684 353.194519 392.438354;
zwolle.scl, "Henri Arnaut De Zwolle. Pythagorean on G flat." 1 12 261.62558 275.622009 294.328766 310.074738 331.119843 348.834076 367.496002 392.438354 413.432983 441.493134 465.112122 496.679779;
zwolle2.scl, "Henri Arnaut De Zwolle’s modified meantone tuning" 1 12 261.62558 273.374298 292.506287 311.683868 327.031952 349.919128 365.632843 391.221466 408.79 437.398895 467.042053 489.026825;

Apr 09 2016 | 1:38 pm

I have created an editor in Max for MaxScore capable of reading scala files, displaying them in music notation and also outputting messages for microtonal playback. This is part of the MaxScore release. Refer to http://www.computermusicnotation.com/?page_id=443 for more information.

Apr 09 2016 | 1:40 pm

for umenu:

05-19.scl, 05-22.scl, 05-24.scl, 06-41.scl, 07-19.scl, 07-37.scl, 08-11.scl, 08-13.scl, 08-19.scl, 08-19a.scl, 08-37.scl, 09-15.scl, 09-19.scl, 09-22.scl, 09-23.scl, 09-29.scl, 10-13.scl, 10-19.scl, 10-29.scl, 10-48.scl, 10-72.scl, 11-19-gould.scl, 11-19-krantz.scl, 11-19-mandel.scl, 11-19-mclaren.scl, 11-23.scl, 11-31.scl, 12-19.scl, 12-22.scl, 12-22a.scl, 12-31.scl, 12-43.scl, 12-46.scl, 12-50.scl, 12-55.scl, 12-70.scl, 12-91.scl, 13-19.scl, 13-31.scl, 14-19.scl, 14-26.scl, 14-26a.scl, 15-27-gram.scl, 15-27.scl, 15-37.scl, 16-139.scl, 17-31.scl, 17-53.scl, 19-31.scl, 19-31a.scl, 19-31ji.scl, 19-36.scl, 19-50.scl, 19-53.scl, 19-55.scl, 19-any.scl, 20-31.scl, 20-55.scl, 21-any.scl, 22-41.scl, 22-46.scl, 22-53.scl, 24-36.scl, 24-41.scl, 24-60.scl, 24-94.scl, 28-any.scl, 30-29-min3.scl, 56-any.scl, 70-any.scl, abell1.scl, abell2.scl, abell3.scl, abell4.scl, abell5.scl, abell6.scl, abell7.scl, abell8.scl, abell9.scl, ad-dik.scl, adjeng.scl, AEOLIC.SCL, agricola.scl, al-din.scl, al-din_19.scl, al-farabi.scl, al-farabi_19.scl, al-farabi_blue.scl, al-farabi_chrom.scl, al-farabi_chrom2.scl, al-farabi_diat.scl, AL-FARABI_DIAT2.scl, al-farabi_div.scl, al-farabi_div2.scl, al-farabi_divo.scl, AL-FARABI_dor.scl, AL-FARABI_DOR2.scl, al-farabi_g1.scl, al-farabi_g10.scl, al-farabi_g11.scl, al-farabi_g12.scl, al-farabi_g3.scl, al-farabi_g4.scl, al-farabi_g5.scl, al-farabi_g6.scl, al-farabi_g7.scl, al-farabi_g8.scl, al-farabi_g9.scl, Al-Hwarizmi.scl, al-kindi.scl, al-kindi2.scl, al-mausili.scl, albion.scl, alembert.scl, alembert2.scl, alves.scl, angklung.scl, appunn.scl, arabic.scl, arabic_s.scl, ARCH_CHROM.SCL, ARCH_CHROMc2.scl, ARCH_DOR.SCL, arch_enh.scl, ARCH_ENH2.SCL, arch_enh3.scl, ARCH_ENHp.scl, arch_enht.scl, ARCH_ENHt2.scl, ARCH_ENHT3.scl, arch_enht4.scl, ARCH_ENHT5.scl, arch_enht6.scl, arch_enht7.scl, arch_mult.scl, arch_ptol.scl, arch_ptol2.scl, arch_sept.scl, ariel1.scl, ariel2.scl, ariel3.scl, ariel_19.scl, ariel_31.scl, arist_archenh.scl, arist_chrom.scl, arist_chrom2.scl, arist_chrom3.scl, ARIST_CHROM4.scl, arist_chromenh.scl, ARIST_CHROMINV.scl, arist_chromrej.scl, ARIST_CHROMunm.scl, arist_diat.scl, arist_diat2.scl, arist_diat3.scl, arist_diat4.scl, arist_diatdor.scl, arist_diatinv.scl, arist_diatred.scl, arist_diatred2.scl, arist_diatred3.scl, arist_enh.scl, arist_enh2.scl, arist_enh3.scl, arist_hemchrom.scl, arist_hemchrom2.scl, ARIST_HEMCHROM3.scl, arist_hypenh2.scl, arist_hypenh3.scl, arist_hypenh4.scl, ARIST_HYPENH5.scl, arist_intdiat.scl, ARIST_PENH2.SCL, arist_penh3.scl, arist_pschrom2.scl, arist_softchrom.scl, ARIST_SOFTCHROM2.scl, arist_SOFTCHROM3.scl, ARIST_SOFTCHROM4.scl, ARIST_SOFTCHROM5.scl, arist_softdiat.scl, ARIST_SOFTDIAT2.SCL, arist_SOFTDIAT3.scl, arist_softdiat4.scl, arist_softdiat5.scl, arist_softdiat6.scl, ARIST_SOFTDIAT7.scl, arist_synchrom.scl, arist_syndiat.scl, arist_unchrom.scl, arist_unchrom2.scl, arist_unchrom3.scl, arist_unchrom4.scl, arith13.scl, arith22.scl, aron-neidhardt.scl, artusi.scl, art_nam.scl, ATHAN_CHROM.SCL, auftetf.scl, augmented.scl, augteta.scl, AUGTETA2.scl, augtetb.scl, augtetc.scl, augtetd.scl, augtete.scl, augtetg.scl, augteth.scl, augtetj.scl, augtetk.scl, augtetl.scl, avg_bac.scl, avicenna.scl, avicenna_19.scl, AVICENNA_chrom.scl, AVICENNA_CHROM2.SCL, AVICENNA_CHROM3.scl, AVICENNA_diat.scl, avicenna_diff.scl, AVICENNA_enh.scl, awad.scl, awraamoff.scl, ayers.scl, ayers_19.scl, ayers_ap.scl, ayers_me.scl, b10_13.scl, b12_17.scl, b14_19.scl, b15_21.scl, b8_11.scl, bach2.scl, badings1.scl, badings2.scl, bagpipe2.scl, bagpipe3.scl, bagpipe4.scl, balafon.scl, balafon2.scl, balafon3.scl, balafon4.scl, bamboo.scl, bapere.scl, BARBOUR_chrom1.scl, barbour_chrom2.scl, BARBOUR_CHROM3.SCL, BARBOUR_CHROM3p.scl, BARBOUR_CHROM3P2.scl, BARBOUR_CHROM4.SCL, BARBOUR_CHROM4p.scl, BARBOUR_CHROM4P2.scl, barca.scl, barca_a.scl, barkechli.scl, barnes.scl, beardsley_8.scl, becket.scl, belet.scl, bellingwolde.scl, bellingwolde_org.scl, bemetzrieder2.scl, bendeler.scl, bermudo.scl, bethisy.scl, bey-r.scl, bey_24.scl, biezen.scl, biggulp.scl, billeter.scl, blackjack.scl, blackjack_r.scl, blackwood_6.scl, blackwood_9.scl, blasquinten.scl, boeth_chrom.scl, boeth_enh.scl, bohlen-eg.scl, bohlen-p.scl, BOHLEN-P_9.scl, bohlen-p_9a.scl, BOHLEN-P_EB.scl, bohlen-p_ebt.scl, bohlen-p_ebt2.scl, bohlen-p_et.scl, bohlen5.scl, bohlen_11.scl, bohlen_12.scl, bohlen_8.scl, bohlen_coh.scl, bohlen_delta.scl, BOHLEN_D_JI.scl, bohlen_enh.scl, bohlen_eq.scl, bohlen_gamma.scl, BOHLEN_G_JI.scl, bohlen_harm.scl, bohlen_h_ji.scl, bohlen_lambda.scl, bohlen_lambda_pyth.scl, bohlen_l_ji.scl, bohlen_mean.scl, bohlen_pyth.scl, bohlen_t.scl, bohlen_t_ji.scl, bolivia.scl, Boomsliter.scl, bossard.scl, boulliau.scl, bps_temp17.scl, breed-blues1.scl, breed-blues2.scl, breed-dias13.scl, breed-ht.scl, breed-kleismic.scl, breed-magic.scl, breed-mult29.scl, breed.scl, breed4-3.scl, breed7-3.scl, breedt1.scl, breedt2.scl, breedt3.scl, brown.scl, bulgaria.scl, burma.scl, burma2.scl, burma3.scl, burt-forks.scl, burt1.scl, burt10.scl, burt11.scl, burt12.scl, burt13.scl, burt14.scl, burt15.scl, burt16.scl, burt17.scl, burt18.scl, burt19.scl, burt2.scl, burt20.scl, burt3.scl, burt4.scl, burt5.scl, burt6.scl, burt7.scl, burt8.scl, burt9.scl, bushmen.scl, cairo.scl, canright.scl, carlos_alpha.scl, carlos_alpha2.scl, carlos_beta.scl, carlos_beta2.scl, carlos_Gamma.scl, carlos_harm.scl, carlos_super.scl, carlson.scl, cassandra1.scl, cassandra2.scl, catler.scl, ceb88f.scl, ceb88s.scl, ceb88t.scl, cet105.scl, cet105a.scl, cet111.scl, cet111a.scl, cet112.scl, cet114.scl, cet117.scl, cet118.scl, cet126.scl, cet126a.scl, cet133.scl, cet140.scl, cet141.scl, cet146.scl, cet148.scl, cet152.scl, cet158.scl, cet159.scl, cet160.scl, cet160a.scl, cet163.scl, cet163a.scl, cet166.scl, cet173.scl, cet175.scl, cet175a.scl, cet178.scl, cet181.scl, cet182.scl, cet195.scl, cet21k.scl, cet222.scl, cet233.scl, cet24.scl, cet258.scl, cet29.scl, cet39.scl, cet39a.scl, cet39b.scl, cet39c.scl, cet39d.scl, cet39e.scl, cet44.scl, cet45.scl, cet45a.scl, cet49.scl, cet49a.scl, cet49b.scl, cet51.scl, cet53.scl, cet54.scl, cet54a.scl, cet54b.scl, cet55.scl, cet55a.scl, cet63.scl, cet63a.scl, cet67.scl, cet70.scl, cet78.scl, cet79.scl, cet80.scl, cet84.scl, cet87.scl, cet88.scl, cet88b.scl, cet88bis.scl, cet88bm.scl, cet88c.scl, cet88_appr.scl, cet89.scl, cet90.scl, cet93.scl, cet98.scl, cet99.scl, chahargah.scl, Chahargah2.scl, chalmers.scl, CHALMERS_17.scl, chalmers_19.scl, chalmers_csurd.scl, chalmers_isurd.scl, chalmers_ji1.scl, chalmers_ji2.scl, chalmers_ji3.scl, chalmers_ji4.scl, chalmers_surd.scl, CHALMERS_SURD2.scl, chalung.scl, chaumont.scl, chaumont2.scl, chimes.scl, chimes_peck.scl, chin_12.scl, chin_5.scl, chin_60.scl, chin_7.scl, chin_bianzhong.scl, chin_bianzhong2a.scl, CHIN_BIANZHONG2B.scl, chin_bianzhong3.scl, CHIN_BRONZE.scl, chin_chime.scl, chin_ching.scl, chin_di.scl, chin_huang.scl, chin_liu-an.scl, chin_lu.scl, chin_lu2.scl, chin_lu3.scl, chin_lu3a.scl, chin_lu4.scl, chin_lu5.scl, chin_lusheng.scl, chin_pan.scl, chin_pipa.scl, chin_sheng.scl, chin_sientsu.scl, chin_sona.scl, chin_titsu.scl, chin_wang-po.scl, chin_yangqin.scl, chin_yunlo.scl, choquel.scl, chordal.scl, CHROM15.scl, chrom15_inv.scl, CHROM15_INV2.scl, chrom17.scl, chrom17_con.scl, chrom19.scl, chrom19_con.scl, chrom21.scl, chrom21_inv.scl, CHROM21_INV2.scl, chrom23.scl, chrom23_con.scl, chrom25.scl, chrom25_con.scl, chrom27.scl, chrom27_inv.scl, chrom27_inv2.scl, chrom29.scl, chrom29_con.scl, chrom31.scl, chrom31_con.scl, chrom33.scl, chrom33_con.scl, chrom_new.scl, chrom_new2.scl, chrom_soft.scl, CHROM_SOFT2.scl, chrom_soft3.scl, cifariello.scl, ckring1.scl, ckring2.scl, clampitt-phi.scl, cluster.scl, cluster6a.scl, cluster6b.scl, cluster6c.scl, cluster6d.scl, CLUSTER6e.scl, CLUSTER6f.scl, CLUSTER6g.scl, CLUSTER6h.scl, CLUSTER6i.scl, CLUSTER6j.scl, cluster8a.scl, cluster8b.scl, cluster8c.scl, cluster8d.scl, cluster8e.scl, CLUSTER8f.scl, CLUSTER8g.scl, CLUSTER8h.scl, CLUSTER8i.scl, CLUSTER8j.scl, cohenf_11.scl, coleman.scl, collengettes.scl, colonna1.scl, colonna2.scl, concertina.scl, cons11.scl, cons12.scl, cons13.scl, cons14.scl, cons15.scl, cons16.scl, cons17.scl, cons18.scl, cons19.scl, cons20.scl, cons21.scl, cons8.scl, cons9.scl, cons_5.scl, cons_7.scl, cons_7a.scl, cont_frac1.scl, cont_frac2.scl, cordier.scl, corner11.scl, corner13.scl, corner17.scl, CORNER17a.scl, corner7.scl, corner9.scl, corners11.scl, corners13.scl, corners7.scl, corrette.scl, coul1.scl, coul_12.scl, coul_12a.scl, coul_13.scl, coul_20.scl, coul_27.scl, COUL_31.scl, cross13.scl, cross2.scl, cross2_5.scl, cross2_7.scl, cross3.scl, cross_7.scl, cross_72.scl, cross_7a.scl, cruciform.scl, DANIELOU5_53.scl, danielou_53.scl, dan_semantic.scl, darreg.scl, darreg_ennea.scl, darreg_genus.scl, DARREG_GENUS2.scl, david11.scl, david7.scl, degung1.scl, degung2.scl, degung3.scl, degung4.scl, degung5.scl, degung6.scl, dekany.scl, dekany2.scl, dekany3.scl, dekany4.scl, dekany_union.scl, de_caus.scl, diacycle13.scl, diamond11a.scl, diamond11ak.scl, diamond11at.scl, diamond15.scl, diamond17.scl, DIAMOND17A.scl, diamond19.scl, diamond7.scl, diamond9.scl, diamond_chess.scl, DIAMOND_CHESS11.scl, diamond_mod.scl, diamond_tetr.scl, diaphonic_10.scl, diaphonic_12.scl, DIAPHONIC_12a.scl, diaphonic_5.scl, diaphonic_7.scl, diat13.scl, diat15.scl, diat15_inv.scl, diat17.scl, diat19.scl, diat21.scl, diat21_inv.scl, diat23.scl, diat25.scl, diat27.scl, diat27_inv.scl, diat29.scl, diat31.scl, diat33.scl, diat_chrom.scl, diat_dies2.scl, diat_dies5.scl, diat_enh.scl, DIAT_ENH2.scl, diat_enh3.scl, diat_enh4.scl, DIAT_ENH5.scl, DIAT_ENH6.scl, diat_eq.scl, diat_eq2.scl, diat_gold.scl, diat_hemchrom.scl, diat_smal.scl, diat_sofchrom.scl, diat_soft.scl, diat_soft2.scl, diat_soft3.scl, diat_soft4.scl, didy_chrom.scl, didy_chrom1.scl, DIDY_CHROM2.scl, DIDY_CHROM3.scl, didy_diat.scl, didy_diatinv.scl, didy_enh.scl, didy_enh2.scl, diesic-m.scl, diesic-t.scl, dimteta.scl, dimtetb.scl, div_fifth1.scl, div_fifth2.scl, div_fifth3.scl, div_fifth4.scl, div_fifth5.scl, dkring1.scl, dkring2.scl, dkring3.scl, dkring4.scl, dodeceny.scl, dorian_chrom.scl, dorian_chrom2.scl, dorian_chrominv.scl, DORIAN_DIAT.SCL, dorian_diat2.scl, DORIAN_DIAT2INV.scl, dorian_diatcon.scl, dorian_diatred11.scl, DORIAN_ENH.SCL, dorian_enh2.scl, DORIAN_ENHinv.scl, DORIAN_PENT.scl, dorian_pis.scl, dorian_schl.scl, dorian_tri1.scl, dorian_tri2.scl, dowland_12.scl, dow_high.scl, dow_lmh.scl, dow_low.scl, dow_middle.scl, druri.scl, dudon_a.scl, dudon_b.scl, dudon_c12.scl, dudon_diat.scl, dudon_mohajira.scl, dudon_mohajira_r.scl, dudon_moha_baya.scl, dudon_thai.scl, dudon_thai2.scl, dudon_thai3.scl, duncan.scl, duoden12.scl, duodenarium.scl, duodene.scl, duodene14-18-21.scl, duodene3-11_9.scl, DUODENE3-7.SCL, DUODENE6-7-9.scl, DUODENE_MIN.scl, duodene_r-45.scl, duodene_r45.scl, duodene_r90.scl, duodene_skew.scl, duodene_t.scl, efg333.scl, efg333333333337.scl, efg333333355.scl, efg33335.scl, efg3333555.scl, efg33335555.scl, efg333355577.scl, efg33337.scl, efg3335.scl, efg33355.scl, efg333555.scl, efg33355555.scl, efg333555777.scl, efg333557.scl, efg33357.scl, EFG3335711.SCL, efg333577.scl, efg3337.scl, efg33377.scl, efg335.scl, efg3355.scl, efg33555.scl, efg335555577.scl, efg33557.scl, efg335577.scl, efg3357.scl, efg33577.scl, efg337.scl, efg3377.scl, efg33777.scl, efg33777a.scl, efg355.scl, efg3555.scl, efg35557.scl, efg3557.scl, efg35577.scl, efg357.scl, EFG35711.scl, efg3571113.scl, efg3577.scl, efg35777.scl, efg35777a.scl, efg377.scl, efg3777.scl, efg37777.scl, efg37777a.scl, efg555.scl, efg55557.scl, efg5557.scl, efg55577.scl, efg557.scl, efg5577.scl, efg55777.scl, efg577.scl, efg5777.scl, efg57777.scl, efg777.scl, efg77777.scl, Eikosany.scl, ekring1.scl, ekring2.scl, ekring3.scl, EKRING4.SCL, ekring5.scl, ekring5bp.scl, ekring6.scl, ekring7.scl, ekring7bp.scl, ellis.scl, ellis_24.scl, ellis_eb.scl, ellis_harm.scl, ellis_mteb.scl, enh14.scl, enh15.scl, enh15_inv.scl, ENH15_INV2.scl, enh17.scl, enh17_con.scl, enh19.scl, enh19_con.scl, enh2.scl, enh21.scl, enh21_inv.scl, enh21_inv2.scl, enh23.scl, enh23_con.scl, enh25.scl, enh25_con.scl, enh27.scl, enh27_inv.scl, enh27_inv2.scl, enh29.scl, enh29_con.scl, enh31.scl, enh31_con.scl, enh33.scl, enh33_con.scl, enh_invcon.scl, enh_mod.scl, enh_perm.scl, ennea45.scl, epimore_enh.scl, eratos_chrom.scl, ERATOS_DIAT.SCL, eratos_enh.scl, erlangen.scl, erlangen2.scl, erlich1.scl, erlich10.scl, erlich10s1.scl, erlich10s2.scl, erlich11.scl, erlich11s1.scl, erlich11s2.scl, erlich12.scl, erlich13.scl, erlich2.scl, erlich3.scl, erlich4.scl, erlich5.scl, erlich6.scl, erlich7.scl, erlich8.scl, erlich9.scl, erlich_bp.scl, erlich_bpf.scl, erlich_bpp.scl, erlich_bpp2.scl, erlich_bppe.scl, ERLICH_BPPM.scl, erlich_paj.scl, erlich_paj2.scl, et-mix6.scl, et7a.scl, euler.scl, euler20.scl, euler24.scl, euler_diat.scl, euler_enh.scl, euler_gm.scl, exp2.scl, exp3.scl, far12_104.scl, far12_65.scl, far12_80.scl, farey3.scl, farey4.scl, farey5.scl, farnsworth.scl, fibo_9.scl, finnamore.scl, finnamore53.scl, finnamore_11.scl, finnamore_7.scl, finnamore_7a.scl, finnamore_jc.scl, fisher.scl, Fisk-Vogel.scl, fj-10tet.scl, fj-11tet.scl, fj-12tet.scl, fj-13tet.scl, fj-14tet.scl, fj-15tet.scl, fj-16tet.scl, fj-17tet.scl, fj-18tet.scl, fj-19tet.scl, fj-20tet.scl, fj-21tet.scl, fj-22tet.scl, fj-23tet.scl, fj-24tet.scl, fj-26tet.scl, fj-30tet.scl, fj-31tet.scl, fj-36tet.scl, fj-41tet.scl, fj-42tet.scl, fj-43tet.scl, fj-53tet.scl, fj-54tet.scl, fj-55tet.scl, fj-5tet.scl, fj-60tet.scl, fj-66tet.scl, fj-6tet.scl, fj-72tet.scl, fj-78tet.scl, fj-7tet.scl, fj-84tet.scl, fj-8tet.scl, fj-90tet.scl, fj-96tet.scl, fj-9tet.scl, flavel.scl, fogliano.scl, fogliano1.scl, fogliano2.scl, fokker-h.scl, fokker-ht.scl, fokker-k.scl, Fokker-L.scl, fokker-lt.scl, fokker-m.scl, fokker-n.scl, fokker-n2.scl, fokker-p.scl, fokker-q.scl, fokker-r.scl, fokker-s.scl, fokker_12.scl, fokker_12a.scl, fokker_12b.scl, fokker_12c.scl, fokker_12t.scl, fokker_12t2.scl, fokker_22.scl, fokker_22a.scl, FOKKER_31.scl, FOKKER_31A.scl, FOKKER_31B.SCL, fokker_31c.scl, fokker_31d.scl, fokker_41.scl, fokker_41a.scl, fokker_41b.scl, fokker_53.scl, fokker_53a.scl, fokker_53b.scl, fokker_av.scl, fokker_sr.scl, fokker_sr2.scl, fokker_sra.scl, fokker_srb.scl, fokker_uv.scl, foote.scl, forster.scl, fortuna.scl, fortuna_a1.scl, fortuna_a2.scl, fortuna_bag.scl, fortuna_eth.scl, fortuna_sheng.scl, galilei.scl, gamelan.scl, gamelan_om.scl, gamelan_udan.scl, ganassi.scl, gann_custer.scl, gann_frac.scl, gann_ghost.scl, gann_super.scl, gann_things.scl, garcia.scl, GENOVESE.SCL, GENOVESE_38.scl, gf1-2.scl, gf2-3.scl, gilson7.scl, GILSON7a.scl, GILSON_10.scl, GOLDEN_5.scl, gradus10.scl, gradus3.scl, gradus4.scl, gradus5.scl, golden_10.scl, gradus6.scl, gradus7.scl, gradus8.scl, gradus9.scl, grady.scl, grady7.scl, grady7t.scl, grammateus.scl, graupner.scl, groenewald_21.scl, groven.scl, groven_ji.scl, gumbeng.scl, gunkali.scl, gyaling.scl, h10_27.scl, h12_24.scl, h14_27.scl, h15_24.scl, hahn9.scl, hahn_7.scl, hahn_g.scl, halfefg357777.scl, hamilton.scl, hamilton_jc.scl, hamilton_jc2.scl, hammond.scl, hammond12.scl, handblue.scl, handel.scl, hanson_19.scl, harm-doreninv1.scl, harm-dorinv1.scl, harm-lydchrinv1.scl, harm-lydeninv1.scl, harm-mixochrinv1.scl, HARM-MIXOeninv1.scl, harm10.scl, harm11s.scl, harm12s.scl, harm15-30.scl, harm15.scl, harm16-32.scl, harm16.scl, Harm1C-Dorian.scl, harm1c-hypod.scl, harm1c-hypol.scl, Harm1C-Lydian.scl, Harm1C-Mix.scl, Harm1C-Mixolydian.scl, harm24.scl, harm24_2.scl, harm3.scl, harm30-60.scl, HARM30.scl, harm32-64.scl, harm37odd.scl, harm4.scl, harm6-12.scl, harm6.scl, HARM60-30.SCL, harm7lim.scl, harm8.scl, harm9.scl, harmc-hypop.scl, harmd-15.scl, harmd-conmix.scl, harmd-hypod.scl, harmd-hypol.scl, HarmD-Hypop.scl, harmd-lyd.scl, harmd-mix.scl, harmd-phr.scl, harme-hypod.scl, harme-hypol.scl, harme-hypop.scl, harmjc-15.scl, harmjc-17-2.scl, harmjc-17.scl, harmjc-19-2.scl, harmjc-19.scl, harmjc-21.scl, harmjc-23-2.scl, harmjc-23.scl, harmjc-25.scl, harmjc-27.scl, harmjc-hypod16.scl, harmjc-hypol20.scl, harmjc-hypop18.scl, harmjc-lydian13.scl, harmjc-mix14.scl, harmjc-phryg12.scl, harmonical.scl, harmonical_up.scl, harm_bastard.scl, harm_bastinv.scl, harm_darreg.scl, harm_mean.scl, harrisonj.scl, harrisonm_rev.scl, harrison_16.scl, HARRISON_5.scl, HARRISON_5_1.scl, HARRISON_5_3.scl, HARRISON_5_4.scl, harrison_8.scl, harrison_cinna.scl, HARRISON_DIAT.scl, harrison_joy.scl, harrison_mid.scl, harrison_mid2.scl, harrison_min.scl, HARRISON_MIX1.scl, HARRISON_MIX2.scl, HARRISON_MIX3.scl, HARRISON_MIX4.scl, hawkes.scl, hawkes2.scl, hbarnes.scl, hebdome1.scl, helmholtz.scl, helmholtz_24.scl, helmholtz_hd.scl, helmholtz_pure.scl, helmholtz_temp.scl, hem_chrom.scl, HEM_CHROM11.SCL, HEM_CHROM13.scl, HEM_CHROM2.scl, hept_diamond.scl, hept_diamondi.scl, HEPT_DIAMONDp.scl, herf.scl, heun.scl, hexagonal13.scl, hexagonal37.scl, hexany1.scl, hexany10.scl, hexany11.scl, hexany12.scl, hexany13.scl, hexany14.scl, hexany15.scl, hexany16.scl, hexany17.scl, hexany18.scl, hexany19.scl, hexany2.scl, hexany20.scl, hexany21.scl, hexany21a.scl, hexany22.scl, hexany23.scl, hexany24.scl, hexany25.scl, hexany26.scl, hexany3.scl, hexany4.scl, hexany49.scl, hexany5.scl, hexany6.scl, hexany7.scl, Hexany8.scl, hexany9.scl, hexanys.scl, hexanys2.scl, hexany_cl.scl, hexany_cl2.scl, hexany_flank.scl, hexany_tetr.scl, hexany_trans.scl, HEXANY_TRANS2.scl, HEXANY_TRANS3.scl, hexany_u2.scl, hexany_union.scl, hexany_urot.scl, higgs.scl, Hinsz_gr.scl, hipkins.scl, hirajoshi.scl, hirajoshi2.scl, hochgartz.scl, hofmann1.scl, hofmann2.scl, hofmann_chrom.scl, holder.scl, holder2.scl, HO_MAI_NHI.scl, hummel.scl, hummel2.scl, husmann.scl, hwerck3.scl, HYPER_ENH.SCL, hyper_enh2.scl, hypodorian_pis.scl, hypod_chrom.scl, hypod_chrom2.scl, HYPOD_CHROM2INV.scl, hypod_chromenh.scl, HYPOD_CHROMinv.scl, hypod_diat.scl, hypod_diat2.scl, hypod_diatcon.scl, hypod_diatinv.scl, hypod_enh.scl, HYPOD_enhinv.scl, HYPOD_ENHINV2.scl, hypolydian_pis.scl, hypol_chrom.scl, HYPOL_CHROMINV.SCL, HYPOL_CHROMINV2.scl, HYPOL_CHROMINV3.SCL, hypol_diat.scl, hypol_diatcon.scl, hypol_diatinv.scl, hypol_enh.scl, hypol_enhinv.scl, HYPOL_ENHINV2.scl, HYPOL_ENHINV3.SCL, hypol_pent.scl, hypol_tri.scl, hypol_tri2.scl, hypophryg_pis.scl, hypop_chrom.scl, hypop_chromenh.scl, hypop_chrominv.scl, HYPOP_CHROMINV2.scl, hypop_diat.scl, hypop_diat2.scl, HYPOP_DIAT2INV.scl, hypop_diatcon.scl, hypop_enh.scl, hypop_enhinv.scl, HYPOP_ENHINV2.scl, hypo_chrom.scl, hypo_diat.scl, hypo_enh.scl, IIVV17.SCL, indian-ayyar.scl, indian-dk.scl, indian-ellis.scl, indian-hahn.scl, INDIAN-HRDAYA1.SCL, INDIAN-HRDAYA2.SCL, indian-invrot.scl, INDIAN-MAGRAMA.SCL, indian-newbengali.scl, indian-old2ellis.scl, indian-oldellis.scl, INDIAN-raja.scl, INDIAN-SAGRAMA.scl, indian-srutiharm.scl, INDIAN-SRUTIVINA.scl, indian-srutivina2.scl, indian-vina.scl, indian-vina2.scl, indian-vina3.scl, indian-vinarat.scl, indian.scl, indian2.scl, indian3.scl, indian4.scl, INDIAN_12.scl, indian_12c.scl, indian_a.scl, indian_b.scl, indian_c.scl, indian_cmp.scl, INDIAN_D.SCL, INDIAN_E.SCL, indian_rat.scl, indian_rot.scl, ionic.scl, iran_diat.scl, iraq.scl, isfahan_5.scl, islamic.scl, italian.scl, iter1.scl, iter10.scl, iter11.scl, iter12.scl, iter13.scl, iter14.scl, iter15.scl, iter16.scl, iter17.scl, iter18.scl, iter19.scl, iter2.scl, iter20.scl, iter21.scl, iter22.scl, iter23.scl, iter24.scl, iter25.scl, iter26.scl, iter27.scl, iter28.scl, iter29.scl, iter3.scl, iter30.scl, iter31.scl, iter32.scl, iter33.scl, iter34.scl, iter35.scl, iter36.scl, iter4.scl, iter5.scl, iter6.scl, iter7.scl, iter8.scl, iter9.scl, iter_fifth.scl, ives.scl, ives2a.scl, ives2b.scl, janke1.scl, janke2.scl, janke3.scl, janke4.scl, janke5.scl, janke6.scl, janke7.scl, jemblung1.scl, jemblung2.scl, ji_10coh.scl, ji_10coh2.scl, ji_11.scl, ji_12.scl, ji_12a.scl, ji_12b.scl, ji_12c.scl, ji_13.scl, ji_13a.scl, ji_13b.scl, ji_17.scl, ji_17A.scl, ji_17b.scl, ji_17c.scl, ji_17d.scl, ji_17e.scl, ji_17_12.scl, ji_19.scl, ji_19a.scl, ji_19b.scl, ji_20.scl, ji_21.scl, ji_22.scl, ji_22a.scl, ji_22b.scl, ji_22c.scl, ji_22d.scl, ji_24.scl, ji_26.scl, ji_27.scl, ji_29.scl, ji_30.scl, ji_31.scl, ji_31a.scl, ji_31b.scl, ji_31c.scl, ji_5coh.scl, ji_6coh.scl, ji_7.scl, ji_7a.scl, ji_8coh.scl, ji_8coh3.scl, ji_9coh.scl, ji_ri24a.scl, johnston.scl, JOHNSTON_21.scl, johnston_22.scl, johnston_25.scl, johnston_6-qt.scl, johnston_6-qt_row.scl, johnston_81.scl, jorgensen.scl, jousse.scl, jousse2.scl, KANZELMEYER_11.scl, KANZELMEYER_18.scl, Kayolonian.scl, kayoloniana.scl, kayolonian_12.scl, kayolonian_40.scl, kayolonian_f.scl, [-]Kayolonian_p.scl, [-]kayolonian_s.scl, [-]Kayolonian_T.scl, [-]Kayolonian_Z.scl, keenan.scl, keenan2.scl, keenan3.scl, keenan3eb.scl, keenan3eb2.scl, keenan3j.scl, keenan7.scl, keenanmt.scl, kelletat.scl, kellner.scl, kellners.scl, kepler1.scl, kepler2.scl, kepler3.scl, kilroy.scl, kimball.scl, KIMBALL_53.scl, kirn-stan.scl, kirnberger.scl, kirnberger1.scl, kirnberger2.scl, kirnberger3.scl, kirnberger3v.scl, klais.scl, klonaris.scl, knot.scl, koepf_36.scl, koepf_48.scl, kolinsky.scl, kora1.scl, kora2.scl, kora3.scl, kora4.scl, KOREA_5.SCL, kornerup.scl, kornerup_11.scl, kraeh_22.scl, kraeh_22a.scl, kraeh_22b.scl, KRING1.scl, KRING1P3.SCL, kring2.scl, kring2p3.scl, kring3.scl, kring3bp.scl, kring4.scl, kring4p3.scl, kring5.scl, kring5p3.scl, kring6.scl, kring6p3.scl, krousseau.scl, KROUSSEAU2.scl, kukuya.scl, kurzw_arab.scl, kurzw_harmp.scl, kurzw_melp.scl, kurzw_slen.scl, kurzw_tibet.scl, lambdoma5_12.scl, LAMBDOMA_prim.scl, lambert.scl, lara.scl, lebanon.scl, leedy.scl, leeuw1.scl, leftpistol.scl, legros1.scl, legros2.scl, leven.scl, ligon.scl, ligon2.scl, ligon3.scl, ligon4.scl, ligon5.scl, ligon6.scl, ligon7.scl, lindley_wt.scl, ling-lun.scl, liu_major.scl, liu_mel.scl, LIU_MINor.scl, liu_pent.scl, lorina.scl, lt46a.scl, lucy_19.scl, lucy_31.scl, lucy_7.scl, Carl, lumma5r.scl, lumma7.scl, lumma72.scl, lumma_10.scl, lumma_5151.scl, lumma_dec1.scl, lumma_dec2.scl, lumma_g.scl, lumma_k.scl, lumma_magic.scl, LYDIAN_CHROM.SCL, lydian_chrom2.scl, LYDIAN_CHROMinv.scl, lydian_diat.scl, LYDIAN_DIAT2.scl, LYDIAN_DIAT2INV.scl, lydian_diatcon.scl, lydian_enh.scl, lydian_enh2.scl, LYDIAN_ENHinv.scl, lydian_pent.scl, lydian_pis.scl, lydian_tri.scl, lydian_tri2.scl, majmin.scl, major_clus.scl, major_wing.scl, malcolm.scl, malcolm2.scl, malcolme.scl, malcolme2.scl, malcolms.scl, malcolm_ap.scl, malcolm_me.scl, malerbi1.scl, mambuti.scl, mandelbaum5.scl, mandelbaum7.scl, marimba1.scl, marimba2.scl, marimba3.scl, marion.scl, marion1.scl, marion10.scl, marion15.scl, marion19.scl, marion26.scl, marissing.scl, marpurg-1.scl, marpurg-t1.scl, marpurg-t11.scl, marpurg-t12.scl, marpurg-t2.scl, marpurg-t3.scl, marpurg-t4.scl, marpurg-t5.scl, marpurg-t7.scl, marpurg-t8.scl, marpurg-t9.scl, marpurg.scl, marpurg1.scl, marpurg3.scl, MARPURG4.SCL, marsh.scl, marsh2.scl, matrix.scl, mbira_banda.scl, mbira_banda2.scl, mbira_gondo.scl, mbira_kunaka.scl, mbira_kunaka2.scl, mbira_mude.scl, mbira_mujuru.scl, mbira_zimb.scl, mboko_bow.scl, mboko_zither.scl, mcclain.scl, MCCLAIN_18.scl, MCCLAIN_8.scl, mclaren_bar.scl, mclaren_cps.scl, mclaren_harm.scl, mclaren_rath1.scl, MCLAREN_RATH2.scl, mean10.scl, mean11.scl, mean11ls_19.scl, mean13.scl, mean14.scl, mean14a.scl, mean14_15.scl, mean14_19.scl, mean14_7.scl, mean16.scl, mean17.scl, mean17_17.scl, mean17_19.scl, mean18.scl, mean19.scl, mean19r.scl, mean23.scl, mean23six.scl, mean25.scl, mean26.scl, mean26_21.scl, mean27.scl, mean29.scl, mean2sev.scl, mean2seveb.scl, mean2sev_15.scl, mean2sev_19.scl, mean2sev_31.scl, mean9.scl, mean94.scl, mean9_15.scl, mean9_19.scl, mean9_31.scl, meaneb1071.scl, meaneb1071a.scl, meaneb341.scl, meaneb371.scl, MEANEB371A.scl, meaneb381.scl, meaneb451.scl, meaneb471.scl, meaneb471a.scl, MEANEB471b.SCL, meaneb472.scl, MEANEB472A.scl, MEANEB472_19.scl, MEANEB591.scl, meaneb732.scl, meaneb732a.scl, MEANEB732_19.scl, MEANEB742.scl, MEANEB742A.scl, meaneb781.scl, meaneb891.scl, meaneight.scl, meanfifth.scl, meanfifth2.scl, meanfiftheb.scl, meanfifth_19.scl, meanfifth_43.scl, meangold.scl, meanhalf.scl, meanhar2.scl, meanhar3.scl, meanharris.scl, meanhsev.scl, meanlst357_19.scl, meanmalc.scl, meannkleis.scl, meanpi.scl, meanpi2.scl, meanpkleis.scl, meanquar.scl, meanquareb.scl, meanquarm23.scl, meanquarr.scl, meanquar_14.scl, meanquar_15.scl, meanquar_16.scl, meanquar_17.scl, meanquar_19.scl, meanquar_27.scl, meanquar_31.scl, meansabat.scl, meansabat_53.scl, meanschis.scl, meanschis7.scl, meanschis_17.scl, meansept.scl, meansept2.scl, MEANSEPT3.SCL, meansept4.scl, meansept5.scl, meansept6.scl, meansev.scl, meansev2.scl, meanseveb.scl, meansev_19.scl, meansixth.scl, meansixtheb.scl, meansixthm.scl, meanSIXTHM2.scl, meansixthso.scl, meansixth_19.scl, meanten.scl, meanthird.scl, meanthirdeb.scl, meanthird_19.scl, meanvar1.scl, meanvar2.scl, meanvar3.scl, meanvar4.scl, mediant16.scl, mercadier.scl, mercator.scl, merrick.scl, mersen-ban.scl, mersenmt1.scl, mersenmt2.scl, mersenne.scl, mersen_l1.scl, mersen_l2.scl, mersen_s1.scl, mersen_s2.scl, meyer.scl, MEYER_29.scl, mid_enh1.scl, mid_enh2.scl, miller.scl, miller_12.scl, miller_12a.scl, miller_12r.scl, miller_dim.scl, minor_5.scl, MINOR_CLUS.scl, minor_wing.scl, miracle1.scl, miracle1a.scl, miracle2.scl, miracle2a.scl, miracle3.scl, miracle3a.scl, miracle3ls.scl, miracle3p.scl, miracle3s.scl, miracle_12.scl, miracle_12a.scl, miring1.scl, miring2.scl, misca.scl, miscb.scl, MISCC.SCL, miscd.scl, misce.scl, miscf.scl, miscg.scl, misch.scl, mixed9_3.scl, mixed9_4.scl, mixed9_5.scl, mixed9_6.scl, mixed9_7.scl, mixed9_8.scl, mixol_chrom.scl, MIXOL_CHROM2.scl, MIXOL_CHROMinv.scl, mixol_diat.scl, mixol_diat2.scl, mixol_diatcon.scl, mixol_diatinv.scl, mixol_diatinv2.scl, mixol_enh.scl, mixol_enh2.scl, MIXOL_ENHinv.scl, mixol_penta.scl, mixol_pis.scl, mixol_tri1.scl, mixol_tri2.scl, mmmgeo1.scl, mmmgeo2.scl, mmmgeo3a.scl, mmmgeo4a.scl, mmmgeo4b.scl, mohajira.scl, moha_baya.scl, mokhalif.scl, montvallon.scl, monzo-names.scl, monzo-sym-11.scl, monzo-sym-5.scl, monzo-sym-7.scl, morgan.scl, mos11-34.scl, mos12-17.scl, mos12-22.scl, mos13-22.scl, mos15-22.scl, moscow.scl, muri.scl, musaqa.scl, musaqa_24.scl, mystic-r.scl, mystic.scl, nachbaur_6.scl, nassarre.scl, negri_19.scl, negri_29.scl, neid-mar-morg.scl, neidhardt1.scl, neidhardt2.scl, neidhardt3.scl, neidhardt4.scl, neidhardtn.scl, neogeb24.scl, neogji12.scl, neogp16a.scl, neutr_diat.scl, neutr_pent1.scl, neutr_pent2.scl, new_enh.scl, new_enh2.scl, norden.scl, novaro.scl, novaro15.scl, novaro_eb.scl, oconnell.scl, oconnell_11.scl, oconnell_14.scl, oconnell_7.scl, oconnell_9.scl, oconnell_9a.scl, OCTONY_MIN.scl, octony_rot.scl, OCTONY_trans.scl, OCTONY_trans2.scl, octony_trans3.scl, OCTONY_TRANS4.scl, OCTONY_TRANS5.scl, OCTONY_TRANS6.scl, octony_u.scl, odd1.scl, odd2.scl, oettingen.scl, OETTINGEN2.scl, ogr10.scl, ogr11.scl, ogr12.scl, ogr2.scl, ogr3.scl, ogr4.scl, ogr5.scl, ogr6.scl, ogr7.scl, ogr8.scl, ogr9.scl, oldani.scl, oljare.scl, oljare17.scl, Olympos.scl, opelt.scl, org1373a.scl, org1373b.scl, pagano_b.scl, palace.scl, palace2.scl, panpipe1.scl, panpipe2.scl, panpipe3.scl, parachrom.scl, parizek.scl, parizek_13lqmt.scl, parizek_7lmtd1.scl, parizek_7lqmtd2.scl, parizek_epi.scl, parizek_epi2.scl, parizek_epi2a.scl, parizek_ji1.scl, parizek_jiweltmp.scl, parizek_llt7.scl, partch-barstow.scl, PARTCH-greek.scl, partch-grm.scl, partch-indian.scl, PARTCH-ur.scl, partch_29-av.scl, partch_29.scl, partch_37.scl, partch_39.scl, PARTCH_41.scl, partch_41a.scl, partch_41comb.scl, PARTCH_43.scl, partch_43a.scl, pelog.scl, pelog1.scl, pelog10.scl, pelog11.scl, pelog12.scl, pelog13.scl, pelog14.scl, pelog15.scl, pelog2.scl, pelog3.scl, pelog4.scl, pelog5.scl, pelog6.scl, pelog7.scl, pelog8.scl, pelog9.scl, pelogic.scl, pelogic2.scl, pelog_24.scl, pelog_a.scl, pelog_alv.scl, pelog_av.scl, pelog_b.scl, pelog_c.scl, pelog_jc.scl, pelog_laras.scl, pelog_me1.scl, pelog_me2.scl, pelog_me3.scl, pelog_pa.scl, pelog_pa2.scl, pelog_pb.scl, pelog_pb2.scl, pelog_schmidt.scl, pelog_selun.scl, pelog_str.scl, penta1.scl, penta2.scl, pentadekany.scl, PENTADEKANY2.scl, pentadekany3.scl, pentatetra1.scl, pentatetra2.scl, pentatetra3.scl, pentatriad.scl, PENTATRIAD1.scl, penta_opt.scl, pepper.scl, pepper2.scl, peprmint.scl, perkis-indian.scl, perrett-tt.scl, perrett.scl, perrett_14.scl, perrett_chrom.scl, perry.scl, persian-far.scl, persian-vaz.scl, persian.scl, phi1_13.scl, phillips_19.scl, phillips_19a.scl, phillips_22.scl, phillips_ji.scl, phi_10.scl, phi_12.scl, phi_13.scl, phi_13a.scl, phi_13b.scl, phi_17.scl, phi_7b.scl, phi_7be.scl, phi_8.scl, phi_8a.scl, phrygian.scl, PHRYGIAN_DIAT.SCL, phrygian_enh.scl, phrygian_harm.scl, PHRYG_CHROMcon2.scl, phryg_chromconi.scl, PHRYG_CHROMinv.scl, phryg_chromt.scl, PHRYG_DIAT.scl, phryg_diatcon.scl, PHRYG_DIATINV.scl, phryg_diatsinv.scl, PHRYG_ENH.scl, PHRYG_ENHcon.scl, phryg_enhinv.scl, PHRYG_ENHINV2.scl, phryg_penta.scl, phryg_pis.scl, phryg_tri1.scl, PHRYG_TRI1INV.scl, phryg_tri2.scl, phryg_tri3.scl, piano.scl, piano7.scl, pipedum_10.scl, pipedum_10a.scl, pipedum_10b.scl, pipedum_10c.scl, pipedum_10d.scl, pipedum_10e.scl, pipedum_10f.scl, pipedum_10g.scl, PIPEDUM_10h.scl, pipedum_10i.scl, PIPEDUM_10J.scl, pipedum_11.scl, pipedum_11a.scl, pipedum_12.scl, pipedum_12a.scl, pipedum_12b.scl, pipedum_12c.scl, pipedum_12D.scl, pipedum_12e.scl, pipedum_12g.scl, pipedum_13.scl, pipedum_13a.scl, pipedum_13b.scl, pipedum_13c.scl, pipedum_14.scl, pipedum_14a.scl, pipedum_14b.scl, pipedum_14c.scl, pipedum_15.scl, pipedum_15a.scl, pipedum_15b.scl, pipedum_15c.scl, pipedum_15d.scl, pipedum_15e.scl, pipedum_15f.scl, pipedum_15g.scl, pipedum_16.scl, pipedum_17.scl, pipedum_17a.scl, pipedum_17b.scl, pipedum_17c.scl, pipedum_17d.scl, pipedum_17e.scl, pipedum_18.scl, pipedum_18a.scl, pipedum_18b.scl, pipedum_19.scl, pipedum_19a.scl, pipedum_19b.scl, pipedum_19c.scl, pipedum_19d.scl, pipedum_19e.scl, pipedum_19f.scl, pipedum_19g.scl, pipedum_19h.scl, pipedum_19i.scl, pipedum_19j.scl, pipedum_19k.scl, pipedum_19l.scl, pipedum_19m.scl, pipedum_19n.scl, pipedum_20.scl, pipedum_21.scl, pipedum_21a.scl, pipedum_21b.scl, pipedum_22.scl, pipedum_22a.scl, pipedum_22b.scl, pipedum_22b2.scl, pipedum_22c.scl, pipedum_22d.scl, pipedum_22e.scl, pipedum_22f.scl, pipedum_22g.scl, pipedum_22h.scl, pipedum_22i.scl, pipedum_22j.scl, pipedum_24.scl, pipedum_24a.scl, pipedum_26.scl, PIPEDUM_26a.scl, pipedum_27.scl, pipedum_27a.scl, pipedum_27b.scl, pipedum_27c.scl, pipedum_27d.scl, pipedum_27e.scl, pipedum_27f.scl, pipedum_27g.scl, pipedum_27h.scl, pipedum_27i.scl, pipedum_31.scl, pipedum_31a.scl, pipedum_31b.scl, pipedum_31c.scl, pipedum_31d.scl, pipedum_34.scl, pipedum_34a.scl, pipedum_36.scl, pipedum_36a.scl, pipedum_37.scl, pipedum_38.scl, PIPEDUM_38a.scl, pipedum_41.scl, PIPEDUM_41a.scl, pipedum_41b.scl, pipedum_41c.scl, pipedum_41d.scl, pipedum_43.scl, pipedum_45.scl, pipedum_45a.scl, pipedum_46.scl, pipedum_46a.scl, pipedum_46b.scl, pipedum_50.scl, pipedum_53.scl, pipedum_53a.scl, pipedum_53b.scl, pipedum_55.scl, pipedum_58.scl, pipedum_65.scl, pipedum_65a.scl, pipedum_67.scl, pipedum_68.scl, pipedum_7.scl, pipedum_72.scl, pipedum_72a.scl, pipedum_74.scl, pipedum_81.scl, pipedum_87.scl, pipedum_9.scl, pipedum_99.scl, pipedum_9a.scl, pipedum_9b.scl, pipedum_9c.scl, pipedum_9d.scl, polansky_ps.scl, poole.scl, PORTBAG1.SCL, portbag2.scl, prelleur.scl, preston.scl, preston2.scl, prime_10.scl, PRIME_5.SCL, prinz.scl, prinz2.scl, prod13-2.scl, prod13.scl, prod7d.scl, prod7s.scl, prodq13.scl, prog_ennea.scl, PROG_ENNEA1.scl, prog_ennea2.scl, prog_ennea3.scl, prooijen1.scl, prooijen2.scl, ps-dorian.scl, ps-enh.scl, ps-hypod.scl, PS-HYPOD2.scl, ps-mixol.scl, ptolemy.scl, ptolemy_chrom.scl, ptolemy_ddiat.scl, PTOLEMY_DIAT.scl, ptolemy_diat2.scl, PTOLEMY_DIAT3.scl, PTOLEMY_DIAT4.scl, PTOLEMY_DIAT5.scl, ptolemy_diff.scl, PTOLEMY_enh.scl, ptolemy_exp.scl, PTOLEMY_hom.scl, ptolemy_iast.scl, PTOLEMY_IASTaiol.scl, ptolemy_ichrom.scl, ptolemy_idiat.scl, PTOLEMY_malak.scl, PTOLEMY_MALAK2.scl, ptolemy_mdiat.scl, ptolemy_mdiat2.scl, ptolemy_mdiat3.scl, ptolemy_meta.scl, ptolemy_mix.scl, ptolemy_prod.scl, ptolemy_tree.scl, pygmie.scl, pyle.scl, pyramid.scl, pyramid_down.scl, pyth_12.scl, pyth_12s.scl, pyth_17.scl, pyth_17s.scl, pyth_22.scl, pyth_31.scl, pyth_7a.scl, pyth_7h.scl, pyth_chrom.scl, pyth_sev.scl, pyth_sev_16.scl, pyth_third.scl, quasi_5.scl, quasi_9.scl, quint_chrom.scl, rameau-flat.scl, rameau-gall.scl, rameau-merc.scl, RAMEAU-MINor.scl, rameau-nouv.scl, rameau-sharp.scl, rameau.scl, ramis.scl, rapoport_8.scl, rast_moha.scl, rat_dorenh.scl, rat_hypodenh.scl, rat_hypodenh2.scl, rat_hypodenh3.scl, rat_hypodhex.scl, RAT_HYPODHEX2.scl, RAT_HYPODHEX3.scl, RAT_HYPODHEX4.scl, RAT_HYPODHEX6.scl, RAT_HYPODPEN2.scl, RAT_HYPODPEN4.scl, RAT_HYPODPEN5.scl, RAT_HYPODPEN6.scl, RAT_HYPODTRI.SCL, RAT_HYPODTRI2.scl, rat_hypolenh.scl, rat_hypopchrom.scl, rat_hypopenh.scl, rat_hypoppen.scl, rat_hypoptri.scl, RAT_HYPOPTRI2.scl, rectsp10.scl, rectsp10a.scl, rectsp11.scl, rectsp12.scl, rectsp6.scl, rectsp6a.scl, rectsp7.scl, rectsp7a.scl, rectsp8.scl, rectsp8a.scl, rectsp9.scl, rectsp9a.scl, redfield.scl, reinhard.scl, reinhard17.scl, renteng1.scl, renteng2.scl, renteng3.scl, renteng4.scl, robot.scl, robot_live.scl, romieu.scl, romieu_inv.scl, rosati_21.scl, rousseau.scl, rousseauw.scl, rsr_12.scl, RVF-1, RVF-2, RVF-3, saba_sup.scl, safi_diat.scl, safi_diat2.scl, safi_major.scl, salinas_19.scl, salinas_24.scl, salinas_enh.scl, salunding.scl, sankey.scl, santur1.scl, santur2.scl, sanza.scl, sanza2.scl, sauveur.scl, sauveur2.scl, sauveur_17.scl, sauveur_ji.scl, savas_bardiat.scl, savas_barenh.scl, savas_chrom.scl, savas_diat.scl, savas_palace.scl, scalatron.scl, scheengaas.scl, scheffer.scl, schidlof.scl, schillinger.scl, schismic.scl, schlick.scl, schlick2.scl, schlick3.scl, scholz.scl, scholz_epi.scl, schulter.scl, schulter_17.scl, schulter_24.scl, schulter_cart34.scl, schulter_diat7.scl, schulter_ham.scl, schulter_jot17a.scl, schulter_jot17bb.scl, schulter_lin76-34.scl, schulter_pel.scl, schulter_pepr.scl, schulter_qcm62a.scl, schulter_qcmlji24.scl, schulter_qcmqd8_4.scl, schulter_sq.scl, schulter_tedorian.scl, SCHULTER_ZARTE84.SCL, scotbag.scl, scotbag2.scl, scotbag3.scl, SCOTBAG4.SCL, scottd1.scl, scottd2.scl, scottd3.scl, scottd4.scl, scottj.scl, scottj2.scl, secor-19p3.scl, secor.scl, secor12_2.scl, secor12_3.scl, segah.scl, segah2.scl, segah_rat.scl, seikilos.scl, sekati1.scl, sekati2.scl, sekati3.scl, sekati4.scl, sekati5.scl, sekati6.scl, sekati7.scl, sekati8.scl, sekati9.scl, selisir.scl, selisir2.scl, selisir3.scl, selisir4.scl, selisir5.scl, selisir6.scl, semisixths.scl, serre_enh.scl, sev-elev.scl, shalfun.scl, sharm1c-conm.scl, sharm1c-conp.scl, sharm1c-dor.scl, sharm1c-lyd.scl, sharm1c-mix.scl, sharm1c-phr.scl, SHARM1E-CONM.SCL, sharm1e-conp.scl, sharm1e-dor.scl, SHARM1E-lyd.scl, sharm1e-mix.scl, sharm1e-phr.scl, SHARM2C-15.scl, sharm2c-hypod.scl, SHarm2C-Hypol.scl, SHarm2C-Hypop.scl, sharm2e-15.scl, SHarm2E-Hypod.scl, SHarm2E-Hypol.scl, SHarm2E-Hypop.scl, sherwood.scl, shrutar.scl, shrutart.scl, shrutar_temp.scl, siamese.scl, silbermann1.scl, silbermann2.scl, silbermann2a.scl, silver.scl, silvermean.scl, silver_10.scl, silver_11.scl, silver_11a.scl, silver_11b.scl, silver_7.scl, silver_8.scl, silver_9.scl, simonton.scl, sims.scl, sims2.scl, sims_24.scl, sin.scl, sinemod12.scl, sinemod8.scl, singapore.scl, singapore2.scl, sintemp6.scl, sintemp6a.scl, sintemp_19.scl, sintemp_7.scl, slendro.scl, slendro10.scl, slendro11.scl, slendro2.scl, slendro3.scl, slendro4.scl, slendro5_1.scl, slendro5_2.scl, slendro5_4.scl, slendro6.scl, slendro8.scl, slendro9.scl, slendrob1.scl, slendrob2.scl, slendrob3.scl, slendroc1.scl, slendroc2.scl, slendroc3.scl, slendroc4.scl, slendroc5.scl, slendroc6.scl, slendrod1.scl, slendro_7_1.scl, slendro_7_2.scl, slendro_7_3.scl, slendro_7_4.scl, slendro_7_5.scl, slendro_7_6.scl, slendro_a1.scl, slendro_a2.scl, slendro_alv.scl, slendro_ang.scl, slendro_av.scl, slendro_dudon.scl, slendro_gum.scl, slendro_ky1.scl, slendro_ky2.scl, slendro_laras.scl, slendro_m.scl, slendro_madu.scl, slendro_mat.scl, slendro_pa.scl, slendro_pas.scl, slendro_pb.scl, slendro_pc.scl, slendro_pliat.scl, slendro_q13.scl, slendro_s1.scl, slendro_s2.scl, slendro_udan.scl, slendro_wolf.scl, SLEN_PEL.SCL, slen_pel16.scl, SLEN_PEL23.scl, SLEN_PEL_jc.scl, slen_pel_schmidt.scl, smithgw46.scl, smithgw46a.scl, smithgw72a.scl, smithgw72b.scl, smithgw72c.scl, smithgw72d.scl, smithgw72e.scl, smithgw72f.scl, smithgw72g.scl, smithgw72h.scl, smithgw72I.scl, smithgw72j.scl, smithgw84.scl, smithgw_18.scl, smithgw_21.scl, smithgw_45.scl, smithgw_58.scl, smithgw_9.scl, smithgw_cauldron.scl, smithgw_ck.scl, smithgw_decab.scl, smithgw_decac.scl, smithgw_decad.scl, SMITHGW_EXOTIC1.SCL, smithgw_gm.scl, smithgw_graileq.scl, smithgw_grailrms.scl, smithgw_klv.scl, smithgw_mir22.scl, smithgw_mmt.scl, smithgw_octoid.scl, smithgw_orw18r.scl, smithgw_pk.scl, smithgw_pris.scl, smithgw_prisa.scl, smithgw_qm3a.scl, smithgw_qm3b.scl, smithgw_sc19.scl, smithgw_sch13.scl, smithgw_sch13a.scl, smithgw_scj22a.scl, smithgw_scj22b.scl, smithgw_scj22c.scl, smithgw_secab.scl, smithgw_secac.scl, smithgw_secad.scl, smithgw_smalldi11.scl, smithgw_smalldi19a.scl, smithgw_smalldi19b.scl, smithgw_smalldi19c.scl, smithgw_smalldiglum19.scl, smithgw_smalldimos11.scl, smithgw_smalldimos19.scl, smithgw_star.scl, smithgw_star2.scl, starra.scl, smithgw_starrb.scl, smithgw_starrc.scl, smithgw_suzz.scl, smithgw_tetra.scl, smithgw_tr7_13.scl, smithgw_tr7_13b.scl, smithgw_tr7_13r.scl, smithgw_tra.scl, smithgw_tre.scl, smithgw_treb.scl, smithgw_trx.scl, smithgw_trxb.scl, smithgw_wa.scl, smithgw_wa120.scl, smithgw_wb.scl, smithgw_whelp1.scl, smithgw_whelp2.scl, smithgw_whelp3.scl, smithgw_wiz28.scl, smithgw_wiz34.scl, smithgw_wiz38.scl, smithrk_19.scl, smithrk_mult.scl, smith_eh.scl, smith_mq.scl, solar.scl, solemn.scl, songlines.scl, sorge.scl, sorge1.scl, sorge2.scl, sorge3.scl, spec1_14.scl, spec1_17.scl, spec1_25.scl, spec1_33.scl, spec1_4.scl, spec1_5.scl, specr2.scl, specr3.scl, spon_chal1.scl, spon_chal2.scl, spon_mont.scl, spon_terp.scl, stanhope.scl, stanhope_f.scl, stanhope_s.scl, starling.scl, stearns.scl, stearns2.scl, stearns3.scl, stearns4.scl, steldek1.scl, steldek1s.scl, steldek2.scl, steldek2s.scl, steleik1.scl, steleik1s.scl, steleik2.scl, steleik2s.scl, STELHEX1.SCL, stelhex2.scl, stelhex3.scl, STELHEX4.scl, stelhex5.scl, stelhex6.scl, stelpd1.scl, stelpd1s.scl, stelpent1.scl, stelpent1s.scl, steltet1.scl, steltet1s.scl, steltet2.scl, steltet2s.scl, steltri1.scl, steltri2.scl, stevin.scl, stopper.scl, storbeck.scl, strahle.scl, sub24-12.scl, sub24.scl, sub40.scl, SUB48.SCL, sub50.scl, sub8.scl, sumatra.scl, super_10.scl, super_11.scl, super_12.scl, super_12_1.scl, super_12_2.scl, super_13.scl, super_14.scl, super_15.scl, super_17.scl, super_19.scl, super_19_1.scl, super_19_2.scl, super_22.scl, super_22_1.scl, super_24.scl, super_6.scl, super_7.scl, super_8.scl, super_9.scl, suppig.scl, sur_7.scl, sur_9.scl, sur_ajeng.scl, sur_degung.scl, sur_madenda.scl, sur_melog.scl, sur_miring.scl, sur_x.scl, sur_y.scl, sverige.scl, syntonolydian.scl, syrian.scl, t-side.scl, t-side2.scl, tamil.scl, tamil_vi.scl, tamil_vi2.scl, tanaka.scl, tanbur.scl, tansur.scl, tartini_7.scl, taylor_g.scl, taylor_n.scl, telemann.scl, telemann_28.scl, temes-mix.scl, temes-ur.scl, temes.scl, temes2-mix.scl, temp10coh.scl, temp10ebss.scl, temp11ebst.scl, temp12coh3.scl, temp12ebf.scl, temp12ebfo.scl, temp12ebfp.scl, temp12ebfr.scl, temp12ep.scl, temp12fo2.scl, temp12p10.scl, temp12p6.scl, temp12p8.scl, temp12p8a.scl, temp12s17.scl, temp12s3.scl, temp12w2b.scl, temp15coh.scl, temp15ebmt.scl, temp15ebsi.scl, temp16d3.scl, temp16d4.scl, temp16ebs.scl, temp16ebt.scl, temp16l4.scl, temp17c10.scl, temp17c11.scl, temp17c12.scl, temp17c13.scl, temp17c14.scl, temp17ebs.scl, temp17fo2.scl, temp17s.scl, temp19d5.scl, temp19ebf.scl, temp19ebmt.scl, temp19ebo.scl, temp19ebt.scl, temp19k10.scl, temp19k3.scl, temp19k4.scl, temp19k5.scl, temp19k6.scl, temp19k8.scl, temp19k9.scl, temp19lst.scl, temp19lst2.scl, temp21ebs.scl, temp22ebf.scl, temp22ebt.scl, temp22fo2.scl, temp23ebs.scl, temp24ebaf.scl, temp24ebf.scl, temp25ebt.scl, temp26eb3.scl, temp26ebf.scl, temp26ebs.scl, temp28ebt.scl, temp29c14.scl, temp29ebf.scl, temp29fo.scl, temp31c51.scl, temp31coh.scl, temp31eb1.scl, temp31eb1a.scl, temp31eb2.scl, temp31eb2a.scl, temp31eb2b.scl, temp31ebf.scl, temp31ebf2.scl, temp31ebs.scl, temp31ebs1.scl, TEMP31EBS2.scl, temp31ebsi.scl, temp31ebt.scl, temp31g3.scl, temp31g4.scl, temp31g5.scl, temp31g6.scl, temp31g7.scl, temp31h10.scl, temp31h11.scl, temp31h12.scl, temp31h8.scl, temp31h9.scl, temp31ms.scl, temp31mt.scl, temp31to.scl, temp31w10.scl, temp31w11.scl, temp31w12.scl, temp31w13.scl, temp31w14.scl, temp31w15.scl, temp31w8.scl, temp31w9.scl, temp32ebf.scl, temp33a12.scl, temp34eb2a.scl, temp34ebsi.scl, temp34ebt.scl, temp34w10.scl, temp34w5.scl, temp34w6.scl, temp34w7.scl, temp34w8.scl, temp34w9.scl, temp35ebsi.scl, temp37ebs.scl, temp37ebt.scl, temp3ebt.scl, temp4ebmt.scl, temp4ebsi.scl, temp53ebs.scl, temp53ebsi.scl, temp53ebt.scl, temp57ebs.scl, temp59ebt.scl, temp5ebf.scl, temp5ebs.scl, temp6.scl, temp65ebf.scl, temp65ebt.scl, temp6eb2.scl, temp6s.scl, temp6teb.scl, temp7-5ebf.scl, temp7ebf.scl, temp7ebnt.scl, temp8eb3q.scl, temp9ebmt.scl, tenney_11.scl, tetragam-di.scl, tetragam-enh.scl, tetragam-hex.scl, tetragam-py.scl, tetragam-slpe.scl, tetragam-slpe2.scl, tetragam-sp.scl, tetragam-un.scl, tetragam13.scl, tetragam5.scl, tetragam7.scl, TETRAGAM8.SCL, tetragam9a.scl, tetragam9b.scl, tetraphonic_31.scl, tetratriad.scl, tetratriad1.scl, tetratriad2.scl, thailand.scl, thailand2.scl, thailand3.scl, thailand4.scl, thailand5.scl, thomas.scl, tiby1.scl, tiby2.scl, tiby3.scl, tiby4.scl, todi_av.scl, tonos15_pis.scl, tonos17_pis.scl, tonos19_pis.scl, tonos21_pis.scl, tonos23_pis.scl, tonos25_pis.scl, tonos27_pis.scl, tonos29_pis.scl, tonos31_pis.scl, tonos31_pis2.scl, tonos33_pis.scl, TRANH.SCL, tranh2.scl, tranh3.scl, TRI12-1.scl, TRI12-2.SCL, tri19-1.scl, tri19-2.scl, tri19-3.scl, tri19-4.scl, tri19-5.scl, tri19-6.scl, tri19-7.scl, TRI19-8.SCL, tri19-9.scl, triang11.scl, triaphonic_12.scl, triaphonic_17.scl, trichord7.scl, TRITRIAD.SCL, TRITRIAD10.scl, TRITRIAD11.scl, tritriad13.scl, tritriad14.scl, TRITRIAD18.SCL, TRITRIAD22.scl, TRITRIAD26.scl, tritriad3.scl, TRITRIAD32.scl, tritriad3c.scl, tritriad3d.scl, tritriad5.scl, tritriad68.scl, tritriad68i.scl, tritriad69.scl, TRITRIAD7.SCL, tritriad9.scl, tsjerepnin.scl, tsuda13.scl, tuners1.scl, tuners2.scl, tuners3.scl, turkish.scl, turkish_24.scl, turkish_24a.scl, turkish_41.scl, turkish_41a.scl, turkish_aeu.scl, turkish_bagl.scl, two29.scl, two29a.scl, urmawi.scl, valentine.scl, valentine2.scl, Vallotti, veroli.scl, vertex_chrom.scl, vertex_chrom2.scl, vertex_chrom3.scl, vertex_chrom4.scl, vertex_chrom5.scl, vertex_diat.scl, vertex_diat10.scl, VERTEX_DIAT11.scl, vertex_diat12.scl, vertex_diat2.scl, vertex_diat3.scl, vertex_diat4.scl, vertex_diat5.scl, vertex_diat7.scl, vertex_diat8.scl, vertex_diat9.scl, vertex_sdiat.scl, vertex_sdiat2.scl, vertex_sdiat3.scl, vertex_sdiat4.scl, vertex_sdiat5.scl, vicentino1.scl, vicentino2.scl, vicentino2q217.scl, victorian.scl, victor_eb.scl, vitale1.scl, vitale2.scl, vitale3.scl, vogelh_wt.scl, vogel_21.scl, volans.scl, vong.scl, vries19-72.scl, vries35-72.scl, vries5-72.scl, vries6-31.scl, walkerr_11.scl, walker_21.scl, wauchope.scl, wendell1.scl, wendell1r.scl, wendell2.scl, werck1.scl, werck3.scl, werck3_eb.scl, werck4.scl, werck5.scl, werck6.scl, werck6_dup.scl, white.scl, wicks.scl, wier_cl.scl, wiesse.scl, wilson1.scl, wilson11.scl, wilson2.scl, wilson3.scl, wilson5.scl, wilson7.scl, wilson7_2.scl, wilson7_3.scl, wilson7_4.scl, wilson_17.scl, wilson_31.scl, wilson_41.scl, wilson_alessandro.scl, wilson_bag.scl, wilson_class.scl, wilson_dia1.scl, WILSON_DIA2.scl, WILSON_DIA3.SCL, WILSON_DIA4.SCL, wilson_duo.scl, wilson_enh.scl, wilson_enh2.scl, wilson_facet.scl, wilson_gh1.scl, wilson_gh11.scl, wilson_gh2.scl, wilson_gh50.scl, wilson_helix.scl, wilson_hypenh.scl, wilson_l1.scl, wilson_l2.scl, wilson_l3.scl, wilson_l4.scl, wilson_l5.scl, wilson_l6.scl, window.scl, wonder1.scl, wonder36.scl, wronski.scl, wurschmidt.scl, WURSCHMIDT1.scl, WURSCHMIDT2.scl, WURSCHMIDT_31.scl, WURSCHMIDT_31a.scl, wurschmidt_53.scl, wurschmidt_temp.scl, xenakis_chrom.scl, xenakis_diat.scl, xenakis_schrom.scl, xenoga24.scl, xylophone.scl, xylophone2.scl, xylophone3.scl, xylophone4.scl, yasser_6.scl, yasser_diat.scl, yasser_ji.scl, young-g.scl, YOUNG-LM_GUITAR.scl, YOUNG-LM_PIANO.scl, young-w10.scl, young-w14.scl, young-wt.scl, young.scl, young2.scl, yugo_bagpipe.scl, yves.scl, zalzal.scl, zalzal2.scl, zarlino.scl, zarlino2.scl, zesster_a.scl, zesster_b.scl, zesster_c.scl, zesster_mix.scl, zir_Bouzourk.scl, zwolle.scl, zwolle2.scl

Apr 09 2016 | 1:41 pm

actually it would make more sense to have it available as note numbers. i´ve currently lost my nn version of it.

Apr 09 2016 | 1:45 pm

Hello Roman,

Not elegant! There are better ways to communicate information besides flooding the forum with data. What about a download link or similar?

Best,

Georg

Apr 09 2016 | 3:31 pm

Ok thanks, I figured out how to batch convert them with Scala

Apr 09 2016 | 9:17 pm

You can use the following command in Scala:

set synth 135

And then you can export the synth tuning. This makes a .txt file that can be read by the coll object. You can then replace your mtof object with a coll and get at your microtones that way.

Still, it would be good to see native support for more tuning files in Max/MSP. The Scala scl/kbm format is very flexible, and it would be great to see an update for the mtof object where these files could be imported.

Here’s a blog post about using the coll object to hold frequency data, though it’s aimed at newbies to microtuning/Max. Hope it can be helpful to someone: http://sevish.com/blog/index.php/2014/how-to-play-microtonal-scales-on-a-maxmsp-synth/

@Georg – we met once at UK Microfest in London several years ago. Are you still interested in the Bohlen-Pierce scale these days?

Apr 13 2016 | 12:44 pm

Hi Sevish, I’m interested in all sort of things, the BP scale among them. We have recently published an exhaustive 50+ page article in a book called 1001 microtones establishing a novel music theory for the BP scale, and have looked into equal subdivisions of BP with some interesting results. What about yourself? What are you working on these days?

Apr 14 2016 | 1:37 am

sorry for beeing unelegant. it looked less data inside the coll object.^^

Apr 17 2016 | 11:21 pm

Georg, good to hear that you’re still actively working with microtonality! Congrats on your recent published article.

I recently released an EP (titled MK-SUPERDUPER) which uses 313-EDO, 22-EDO and Wendy Carlos’ alpha tuning. For that I built a Max for Live patch to play microtonal bass tones (TR-808-ish). I’m also thinking of how we can encourage DAW developers such as Ableton to add microtuning support to built-in synths. Being able to customise the piano roll keyboard layout is another huge issue for me, as I’m sick of being encumbered with piano rolls designed for 12-EDO. I made a request through Ableton’s beta users site, but I don’t think they will notice it. Any suggestions?

Viewing 15 posts - 1 through 15 (of 15 total)

Forums > MaxMSP